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Abstract

This work is devoted to the construction of impulsive sets in R
n. In the litera-

ture, there are many examples of impulsive dynamical systems whose impulsive

sets are chosen in an abstract way, and in this paper we present sufficient condi-

tions to characterize impulsive sets in R
n which satisfy some “tube conditions”

and ensure a good behavior of the flow. Moreover, we present some examples

to illustrate the theoretical results.
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1. Introduction

Oftentimes it is necessary to cause an abrupt change in the evolution of a

real model in order to avoid an inconsistent result. One of the theories used to

study such systems is the theory of impulsive differential equations - the reader

may consult [13] for more details and [5], [6], [9], [14], [15] for some applications.
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Recently there has been an interest in the theory of impulsive dynamical

systems (IDS, for short) since it possesses a richer dynamics than the continuous

case. In this new framework, the impulsive set is in the phase space and the

impulses vary on time, and are not pre-assigned. The reader is referred to

[2], [3], [1], [4], [7], [8], [10], [12] for more details. This impulsive set plays

an important role to control the evolution of the system. For instance, in the

study of an impulsive predator-prey model presented in [15], when the density

of the prey hits a level which is the threshold with slight damage (this level

is the impulsive set), then there are released its natural predators in order to

control the environment (the addition of predators is represented by an impulse

function). One of the first and crucial conditions we must have is that the

impulsive set needs to be, in some sense, transversal to the flow, and moreover,

in order to obtain important topological properties for impulsive systems, it also

needs to satisfy what we call “tube conditions”, which is presented in Definition

4. Due to the difficulties to verify the tube condition for impulsive sets in

general spaces, some examples in the literature consider abstract impulsive sets

satisfying such condition.

In this work, we present sufficient conditions for a class of impulsive sets

to satisfy the tube condition in n-dimensional spaces, which is very important

since we have plenty of applications in finite dimensional spaces. Some examples

are included at the end of the paper.

2. Preliminaries

We begin our study by briefly recalling the theory of impulsive dynamical

systems. Let (X, d) be a metric space with metric d, R+ be the set of non-

negative real numbers and N = {1, 2, 3, . . .} be the set of natural numbers. A

semigroup in X is a family of functions {π(t) : t > 0} from X to X , indexed

on R+, satisfying the following conditions:

i) π(0)x = x for all x ∈ X ;

ii) π(t + s) = π(t)π(s) for all t, s ∈ R+;
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iii) the map R+ × X ∋ (t, x) 7→ π(t)x is continuous.

Let {π(t) : t > 0} be a semigroup in X . For each D ⊆ X and J ⊆ R+ we

define F (D, J) =
⋃

t∈J

π(t)−1(D). A point x ∈ X is called an initial point if

F (x, t) = ∅ for all t > 0.

Definition 1. An impulsive dynamical system (IDS, for short)

(X, π, M, I) consists of a semigroup {π(t) : t > 0} on a metric space (X, d),

a nonempty closed subset M ⊆ X such that for every x ∈ M there exists ǫx > 0

such that

F (x, (0, ǫx)) ∩ M = ∅ and
⋃

t∈(0,ǫx)

{π(t)x} ∩ M = ∅, (1)

and a continuous function I : M → X (its role will be specified later). The set M

is called the impulsive set and the function I is called impulsive function.

Remark 2. Condition (1) means that the flow of the semigroup {π(t) : t > 0}

is, in some sense, transversal to M at any point of M .

Thanks to condition (1) we may define the function φ : X → (0, +∞] by

φ(x) =











s, if π(s)x ∈ M and π(t)x /∈ M for 0 < t < s,

+∞, if π(t)x /∈ M for all t > 0.

(2)

If π(t)x ∈ M for some t > 0, then the value φ(x) represents the smallest positive

time such that the trajectory of x meets M . In this case, we say that the point

π(φ(x))x is the impulsive point of x.

