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Abstract

The very weak solution for the Stokes, Oseen and Navier-Stokes equations has been

studied by several authors in the last decades in domains of Rn, n ≥ 2. The authors studied

the Oseen and Navier-Stokes problems assuming a solenoidal convective velocity in a bounded

domain Ω ⊂ R3 of class C1,1 for v ∈ Ls(Ω) for s ≥ 3 in some previous papers. The results for

the Navier-Stokes equations were obtained by using a fixed-point argument over the Oseen

problem. These results improve those of Galdi et al. , Farwig et al. and Kim for the Navier-

Stokes equations, because a less regular domain Ω ⊂ R3 and more general hypothesis on the

data are considered. In particular, the external forces must not be small.

In this work, existence of weak, strong, regularised and very weak solution for the Oseen

problem are proved, mainly assuming that v ∈ L3(Ω) and its divergence ∇ · v is sufficiently

small in the W−1,3(Ω)-norm. In this sense, one extends the analysis made by the authors

for a given solenoidal v in some previous papers. As a consequence, the existence of very

weak solution for the Navier-Stokes problem (u,π) ∈ L3(Ω) × W−1,3(Ω)/R for a non-zero

divergence condition is obtained in the 3D case.

Keywords: Oseen equations, Navier-Stokes equations; Very weak solutions; Stationary

Solutions.

AMS Subject Classification: 35Q30; 76D03; 76D05; 76D07; 76N10

1 Introduction

Let Ω be a bounded domain (an open connected set) of R3 of class C1,1, with boundary Γ. We

want to study the regularity for the solution (u ,π) for the Oseen (O) and Navier-Stokes (NS)
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equations:

(O)−∆u + v ·∇u +∇π = f , ∇ · u = h in Ω, u = g on Γ,

(NS)−∆u + u ·∇u +∇π = f , ∇ · u = h in Ω, u = g on Γ,

where u denotes the velocity and π the pressure and both are unknown, f the external forces, h

the compressibility condition and g the boundary condition for the velocity, the three functions

being known. In the case of the Oseen equation, the given velocity v belongs to Ls(Ω) (s ≥ 3).

The vector fields and matrix fields (and the corresponding spaces) defined over Ω or over R3

are respectively denoted by boldface Roman and special Roman.

In the case of incompressible fluids, h = 0, it has been well-known since Leray [19] (see also

[20]) that if f ∈ W−1,p(Ω) and g ∈ W1−1/p,p(Γ) with p ≥ 2 and for any i = 0, . . . , I,
�

Γi

g · n dσ = 0, (1.1)

where Γi denote the connected components of the boundary Γ of the open set Ω, then there

exists a solution (u ,π) ∈ W1,p(Ω)× Lp(Ω) satisfying (NS). In [26], Serre proved the existence

of weak solution (u ,π) ∈ W1,p(Ω) × Lp(Ω) for any 3
2 < p < 2 when h = 0 and g satisfy the

above conditions. More recently, Kim [18] improves Serre’s existence and regularity results on

weak solutions of (NS) for any 3
2 ≤ p < 2 (including the case p = 3

2), when the boundary of

Ω is connected (I = 0) provided h is small in an appropriate norm (due to the compatibility

condition between h and g , then g is also small in the corresponding appropriate norm).

As to our knowledge, the notion of very weak solutions (u ,π) ∈ Lp(Ω)×W−1,p(Ω) for Stokes

or Navier-Stokes equations, corresponding to very irregular data, has been developed in the last

years by Giga [17] (in a domain Ω of class C∞), Amrouche & Girault [4] (in a domain Ω of class

C1,1) and by Galdi et al. [16], Farwig et al. [13] (in a domain Ω of class C2,1, see also Schumacher

[25]) and Kim [18] (in a domain of class C2). The choice of the space for the boundary condition

g is made differently: g ∈ Lp(Γ) (see Brown & Shen [10], Conca [11], Fabes et al. [12], Moussaoui

[22], Shen [27], Savaré [24], Marusic-Paloka [21]) or more generally g ∈ W−1/p,p(Γ). For the

non-stationary case, the existence, uniqueness and regularity of very weak solutions for the

Navier-Stokes equations have been investigated (among other authors) by Amann [1, 2].

In the Navier-Stokes case, the existence of very weak solution u ∈ L2n/(n−1)(Ω), n = 2, 3, for

arbitrary large external forces f ∈ H−1(Ω), h = 0, arbitrary large boundary condition g ∈ L2(Γ)

and without assuming condition (1.1), was proved first by Marusic-Paloka in Theorem 5 of [21]

with Ω a bounded simply-connected open set of class C1,1. But the proof of such theorem

becomes correct only if either condition (1.1) or smallness condition similar to (3.95) hold. The

result of existence of very weak solution (u ,π) ∈ Lq(Ω)×W−1,q(Ω) was proved by Kim [18] in

C2-domains of Rn, n = 2, 3, 4, for arbitrary large external forces f ∈ [W1,q�

0 (Ω) ∩W 2,q�(Ω)]�, for
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small h ∈ [W 1,q�(Ω)]� and g ∈ W−1/q,q(Γ) for

q0 ≤ q < ∞, q0 = n if n ≥ 3, 2 < q0 < 3 if n = 2

and where the boundary of Ω is supposed connected (I = 0). Our results improve those of Kim

considering best spaces for the data f and g (see Remark 2 in [7]). Moreover, the very weak

solution u ∈ L2(Ω) for the 2-dimensional case is obtained in [9] for the solenoidal case.

Similar results on the existence of very weak solution for Stokes and Navier-Stokes equations

were obtained by Galdi et al. in [16], Farwig et al. in [14] for the n-dimensional case (n ≥ 3) and

in [13] for the 2-dimensional case. They consider a more regular domain C2,1 and the hypothesis

on the data f = ∇ · F with F ∈ Lr(Ω), h ∈ Lr(Ω) and g ∈ W−1/q,q(∂Ω) for

n ≤ q < ∞ if n ≥ 3,

2 < q < ∞ if n = 2,





q
�
< r ≤ q,

1

r
≤ 1

q
+

1

n

and smallness assumptions for all the data f , h and g . In our case, the data are more general,

the smallness assumptions are only demanded for h and g .

In some previous papers ([7, 8, 9]), the authors studied the regularity for the Stokes, Oseen

and Navier-Stokes equations for regular and singular data in the 2-dimensional and 3-dimensional

cases (the case of the Stokes problem in a bounded domain of Rn, n ≥ 2, was treated in [8]). In

all these works, the convective velocity v and the Navier-Stokes velocity field u were considered

solenoidal.

In this work, we want to analyse the Oseen equation in the 3-dimensional case for a non-

solenoidal convective velocity v whose divergence ∇ ·v is sufficiently small in an adequate norm

(smallness condition will be necessary in order to obtain the existence of solution). The existence

of solution in this framework is not known for the authors, and generalizes the results existing

for the solenoidal case (∇ ·v = 0). As a consequence, using a fixed point argument, the existence

of very weak solution for the Navier-Stokes equations is proved. This result was also treated in

[7], but here the estimates are improved due to the best knowledge about the Oseen equation for

the solenoidal and non-solenoidal cases. This new knowledge of the non-solenoidal case is very

interesting when studying compressible Navier-Stokes equations. In the proofs of such results,

we will use the ideas developed in [4] (for bounded domains) and in [6, 5] (for the half-space and

whole space R3) about the existence of very weak solutions for the stationary Stokes equations

and linearized Navier-Stokes equations. For questions related to the rigorous definition for the

traces of the vector functions living in subspaces of Lp(Ω) and the density lemmas, the reader

can consult the results appearing in [7].

The work is organised as follows: In the rest of this section, we will set the space framework,

including space definitions and trace spaces, together with compatibility conditions for the Oseen

and Navier-Stokes problems. Section 2 is devoted to the existence of solution (u ,π) for the Oseen
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problem in H1(Ω) × L2(Ω)/R, strong solution in W2,p(Ω) × W 1,p(Ω) for p > 1, generalised

solution in W1,p(Ω) × Lp(Ω) and very weak solution in Lp(Ω) ×W−1,p(Ω), assuming that the

velocity v (in almost all the cases) belongs to L3(Ω) and ∇ ·v belongs to W−1,3(Ω) whose norm

in its respective spaces is sufficiently small. The Navier-Stokes case will be studied in Section 3

using a fixed point argument on the Oseen problem, correcting the proof made in [7] which was

only valid for solenoidal velocities v . As in [7], the case of small data will be considered first,

and the smallness hypothesis on f will be removed later.

1.1 Space framework

The space related to the existence of very weak solution is:

Xr,p(Ω) = {ϕ ∈ W1,r
0 (Ω); ∇ ·ϕ ∈ W

1,p
0 (Ω)}, 1 < r, p < ∞,

and we set Xp,p(Ω) = Xp(Ω),being Xp(Ω) the space appearing in [3, 4]. Their dual space

[Xr,p(Ω)]� is characterised by the following result:

Lemma 1.1 (See [7]) Let f ∈ [Xr,p(Ω)]�. Then, there exist F0 = (fij)1≤i,j≤3 such that F0 ∈
Lr�(Ω), f1 ∈ W−1,p�(Ω) and satisfying:

f = ∇ · F0 +∇f1. (1.2)

Moreover,

�f�[Xr,p(Ω)]� = max{�fij�Lr� (Ω), 1 ≤ i, j ≤ 3, �f1�W−1,p� (Ω)}.

Conversely, if f satisfies (1.2), then f ∈ [Xr,p(Ω)]�.

In particular, we have the following embeddings:

W−1,r(Ω) �→ (Xr�,p�(Ω))
�
�→ W−2,p(Ω), (1.3)

where the second embedding holds if 1
r ≤ 1

p + 1
n , for n the space dimension of Rn (n = 2 or 3).

In the search of a very weak solution (primal problem), we will study the dual problem which

will need strong regularity. Concretely, we will need to handle with the space Yp�(Ω) which can

be defined in two different ways (see [4]):

Yp�(Ω) = {ψ ∈ W2,p�(Ω); ψ|Γ = 0, (∇ ·ψ)|Γ = 0}

and

Yp�(Ω) = {ψ ∈ W2,p�(Ω); ψ|Γ = 0,
∂ψ

∂n
· n

���
Γ
= 0}.

(1.4)

Observe that the range space of its normal derivative γ1 : Yp�(Ω) → W1/p,p�(Γ) is defined by:

Zp�(Γ) = {z ∈ W1/p,p�(Γ); z · n = 0}.
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And finally, the spaces where the traces for the very weak solution belong will be defined as:

Tp,r(Ω) = {v ∈ Lp(Ω); ∆v ∈ [Xr�,p�(Ω)]
�},

endowed with the topology given by the norm �v�Tp,r(Ω) = �v�Lp(Ω) + �∆v�[Xr�,p� (Ω)]� . Observe

that when p = r, these spaces are denoted as Tp(Ω) and Tp,σ(Ω), respectively, the σ-subscript

denotes the subspace of solenoidal fields. The tangential trace of functions v of Tp,r,σ(Ω) belongs

to the dual space of Zp�(Γ), which is:

(Zp�(Γ))
� = {µ ∈ W−1/p,p(Γ); µ · n = 0}.

The proof can be seen in [7].

We treat the Stokes, Oseen and Navier-Stokes equations under the compatibility condition:
�

Ω
h(x ) dx = �g · n , 1�W−1/p,p(Γ)×W 1/p,p� (Γ). (1.5)

The results for the Stokes problem, defined in a domain Ω ⊂ Rn for n ≥ 2, were studied in

[8]. We recall that in [7, 8] we studied the case of singular data satisfying precisely the following

assumptions:

f ∈ [Xr�,p�(Ω)]
�
, h ∈ L

r(Ω), g ∈ W−1/p,p(Γ), with
1

r
≤ 1

p
+

1

n
and r ≤ p.

2 The Oseen problem for a non-solenoidal given v

The Oseen problem can be described as:

(O) −∆u + v ·∇u +∇π = f and ∇ · u = h in Ω, u = g on Γ

for some given v , f , h and g functions or distributions. In [7, 9], the study was made for a given

v belonging to the space Ls
σ(Ω), for s ≥ 3. Concretely (see [7]), the following result was proved:

Theorem 2.1 (Existence of solution for (O)) Let

f ∈ H−1(Ω), v ∈ L3
σ(Ω), h ∈ L

2(Ω) and g ∈ H1/2(Γ)

verify the compatibility condition (1.5). Then, the problem (O) has a unique solution (u,π) ∈
H1(Ω)× L2(Ω)/R. Moreover, there exists a constant C = C(Ω) > 0 such that:

�u�H1(Ω) ≤ C

�
�f�H−1(Ω) +

�
1 + �v�L3(Ω)

��
�h�L2(Ω) + �g�

H1/2(Γ)

��
,

�π�L2(Ω)/R ≤ C
�
1 + �v�L3(Ω)

� �
�f�H−1(Ω) +

�
1 + �v�L3(Ω)

��
�h�L2(Ω) + �g�

H1/2(Γ)

��
.
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In the case of ∇ · v = 0, the problem (O) can also be described by:

(O�) −∆u +∇ · (v ⊗ u) +∇π = f and ∇ · u = h in Ω, u = g on Γ.

However, when ∇ · v �= 0, both terms ∇ · (v ⊗ u) and v ·∇u do not coincide.

The problem (O�) appears in the study of the very weak solution of problem (O), because is

the system appearing for the dual problem associated to (O). This is the reason for which the

study of problem (O�) is being done here.

Theorem 2.2 (Weak regularity for (O)) Let

f ∈ H−1(Ω), v ∈ L3(Ω), h ∈ L
2(Ω) and g ∈ H1/2(Γ)

verify the compatibility condition (1.5). Then, there exists a constant δ0 > 0 (defined in (2.9))

such that if �∇ · v�W−1,3(Ω) ≤ δ0, the problem (O) has a unique solution (u,π) ∈ H1(Ω) ×
L2(Ω)/R. Moreover, there exists a constant C > 0 depending on Ω and δ0 such that:

�u�H1(Ω) ≤ C

�
�f�H−1(Ω) + (1 + �v�L3(Ω))(�h�L2(Ω) + �g�

H1/2(Γ))
�

(2.6)

�π�L2(Ω) ≤ C
�
1 + �v�L3(Ω)

� �
�f�H−1(Ω) + (1 + �v�L3(Ω))(�h�L2(Ω) + �g�

H1/2(Γ))
�

(2.7)

Proof. Following the proof of Theorem 13 of [7], we lift the data by u0 ∈ H1(Ω) such that

∇ · u0 = h and u0|Γ = g , satisfying:

�u0�H1(Ω) ≤ C

�
�h�L2(Ω) + �g�

H1/2(Γ)

�
. (2.8)

The initial problem is equivalent to finding z = u − u0 ∈ H1
0(Ω) with ∇ · z = 0 such that:

∀ϕ ∈ H1
0(Ω) such that ∇ ·ϕ = 0, a(z ,ϕ) + b(v , z ,ϕ) = ��f ,ϕ�

H−1(Ω)×H
1
0(Ω),

with �f = f +∆u0 − (v ·∇)u0. The bilinear form is given by:

a(z ,ϕ) =

�

Ω
∇z : ∇ϕ dx − 1

2
�∇ · v , z ·ϕ�

W−1,3(Ω)×W 1,3/2
0 (Ω)

.

