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Marc de la Asuncióna, Manuel J. Castroc, E. D. Fernández-Nietob, José M.
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Abstract

The numerical solutions of Shallow Water Equations are useful for applica-

tions related to geophysical flows that usually take place in large computa-

tional domains and could require real time calculation. Therefore, parallel

versions of accurate and efficient numerical solvers for high performance

platforms are needed to be able to deal with these simulation scenarios in

reasonable times. In this paper we present an efficient CUDA implementa-

tion of a first and second order HLL methods and a two-waves TVD-WAF

one. We propose to write all these methods under a common framework,

such as, their CUDA implementations share the same structure. In partic-

ular, the reformulation of WAF numerical flux and the improved definition

of the flux limiter allows us to obtain a more robust solver in situations like

wet/dry fronts. Finally, some numerical tests are presented showing that
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the WAF method is slightly slower that the first order HLL method and two

times faster than the second order HLL method, but it provides numerical

results almost as accurate as the second order HLL scheme.

Keywords: Shallow water, finite volume schemes, WAF scheme, CUDA,

1. Introduction

In this paper we present an efficient implementation of HLL (Harten-Lax-

van Leer [23]) and WAF (Weighted Average Flux [30]) methods applied to

the two-dimensional Shallow Water Equations (SWE in what follows) with

topography.

The numerical solutions of SWE are useful for several applications re-

lated to geophysical flows, such as the simulation of rivers, dam-breaks,

floods, etc. The simulation of these phenomena gives place to very long

lasting simulations in big computational domains and could even require

real time calculation. Therefore parallel versions of accurate and efficient

numerical solvers for high performance platforms are needed to be able to

deal with these simulation scenarios in reasonable times.

Modern Graphics Processing Units (GPUs) offer hundreds of processing

units optimized for massively performing floating point operations in parallel

and have shown to be a cost-effective way to obtain a substantially higher

performance in the applications related to SWE [14, 8, 22, 3] due to the

high exploitable parallelism which exhibits the numerical schemes to solve

SWE.

Currently most of the proposals to simulate shallow flows on GPUs are

based on the CUDA programming model [1, 2, 3, 8, 14, 22, 28]. A CUDA

solver for one-layer system based on the first order Roe scheme [26] is de-

scribed in [1] to deal with structured regular meshes. The extension of this
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CUDA solver for two-layer shallow water system is presented in [2]. There

also exist examples of implementations in CUDA of high order schemes to

simulate one-layer systems [8, 28, 21] and of implementations of first-order

schemes for one and two-layer systems on triangular meshes [14, 3].

In order to port successfully numerical schemes to CUDA-enabled GPU

platforms, it is important to take into account several characteristics of the

scheme:

• The scheme must exhibit a high level of potential fine-grained data

parallelism in order to make it possible a good exploitation of the

GPU.

• It is interesting that the numerical scheme works suitably with single

precision floating point arithmetic. Currently the number of single

precision arithmetic units in CUDA-enabled GPUs are much higher

than the number of double precision units. Therefore, the use of single

precision arithmetic always produces a better performance.

• The memory requirements of the parallel subtasks, which results from

the parallel decomposition of the computations in the numerical scheme,

must be as small as possible, in order to avoid that many local data

can not be stored in registers and the access to those data degrades

considerably the performance.

• The data access pattern of the numerical scheme must enhance the

spatial locality. A high degree of spatial locality makes it possible

to exploit efficiently the configurable shared memory and the texture

cache of the modern CUDA-enabled GPU device. Thus it is convenient

to port numerical schemes whose stencils are compact enough and with
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a moderate number of points.

Concerning the numerical schemes, a first and second order HLL and a

two-waves WAF schemes for solving the two-dimensional SWE have been

considered. More precisely, we extend here to two-dimensional problems the

well-balanced HLL method proposed in [20] for the one-dimensional SWE

with pollutant and topography. Other possible well-balanced extension of

HLL method for SWE can be derived using the hydrostatic reconstruction

proposed in [4]. The 2D extension is performed by using the property of

invariance by rotation of the SWE. Thus, at each edge of the mesh, a 1D

projected SWE is considered, where the unknowns are the height of the

water column and the normal and the tangential discharges. A second or-

der scheme is also proposed using a MUSCL type reconstruction operator

described in [24], but following the procedure described in [12].

Finally, the 2D extension of the two-waves WAF method proposed in

[19] has also been carried out. WAF method is a second order TVD (Total

Variation Diminishing) method proposed by E. Toro in [30]. The second

order accuracy is obtained by averaging the solution of a Riemann problem

considered at each interface. To approximate this solution the HLL flux is

considered. As it is well known, due to Godunov’s theorem, linear schemes

with high order accuracy generate spurious oscillations near large gradients

of the solution. To avoid this problem, the WAF method is used with a flux

limiter function, getting a non-linear TVD scheme of second order accuracy.