The impulsive positive trajectory of x ∈ X by the IDS (X, π, M, I) is

a map π̃(·)x defined in an interval Jx ⊆ R+, 0 ∈ Jx, with values in X given

inductively by the following rule: if φ(x) = +∞ then π̃(t)x = π(t)x for all

t ∈ R+. However, if φ(x) < +∞ then we denote x = x+
0 and define π̃(·)x on

[0, φ(x+
0 )] by

π̃(t)x =











π(t)x+
0 , if 0 6 t < φ(x+

0 ),

I(π(φ(x+
0 ))x+

0 ), if t = φ(x+
0 ).

3



Now let s0 = φ(x+
0 ), x1 = π(s0)x

+
0 and x+

1 = I(π(s0)x
+
0 ). In this case

s0 < +∞ and the process can go on, but now starting at x+
1 . This process ends

after a finite number of steps if φ(x+
n ) = +∞ for some n ∈ N ∪ {0}, or it may

proceed indefinitely, if φ(x+
n ) < +∞ for all n ∈ N and, in this case, π̃(·)x is

defined in the interval [0, T (x)), where T (x) =

∞
∑

i=0

si. The reader may see [3],

[1], [7], [8], [12] for more details.

Next, we present the concepts of tube and STC which allow us to obtain

important topological properties for impulsive systems.

Definition 3. Let {π(t) : t > 0} be a semigroup on X. A closed set S contain-

ing x ∈ X is called a section through x if there exists λ > 0 and a closed subset

L of X such that:

i) F (L, λ) = S;

ii) F (L, [0, 2λ]) contains a neighborhood of x;

iii) F (L, ν) ∩ F (L, ζ) = ∅, if 0 6 ν < ζ 6 2λ.

The set F (L, [0, 2λ]) is called a λ−tube (or simply tube) and the set L is called

a bar.

Definition 4. Let (X, π, M, I) be an IDS. We say that a point x ∈ M satisfies

the strong tube condition (STC), if there exists a section S through x such

that S = F (L, [0, 2λ]) ∩ M . We say that M satisfies STC if each point x ∈ M

satisfies STC.

3. The Main Results

Let f : R
n → R

n be a function such that the autonomous differential equa-

tion

ẋ = f(x), x ∈ R
n, (3)

defines a dynamical system in R
n. In particular, we also assume that equation

(3) satisfies conditions for the existence, uniqueness and extendability to the
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whole real line of its solutions for all initial points in R
n as well as the continuous

dependence on initial conditions.

Let (Rn, π) be the dynamical system generated by system (3). Thus π is a

group and F (x, t) = π−1(t)x = π(−t)x for all x ∈ R
n and t > 0. Moreover, the

map R × R
n ∋ (t, x) 7→ π(t)x is continuous. In the sequel, we present a class

of impulsive dynamical systems (Rn, π, M, I) associated to (Rn, π) such that M

satisfies STC. Since the impulsive set needs to be closed and, in some sense,

transversal to the flow, from now on we will always assume that M ⊂ R
n is a

hypersurface in R
n of class Ck (a closed (n − 1)−dimensional submanifold of

R
n of class Ck), k > 1, satisfying the following transversality condition:

for each p ∈ M we have 〈~np, f(p)〉 6= 0, (T)

where ~np denotes the normal vector of M at p, and 〈·, ·〉 is the scalar product

in R
n.

Let S ⊂ R
n be a manifold in R

n. A differentiable map g : S → R is called

a submersion at a point p ∈ S if the differential map dg(p) : R
n → R is a

surjective linear map and g is called a submersion if it is a submersion at each

point p ∈ S. A point c ∈ R is a regular value of g if for each point p ∈ g−1(c),

g is a submersion at p. Next, we present an auxiliary result and the reader is

referred to [11] for more details.

Lemma 5. Let S ⊂ R
n be a manifold of class Ck in R

n. Then for each p ∈ S,

there exist an open set V ⊂ R
n, p ∈ V , and a submersion g : V → R of class

Ck such that S ∩ V = g−1(0). Moreover, TpS = ker dg(p) and S ∩ V may be

assumed to be connected.

Using the previous lemma and condition (T) we obtain the following result.

Lemma 6. Let p ∈ M , V ⊂ R
n be an open set with p ∈ V and g : V → R be a

submersion of class Ck such that M ∩ V = g−1(0). Then f(p) /∈ ker dg(p).