Taking into account that z ∈ H1
0(Ω), as ∇ · v ∈ W−1,3(Ω), then:

�∇ · v , |z |2�
W−1,3(Ω)×W 1,3/2

0 (Ω)
≤ �∇ · v�W−1,3(Ω)�|z |2�W 1,3/2(Ω) ≤ C0 �∇ · v�W−1,3(Ω)�∇|z |2�L3/2(Ω)

≤ 2C0C1 �∇ · v�W−1,3(Ω)�∇z�2
L2(Ω),

where C0 is the Poincaré constant associated to the Sobolev space W1,3/2
0 (Ω) and C1 is the

product of the constant of the Sobolev embedding H1(Ω) �→ L6(Ω) and the Poincaré constant

associated to H1
0(Ω). Therefore

a(z , z ) = �∇z�2
L2(Ω)−

1

2
�∇·v , |z |2�

W−1,3(Ω)×W 1,3/2
0 (Ω)

≥
�
1− C0C1 �∇ · v�W−1,3(Ω)

�
�∇z�2

L2(Ω).
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If we choose v such that:

�∇ · v�W−1,3(Ω) ≤
1

2C0C1
= δ0, (2.9)

(being δ0 a constant only depending on Ω) the bilinear form a(·, ·) is then coercive. Moreover,

the trilinear form:

b(v , z ,ϕ) =

�

Ω
(v ·∇)z ·ϕ dx +

1

2
�∇ · v , z ·ϕ�

W−1,3(Ω)×W 1,3/2
0 (Ω)

,

well-defined for v ∈ L3(Ω) and z , ϕ ∈ H1
0(Ω), is an antisymmetric form with respect to the last

two variables.

By Lax-Milgram’s Theorem, we can deduce the existence of a unique z ∈ H1
0(Ω) with

∇ · z = 0 in Ω verifying the estimate:

�z�H1(Ω) ≤ C ��f �H−1(Ω) ≤ C

�
�f �H−1(Ω) + (1 + �v�L3(Ω))

�
�h�L2(Ω) + �g�

H1/2(Γ)

��

because of:

�v ·∇u0�H−1(Ω) ≤ �v�L3(Ω) �u0�H1(Ω).

This estimate together with (2.8) implies (2.6). By De Rham’Lemma (see [23] or Lemma 6 in

[7]) there exists a pressure π ∈ L2(Ω) and using that ∇π = f +∆u−v ·∇u we obtain (2.7). �

Theorem 2.3 (Weak regularity for (O�)) Under the assumptions of Theorem 2.2, the prob-

lem (O�) has a unique solution (u,π) ∈ H1(Ω) × L2(Ω)/R. Moreover, there exists a constant

C > 0 depending on Ω and δ0 such that estimates (2.6) and (2.7) are satisfied.

Proof. The proof follows the same scheme but this time the bilinear form is defined by:

a
�(z ,ϕ) =

�

Ω
∇z : ∇ϕ dx +

1

2
�∇ · v , z ·ϕ�

W−1,3(Ω)×W 1,3/2
0 (Ω)

,

for v ∈ L3(Ω), z , ϕ ∈ H1
0(Ω). Taking into account that ∇ · (v ⊗ u) = v ·∇u + (∇ · v)u , there

is no need to redefine the trilinear form b(·, ·, ·) in Theorem 2.2. �

Regularity results given for the solenoidal case (see [9]) can be generalised to the case of

v ∈ L3(Ω) with ∇ · v �= 0 and �∇ · v�W−1,3(Ω) sufficiently small. All those can be summarised,

making separately both problems (O) and (O�), as follows:

Theorem 2.4 (Strong solution for (O�) when p ≥ 6/5) Let p ≥ 6/5 and

f ∈ Lp(Ω), v ∈ L3(Ω), h ∈ W
1,p(Ω) and g ∈ W2−1/p,p(Γ)
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verify the compatibility condition (1.5) and �∇ · v�W−1,3(Ω) being sufficiently small (in the sense

of (2.9)). If moreover ∇·v ∈ L3/2(Ω), then there exists a unique solution (u,π) of (O�) belonging

to W2,p(Ω)×W 1,p(Ω). Moreover, there exists a constant C > 0 satisfying the following estimate:

�u�W2,p(Ω) + �π�W 1,p(Ω)/R ≤ C

�
�f�Lp(Ω) +

�
1 + �v�L3(Ω)

� �
�h�W 1,p(Ω) + �g�

W2−1/p,p(Γ)

��
,

(2.10)

where C = C(Ω, p, δ0)
�
1 + �v�L3(Ω) + �∇ · v�L3/2(Ω)

�
. Moreover, ∇ · (v ⊗ u) ∈ Lp(Ω) is true

when p ≥ 3.

Proof. The proof is based on Theorem 14 in [7] and Theorem 2.2 in [9]. We have the following

embeddings:

Lp(Ω) �→ H−1(Ω) W
1,p(Ω) �→ L

2(Ω) and W2−1/p,p(Γ) �→ H1/2(Γ)

which, thanks to Theorem 2.3, guarantee the existence of a unique solution (u ,π) of (O�) be-

longing to H1(Ω) × L2(Ω)/R. But, this regularity is not sufficient to deduce regularity in

W2,p(Ω) ×W 1,p(Ω) using the regularity for the Stokes problem. As in Theorem 2.2 in [9], the

proof assume first that v and ∇ ·v are more regular. This regularity will be removed in a second

step.

(a) The case of v ∈ D(Ω). Let (u ,π) ∈ H1(Ω) × L2(Ω)/R be the solution of (O�). Using

the Stokes regularity, we prove that (u ,π) ∈ W2,p(Ω) ×W 1,p(Ω)/R and we have the following

estimate:

�u�W2,p(Ω) + �π�W 1,p(Ω) ≤ C

�
�f �Lp(Ω) + �h�W 1,p(Ω) + �g�

W2−1/p,p(Γ) + �∇ · (v ⊗ u)�Lp(Ω),

�

(2.11)

The bound for the term �∇ · (v ⊗ u)�Lp(Ω) does not coincide with �v ·∇u�Lp(Ω) because:

∇ · (v ⊗ u) = v ·∇u + (∇ · v)u .

Let ε > 0 and set:

v = v
ε
1 + v

ε
2 where v

ε
1 = �v � ρε/2 and v

ε
2 = v − �v � ρε/2, (2.12)

being �v the extension by zero of v to R3 and ρε/2 the classical mollifier.

i) Estimate of the term �v ·∇u�Lp(Ω). Using the Hölder inequality and the Sobolev embed-

ding, we have:

�v ε
2 ·∇u�Lp(Ω) ≤ �v ε

2�Lm(Ω)�∇u�Lq(Ω) ≤ C ε �u�W2,p(Ω) (2.13)

where W2,p(Ω) �→ W1,q(Ω) for q = p∗ with 1
p∗ = 1

p − 1
3 if p < 3, for any q ∈ (1,+∞) if p = 3

and q = ∞ if p > 3, and m is defined in (2.17).

The estimate depending on v
ε
1, is divided into 2 steps (similar to Theorem 14 in [7]):
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• Case p ≤ 2: Assuming 1
p = 1

r + 1
2 and 1 + 1

r = 1
3 + 1

t (which implies that r ≥ 3 and

t ∈ [1, 3/2]), we bound:

�v ε
1·∇u�Lp(Ω) ≤ �v ε

1�Lr(Ω)�∇u�L2(Ω) ≤ �v�L3(Ω)�ρε/2�Lt(R3)�∇u�L2(Ω) ≤ Cε�v�L3(Ω)�u�H1(Ω)

(2.14)

for Cε the constant absorbing the norm of the mollifier.

• Case p > 2: First we choose an exponent 2 < q < p∗ such that W2,p(Ω) �→ W1,q(Ω).

Therefore, for any ε� > 0, we know the existence of a constant Cε� > 0 in such a way that

the following interpolation inequality holds:

�u�W1,q(Ω) ≤ ε
��u�W2,p(Ω) + Cε��u�H1(Ω). (2.15)

In the case of p < 3, using 1
p = 1

r + 1
q and 1 + 1

r = 1
3 + 1

t (which implies r ∈]3,∞] and

t ≥ 1), we obtain:

�v ε
1 ·∇u�Lp(Ω) ≤ �v ε

1�Lr(Ω)�∇u�Lq(Ω) ≤ �v�L3(Ω)�ρε/2�Lt(R3)�∇u�Lq(Ω)

≤ Cε�v�L3(Ω)

�
ε��u�W2,p(Ω) + Cε��u�H1(Ω)

�
.

(2.16)

In the case of p ≥ 3, the previous estimate is also verified using 1
p = 1

m + 1
p∗ for m given

by:

m = max{3, p} if p �= 3 and m > 3 if p = 3, (2.17)

and 1 + 1
m = 1

3 + 1
t (which implies that t > 1), we obtain:

�v ε
1 ·∇u�Lp(Ω) ≤ �v ε

1�Lm(Ω)�∇u�Lq(Ω) ≤ Cε�v�L3(Ω)

�
ε
��u�W2,p(Ω) + Cε��u�H1(Ω)

�
.

(2.18)

Note that (2.15) is satisfied for q = p∗.

Thus, choosing ε� > 0 small enough, we can deduce from (2.14), (2.16) or (2.18) that:

�v ε
1 ·∇u�Lp(Ω) ≤ Cε�v�L3(Ω)

�
ε
��u�W2,p(Ω) + Cε��u�H1(Ω)

�
. (2.19)

ii) Estimate of the term �(∇ · v)u�Lp(Ω). We consider:

∇ · v = w
ε
1 + w

ε
2 where w

ε
1 = (�∇ · v) � ρε/2 and w

ε
2 = ∇ · v − (�∇ · v) � ρε/2.

being �∇ · v the extension by zero of ∇ · v to R3. It is easy to see that:

�wε
2�Ls(Ω) = �∇ · v − (�∇ · v) � ρε/2�Ls(Ω) ≤ ε.

The influence of wε
2 in the bound of �(∇ · v)u�Lp(Ω) is given by:

�wε
2 u�Lp(Ω) ≤ �wε

2�Ls(Ω)�u�Lk(Ω) ≤ C ε �u�W2,p(Ω) (2.20)
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where s is defined as:

s = max
�3

2
, p

�
if p �= 3

2 and s >
3

2
if p = 3

2

because of W2,p(Ω) �→ Lk(Ω) for k = 3p
3−2p if p < 3/2, for k = 3s

2s−3 if p = 3/2 and k = ∞ if

p > 3/2.

The analysis of the influence of wε
1 in the bound of �(∇ · v)u�Lp(Ω) is made considering

several cases:

• If 6
5 ≤ p ≤ 6, let r be defined by 1

p = 1
r + 1

6 and t defined by 1 + 1
r = 2

3 + 1
t . Thus,

r ∈ [3/2,∞] and t ∈ [1, 3] and the following estimate holds:

�wε
1 u�Lp(Ω) ≤ �wε

1�Lr(Ω)�u�L6(Ω) ≤ C2�∇ · v�L3/2(Ω)�ρε/2�Lt(R3)�u�H1(Ω)

≤ C2Cε �∇ · v�L3/2(Ω)

�
�f �H−1(Ω) + (1 + �v�L3(Ω))(�h�L2(Ω) + �g�

H1/2(Γ))
�
,

(2.21)

where C2 is the constant of the Sobolev embedding of H1(Ω) �→ L6(Ω).

• If p > 6, we choose an exponent 6 < q < +∞ such that for any ε� > 0, we known that

there exists a constant Cε� > 0 such that (2.15) is satisfied. Now, for 1
p +1 = 2

3 +
1
t , t > 2,

we have:

�wε
1 u�Lp(Ω) ≤ C �wε

1�Lp(Ω)�u�W1,q(Ω) ≤ C �∇ · v�
L3/2(Ω)�ρε/2�Lt(R3)�u�W1,q(Ω). (2.22)

Replacing (2.15) in (2.22), we have that:

�wε
1 u�Lp(Ω) ≤ C�∇ · v�

L3/2(Ω)�ρε/2�Lt(R3)�u�W1,q(Ω)

≤ C Cε�∇ · v�
L3/2(Ω)

�
ε��u�W2,p(Ω) + Cε��u�H1(Ω)

�
.

(2.23)

From (2.11), (2.13), (2.19), (2.20) and (2.21) or (2.23), an adequate choice of the smallness

parameters ε and ε� and the weak estimate (2.6) lead to (2.10).

(b) The case of v ∈ L3(Ω) and ∇ ·v ∈ L3/2(Ω). In order to apply step (a), we approach v by

vλ ∈ D(Ω) such that vλ → v in L3(Ω) and ∇ · vλ → ∇ · v in L3/2(Ω). Therefore, the solution

(uλ,πλ) of problem:

(O�
λ) −∆uλ +∇ · (vλ ⊗ uλ) +∇πλ = f and ∇ · uλ = h in Ω, uλ = g on Γ

belongs to W2,p(Ω)×W 1,p(Ω)/R and satisfies (2.10). Letting λ tend to 0, the limit (u ,π) is the

solution of (O�), belongs to W2,p(Ω)×W 1,p(Ω)/R and satisfies the required estimate. �
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Theorem 2.5 (Strong solution for (O) when p ≥ 6/5) Let p ≥ 6/5 and assume that the

hypotheses of Theorem 2.4 are verified. Then, there exists a unique solution (u,π) of (O)

belonging to W2,p(Ω) × W 1,p(Ω). Moreover, there exists a constant C > 0 satisfying estimate

(2.10) where C = C(Ω, p, δ0)
�
1 + �v�L3(Ω)

�
and p ≥ 6/5. Moreover, v · ∇u ∈ Lp(Ω) is true

when p ≥ 3.

Proof. Let vλ ∈ D(Ω) be satisfying vλ → v in L3(Ω) as λ → 0. If λ > 0 is sufficiently

small, then �∇ · vλ�W−1,3(Ω) is also sufficiently small. By Theorem 2.2, there exists a unique

(uλ,πλ) ∈ H1(Ω)× L2(Ω)/R satisfying the problem:

(Oλ) −∆uλ + vλ ·∇uλ +∇πλ = f and ∇ · uλ = h in Ω, uλ = g on Γ.

Using the regularity estimates for the Stokes problem, we obtain that (uλ,πλ) ∈ W2,p(Ω) ×
W 1,p(Ω) and satisfies:

�uλ�W2,p(Ω)+�πλ�W 1,p(Ω)/R ≤ C

�
�f �Lp(Ω) + �h�W 1,p(Ω) + �g�

W2−1/p,p(Γ) + �vλ ·∇uλ�Lp(Ω)

�
,

(2.24)

where the control over the last term is the main difficulty. Following the same proof of Theorem

14 and Corollary 7 of [7] (see also the improved result in [9]) the bounds of �vλ ·∇uλ�Lp(Ω) are

given by :

�vλ ·∇uλ�Lp(Ω) ≤ C ε �uλ�W2,p(Ω) + Cε�v�L3(Ω)ε
��uλ�W2,p(Ω) + Cε�v�L3(Ω)Cε��uλ�H1(Ω),

(2.25)

for any ε > 0 and ε� > 0 (a detailed explanation can also be seen in the proof Theorem 2.4,

point i)). Combining (2.24) and (2.25) for an adequate choice of the ε and ε�, and using the

weak estimate (2.6) (in which the smallness hypothesis for the norm of ∇ ·v stated in (2.9) must

be satisfied), we obtain:

�uλ�W2,p(Ω) + �πλ�W 1,p(Ω)/R ≤ C
�
1 + �v�L3(Ω)

�

×
�
�f �Lp(Ω) +

�
1 + �v�L3(Ω)

� �
�h�W 1,p(Ω) + �g�

W2−1/p,p(Γ)

��
.

Taking λ → 0, we can deduce the convergence of (uλ,πλ) � (u ,π) in W2,p(Ω) ×W 1,p(Ω)

and vλ ·∇uλ � v ·∇u at least in L6/5(Ω), the limit pair (u ,π) being the solution of (O), which

belongs to W2,p(Ω)×W 1,p(Ω) and satisfies the required estimate. �

Theorem 2.6 (Generalised solution for (O) and p ≥ 2) Let 2 ≤ p < ∞,

f ∈ W−1,p(Ω), h ∈ L
p(Ω) and g ∈ W1−1/p,p(Γ) verifying the compatibility condition (1.5)

together with v ∈ L3(Ω). Then, there exists δ1 = δ1(Ω, p) (δ1 defined in (2.36) if p ∈ (2, 3) and

δ1 = δ0 defined in (2.9) in the other case) such that if �∇ · v�W−1,3(Ω) ≤ δ1, then the problem
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(O) has a unique solution (u,π) ∈ W1,p(Ω)×Lp(Ω)/R. Moreover, there exists a constant C > 0

depending on Ω, p and δ1 such that the following inequality holds:

�u�W1,p(Ω) + �π�Lp(Ω)/R ≤ C
�
1 + �v�L3(Ω)

� �
�f�W−1,p(Ω) +

�
1 + �v�L3(Ω)

�

×
�
�h�Lp(Ω) + �g�

W1−1/p,p(Γ)

��
.

(2.26)

Proof. Unlike the Navier-Stokes equations, the regularity for the Stokes problem cannot be

used because of v ∈ L3(Ω) only implies that v ·∇u ∈ L6/5(Ω) �→ H−1(Ω).

We separate the proof into existence and estimates.

A) Existence. In order to obtain the existence of a solution (u ,π) ∈ W1,p(Ω)×Lp(Ω), we use

the proof of Theorem 15 in [7].

We lift f , h and g by using some functions (u0,π0) ∈ W1,p(Ω)× Lp(Ω) such that:

−∆u0 +∇π0 = f , ∇ · u0 = h in Ω and u0|Γ = g on Γ,

verifying the estimate:

�u0�W1,p(Ω) + �π0�Lp(Ω)/R ≤ C

�
�f �W−1,p(Ω) + �h�Lp(Ω) + �g�

W1−1/p,p(Γ)

�
. (2.27)

Let (z , θ) ∈ W2,t(Ω)×W 1,t(Ω) be the solution of the problem:

−∆z + v ·∇z +∇θ = −v ·∇u0 and ∇ · z = 0 in Ω, z = 0 on Γ,

with t ∈ [6/5, 3) defined by 1
t = 1

3 + 1
p , satisfying the strong estimate:

�z�W2,t(Ω)+�θ�W 1,t(Ω)/R ≤ C
�
1 + �v�L3(Ω)

�
�v ·∇u0�Lt(Ω) ≤ C

�
1 + �v�L3(Ω)

�
�v�L3(Ω)�u0�W1,p(Ω).

(2.28)

Then, (u ,π) = (z +u0, θ+π0) is the solution of (O), which thanks to (2.27) and (2.28) satisfies

the bound:

�u�W1,p(Ω) + �π�Lp(Ω)/R ≤ �C4
�
1 + �v�L3(Ω)

�2 �
�f �W−1,p(Ω) + �h�Lp(Ω) + �g�

W1−1/p,p(Γ)

�
.

This estimate will be improved below.

B) Estimates. In order to improve the estimates obtained in the existence part, we approximate

function v ∈ L3(Ω), which implies that ∇ · v ∈ W−1,3(Ω), by vλ ∈ D(Ω) in such a way that:

vλ → v in L3(Ω) and ∇ · vλ → ∇ · v in W−1,3(Ω)

(the proof can be made in a similar manner to Lemma 13, point i) in [7]) and we study the

following problem:

(Oλ) −∆uλ + vλ ·∇uλ +∇πλ = f and ∇ · uλ = h in Ω, uλ = g on Γ.
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Let (uλ,πλ) ∈ H1(Ω)× L2(Ω)/R with �∇ · vλ�W−1,3(Ω) < δ0 be the solution of (Oλ). Using the

Stokes regularity estimates in the space W1,p(Ω)× Lp(Ω)/R, we have:

�uλ�W1,p(Ω)+�πλ�Lp(Ω) ≤ C

�
�f �W−1,p(Ω) + �h�Lr(Ω) + �g�

W1−1/p,p(Γ) + �vλ ·∇uλ�W−1,p(Ω)

�
.

(2.29)

In the solenoidal case, vλ ·∇uλ = ∇ · (vλ ⊗ uλ), but now:

vλ ·∇uλ = ∇ · (vλ ⊗ uλ)− (∇ · vλ)uλ.

We separate the proof into several steps, which depend on the p-index for the Sobolev spaces

W1,p(Ω):

i) p ∈ (2,3): The Stokes regularity estimate in the space W1,p(Ω)×Lp(Ω)/R is given by (2.29).

In order to bound the last term of (2.29), we use the decomposition (2.12) in such a way that:

vλ ·∇uλ = ∇ · (v ε
1 ⊗ uλ) +∇ · (v ε

λ,2 ⊗ uλ)− (∇ · vλ)uλ.

For the term depending on v
ε
1, using:

�v ε
1�L3(Ω) ≤ ��v � ρε/2�L3(R3) ≤ Cε �v�L3(Ω),

for Cε the constant absorbing the norm of the mollifier, we have:

�∇·(v ε
1⊗uλ)�W−1,p(Ω) ≤ �v ε

1⊗uλ�Lp(Ω) ≤ �v ε
1�Lr(Ω)�uλ�Lb(Ω) ≤ �v�L3(Ω)�ρε/2�Lt(R3)�uλ�Lb(Ω),

where 1
p = 1

r + 1
b and 1 + 1

r = 1
3 + 1

t . If we choose 6 < b < p∗, when W1,p(Ω) �→ Lp∗(Ω) for
1
p∗ = 1

p − 1
3 , then t ∈ ]1, 2p

p+2 [ and r ∈ ]3, 6p
6−p [. Then, for any ε� > 0, we known that there exists

Cε� > 0 such that

�uλ�Lb(Ω) ≤ ε
��uλ�W1,p(Ω) + Cε��uλ�L6(Ω), (2.30)

and therefore:

�∇ · (v ε
1 ⊗ uλ)�W−1,p(Ω) ≤ ε

�
Cε �v�L3(Ω)�uλ�W1,p(Ω) + C2CεCε��v�L3(Ω)�uλ�H1(Ω) (2.31)

where C2 is the constant of the Sobolev embedding H1(Ω) �→ L6(Ω). For the term depending

on v
ε
λ,2, we use: for λ < ε/2

�v ε
λ,2�L3(Ω) ≤ �vλ − v�L3(Ω) + �v − v

ε
1�L3(Ω) ≤ λ+ ε/2 < ε, (2.32)

together with the Hölder inequality:

�uλ�Lp∗ (Ω) ≤ C3 �uλ�W1,p(Ω)

where C3 is the constant of the Sobolev embedding W1,p(Ω) �→ Lp∗(Ω), obtaining:

�∇ · (v ε
λ,2 ⊗ uλ)�W−1,p(Ω) ≤ �v ε

λ,2 ⊗ uλ�Lp(Ω) ≤ �v ε
λ,2�L3(Ω) �uλ�Lp∗ (Ω) ≤ C3 ε �uλ�W1,p(Ω).

(2.33)
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In order to bound the term �(∇·vλ)uλ�W−1,p(Ω), we must test by using functions ϕ ∈ W1,p�

0 (Ω),

in such a way that:

�(∇ · vλ)uλ,ϕ�
W−1,p(Ω)×W

1,p�
0 (Ω)

= �∇ · vλ,uλ ·ϕ�
W−1,3(Ω)×W 1,3/2

0 (Ω)
,

provided that uλ · ϕ ∈ W
1,3/2
0 (Ω). Observe that uλ · ∇ϕ ∈ L3/2(Ω) and ∇uλ · ϕ ∈ L3/2(Ω)

because of 1
p∗ + 1

p� =
1
p + 1

(p�)∗ = 2
3 , which implies that uλ ·ϕ ∈ W 1,3/2(Ω) and:

�(∇ · vλ)uλ,ϕ�
W−1,p(Ω)×W

1,p�
0 (Ω)

= �∇ · vλ,uλ ·ϕ�
W−1,3(Ω)×W 1,3/2

0 (Ω)

≤ �∇ · vλ�W−1,3(Ω)�uλ ·ϕ�W 1,3/2(Ω)

≤ C5 �∇ · v�W−1,3(Ω)�uλ�W1,p(Ω)�ϕ�W1,p� (Ω)

(2.34)

where C5 is a constant, which depends on W1,p(Ω) �→ Lp∗(Ω) and W1,p�(Ω) �→ L(p�)∗(Ω).

Consequently, we obtain:

�(∇ · vλ)uλ�W−1,p(Ω) ≤ C5 �∇ · v�W−1,3(Ω)�uλ�W1,p(Ω). (2.35)

Looking at (2.29), (2.31), (2.33), (2.35), we choose ε, ε� and �∇ · v�W−1,3(Ω) sufficiently small in

such a way that

ε
�
Cε �v�L3(Ω) + C3 ε+ C5 �∇ · v�W−1,3(Ω) =

1

2
.

If we want to use (2.6) in order to bound �u�H1(Ω), we also need that ∇ ·v satisfies (2.9). Thus,

we chose (for instance):

�∇ · v�W−1,3(Ω) ≤ δ1 = min

�
1

6
(C5)

−1
, δ0

�
. (2.36)

Therefore, we deduce the existence of a constant C6 > 0 such that:

�uλ�W1,p(Ω) + �πλ�Lp(Ω)/R ≤ C6
�
1 + �v�L3(Ω)

� �
�f �W−1,p(Ω) +

�
1 + �v�L3(Ω)

�

× (�h�Lp(Ω) + �g�
W1−1/p,p(Γ))

� (2.37)

ii) p ∈ [3,6): For these values, we can reproduce the proof of Proposition 3 of [7]: By using

(2.12) and (2.32), we have:

�v ε
λ,2 ·∇uλ�W−1,p(Ω) ≤ C�v ε

λ,2 ·∇uλ�Lr(Ω) ≤ C �v ε
λ,2�L3(Ω)�∇uλ�Lp(Ω) ≤ C ε�∇uλ�Lp(Ω),

(2.38)

where 1
r = 1

3 + 1
p , and:

�v ε
1 ·∇uλ�W−1,p(Ω) ≤ C�v ε

1 ·∇uλ�Lr(Ω) ≤ C�v ε
1�Lk(Ω)�∇uλ�L2(Ω)

≤ C�v�L3(Ω)�ρε/2�Lt(R3)�∇uλ�L2(Ω),

(2.39)
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where k = 6p
6−p and t = 2p

p+2 ∈ [65 ,
3
2 [. Bounding the last term in (2.39) by using (2.6), and

replacing the resulting estimate and (2.38) into (2.29), estimate (2.37) can be deduced.

iii) p ≥ 6: Estimate (2.38) is still true. Estimate (2.39) is bounded in a slightly different way:

�v ε
1 ·∇uλ�W−1,p(Ω) ≤ C�v ε

1 ·∇uλ�Lr(Ω) ≤ C�v ε
1�Lk(Ω)�∇uλ�Lq(Ω)

≤ C�v�L3(Ω)�ρε/2�Lt(R3)�∇uλ�Lq(Ω),

where 1
r = 1

k + 1
q ,

1
r = 1

p + 1
3 and 1

t = 1 + 1
p − 1

q . Choosing 3 < q < p, we have k ∈ ]3, p[ and

t ∈ ]1, 3p
2p+3 [. The interpolation estimate of W1,q(Ω) between H1(Ω) and W1,p(Ω):

�∇uλ�Lq(Ω) ≤ �uλ�
2(p−q)
q(p−2)

H1(Ω)�uλ�
p(q−2)
q(p−2)

W1,p(Ω) ≤ ε
� �uλ�W1,p(Ω) + Cε��uλ�H1(Ω)

with an adequate choice of the small parameters ε and ε� > 0, allow us to obtain (2.37).

Taking λ → 0, we can deduce the convergence of (uλ,πλ) � (u ,π) in W1,p(Ω)×Lp(Ω) and

vλ · ∇uλ � v · ∇u at least in L6/5(Ω), the limit pair (u ,π) being the solution of (O), which

belongs to W1,p(Ω) × Lp(Ω) and satisfies (2.26) for �∇ · v�W−1,3(Ω) ≤ δ1 with δ1 = δ0 and δ0

defined in (2.9) for p ≥ 3, and with δ1 defined in (2.36) for p < 3. �

Theorem 2.7 (Generalised solution for (O�) and p ≥ 2) Let 2 ≤ p < ∞ and assume that

the hypotheses of Theorem 2.6 are satisfied (the smallness assumption for �∇ ·v�W−1,3(Ω) is only

needed in the sense of (2.9)). Then the problem (O�) has a unique solution (u,π) ∈ W1,p(Ω)×
Lp(Ω)/R. Moreover, there exist some constant C > 0 depending on Ω, p and δ0 such that

inequality (2.26) holds.

Proof. In order to obtain the existence of a solution (u ,π) ∈ W1,p(Ω)× Lp(Ω), let (vλ)λ ⊂
D(Ω) be such that vλ → v in L3(Ω) as λ → 0. Then, we can suppose that λ > 0 is sufficiently

small and therefore �∇ · vλ�W−1,3(Ω) is as small as �∇ · v�W−1,3(Ω). Then, we can use Theorem

2.3 to deduce the existence of (uλ,πλ) ∈ H1(Ω)× L2(Ω). From the regularity estimates for the

Stokes problem, we have that (uλ.πλ) ∈ W1,p(Ω)× Lp(Ω) and

�uλ�W1,p(Ω) + �πλ�Lp(Ω)/R ≤ C

�
�f �W−1,p(Ω) + �h�Lp(Ω) + �g�

W1−1/p,p(Γ) + �vλ ⊗ uλ�Lp(Ω)

�
.

(2.40)

Using decomposition (2.12) for vλ, for m defined in (2.17),

�v ε
λ,2 ⊗ uλ�Lp(Ω) ≤ �v ε

λ,2�Lm(Ω)�uλ�Lp∗ (Ω) ≤ C ε �uλ�W1,p(Ω) (2.41)

where W1,p(Ω) �→ Lp∗(Ω) with 1
p∗ = 1

p − 1
3 if p < 3, for p∗ = 3m

m−3 if p = 3 and p∗ = ∞ if p > 3.