In the sequel, we show that hypersurfaces in R
n satisfying (T) are impulsive

sets satisfying STC. Lemma 7 shows the condition of transversality of the flow

and Theorem 9 gives us the STC.
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Lemma 7. Given x ∈ M , there exists ǫx > 0 such that F (x, (0, ǫx)) ∩ M = ∅

and π((0, ǫx))x ∩ M = ∅.

Proof. Arguing by contradiction, suppose that there exists a sequence

{tn}n∈N ⊂ R+, tn
n→+∞
−→ 0, such that π(tn)x ∈ M , n ∈ N. By Lemma 5,

there are an open set V ⊂ R
n, with x ∈ V , and a submersion β : V → R of

class Ck, k > 1, such that V ∩ M = β−1(0). We can assume that there exists

λ > 0 such that π([0, λ])x ⊂ V and tn < λ, for all n ∈ N. Defining h : [0, λ] → R

by h(t) = β(π(t)x), we have h(0) = h(tn) = 0 for all n ∈ N and, by the Rolle

Theorem, there exists τn ∈ (0, tn) such that

h′(τn) = 〈∇β(π(τn)x), f(π(τn)x)〉 = 0, n ∈ N.

As n → +∞, we obtain 〈∇β(x), f(x)〉 = 0, which contradicts Lemma 6.

Analogously, if there exists a sequence {tn}n∈N ⊂ R+, tn
n→+∞
−→ 0, such

that F (x, tn) ∩ M 6= ∅ for all n ∈ N, then we can also assume that there exists

λ > 0 such that F (x, [0, λ]) ⊂ V and tn < λ for all n ∈ N. For each n ∈ N, let

yn ∈ F (x, tn)∩M and define the mapping hn : [0, tn] → R by hn(t) = β(π(t)yn).

Using again the Rolle Theorem we obtain τn ∈ (0, tn) with h′

n(τn) = 0, n ∈ N,

that yields 〈∇β(x), f(x)〉 = 0 which is a contradiction. Hence, the result is

proved.

Lemma 8. Let V ⊂ R
n be an open set and β : V → R be a submersion such that

β−1(0) = V ∩M 6= ∅. If x ∈ V ∩M and t > 0 are such that π((0, t])x ⊂ V \M

and π([−t, 0))x ⊂ V \ M then β(π(t)x)β(π(−t)x) < 0.

Proof. Let x ∈ V ∩M and t > 0 satisfying the statement of the lemma. First,

we note that β(π(t)x)β(π(s)x) > 0 for all 0 < s 6 t. Indeed, if there exists

0 < s < t such that β(π(t)x)β(π(s)x) < 0, then one can obtain τ ∈ (s, t) such

that β(π(τ)x) = 0, that is, π(τ)x ∈ M which is a contradiction. Analogously,

we have β(π(−t)x)β(π(−s)x) > 0 for all 0 < s 6 t. Now, suppose the opposite,

i.e., that β(π(t)x)β(π(−t)x) > 0. Then, either β(π([−t, 0) ∪ (0, t])x) > 0 or

β(π([−t, 0)∪ (0, t])x) < 0 which implies that 〈∇β(x), f(x)〉 = 0 and gives also a

contradiction by Lemma 6.
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Theorem 9. The set M ⊂ R
n is an impulsive set which satisfies STC.

Proof. By Lemma 7 the closed set M is an impulsive set. Now let us show

that M satisfies STC. Let x ∈ M be given. By Lemma 5 there exist an open

set V ⊂ R
n with x ∈ V and a submersion β : V → R such that V ∩ M =

β−1(0) is connected. Using the same argument as in Lemma 7, we may obtain

a compact set S ⊂ V ∩ M , x ∈ S, and λ > 0 be such that π((0, 2λ])S ⊂ V \ M

and F (S, (0, 2λ]) ⊂ V \ M . Define L = π(λ)S. We are going to show that

F (L, [0, 2λ]) is a λ-tube through x.