Using that p ≥ 2, we can bound the term on v
ε
1 as follows:

�v ε
1 ⊗ uλ�Lp(Ω) ≤ �v ε

1�Lr(Ω)�uλ�Lb(Ω) ≤ �v�L3(Ω)�ρε/2�Lt(R3)�uλ�Lb(Ω)
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for 1
p = 1

r +
1
b , 1 +

1
r = 1

3 + 1
t and 6 < b < p∗. As for (2.31) , we have

�v ε
1 ⊗ uλ�Lp(Ω) ≤ ε

�
Cε �v�L3(Ω)�uλ�W1,p(Ω) + C2CεCε��v�L3(Ω)�uλ�H1(Ω), (2.42)

for C2 > 0 the constant of the embedding H1(Ω) �→ L6(Ω). From (2.40), (2.41) and (2.42),

choosing ε and ε� conveniently and using the weak estimate (2.6) furnished by the smallness of

�∇ · v�W−1,3(Ω) in the sense of (2.9), we deduce the existence of a constant C4 > 0 such that:

�uλ�W1,p(Ω) + �πλ�Lp(Ω) ≤ C4
�
1 + �v�L3(Ω)

� �
�f �W−1,p(Ω) +

�
1 + �v�L3(Ω)

�

×
�
�h�Lp(Ω) + �g�

W1−1/p,p(Γ)

��
.

Taking λ → 0, we can deduce the convergence of (uλ,πλ) � (u ,π) in W1,p(Ω)×Lp(Ω) and

∇ · (vλ ⊗ uλ) � ∇ · (v ⊗ u) at least in H−1(Ω), the limit pair (u ,π) being the solution of (O�),

which belongs to W1,p(Ω)× Lp(Ω) and satisfies (2.26). �

Theorem 2.8 (Generalised solution for (O) and p < 2) Let 1 < p < 2,

f ∈ W−1,p(Ω), h ∈ L
p(Ω) and g ∈ W1−1/p,p(Γ)

satisfy (1.5), together with v ∈ L3(Ω) and �∇ · v�W−1,3(Ω) being sufficiently small (in the sense

of (2.9)). Then, the problem (O) has a unique solution (u,π) ∈ W1,p(Ω) × Lp(Ω)/R and there

exists some constant C > 0 such that the following inequality holds:

�u�W1,p(Ω) + �π�Lp(Ω)/R ≤ C

�
�f�W−1,p(Ω) +

�
1 + �v�L3(Ω)

� �
�h�Lp(Ω) + �g�

W1−1/p,p(Γ)

��

(2.43)

where C = C(Ω, p, δ0)
�
1 + �v�L3(Ω)

�2
. Moreover, there exists δ2 > 0 (defined in (2.55)) such

that if �∇ · v�W−1,s(Ω) ≤ δ2 for s defined by:

s = max{3, p�} if p �= 3
2 and s > 3 if p = 3

2 , (2.44)

then estimate (2.43) is satisfied for C = C(Ω, p, δ2)
�
1 + �v�L3(Ω)

�
.

Proof. We separate the proof into existence and estimates.

A) Existence. In order to obtain the existence of a solution (u ,π) ∈ W1,p(Ω)×Lp(Ω), we use

the proof of Theorem 15 in [7].

Using a duality method, first we suppose that h = 0 and g = 0. The problem (O) is

equivalent to find (u ,π) ∈ W1,p
0 (Ω)× Lp(Ω) such that: ∀(w ,χ) ∈ W1,p�

0 (Ω)× Lp�(Ω)

�u ,−∆w−∇·(v⊗w)+∇χ�
W

1,p
0 (Ω)×W−1,p� (Ω)−�π,∇·w�Lp(Ω)×Lp� (Ω) = �f ,w�

W−1,p(Ω)×W
1,p�
0 (Ω)

.
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Provided that �∇ · v�W−1,3(Ω) is small enough in the sense of (2.9) and thanks to Theorem 2.7,

for any pair (F,ϕ) ∈ W−1,p�(Ω) × L
p�

0 (Ω), there exists a unique (w ,χ) ∈ W1,p�

0 (Ω) × Lp�(Ω)/R
such that:

−∆w −∇ · (v ⊗w) +∇χ = F and ∇ ·w = ϕ in Ω, w = 0 on Γ

and satisfying the estimate:

�w�
W1,p� (Ω) + �χ�Lp� (Ω)/R ≤ C

�
1 + �v�L3(Ω)

� �
�F�W−1,p(Ω) +

�
1 + �v�L3(Ω)

�
�ϕ�Lp� (Ω)

�
.

Therefore, we have:

�u ,F�
W

1,p
0 (Ω)×W−1,p� (Ω) − �π,ϕ�Lp(Ω)×Lp� (Ω) = �f ,w�

W−1,p(Ω)×W
1,p�
0 (Ω)

with
����f ,w�

W−1,p(Ω)×W
1,p�
0 (Ω)

��� ≤ C �f �W−1,p(Ω)

�
1 + �v�L3(Ω)

�2 �
�F�W−1,p(Ω) + �ϕ�Lp� (Ω)

�
.

In other words, the mapping (F,ϕ) → �f ,w� defines an element (u ,π) of the dual space of

W−1,p�(Ω)× L
p�

0 (Ω) solution of (O�) and satisfying the estimate:

�u�W1,p(Ω) + �π�Lp(Ω)/R ≤ C
�
1 + �v�L3(Ω)

�2 �f �W−1,p(Ω). (2.45)

The case of h �= 0 and g �= 0 can be treated lifting first these data by using:

z ∈ W1,p(Ω) such that ∇ · z = h and z |Γ = g with �z�W1,p(Ω) ≤ C

�
�h�Lp(Ω) + �g�

W1−1/p,p(Γ)

�
.

(2.46)

Therefore, it remains to study the regularity for the solution (u0,π0) of the problem:

−∆u0 + v ·∇u0 +∇π0 = f +∆z − v ·∇z and ∇ · u0 = 0 in Ω, u0 = 0 on Γ,

which using (2.45) satisfies:

�u0�W1,p(Ω) + �π0�Lp(Ω)/R ≤ C
�
1 + �v�L3(Ω)

�2 �
�f �W−1,p(Ω) +

�
1 + �v�L3(Ω)

�

×
�
�h�Lp(Ω) + �g�

W1−1/p,p(Γ)

��
.

(2.47)

Finally, the solution of (O) is given by (z + u0,π0) which satisfies estimate (2.43) for C =

C(Ω, p, δ0)
�
1 + �v�L3(Ω)

�2
. This estimate will be improved below.

B) Estimates.

In order to improve the estimates obtained in the existence part, we consider first the case

that h = 0 and g = 0.

(a) The case of h = 0 and g = 0: As the norm �∇ · v�W−1,3(Ω) is sufficiently small, then the

step A) guarantees the existence of (uk,πk) ∈ W1,p(Ω)× Lp(Ω) solution for the problem:

(P ) −∆uk + v ·∇uk +∇πk = f k and ∇ · uk = 0 in Ω, uk = 0 on Γ,
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for a given f k defined as follows:

Construction of f k: Let ρ ∈ D(R3), be a smooth C∞ function with compact support in B(0, 1),

such that ρ ≥ 0,
�
R3 ρ(x) dx = 1. For t ∈ (0, 1), let ρt denote the function x �−→ ( 1

t3 )ρ(
x
t ). Let

ϕ ∈ D(R3) be such that 0 � ϕ(x) � 1 for any x ∈ R3, and

ϕ(x) =





1 if 0 �| x |� 1,

0 if | x |� 2.

We begin with applying the cut off functions ϕk defined on R3 for any k ∈ N∗, as ϕk(x) = ϕ(xk ).

As f = ∇ · F, F ∈ Lp(Ω), we consider Fk = ϕk
�F (for �Fk the extension by zero of F to R3).

Thus we obtain

Gt,k = ρt∗Fk ∈ D(R3), lim
t→0

lim
k→∞

Gt,k = �F in Lp(R3), Gt,k|Ω → F in Lp(Ω) when t → 0, k → +∞.

Moreover, for q = 2p
3p−2 ,

�ρt � Fk�L2(R3) ≤ �ρt�Lq(R3)�Fk�Lp(R3) ≤
4

3
π t

−3/q� �Fk�Lp(R3). (2.48)

We choose t = k−α with α > 0 which will be precised later. Then f k = ∇ · (Gt,k|Ω) ∈ H−1(Ω)

and f k → f in W−1,p(Ω). Observe that (uk,πk) also belongs to H1
0(Ω) × L2(Ω). Using the

Stokes regularity in W1,p
0 (Ω)× Lp(Ω), we obtain:

�uk�W1,p(Ω) + �πk�Lp(Ω)/R ≤ C
�
�f k�W−1,p(Ω) + �v ·∇uk�W−1,p(Ω)

�
. (2.49)

The last term can be bounded using the following decomposition:

v ·∇uk = ∇ · (v ⊗ uk)− uk (∇ · v).

Given ε > 0, let v ε ∈ D(Ω) be a smooth function with Bε = supp(v ε), which approaches v in

the sense that:

�v − v ε�L3(Ω) < ε. (2.50)

Then, we obtain:

�∇ · (v ⊗ uk)�W−1,p(Ω) ≤ �v ⊗ uk�Lp(Ω) ≤ �v − v ε�L3(Ω)�uk�Lp∗ (Ω) + �v ε�L3(Bε)�uk�Lp∗ (Bε)

≤ εC3�uk�W1,p(Ω) + �v ε�L3(Bε)�uk�Lp∗ (Bε)

(2.51)

In order to treat the term uk (∇ · v), we consider ∇ · v ∈ W−1,s(Ω) for s defined by (2.44).

We must test by using functions ϕ ∈ W1,p�

0 (Ω), in such a way that:

�(∇ · v)uk,ϕ�
W−1,p(Ω)×W

1,p�
0 (Ω)

= �∇ · v ,uk ·ϕ�W−1,s(Ω)×W 1,s�
0 (Ω)

,
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holds for s defined in (2.44), providing that uk ·ϕ ∈ W
1,s�

0 (Ω). Observe that uk ·∇ϕ ∈ L3/2(Ω)

because of 1
p∗ + 1

p� =
2
3 . However, ∇uk · ϕ ∈ Ls(Ω) for 1

s = 1
p + 1

(p�)∗ . Depending on the value

of (p�)∗, we separate the proof into several steps, which depend on the p-index for the Sobolev

spaces W1,p(Ω):

i) If p > 3/2, we obtain that ∇uk ·ϕ ∈ L3/2(Ω), therefore uk ·ϕ ∈ W
1,3/2
0 (Ω) and (2.34) and

(2.35) hold.

ii) If p < 3/2, we obtain that ∇uk ·ϕ ∈ Lp(Ω), therefore uk ·ϕ ∈ W
1,p
0 (Ω) and:

|�(∇ · v)uk,ϕ�
W−1,p(Ω)×W

1,p�
0 (Ω)

| = |�∇ · v ,uk ·ϕ�W−1,p� (Ω)×W 1,p
0 (Ω)|

≤ �∇ · v�W−1,p� (Ω)�uk ·ϕ�W 1,p(Ω)

≤ C5 �∇ · v�W−1,p� (Ω)�uk�W1,p(Ω)�ϕ�W1,p� (Ω).

Therefore,

�(∇ · v)uk�W−1,p(Ω) ≤ C5 �∇ · v�W−1,p� (Ω)�uk�W1,p(Ω). (2.52)

iii) If p = 3/2, we obtain that ∇uk · ϕ ∈ Lr(Ω) (for any r <
3
2), therefore uk · ϕ ∈ W

1,r
0 (Ω)

and we can verify that:

�(∇ · v)uk�W−1,p(Ω) ≤ C5 �∇ · v�W−1,a(Ω)�uk�W1,p(Ω), (2.53)

for any a > 3.

In summary, from (2.35), (2.52) and (2.53), we can deduce:

�(∇ · v)uk�W−1,p(Ω) ≤ C5 �∇ · v�W−1,s(Ω)�uk�W1,p(Ω) (2.54)

for 1 < p < 2 with s defined by (2.44). Putting together (2.54) and (2.51) into (2.49) and

choosing εC C3 =
1
4 and:

�∇ · v�W−1,s(Ω) ≤ δ2 =
1

4C C5
, (2.55)

we obtain the existence of a constant C4 > 0 such that:

�uk�W1,p(Ω) + �πk�Lp(Ω)/R ≤ 2C4

�
�f k�W−1,p(Ω) + �v ε�L3(Bε) �uk�Lp∗ (Bε)

�
. (2.56)

From (2.56), we prove that there exists C > 0 not depending on k and v such that for any

k ∈ N∗ we have

||uk||Lp∗(Bε) � C||f k||W−1,p(Ω). (2.57)
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Indeed, assuming, per absurdum, the invalidity of (2.57). Then for any m ∈ N∗ there exists

�m ∈ N, f �m ∈ H
−1(Ω) and vm ∈ L3(Ω) with �∇ · vm�W−1,3(Ω) ≤ δ0 (δ0 defined in (2.9))

such that, if (u�m ,π�m) ∈ H
1
0(Ω) × L2(Ω) denotes the corresponding solution to the following

problem:

−∆u�m + vm ·∇u�m +∇π�m = f �m , ∇ · u�m = 0 in Ω, u�m = 0 on Γ

the inequality

||u�m ||Lp∗(B�) > m||f �m ||W−1,p(Ω), (2.58)

would hold. Now, we set:

wm =
u�m

||u�m ||Lp∗(Bε)
, θm =

π�m

||u�m ||Lp∗(Bε)
and Rm =

f �m

||u�m ||Lp∗(Bε)
.

Then for any m ∈ N∗ we have

−∆wm + vm ·∇wm +∇ θm = Rm and ∇ ·wm = 0 in Ω, wm = 0 on Γ. (2.59)

Now, using (2.59), the smallness assumption (2.9) for �∇ · vm�W−1,3(Ω) and Theorem 2.2, we

can apply estimate (2.6) obtaining for any m ∈ N∗ and t > 0

�wm�H1(Ω) ≤ C �Rm�H−1(Ω) =
C

||u�m ||Lp∗(Bε)
�f �m�H−1(Ω) ≤

C

||u�m ||Lp∗(Bε)
�ρt ∗ F�m�L2(Ω) .

From (2.58), we have

||wm||
H

1(Ω) <
C

m||f �m ||W−1,p(Ω)
||ρt ∗ F�m ||L2(R3).

Using (2.48) and choosing t =
1

mα
with 0 < α <

q�

3 , we deduce that

||wm||
H

1(Ω) �
4πC

3m
1− 3α

q� ||f �m ||W−1,p(Ω)

||F�m ||Lp(R3).

Because the right hand side of the last inequality tends to zero when m goes to ∞, we deduce

that

wm → 0 in H
1(Ω).

Then, wm → 0 in L
6(Ω) and in particular in L

p∗(Bε). On the other hand, we have:

||wm||Lp∗(Bε) = 1,

leading to a contradiction. Inequality (2.57) is therefore established. From (2.56), (2.57) and

(2.50) we obtain for any k ∈ N∗

||uk||W 1,p(Ω) + ||πk||Lp(Ω)/R � 2C4

�
1 + C||v ||

L
3(Ω)

�
||f k||W −1,p(Ω).
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Thus we can extract subsequences of uk and πk, still denoted by uk and πk, such that

uk � u in W
1,p(Ω) and πk + Ck � π in L

p(Ω),

which implies v ⊗uk � v ⊗u in Lp(Ω). Assuming that ∇ ·v ∈ W−1,s(Ω) for s defined in (2.44)

and following the same argument that proves that (∇ · v)uk ∈ W−1,p(Ω), we can deduce that

(∇ · v)u ∈ W−1,p(Ω). Thus, the convergence:

(∇ · v)uk � (∇ · v)u in W−1,p(Ω)

can be deduced. Indeed, for any ϕ ∈ W1,p�

0 (Ω)

�(∇ · v)uk − (∇ · v)u ,ϕ�
W−1,p(Ω)×W

1,p�
0 (Ω)

= �∇ · v , (uk − u) ·ϕ�
W−1,s(Ω)×W 1,s�

0 (Ω)
.

Observe that (uk − u) · ϕ � 0 in W
1,s�

0 (Ω), which implies that the term tends to zero. As a

consequence, the limit (u ,π) ∈ W
1,p
0 (Ω)× Lp(Ω) satisfies the problem:

−∆u + v ·∇u +∇π = f and ∇ · u = 0 in Ω, u = 0 on Γ,

and there exists a constant C4 > 0 such that:

||u ||
W

1,p(Ω) + ||π||Lp(Ω)/R � 2C4

�
1 + C||v ||

L
3(Ω)

�
||f ||

W
−1,p(Ω).

(b)The case of h �= 0 and g �= 0: The data are lifted by using (u0,π0) ∈ W1,p(Ω)×Lp(Ω)/R
the solution of the Stokes problem:

−∆u0 +∇π0 = 0, ∇ · u0 = h, u0|Γ = g

satisfying

�u0�W1,p(Ω) + �π0�Lp(Ω)/R ≤ C

�
�h�Lp(Ω) + �g�

W1−1/p(Γ)

�
.

Therefore, (ŭ , π̆) = (u − u0,π − π0) is the solution of the Oseen problem:

−∆ŭ + v ·∇ŭ +∇π = f̆ and ∇ · ŭ = 0 in Ω, ŭ = 0 on Γ

with f̆ = f − v ·∇u0 ∈ W−1,p(Ω), which is a problem treated above. Therefore,

�ŭ�W1,p(Ω) + �π̆�Lp(Ω)/R ≤ C
�
1 + �v�L3(Ω)

�
�f̆ �W−1,p(Ω)

and finally

�u�W1,p(Ω)+�π�Lp(Ω)/R ≤ C
�
1 + �v�L3(Ω)

� �
�f �W−1,p(Ω)+

�
1 + �v�L3(Ω)

� �
�h�Lp(Ω) + �g�

W1−1/p(Γ)

��
.

�
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Theorem 2.9 (Generalised solution for (O�) and p < 2) Let 1 < p < 2,

f ∈ W−1,p(Ω), h ∈ L
p(Ω) and g ∈ W1−1/p,p(Γ)

together with v ∈ L3(Ω) and �∇ ·v�W−1,3(Ω) being sufficiently small (in the sense of (2.36) if p ∈
(3/2, 2) and in the sense of (2.9) in the other case), verifying the compatibility condition (1.5).

Then, the problem (O�) has a unique solution (u,π) ∈ W1,p(Ω) × Lp(Ω)/R. Moreover, there

exists some constant C > 0 such that inequality (2.43) holds for C = C(Ω, p, δ1)
�
1 + �v�L3(Ω)

�

if p ∈ (3/2, 3) and for C = C(Ω, p, δ0)
�
1 + �v�L3(Ω)

�
in the other case.

Proof. As in Theorem 2.6, we separate the proof into existence and estimates.

A) Existence. Using a duality method, first we suppose that h = 0 and g = 0. The problem

(O�) is equivalent to find (u ,π) ∈ W1,p(Ω)× Lp(Ω) such that: ∀(w ,χ) ∈ W1,p�(Ω)× Lp�(Ω)

�u ,−∆w − v ·∇w +∇χ�
W

1,p
0 (Ω)×W−1,p� (Ω) − �π,∇ ·w�Lp(Ω)×Lp� (Ω) = �f ,w�

W−1,p(Ω)×W
1,p�
0 (Ω)

.

Therefore, for any pair (F,ϕ) ∈ W−1,p�(Ω) × L
p�

0 (Ω), let (w ,χ) ∈ W1,p�

0 (Ω) × Lp�(Ω)/R be the

solution of the problem of type (O) described as:

−∆w − v ·∇w +∇χ = F and ∇ ·w = ϕ in Ω, w = 0 on Γ,

which exists thanks to Theorem 2.6 (provided that �∇ · v�W−1,3(Ω) is sufficiently small in the

sense of (2.36) if p ∈ (3/2, 2) and in the sense of (2.9) in the other case). Moreover, we know

that:

�w�
W1,p� (Ω) + �χ�Lp� (Ω)/R ≤ C

�
1 + �v�L3(Ω)

� �
�F�W−1,p(Ω) +

�
1 + �v�L3(Ω)

�
�ϕ�Lp� (Ω)

�
.

Furthermore, we have:

����f ,w�
W−1,p(Ω)×W

1,p�
0 (Ω)

��� ≤ C �f �W−1,p(Ω)

�
1 + �v�L3(Ω)

�2 �
�F�W−1,p(Ω) + �ϕ�Lp� (Ω)

�
.

In other words, the mapping (F,ϕ) → �f ,w�
W−1,p(Ω)×W

1,p�
0 (Ω)

defines an element of the dual

space of W−1,p�(Ω)×L
p�

0 (Ω). From Riesz’s Representation Theorem, we deduce that there exists

a unique (u ,π) ∈ W1,p
0 (Ω)×Lp(Ω)/R solution of (O) (for h = 0 and g = 0) that satisfies (2.45).

As in Theorem 2.8, the case of h �= 0 or g �= 0 can be treated using the lifting (2.46).

Therefore, it remains to study the regularity for the solution (u0,π0) of the problem:

−∆u0+∇ · (v ⊗u0)+∇π0 = f +∆z −∇ · (v ⊗z ) and ∇ ·uλ = 0 in Ω, uλ = 0 on Γ,

which using (2.45) satisfies estimate (2.47). The bound (2.43) for C = C(Ω, p, δ0)
�
1 + �v�L3(Ω)

�2

is satisfied by (u ,π) = (u0 + z ,π0). This estimate will be improved below.
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B) Estimates. In order to improve the estimates, we can adapt the same argument used in

the proof of Theorem 2.8 B). Concretely, problem ( P) is replaced by:

(P �) −∆uk +∇ · (v ⊗ uk) +∇πk = f k and ∇ · uk = 0 in Ω, uk = 0 on Γ,

and therefore the study of the term (∇ · v)uk and its correspondent estimate in (2.52) are not

necessary. As a consequence, estimate (2.43) is obtained, for C = C(Ω, p, δ1)
�
1 + �v�L3(Ω)

�
if

p ∈ (3/2, 3) and for C = C(Ω, p, δ0)
�
1 + �v�L3(Ω)

�
in the other case, without assuming neither

regularity for ∇ · v in W−1,s(Ω) for s defined in (2.44) nor smallness for this norm. �

Proceeding as in Corollary 2.4 in [9] (see also Corollary 7 in [7]), we prove that:

Theorem 2.10 (Strong solution for (O) when 1 < p < 6/5) Let 1 < p < 6/5 and

f ∈ Lp(Ω), v ∈ L3(Ω), h ∈ W
1,p(Ω) and g ∈ W2−1/p,p(Γ)

verify the compatibility condition (1.5) and �∇ · v�W−1,3(Ω) ≤ δ2 (in the sense of (2.55)). Then,

there exists a unique solution (u,π) of (O) belonging to W2,p(Ω) × W 1,p(Ω). Moreover, there

exists a constant C > 0 such that:

�u�W2,p(Ω) + �π�W 1,p(Ω)/R ≤ C
�
1 + �v�L3(Ω)

� �
�f�Lp(Ω) +

�
1 + �v�L3(Ω)

�

×
�
�h�W 1,p(Ω) + �g�

W2−1/p,p(Γ)

�� (2.60)

is satisfied for C = C(Ω, p, δ2)
�
1 + �v�L3(Ω)

�
.

Proof. First, taking into account that:

Lp(Ω) �→ W−1,p∗(Ω) W
1,p(Ω) �→ L

p∗(Ω) and W2−1/p,p(Γ) �→ W1−1/p∗,p∗(Γ) (2.61)

for 1
p∗ = 1

p − 1
3 and 3/2 < p∗ < 2, from Theorem 2.8 we can deduce the existence of a solution

(u ,π) in W1,p∗(Ω)× Lp∗(Ω) satisfying the estimate:

�u�
W1,p∗ (Ω) + �π�Lp∗ (Ω)/R ≤ C

�
1 + �v�L3(Ω)

� �
�f �

W−1,p∗ (Ω) +
�
1 + �v�L3(Ω)

�

×
�
�h�Lp∗ (Ω) + �g�

W1−1/p∗,p∗ (Γ)

��
.

(2.62)

Second, the previous regularity provides that v ·∇u ∈ Lp(Ω). As a consequence, the regularity

for the Stokes problem allows to obtain the strong regularity for (u ,π) in W2,p(Ω) ×W 1,p(Ω).

Moreover, the regularity estimate:

�u�W2,p(Ω) + �π�W 1,p(Ω)/R ≤ C

�
�f �Lp(Ω) + �h�W 1,p(Ω) + �g�

W2−1/p,p(Γ) + �v ·∇u�Lp(Ω)

�

together with the inequality:

�v ·∇u�Lp(Ω) ≤ �v�L3(Ω)�∇u�
Lp∗ (Ω) ≤ �v�L3(Ω)�u�W1,p∗ (Ω) (2.63)
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and (2.62) lead to the bound (2.60). �

Theorem 2.11 (Strong solution for (O�) when 1 < p < 6/5) Under the hypotheses of The-

orem 2.10, if ∇ ·v ∈ L3/2(Ω) and �∇ ·v�W−1,3(Ω) is sufficiently small in the sense of (2.36), then

there exists a unique solution (u,π) of (O�) belonging to W2,p(Ω)×W 1,p(Ω). Moreover, there ex-

ists a constant C > 0 such that estimate (2.60) is satisfied for C = C(Ω, p, δ1)
�
1 + �v�L3(Ω) + �∇ · v�L3/2(Ω)

�
.

Proof.

Observe first that (2.61) is satisfied for 1
p∗ = 1

p − 1
3 and 3/2 < p∗ < 2. Then, thanks to the

smallness of �∇ · v�W−1,3(Ω) in the sense of (2.36), Theorem 2.9 guarantees the existence of a

solution (u ,π) of (O�) belonging to W1,p∗(Ω)× Lp∗(Ω)/R and satisfying (2.62):

�u�
W1,p∗ (Ω) + �π�Lp∗ (Ω)/R ≤ C

�
1 + �v�L3(Ω)

� �
�f �Lp(Ω) +

�
1 + �v�L3(Ω)

�

×
�
�h�W 1,p(Ω) + �g�

W2−1/p,p(Γ)

��
.

(2.64)

Again based on the regularity over the Stokes problem, we easily verify that (u ,π) ∈ W2,p(Ω)×
W 1,p(Ω) and:

�u�W2,p(Ω) + �π�W 1,p(Ω) ≤ C

�
�f �Lp(Ω) + �h�W 1,p(Ω) + �g�

W2−1/p,p(Γ)

+ �v ·∇u�Lp(Ω) + �(∇ · v)u�Lp(Ω)

�
,

(2.65)

where we have to bound the last two terms. Using that u ∈ W1,p∗(Ω), we obtain (2.63) and

�(∇ · v)u�Lp(Ω) ≤ �∇ · v�
L3/2(Ω)�u�Lq(Ω) ≤ C7 �∇ · v�

L3/2(Ω)�u�W1,p∗ (Ω) (2.66)

for C7 the constant of the embedding W1,p∗(Ω) �→ Lq(Ω) with 1
q = 1

p∗ − 1
3 . Using (2.64) in

the bounds of (2.63) and (2.66), and replacing the resulting estimate in (2.65), we found the

required estimate. �

As a consequence of ∇ · v �= 0, the definition of very weak solution for the Oseen problem

given in [7] must be rewritten. In fact, this definition should be given for the problems (O) and

(O�), which are not equivalent if ∇ · v �= 0. We start the study for the weak solution of (O�)

because it is easier (in fact, it corresponds with the study about the very weak solution made

in [7]).

Definition 2.12 (Very weak solution for the Oseen problem (O�)) Assume that f ∈ [Xr�,p�(Ω)]�

(see Lemma 1.1 and Remark 2.13), h ∈ Lr(Ω) and g ∈ W−1/p,p(Γ) satisfying the compatibility

condition (1.5) and v ∈ Ls(Ω) with (r, s) given by:

s = max{3, p�} if p �= 3

2
and s > 3 if p =

3

2
, (2.67)
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r ≥ 1 such that
1

r
=

1

p
+

1

s
. (2.68)

We say that (u,π) ∈ Lp(Ω) × W−1,p(Ω) is a very weak solution of (O�) if the following

equalities hold: For any ϕ ∈ Yp�(Ω) and χ ∈ W 1,p�(Ω),

�

Ω
u · (−∆ϕ− v ·∇ϕ) dx − �π,∇ ·ϕ�

W−1,p(Ω)×W 1,p�
0 (Ω)

= �f,ϕ�Ω − �gτ ,
∂ϕ

∂n
�Γ,

�

Ω
u ·∇χ dx = −

�

Ω
hχ dx+ �g · n,χ�Γ,

where the dualities on Ω and Γ are defined by:

�·, ·�Ω = �·, ·�[Xr�,p� (Ω)]�×Xr�,p� (Ω), �·, ·�Γ = �·, ·�
W−1/p,p(Γ)×W1/p,p� (Γ), (2.69)

and the space Yp�(Ω) is characterised in two different ways in (1.4).

Remark 2.13 If p <
3
2 , then r = 1 and the hypothesis on f means that f = ∇ · F0 +∇f1 with

F0 ∈ L1(Ω) and f1 ∈ W−1,p(Ω). In this case, we have:

�f,ϕ�Ω = −
�

Ω
F0 : ∇ϕ dx+ �f1,∇ ·ϕ�

W−1,p(Ω)×W 1,p�
0 (Ω)

, ∀ϕ ∈ Yp�(Ω).

Theorem 2.14 (Very weak solution for (O�)) Assume that f ∈ [Xr�,p�(Ω)]�, h ∈ Lr(Ω) and

g ∈ W−1/p,p(Γ) satisfy the compatibility condition (1.5) and v ∈ Ls(Ω) with �∇ · v�W−1,3(Ω)

sufficiently small (in the sense of (2.55) if p > 6 and in the sense of (2.9) in the other case),

and (r, s) given by (2.68) and (2.67). Then, the Oseen problem (O�) has a unique solution

(u,π) ∈ Tp,r(Ω)×W−1,p(Ω)/R verifying the following estimate:

�u�Lp(Ω) + (1 + �v�L3(Ω))
−1�π�W−1,p(Ω)/R ≤ C

�
1 + �v�L3(Ω)

� �
�f�[Xr�,p� (Ω)]� +

�
1 + �v�Ls(Ω)

�

×
�
�h�Lr(Ω) + �g�

W−1/p,p(Γ)

��
,

(2.70)

if 1 < p ≤ 6 and estimate (2.70) replacing C by C
�
1 + �v�L3(Ω)

�
and �v�Ls(Ω) by �v�L3(Ω) if

p > 6.