It is clear that F (L, λ) = S. Now, suppose by contradiction that

F (L, [0, 2λ]) does not contain a neighborhood of x, that is, there exists a se-

quence xn
n→+∞
−→ x such that xn /∈ F (L, [0, 2λ]) for all n ∈ N. By Lemma 8,

there exists 0 < s < λ such that β(π(s)x)β(π(−s)x) < 0, consequently there

is n0 ∈ N such that π([−s, s])xn ⊂ V and β(π(s)xn)β(π(−s)xn) < 0 for all

n ≥ n0. Thus, for n ≥ n0, there is τn ∈ (−s, s) such that β(π(τn)xn) = 0, that

is, π(τn)xn ∈ M , which gives a contradiction. To finish the proof, let us show

that F (L, ν) ∩ F (L, µ) = ∅, 0 6 ν < µ 6 2λ. Suppose, again by contradic-

tion, that there exists y ∈ F (L, ν) ∩ F (L, µ) for some 0 6 ν < µ 6 2λ. Then

a = π(ν−λ)y ∈ S and b = π(µ−λ)y ∈ S ⊂ M . Consequently, π(µ−ν)a = b ∈ M

and this is a contradiction since a ∈ S and π((0, 2λ])S ∩ M = ∅ as we have

π((0, 2λ])S ⊂ V \ M , which concludes the proof.

Corollary 10. Let M ⊂ R
n be a hypersurface in R

n satisfying (T) and I : M →

R
n be a continuous function. Then (Rn, π, M, I) is an IDS with M satisfying

STC.

Example 11. In [4, Example 3.2], the authors study the uniform stability of

the system


















ẋ = −αy + yz − x3

ẏ = x − βxz − γy3

ż = θxy − z3,

(4)

subject to the impulsive condition I : M → R
3, where α, β, γ, θ > 0,

βα > 1, M is an impulsive set and I is an impulse function. The set M
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was taken arbitrary and satisfying the condition STC. It is natural to ask

for a concrete impulsive set satisfying STC. For instance, if M = {(x, y, z) ∈

R
3 : x2 + αy2 + αβ−1

θ
z2 − r2 = 0}, where r > 0 is a constant, then M is an

impulsive set satisfying STC. In fact, let g : R
3 → R be given by

g(x, y, z) = x2 + αy2 +
αβ − 1

θ
z2 − r2.

Since 0 is a regular value of g, then it is well known that M = g−1(0) is a

hypersurface in R
3. Let F (x, y, z) = (−αy + yz − x3, x − βxz − γy3, θxy − z3),

(x, y, z) ∈ R
3. Since

〈∇g(x, y, z), F (x, y, z)〉 = −2x4 − 2αγy4 − 2
(αβ − 1)

θ
z4 < 0

for all (x, y, z) ∈ M , then M satisfies condition (T). Thus, by Theorem 9, the

hypersurface M = g−1(0) is an impulsive set which satisfies STC. Note that

⋃

n∈N

{

(x, y, z) ∈ R
3 : x2 + αy2 +

αβ − 1

θ
z2 − n2 = 0

}

is also an impulsive set satisfying STC.

Example 12. Let (Rn, π) be a dynamical system given by the system

ẋ = f(x), where f ∈ C1(Rn, Rn) and xifi(x) < 0 for all x ∈ R
n, x 6= 0,

i = 1, 2, . . . , n. Let a1, . . . , an, r ∈ R+ \ {0} and α1, . . . , αn ∈ N be even num-

bers. Let M = {(x1, . . . , xn) ∈ R
n : a1x

α1

1 + . . . + anxαn

n = r}. If I : M → R
n is

a continuous map, then (Rn, π, M, I) is an IDS with M satisfying STC.

Example 13. In [2, Example 4.8], the authors analyze the global attractor for

the system ẋ = −x, ẏ = −y, in R
2 subject to an impulsive function I : M →

I(M), where M = {(x, y) ∈ R
2 : x2 + y2 = 1}. It was just mentioned that M

satisfies STC. Using Example 12, we may see easily that M satisfies STC.

4. Conclusion

The characterization of impulsive sets that satisfy STC is very important

in the theory of impulsive dynamical systems. The function φ : X → (0, +∞]
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defined in (2) is continuous in X\M when M satisfies STC, see [7, Theorem 3.8].

The continuity of this function is essential to obtain results about invariance,

stability, recursive properties, existence of attractors, etc., as the reader can see

in [2], [3], [4], [7], [8], [10], [12].
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