Proof. Following the proof of Theorem 17 in [7], we have to prove two steps to conclude the

statement of the Theorem:

(A) The solution (u ,π) of (O’) belongs to Lp(Ω) ×W−1,p(Ω)/R and satisfies the two

first equations of (O’).

(A1) We first consider the case where g · n |Γ = 0 and

�

Ω
h(x ) dx = 0.

We prove then that problem (O’) is equivalent to the variational formulation: For a given

v ∈ Ls(Ω) with s defined by (2.67), find (u ,π) ∈ Lp(Ω)×W−1,p(Ω)/R such that: ∀w ∈ Yp�(Ω),
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∀χ ∈ W 1,p�(Ω)
�

Ω
u · (−∆w − v ·∇w +∇χ) dx − �π, ∇ ·w�

W−1,p(Ω)×W 1,p�
0 (Ω)

= �f ,w�Ω −
�

Ω
hχ dx −

�
g τ ,

∂w

∂n

�

Γ

.

(2.71)

Now, for any pair (F,ϕ) ∈ Lp�(Ω)× [W 1,p�

0 (Ω) ∩ L
p�

0 (Ω)], we have:

����f ,w�Ω −
�

Ω
hχ dx −

�
g τ ,

∂w

∂n

�

Γ

��� ≤ C

�
�f �[Xr�,p� (Ω)]� + �h�Lr(Ω) + �g�

W−1/p,p(Γ)

�

×
�
�w�

W2,p� (Ω) + �χ�W 1,p�

�

(2.72)

where (w ,χ) is the solution of problem:

−∆w − v ·∇w +∇χ = F, ∇ ·w = ϕ in Ω, w = 0 on Γ.

Observe that hypothesis of v ∈ Ls(Ω) with s defined in (2.67) is necessary in order to give

a sense to the term: �

Ω
u · (v ·∇w) dx (2.73)

in the case of p = 3
2 , where u ∈ L3/2(Ω), ∇w ∈ W1,3(Ω) �→ Lb(Ω) (for any b ∈ (1,+∞)). In

the cases p �= 3
2 , the previous integral is always defined because u · (v ·∇w) ∈ L1(Ω).

Taking into account that in any case v ∈ L3(Ω) and using Theorem 2.5 (if 1 < p ≤ 6) and

Theorem 2.10 (if p > 6), then the solution (w ,χ) belongs to W2,p�(Ω)×W 1,p�(Ω) and satisfies:

�w�
W2,p� (Ω) + �χ�W 1,p� (Ω)/R ≤ C

�
1 + �v�L3(Ω)

� �
�F�

Lp� (Ω) +
�
1 + �v�L3(Ω)

�
�ϕ�W 1,p� (Ω)

�

if p� ≥ 6/5 and for 1 < p� < 6/5 the same estimate holds replacing C by C
�
1 + �v�L3(Ω)

�
.

Therefore the mapping:

(F,ϕ) �−→ �f ,w�Ω −
�

Ω
hχ dx −

�
g τ ,

∂w

∂n

�

Γ

(2.74)

defines an element (u ,π) of the dual space of Lp�(Ω) × [W 1,p�

0 ∩ L
p�

0 (Ω)], which is equal to

Lp(Ω) ×W−1,p(Ω)/R. Furthermore, (u ,π) ∈ Lp(Ω) ×W−1,p(Ω)/R and verifies (2.71) and the

following estimate if 1 < p ≤ 6:

�u�Lp(Ω) + (1 + �v�L3(Ω))
−1�π�W−1,p(Ω)/R ≤ C

�
1 + �v�L3(Ω)

�

×
�
�f �[Xr�,p� (Ω)]� + �h�Lr(Ω) + �g�

W−1/p,p(Γ)

�
.

(2.75)

In the case of p > 6, estimate (2.75) is also true but replacing C by C
�
1 + �v�L3(Ω)

�
. Thus, we

have proved that estimates for 1 < p ≤ 6 and for p > 6 are true when v ∈ Ls(Ω) with s defined

by (2.67).
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(A2) Second, we suppose that

�

Ω
h(x ) dx = �g · n , 1�Γ and consider the Neumann problem:

Find θ ∈ W 1,p(Ω)/R such that:

(N) ∆θ = h in Ω,
∂θ

∂n
= g · n on Γ,

which has a unique solution θ ∈ W 1,p(Ω)/R and verifies the estimate:

�θ�W 1,p(Ω)/R ≤ C

�
�h�Lr(Ω) + �g · n�

W−1/p,p(Γ)

�
. (2.76)

Set u0 = ∇θ. Using the precedent case, there exists a unique (z ,π) ∈ Lp(Ω) × W−1,p(Ω)/R
solution of problem:

−∆z +∇ · (v ⊗ z ) +∇π = f +∇h−∇ · (v ⊗ u0) and ∇ · z = 0 in Ω, z = g − u0|Γ on Γ,

where the characterization given by Lemma 1.1 implies that ∇h and ∇ · (v ⊗ u0) belong to

[Xr�,p�(Ω)]� (because of h ∈ Lr(Ω) �→ W−1,p(Ω) and v ⊗ u ∈ Lr(Ω) thanks to (2.68)). Thus,

f + ∇h − ∇ · (v ⊗ u0) belongs to [Xr�,p�(Ω)]�. Moreover, g − u0|Γ satisfies the compatibility

conditions for the precedent case. Hence, using (2.75) if 1 < p ≤ 6, (z ,π) satisfies:

�z�Lp(Ω) + (1 + �v�L3(Ω))
−1�π�W−1,p(Ω)/R

≤ C
�
1 + �v�L3(Ω)

� �
�f +∇h−∇ · (v ⊗ u0)�[Xr�,p� (Ω)]� + �g − u0�W−1/p,p(Γ)

�

≤ C
�
1 + �v�L3(Ω)

� �
�f �[Xr�,p� (Ω)]� + �h�W−1,p(Ω) + �v ⊗ u0�Lr(Ω) + �g − u0�W−1/p,p(Γ)

�

≤ C
�
1 + �v�L3(Ω)

� �
�f �[Xr�,p� (Ω)]� +

�
1 + �v�Ls(Ω)

� �
�h�W−1,p(Ω) + �g�

W−1/p,p(Γ)

��
,

where we have used that Lr(Ω) �→ W−1,p(Ω), which implies that �h�W−1,p(Ω) ≤ C8 �h�Lr(Ω)

for a certain constant C8, the bound �v ⊗ u0�Lr(Ω) ≤ �v�Ls(Ω)�u0�Lp(Ω) for (r, s) defined in

(2.67)-(2.68), and estimate (2.76). In a similar manner, if p > 6 we use (2.75) replacing C by

C
�
1 + �v�L3(Ω)

�
obtaining the estimate:

�z�Lp(Ω) + (1 + �v�L3(Ω))
−1�π�W−1,p(Ω)/R ≤ C

�
1 + �v�L3(Ω)

�2

×
�
�f �[Xr�,p� (Ω)]� +

�
1 + �v�L3(Ω)

� �
�h�W−1,p(Ω) + �g�

W−1/p,p(Γ)

��
.

Finally, the pair of functions (u ,π) = (z +u0,π) is the required solution satisfying the required

estimates.

(B) The trace of u satisfies u = g on Γ and belongs to W−1/p,p(Γ).

In order to obtain that u ∈ Tp,r(Ω), we need to prove that ∆u ∈ [Xr�,p�(Ω)]�. From (2.68) and

(2.67), it suffices to note that ∆u = ∇ · (v ⊗ u) +∇π − f and v ⊗ u ∈ Lr(Ω). Therefore, the
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tangential trace of u belongs to W−1/p,p(Γ). In that way, as u ∈ Lp(Ω) and ∇ ·u ∈ Lr(Ω), then

u · n |Γ ∈ W−1/p,p(Γ), and the whole trace u |Γ ∈ W−1/p,p(Γ) can be identified with u |Γ = g .

�

Remark 2.15 When g · n|Γ = 0 and

�

Ω
h(x) dx = 0 (see case (A1) in the previous proof),

estimates in Theorem 2.14 can be replaced by estimate (2.75) for 1 < p ≤ 6 and estimate (2.75)

replacing C by C
�
1 + �v�L3(Ω)

�
for p > 6. For both values of C, estimate (2.75) does not

depend on the norm �v�Ls(Ω) but v must belong to the space Ls(Ω) (with s defined by (2.67)) in

order to give a sense to the term (2.73).

Definition 2.16 (Very weak solution for the Oseen problem (O)) Assume that f ∈ [Xr�,p�(Ω)]�

(see Lemma 1.1 and Remark 2.13), h ∈ Lr(Ω) and g ∈ W−1/p,p(Γ) satisfying the compatibility

condition (1.5) and v ∈ Ls(Ω) with (r, s) given by (2.68) and (2.67), and ∇ · v ∈ Lt(Ω) for t

defined by:

t = max

�
p
�
,
3

2

�
. (2.77)

We say that (u,π) ∈ Lp(Ω) × W−1,p(Ω) is a very weak solution of (O) if the following

equalities hold: For any ϕ ∈ Yp�(Ω), with in addition ϕ ∈ L∞(Ω) if p = 3, and χ ∈ W 1,p�(Ω),

�

Ω
u · (−∆ϕ− v ·∇ϕ− (∇ · v)ϕ) dx − �π,∇ ·ϕ�

W−1,p(Ω)×W 1,p�
0 (Ω)

= �f,ϕ�Ω − �gτ ,
∂ϕ

∂n
�Γ,

�

Ω
u ·∇χ dx = −

�

Ω
hχ dx+ �g · n,χ�Γ,

(2.78)

and where the dualities on Ω and Γ are defined by (2.69).

Theorem 2.17 (Very weak solution for (O)) Let f ∈ [Xr�,p�(Ω)]�, h ∈ Lr(Ω) and g ∈ W−1/p,p(Γ)

satisfy the compatibility condition (1.5) and v ∈ Ls(Ω) with �∇ · v�W−1,3(Ω) sufficiently small

(in the sense of (2.36) if p > 6 and in the sense of (2.9) in the other case), and (r, s) given by

(2.68) and (2.67). Assume also ∇ · v ∈ Lt(Ω) for t defined by (2.77). Then, the Oseen problem

(O) has a unique solution (u,π) ∈ Tp,r(Ω)×W−1,p(Ω)/R verifying the following estimate:

�u�Lp(Ω) + (1 + �v�L3(Ω))
−1�π�W−1,p(Ω)/R ≤ C

�
1 + �v�L3(Ω) + �∇ · v�L3/2(Ω)

�

×
�
�f�[Xr�,p� (Ω)]� +

�
1 + �v�Ls(Ω) + �∇ · v�Lt(Ω)

��
�h�Lr(Ω) + �g�

W−1/p,p(Γ)

��
,

(2.79)

if 1 < p ≤ 6 and estimate (2.79) replacing C by C
�
1 + �v�L3(Ω)

�
, �v�Ls(Ω) by �v�L3(Ω) and

�∇ · v�Lt(Ω) by �∇ · v�
L3/2(Ω) if p > 6.

Proof. The proof follows a scheme similar to Theorem 2.14:
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(A) The solution (u ,π) of (O) belongs to Lp(Ω) × W−1,p(Ω)/R and satisfies the two

first equations of (O).

(A1) Again we consider the case where g · n |Γ = 0 and

�

Ω
h(x ) dx = 0. Moreover, we start by

considering ∇ · v ∈ Lq̃(Ω) for q̃ defined by:

q̃ = max

�
p
�
,
3

2

�
, if p �= 3, and q̃ > 3/2 if p = 3. (2.80)

instead of ∇ · v ∈ Lt(Ω) with t defined in (2.77).

It remains to prove that problem (O) is equivalent to the variational formulation: Find

(u ,π) ∈ Lp(Ω)×W−1,p(Ω)/R such that: ∀w ∈ Yp�(Ω), ∀χ ∈ W 1,p�(Ω)
�

Ω
u · (−∆w − v ·∇w − (∇ · v)w +∇χ) dx − �π, ∇ ·w�

W−1,p(Ω)×W 1,p�
0 (Ω)

= �f ,w�Ω −
�

Ω
hχ dx −

�
g τ ,

∂w

∂n

�

Γ

.

(2.81)

Now, for any pair (F,ϕ) ∈ Lp�(Ω) × [W 1,p�

0 (Ω) ∩ L
p�

0 (Ω)], inequality (2.72) is satisfied, but

this time (w ,χ) is the solution of a problem of type (O�):

−∆w −∇ · (v ⊗w) +∇χ = F, ∇ ·w = ϕ in Ω, w = 0 on Γ.

Observe that hypothesis of ∇ · v ∈ Lq̃(Ω) with q̃ defined in (2.80) is necessary in order to

give a sense to the term: �

Ω
u (∇ · v) ·w dx (2.82)

in the case of p = 3, where u ∈ L3(Ω), w ∈ W2,3/2(Ω) �→ W1,3(Ω) �→ Lb(Ω) (for any

b ∈ (1,+∞)). In the cases p �= 3, the previous integral is always defined because u (∇ · v) ·w ∈
L1(Ω).

Taking into account that in any case v ∈ L3(Ω) and ∇ · v ∈ L3/2(Ω) and using Theorem 2.4

and Theorem 2.11, then the solution (w ,χ) belongs to W2,p�(Ω)×W 1,p�(Ω)/R, satisfying:

�w�
W2,p� (Ω)+�χ�W 1,p� (Ω)/R ≤ C

�
1 + �v�L3(Ω) + �∇ · v�L3/2(Ω)

��
�F�

Lp� (Ω)+
�
1 + �v�L3(Ω)

�
�ϕ�W 1,p� (Ω)

�

if 1 < p ≤ 6 and the same estimate holds for p > 6 replacing C by C
�
1 + �v�L3(Ω)

�
.

Therefore the mapping (2.74) defines an element (u ,π) of the dual space of Lp�(Ω)× [W 1,p�

0 ∩
L
p�

0 (Ω)], which is equal to Lp(Ω) × W−1,p(Ω)/R. Furthermore, (u ,π) ∈ Lp(Ω) × W−1,p(Ω)/R
verifies (2.81) and following estimate if 1 < p ≤ 6:

�u�Lp(Ω) + (1 + �v�L3(Ω))
−1�π�W−1,p(Ω)/R ≤ C

�
1 + �v�L3(Ω) + �∇ · v�L3/2(Ω)

�

×
�
�f �[Xr�,p� (Ω)]� + �h�Lr(Ω) + �g�

W−1/p,p(Γ)

�
.

(2.83)
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The same estimate replacing C by C
�
1 + �v�L3(Ω)

�
holds if p > 6. Thus, we have proved that

estimates for 1 < p ≤ 6 and for p > 6 are true when ∇ · v ∈ Lq̃(Ω) with q̃ is defined by (2.80).

(A2)When the general case is treated, considering h �= 0 or g �= 0 and satisfying the compatibil-

ity condition (1.5), we consider the Neumann Problem (N) whose unique solution θ ∈ W 1,p(Ω)/R
and verifies estimate (2.76). Setting u0 = ∇θ and using the precedent case, there exists a unique

(z ,π) ∈ Lp(Ω)×W−1,p(Ω)/R solution of problem:

−∆z +v ·∇z+∇π = f +∇h−∇ ·(v⊗u0)+(∇ ·v)u0 and ∇ ·z = 0 in Ω, z = g−u0|Γ on Γ,

where the characterization given by Lemma 1.1 implies that ∇h and ∇ · (v ⊗ u0) belong to

[Xr�,p�(Ω)]�. As we are proving immediately (see (2.84)), then (∇ · v)u0 belongs to W−1,r(Ω)

and hence to [Xr�,p�(Ω)]�. Moreover, g − u0|Γ satisfies the compatibility conditions for the

precedent case.

Hence, using (2.83) if 1 < p ≤ 6, (z ,π) satisfies:

�z�Lp(Ω) + (1 + �v�L3(Ω))
−1�π�W−1,p(Ω)/R

≤ C

�
1 + �v�L3(Ω) + �∇ · v�L3/2(Ω)

�

×
�
�f +∇h−∇ · (v ⊗ u0) + (∇ · v)u0�[Xr�,p� (Ω)]� + �g − u0�W−1/p,p(Γ)

�

≤ C

�
1 + �v�L3(Ω) + �∇ · v�L3/2(Ω)

�

×
�
�f �[Xr�,p� (Ω)]� + �h�W−1,p(Ω) + �v ⊗ u0�Lr(Ω) + �(∇ · v)u0�[Xr�,p� (Ω)]� + �g − u0�W−1/p,p(Γ)

�

≤ C

�
1 + �v�L3(Ω) + �∇ · v�L3/2(Ω)

�

×
�
�f �[Xr�,p� (Ω)]� +

�
1 + �v�Ls(Ω) + �∇ · v�L�q(Ω)

� �
�h�W−1,p(Ω) + �g�

W−1/p,p(Γ)

��
,

where, in addition to the estimates used in the proof of Theorem 2.14, we have used the bound

�(∇ · v)u0�[Xr�,p� (Ω)]� ≤ �∇ · v�Lt(Ω)�u0�Lp(Ω) for �q defined in (2.80) and estimate (2.76). In a

similar manner, if p > 6 we use (2.83), replacing C by C
�
1 + �v�L3(Ω)

�
, obtaining the estimate:

�z�Lp(Ω) + (1 + �v�L3(Ω))
−1�π�W−1,p(Ω)/R ≤ C (1 + �v�L3(Ω))

�
1 + �v�L3(Ω) + �∇ · v�L3/2(Ω)

�

×
�
�f �[Xr�,p� (Ω)]� +

�
1 + �v�Ls(Ω) + �∇ · v�L�q(Ω)

� �
�h�W−1,p(Ω) + �g�

W−1/p,p(Γ)

��
.

Finally, the pair of functions (u ,π) = (z +u0,π) is the required solution satisfying the required

estimates in the statement of the theorem for 1 < p ≤ 6 and p > 6.

(B) The trace of u satisfies u = g on Γ and belongs to W−1/p,p(Γ). As in Theorem 2.14

(B), we need to prove that u ∈ Tp,r(Ω) and therefore its tangential trace belongs to W−1/p,p(Γ).

30



It suffices to prove that ∆u ∈ [Xr�,p�(Ω)]� but now, the problem is that v · ∇u �= ∇ · (v ⊗ u)

and, in principle, we do not know if ∆u = v ·∇u +∇π − f belongs to [Xr�,p�(Ω)]�. However, if

we prove that

(∇ · v)u ∈ W−1,r(Ω), (2.84)

with r given by (2.68), from (1.3) we deduce that ∆u ∈ [Xr�,p�(Ω)]�. Condition (2.84) is true

because:

i) Case of p > 3/2. First, if p > 3, then ∇ · v ∈ L3/2(Ω) and therefore (∇ · v)u ∈ L
3p

2p+3 (Ω)

which is embedded in W−1,r(Ω) for r = 3p
p+3 . Second, if p = 3, then ∇ · v ∈ L�q(Ω) for

�q > 3/2 and therefore (∇ · v)u ∈ Lq(Ω) with q > 1 which is embedded in W−1,3/2(Ω).

Third, if 3
2 < p < 3, then ∇ ·v ∈ Lp�(Ω) and therefore (∇ ·v)u ∈ L1(Ω) which is embedded

in W−1,r(Ω) for r = 3p
p+3 .

ii) Case p = 3
2 : In this case ∇ ·v ∈ L3(Ω), and therefore (∇ ·v)u ∈ L1(Ω) which is embedded

in W−1,r(Ω) for r ∈ (1, 3/2).

iii) Case 1 < p <
3
2 : In this case ∇ · v ∈ Lp�(Ω) and therefore (∇ · v)u ∈ L1(Ω) which is

embedded in W−1,r(Ω) for r = 1.

In that way, as u ∈ Lp(Ω) and ∇ · u ∈ Lr(Ω), then u · n |Γ ∈ W−1/p,p(Γ), and the whole

trace u |Γ ∈ W−1/p,p(Γ) can be identified with u |Γ = g .

(C) Now, we consider ∇ · v ∈ Lt(Ω) for t defined by (2.77), which only differs from the case

of considering ∇ · v ∈ Lq̃(Ω) with q̃ defined by (2.80) when p = 3.

The case of p = 3. Suppose that ∇ · v ∈ L3/2(Ω) and let vk ∈ D(Ω) such that vk → v

in L3(Ω) and ∇ · vk → ∇ · v in L3/2(Ω). Thus, the very weak solution (uk,πk) for the Oseen

problem:

(Ok) −∆uk+∇·(vk⊗uk)−uk (∇·vk)+∇πk = f and ∇·uk = h in Ω, uk = g on Γ

belongs to T3,3/2(Ω)×W−1,3(Ω) with the estimate:

�uk�L3(Ω) + (1 + �v�L3(Ω))
−1�πk�W−1,3(Ω)/R ≤ C

�
1 + �v�L3(Ω) + �∇ · v�L3/2(Ω)

�

×
�
�f �[X3,3/2(Ω)]� + �h�L3/2(Ω) + �g�

W−1/3,3(Γ)

�
,

(2.85)

which thanks to (1.3) implies that ∆uk ∈ [X3,3/2(Ω)]
�. We can deduce that uk|Γ = g .

From (2.85), we can deduce the following convergences:

uk � u in L3(Ω), πk + Ck � π in W−1,3(Ω),

∆uk � ∆u in W−2,3(Ω), vk ⊗ uk � v ⊗ u in L3/2(Ω),

(∇ · vk)uk � (∇ · v)u in L1(Ω),
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and also that ∇ ·uk = h ∈ L3/2(Ω) and uk|Γ = g ∈ W−1/3,3(Γ), for (u ,π) ∈ L3(Ω)×W−1,3(Ω)

being the solution of the limit problem (of Oseen type (O)), which can be written as:

−∆u +∇ · (v ⊗ u)− u (∇ · v) +∇π = f and ∇ · u = h in Ω, u = g on Γ.

As a consequence, estimate (2.83) for 1 < p ≤ 6 and estimate (2.83) replacing C by

C
�
1 + �v�L3(Ω)

�
for p > 6 are also true when ∇ · v ∈ Lt(Ω) with t is defined by (2.77).

�

Remark 2.18 When g · n|Γ = 0 and

�

Ω
h(x) dx = 0 (see case (A1) in the previous proof),

estimates in Theorem 2.17 can be replaced by estimate (2.83) for 1 < p ≤ 6 and estimate (2.83)

replacing C by C
�
1 + �v�L3(Ω)

�
for p > 6. For both values of C, estimate (2.83) does not

depend on the norm �∇ · v�Lt(Ω) but ∇ · v must belong to the space Lt(Ω) (with t defined by

(2.77)) in order to give a sense to the term (2.82).

3 The Navier-Stokes problem

The results on the existence of very weak solution for the Navier-Stokes equations (NS) in [7]

are true, but the proofs are correct only for the case of h = 0, that is, ∇ · u = 0. Here we prove

the case of h �= 0, that needs the results from Section 2. As in [7], we start proving the result

for small data:

�f �[X3,3/2(Ω)]� + �h�L3/2(Ω) + �g�
W−1/3,3(Γ) << 1.

In this case, we slightly rewrite the notion of very weak solution (with respect to [7]) for the

Navier-Stokes equations in order to take into account that ∇ · u �= 0:

Definition 3.1 (Very weak solution for the Navier-Stokes problem) Let f ∈ [Xr�,p�(Ω)]�,

h ∈ Lr(Ω) and g ∈ W−1/p,p(Γ) satisfy the compatibility condition (1.5). We say that (u,π) ∈
Lp(Ω) ×W−1,p(Ω) is a very weak solution of (NS) if the following equalities hold: For any

ϕ ∈ Yp�(Ω) and χ ∈ W 1,p�(Ω),

�

Ω
u · (−∆ϕ− u ·∇ϕ− hϕ) dx − �π,∇ ·ϕ�

W−1,p(Ω)×W 1,p�
0 (Ω)

= �f,ϕ�Ω − �gτ ,
∂ϕ

∂n
�Γ,

�

Ω
u ·∇χ dx = −

�

Ω
hχ dx+ �(g · n),χ�Γ,

where the dualities on Ω and Γ are defined in (2.69).

As a consequence of the previous study, we look for giving a result of existence of a very

weak solution:
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Theorem 3.2 (Very weak solution for Navier-Stokes, h �= 0, small data case) Let f ∈
[X3,3/2(Ω)]

�, h ∈ L3/2(Ω) and g ∈ W−1/3,3(Γ) verify (1.5) and �h�W−1,3(Ω) ≤ δ0 with δ0 defined

in (2.9). There exists a constant α > 0 such that, if

� f �[X3,3/2(Ω)]� + � h �L3/2(Ω) + � g �
W−1/3,3(Γ) ≤ α, (3.86)

then, there exists a very weak solution (u,π) ∈ L3(Ω) × W−1,3(Ω) of problem (NS) and the

following estimates hold:

�u�L3(Ω) ≤ �C
�
�f�[X3,3/2(Ω)]� + �h�L3/2(Ω) + �g�

W−1/3,3(Γ)

�
, (3.87)

�π�W−1,3/R ≤ �C (1 + η)
�
�f�[X3,3/2(Ω)]� + �h�L3/2(Ω) + �g�

W−1/3,3(Γ)

�
, (3.88)

where α = (16C2)−1, �C = C (1 + η)2 with C > 1 is the constant given in (3.89) and η defined

by (3.94).

Proof. We want to prove the existence of a very weak solution applying Banach’s fixed point

theorem. With this objective, we define a space over which we shall define an invariant operator.

Then, we search for a fixed point for the application T defined as:





T : Bη → Bη

v �→ Tv = u

where the neighborhood Bη is defined as:

Bη = {v ∈ L3(Ω); ∇ · v ∈ L3/2(Ω) with ∇ · v = h and �∇ · v�W−1,3(Ω) ≤ δ0, �v�Bη ≤ η}.

(where δ0 is given in (2.9)) endowed with the topology given by the norm:

�v�Bη = �v�L3(Ω) + �∇ · v�L3/2(Ω)

and for η > 0 defined in (3.94). The operator T is defined as follows: for a given v ∈ Bη, its

image Tv = u is the unique solution of the problem:

(O)






−∆u + v ·∇u +∇π = f in Ω,

∇ · u = h in Ω,

u = g on Γ.

From Theorem 2.17 for p = 3, r = 3
2 , s = 3 and t = 3

2 , the solution (u ,π) of the Oseen problem

(O) belongs to L3(Ω)×W−1,3(Ω)/R, and satisfies estimate (2.79), that is:

�u�L3(Ω) +(1 + �v�L3(Ω))
−1�π�W 1−,3(Ω) ≤ C

�
1 + �v�L3(Ω) + �∇ · v�L3/2(Ω)

�

×
�
�f �[X3,3/2(Ω)]� +

�
1 + �v�L3(Ω) + �∇ · v�L3/2(Ω)

��
�h�L3/2(Ω) + �g�

W−1/3,3(Γ)

��
.

(3.89)
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Note that the operator T is well-defined in Bη: for a given v ∈ Bη and using (3.89), we obtain:

�u�L3(Ω) ≤ C (1 + η) (β1 + (1 + η)β2)

where the constants β1 and β2 are defined as:

β1 = �f �[X3,3/2(Ω)]� , β2 = �h�L3/2(Ω) + �g�
W−1/3,3(Γ) and β = β1 + β2. (3.90)

In order to have that T (Bη) ⊆ Bη, we need to prove that u ∈ Bη. From (3.89), we know that:

�u�L3(Ω)+�∇·u�
L3/2(Ω) ≤ C (1 + η) (β1 + (1 + η)β2)+�h�L3/2(Ω) ≤ C (1 + η) (β1 + (1 + η)β2)+β2.

The inclusion T (Bη) ⊆ Bη will be satisfied if the following inequality holds:

C (1 + η) (β1 + (1 + η)β2) + β2 ≤ η. (3.91)

It is clear that if β1 and β2 are sufficiently small, as we will see below, there exist some values

of η satisfying (3.91). Further, we first prove that T is a contractive operator.

Now, for the contraction method we must prove: there exists θ ∈]0, 1[ such that:

�Tv1 − Tv2�Bη = �u1 − u2�Bη ≤ θ�v1 − v2�Bη .

Observe that for each u i, i = 1, 2, we have





−∆u i + v i ·∇u i +∇πi = f in Ω,

∇ · u i = h in Ω,

u i = g on Γ,

with the estimates

�u i�L3(Ω) +(1 + �v i�L3(Ω))
−1�πi�W 1−,3(Ω) ≤ C

�
1 + �v i�L3(Ω) + �∇ · v i�L3/2(Ω)

�

×
�
�f �[X3,3/2(Ω)]� +

�
1 + �v i�L3(Ω) +�∇ · v i�L3/2(Ω)

��
�h�L3/2(Ω) + �g�

W−1/3,3(Γ)

��
.

(3.92)

However, in order to estimate the difference u1 − u2, we have to reason differently. We start

with the problem verified by (u ,π) = (u1 − u2,π1 − π2), which is the following one:

−∆u + v1 ·∇u +∇π = −∇ · (v ⊗ u2) and ∇ · u = 0 in Ω, u = 0 on Γ,

where u1 = Tv1, u2 = Tv2 and v = v1 − v2. Using the very weak estimates (3.92) made for

the Oseen problem successively for u and for u2 (observe that ∇ · v = 0 and ∇ · u = 0), we
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obtain that:

�u�L3(Ω) ≤ C

�
1 + �v1�L3(Ω) + �∇ · v1�L3/2(Ω)

�
�∇ · (v ⊗ u2)�[X3,3/2(Ω)]�

≤ C

�
1 + �v1�L3(Ω) + �∇ · v1�L3/2(Ω)

�
�v ⊗ u2�L3/2(Ω)

≤ C

�
1 + �v1�L3(Ω) + �∇ · v1�L3/2(Ω)

�
�v�L3(Ω) �u2�L3(Ω)

≤ C2
�
1 + �v1�L3(Ω) + �∇ · v1�L3/2(Ω)

�
�v�L3(Ω)

�
1 + �v2�L3(Ω) + �∇ · v2�L3/2(Ω)

�

×
�
β1 +

�
1 + �v2�L3(Ω) + �∇ · v2�L3/2(Ω)

�
β2

�
,

where the constants β1 and β2 are given by (3.90). Therefore, we have to prove that

C
2 (1 + η)2 (β1 + (1 + η)β2) < 1. (3.93)

For that, it suffices to suppose that C > 1. Again, it is clear that if β1 and β2 are sufficiently

small, there exist some values of η satisfying (3.93). We can choose, for instance:

η = (2C2
β)−1/3 − 1 with β < (16C2)−1

, (3.94)

which implies that η > 1. With this choice, we have:

C
2 (1 + η)2 (β1 + (1 + η)β2) ≤ C

2 (1 + η)3 β =
1

2
,

which implies (3.93).

We are going to prove now that (3.91) is satisfied. Observe that from definition (3.94) of η,

(3.91) is equivalent to prove that:

C

(2C2 β)1/3

�
β1 +

1

(2C2β)1/3
β2

�
+ β2 ≤

1

(2C2β)1/3
− 1

or equivalently

C

�
β1 +

1

(2C2β)1/3
β2

�
+ (β2 + 1) (2C2β)1/3 ≤ 1.

Observe that, thanks to the smallness condition in (3.94) and C > 1:

C

�
β1 +

1

(2C2β)1/3
β2

�
+ (β2 + 1) (2C2β)1/3 ≤ C β

�
1 +

1

(2C2β)1/3

�
+ (β2 + 1) (2C2β)1/3

≤ Cβ +
C1/3 β2/3

21/3
+ (β2 + 1) (2C2

β)1/3 <
1

16C
+

1

8C
+

�
1

16
+ 1

�
1

2
<

3

16
+

1

32
+

1

2
< 1,

which implies that (3.91) holds.
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Therefore, thanks to the contraction of T we get that the unique fixed point ū ∈ L3(Ω)

satisfying (3.89) for v = ū , which implies:

�ū�L3(Ω) ≤ C

�
1 + �ū�L3(Ω) + �∇ · ū�L3/2(Ω)

� �
β1 +

�
1 + �ū�L3(Ω) + �∇ · ū�L3/2(Ω)

�
β2

�
.

Because of ū ∈ Bη, then:

�ū�L3(Ω) ≤ C (1 + �ū�L3(Ω) + �∇ · ū�L3/2(Ω))
2
β ≤ C(1 + η)2β,

which implies:

�ū�L3(Ω) ≤ �C β

for �C = C(1 + η)2 and therefore (3.87) holds. Moreover, the equation ∇ · ū = h implies that

∇ · ū ∈ L3/2(Ω).

Concerning the estimate for the pressure π̄, observe that (ū , π̄) is solution of an Oseen

problem of type (O). Therefore, from (3.89) we deduce that:

�π̄�W 1−,3(Ω) ≤ C
�
1 + �ū�L3(Ω)

� �
1 + �ū�L3(Ω) + �∇ · ū�

L3/2(Ω)

�

×
�
β1 +

�
1 + �ū�L3(Ω) + �∇ · ū�

L3/2(Ω)

�
β2

�

≤ C
�
1 + �ū�L3(Ω)

�
(1 + η)2 β ≤ �C (1 + η)β

and thus, we arrive at (3.88). �

Remark 3.3 As in Theorem 19 of [7], if the data are even small than in Theorem 3.2, then

the uniqueness of very weak solution for the (NS) problem can be deduced.

The proof of the following result can be taken from Corollary 9 in [7].

Corollary 3.4 Let f, h and g satisfy (1.5), (3.86) and

f ∈ [Xr�,p�(Ω)]
�
, h ∈ L

r(Ω) such that �h�W−1,3(Ω) ≤ δ0 with δ0 sufficiently small defined in (2.9),

g ∈ W−1/p,p(Γ),

with

max{r, 3} ≤ p,
1

r
≤ 1

p
+

1

3
.

Then, the solution (u,π) given by Theorem 3.2 belongs to Lp(Ω)×W−1,p(Ω) with ∇ ·u ∈ Lr(Ω)

and �∇ · u�W−1,3(Ω) sufficiently small.

36



Now, we introduce the result for arbitrary f only imposing smallness on:

�h�L3/2(Ω) + �g�
W−1/3,3(Γ) << 1

The proof is similar to Theorem 20 in [7].

Theorem 3.5 (Very weak solution of Navier-Stokes, arbitrary forces) Let f ∈ [X3,3/2(Ω)]
�,

h ∈ L3/2(Ω) be such that �h�W−1,3(Ω) ≤ δ0 with δ0 defined in (2.9) and g ∈ W−1/3,3(Γ) satisfy

the compatibility condition (1.5). There exists a constant δ > 0 only depending on Ω such that

if:

�h�L3/2(Ω) +
i=I�

i=0

|�g · n, 1�Γj | ≤ δ. (3.95)

then the problem (NS) has a very weak solution (u,π) ∈ L3(Ω)×W−1,3(Ω).

Proof. We decompose the problem into two: The first problem is to find (v ε,π
1
ε) solution of the

problem:

(NS1)






−∆v ε + v ε ·∇v ε +∇π1
ε = f − f ε in Ω,

∇ · v ε = h− hε in Ω,

v ε = g − gε on Γ,

for f ε ∈ D(Ω), hε ∈ D(Ω) and gε ∈ C∞(Γ) for any ε > 0 sufficiently small satisfying the

compatibility condition �

Ω
hε dx = �gε · n , 1�Γ, (3.96)

verifying

�f − f ε�[X3,3/2(Ω)]� + �h− hε�L3/2(Ω) + �g − gε�W−1/3,3(Γ) ≤ ε,

�hε�L3/2(Ω) +
i=I�

i=0

|�gε · n , 1�Γi | ≤ 2

�
�h�L3/2(Ω) +

i=I�

i=0

|�g · n , 1�Γi |
�

≤ 2 δ,

for a δ that will be specified in (3.101). From the compatibility condition (1.5) and (3.96),

applying Theorem 3.2 with ε ≤ min{δ0,α} (α defined in Theorem 3.2), then the solution (v ε,π
1
ε)

belongs to L3(Ω)×W−1,3(Ω). Moreover,

�v ε�L3(Ω) ≤ C

�
�f − f ε�[X3,3/2(Ω)]� + �h− hε�L3/2+ε(Ω) + �g − gε�W−1/3,3(Γ)

�
:= δ(ε). (3.97)

The second problem is to find (z ε,π
2
ε) solution of the problem:

(NS2)






−∆z ε + z ε ·∇z ε + z ε ·∇v ε + v ε ·∇z ε +∇π2
ε = f ε in Ω,

∇ · z ε = hε in Ω,

z ε = gε on Γ,
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where f ε ∈ H−1(Ω), hε ∈ L2(Ω) and gε ∈ H1/2(Γ).

Let first θε ∈ W 2,3/2(Ω) be the unique solution of the problem:

∆θ
ε = hε in Ω, θ

ε = 0 on Γ, (3.98)

which verifies (in particular) the estimate �θε�W 2,3/2(Ω) ≤ C �hε�L3/2(Ω). Multiplying the equa-

tion defined in Ω in (3.98) by 1 and integrating on Γ, we obtain:

�

Γ

∂θε

∂n
dσ =

�

Ω
hε dx .

Using the Hopf’s Lemma (see [15], page 610, Lemma IX.4.2 for instance), for any ν > 0

there exists Yε ∈ H1(Ω) the solution of the problem:

∇ ·Yε = 0 in Ω, Yε = gε −∇θ
ε|Γ on Γ,

such that it verifies: for any w ∈ H1
0(Ω),

����
�

Ω
(w ·∇)Yε ·w dx

���� ≤
�
ν + C

i=I�

i=1

|�(gε −∇θ
ε|Γ) · n , 1�Γi |

�
�∇w�2

L2(Ω)

≤
�
ν + C

i=I�

i=1

|�gε · n , 1�Γi |+ C �hε�L3/2(Ω)

�
�∇w�2

L2(Ω).

(3.99)

Setting yε = Yε +∇θε, we have:

∇ · yε = hε in Ω, yε = gε on Γ,

and the study of problem (NS2) becomes the study of:

( �NS2)






−∆w ε + (v ε +w ε + yε) ·∇w ε +∇π2
ε +w ε ·∇yε +w ε ·∇v ε = Fε in Ω,

∇ ·w ε = 0 in Ω,

w ε = 0 on Γ,

where w ε = z ε − yε and Fε = f ε +∆yε − yε ·∇yε − yε ·∇v ε − v ε ·∇yε ∈ H−1(Ω). Indeed,

note that:

yε ·∇v ε = ∇ · (yε ⊗ v ε)− (∇ · yε) v ε = ∇ · (yε ⊗ v ε)− hε v ε

and, since yε ∈ L6(Ω), then yε⊗v ε ∈ L2(Ω), hε v ε ∈ L6/5(Ω) �→ H−1(Ω) and yε·∇v ε ∈ H−1(Ω).

Additionally,

v ε ·∇yε = ∇ · (v ε ⊗ yε)− (∇ · v ε)yε = ∇ · (v ε ⊗ yε)− hε yε,
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where v ε ⊗ yε ∈ L2(Ω) and hε yε ∈ L3/2(Ω) �→ H−1(Ω); and yε ⊗ yε ∈ L3(Ω) together with

hε yε ∈ L3/2(Ω) imply that Fε ∈ H−1(Ω).

Taking w ε as a test function in ( �NS2), we obtain:

�∇w ε�2L2(Ω)+

�

Ω
(v ε+yε)·∇w ε·w ε dx+

�

Ω
w ε·∇yε·w ε dx+

�

Ω
w ε·∇v ε·w ε dx = �Fε,w ε�H−1(Ω)×H

1
0(Ω).

(3.100)

The first integral in (3.100) can be rewritten as:
�

Ω
(v ε+yε)·∇w ε·w ε dx = −1

2

�

Ω
h |w ε|2 dx ≤ 1

2
�h�L3/2(Ω)�w ε�2L6(Ω) ≤

C2
1

2
�h�L3/2(Ω)�∇w ε�2L2(Ω)

for C1 the product of the constant of the Sobolev embedding H1(Ω) �→ L6(Ω) and the Poincaré

constant associated to H1
0(Ω). The bound for the second integral in (3.100) can be made using

that
����
�

Ω
(w ε ·∇)(∇θ

ε) ·w ε dx

���� = −
����
�

Ω
(w ε ·∇)w ε · (∇θ

ε) dx

����

≤ �w ε�L6(Ω)�∇θε�L3(Ω)�∇w ε�L2(Ω) ≤ C C1 �hε�L3/2(Ω) �∇w ε�2L2(Ω),

and (3.99), obtaining:

����
�

Ω
w ε ·∇yε ·w ε dx

���� ≤
�
ν + C

i=I�

i=1

|�gε · n , 1�Γi |+ C C1 �hε�L3/2(Ω)

�
�∇w ε�2L2(Ω)

≤ (ν + 2C1C δ) �∇w ε�2L2(Ω).

Finally, the bound for the third integral in (3.100) is
����
�

Ω
w ε ·∇v ε ·w ε dx

���� =

����−
�

Ω
w ε ·∇w ε · v ε dx

���� ≤ �w ε�L6(Ω)�v ε�L3(Ω)�∇w ε�L2(Ω)

≤ C1 �v ε�L3(Ω) �∇w ε�2L2(Ω) ≤ C1 δ(ε) �∇w ε�2L2(Ω)

with δ(ε) being given by (3.97). We choose ε, �hε�L3/2(Ω) and �gε�H1/2(Γ) such that:

�
C2
1

2
�h�L3/2(Ω) + ν + 2C1C δ + C1 δ(ε)

�
≤ 1/2. (3.101)

Then, the classical theory for the problem ( �NS2) implies the existence of a solution (w ε,π
2
ε) ∈

H1(Ω)×L2(Ω). The pair (u ,π) = (v ε + z ε,π
1
ε + π2

ε) belonging to L3(Ω)×W−1,3(Ω)/R is then

solution to problem (NS). �

The following result can be proved by adapting the proof of Theorem 21 in [7].

Theorem 3.6 Let (u,π) ∈ L3(Ω)×W−1,3(Ω) be the solution given by Theorem 3.5. Then, the

following regularity results hold:
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i) Suppose that

f ∈ [Xr�,p�(Ω)]
�
, h ∈ L

r(Ω) and g ∈ W−1/p,p(Γ)

verify the compatibility condition (1.5) and there exists δ3 > 0 such that �h�W−1,3(Ω) ≤ δ3

(δ3 = δ1, defined in (2.36), if p > 6 and δ3 = δ0, defined in (2.9), in the other case), with

1
r ≤ 1

p + 1
3 and max{r, 3} ≤ p. Then (u,π) ∈ Lp(Ω)×W−1,p(Ω).

ii) Let r ≥ 3/2 and suppose that

f ∈ W−1,r(Ω), h ∈ L
r(Ω) and g ∈ W1−1/r,r(Γ)

verify the compatibility condition (1.5) and there exists δ4 > 0 such that �h�W−1,3(Ω) ≤ δ4,

for δ4 = δ1 if r ≥ 2 and δ4 = δ0 if r ∈ (1, 2). Then (u,π) ∈ W1,r(Ω)× Lr(Ω).

iii) Let 1 < r < ∞ and suppose that

f ∈ Lr(Ω), h ∈ W
1,r(Ω) and g ∈ W2−1/r,r(Γ),

verify the compatibility condition (1.5) and there exists δ5 > 0 such that �h�W−1,3(Ω) ≤ δ5,

for δ5 = δ0 if r ≥ 6/5 and δ5 = δ2 (defined in (2.55)) in the other case. Then (u,π) ∈
W2,r(Ω)×W 1,r(Ω).

Proof. Under the assumptions in i), ii) and iii), we have that f ∈ [X3,3/2(Ω)]
�, h ∈ L3/2(Ω)

with �h�W−1,3(Ω) small enough and g ∈ W−1/3,3(Γ).

i) Let (u ,π) ∈ L3(Ω) ×W−1,3(Ω) be the solution given by Theorem 3.5. Using Theorem 2.17

with v = u , there exists a unique (w ,χ) ∈ Lp(Ω)×W−1,p(Ω)/R satisfying −∆w+u ·∇w+∇χ =

f = −∆u + u ·∇u +∇π, ∇ ·w = h in Ω and w = g on Γ. Setting z = w − u and θ = χ− π,

that means that

−∆z + u ·∇z +∇θ = 0, ∇ · z = 0 in Ω and z = 0 on Γ,

and thanks to Theorem 2.17 and uniqueness argument, we deduce that z = ∇θ = 0 and then

w = u and χ = π + c, with c constant. The point i) is proved.

ii) Let r ≥ 3/2. Thanks to (u ,π) ∈ L3(Ω) ×W−1,3(Ω) and h ∈ Lr(Ω) �→ W−1,3(Ω), Theorem

2.6 if r ≥ 2, Theorem 2.8 if r ∈ (1, 2) and the uniqueness argument given in i), we deduce that

(u ,π) ∈ W1,r(Ω)× Lr(Ω).

iii) Let 1 < r < ∞. Thanks to (u ,π) ∈ L3(Ω)×W−1,3(Ω) and h ∈ Lr(Ω) �→ W−1,3(Ω), Theorem

2.5 if r ≥ 6/5 and Theorem 2.10 if 1 < r < 6/5, and the uniqueness argument given in i), we

deduce that (u ,π) ∈ W2,r(Ω) ×W 2,r(Ω). We can also use a Stokes argument and point ii) to

have the same conclusion. �
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