If the limiters are set to zero the HLL method is achieved. In [31] and [32]

Toro presents the application of WAF method for the homogeneous Shallow

Water and Euler equations. An extension to multidimensional systems was

performed by Billet and Toro in [5]. In [25] a WAF method is presented for
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the two-dimensional SWE with topography. The well-balanced property is

obtained in this case by applying a different technique suggested by Bradford

and Sander in [7]. This technique allows to preserve water at rest but present

a loss of accuracy for large wave run-up.

The extension of the WAF method that we proposed here is also defined

using again the property of invariance of rotation of the SWE, using the

WAF flux introduced in [19] to approximate the 1D problems. In fact,

a new reformulation of the numerical flux that it is equivalent to the one

given in [19] has been considered here that allows us to obtain a more robust

solver in situations like wet/dry fronts. Nevertheless, the WAF method thus

defined is not second order of accuracy, but it produces as accurate results as

the second order HLL scheme, as we will show in the numerical experiments.

The paper is organized as follows: the next section describes the SWE.

Section 3 presents the three finite volume schemes to solve the SWE. The

main parallelism sources of these numerical schemes and their GPU imple-

mentation on structured meshes are described in sections 4 and 5, respec-

tively. Several numerical experiments, performed to compare the GPU im-

plementations of the schemes are shown and analyzed in Section 6. Finally,

some conclusions are drawn in Section 7.

2. Equations

The motion of a layer of homogeneous non-viscous fluid is supposed here

to be governed by the SWE, formulated under the form of a conservation

law with source terms or balance law:
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∂U

∂t
+

∂F1

∂x
(U) +

∂F2

∂y
(U) = S1(U)

∂H

∂x
+ S2(U)

∂H

∂y
+ SF (U), (1)

with U =
(

h qx qy

)T
, where h(x, t) and q(x, t) = (qx(x, t), qy(x, t))

are, respectively, the thickness and the mass-flow of the layer at the point

x ∈ D ⊂ R2 at time t, and they are related to the mean velocities u(x, t) =

(ux(x, t), uy(x, t)), by the equality: q(x, t) = u(x, t)h(x, t), i = 1, 2; g is

the gravity and H(x), the depth function measured from a fixed level of

reference.

F1(U) =

(

qx
q2
x

h
+

1

2
gh2 qxqy

h

)T

,

F2(U) =

(

qy
qxqy
h

q2
y

h
+

1

2
gh2

)T

.

Sk(U), k = 1, 2 are the source terms related to the variation of the bathymetry:

S1(U) =
(

0 gh 0
)T

, S2(U) =
(

0 0 gh
)T

.

Finally, SF (U), parameterize the friction term. Here, Manning friction law

is used:

SF (U) =

(

0 −gh
n2‖u‖ux

h4/3
−gh

n2‖u‖uy

h4/3

)T

,

being n the Manning coefficient.

Let us define the Jacobians matrices of the fluxes Fk, k = 1, 2, Jk(U) =
∂Fk

∂U
(U). Let η = (ηx, ηy) be an arbitrary unit vector and A(U, η) =

J1(U)ηx + J2(U)ηy. Let us denote by D(U, η) the diagonal matrix of eigen-

values of A(U, η) that are given by

λ1 = u · η −
√

gh, λ2 = u · η, λ3 = u · η +
√

gh.
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3. Numerical Schemes

In this section, we present a brief description of the 2D first and second

order HLL and two-waves WAF finite volume schemes when they are applied

to the SWE (1). In this section, the term SF (U) is supposed to be zero, as

SF (U) will be discretized semi-implicitly.

First, the computational domain D is decomposed into subsets with

simple geometry, called cells or finite volumes: Vi ⊂ R2. Here, structured

meshes are used and therefore rectangular cells whose edges are parallel to

the Cartesian axes are considered. Let us denote by T the structured mesh,

and by NV the number of cells.

Given a finite volume Vi, |Vi| will represent its area; Ni = (xi, yi) ∈ R2

its center; Ni the set of indexes j such that Vj is a neighbour of Vi; Eij

the common edge of two neighbouring cells Vi and Vj , and |Eij | its length;

ηij = (ηij,x, ηij,y) the normal unit vector at the edge Eij pointing towards the

cell Vj; dij the distance between Ni and Nj. Let us remark that dij = ∆x

if ηij is horizontal and dij = ∆y if it is vertical. Hi is the average of the

bathymetry in the cell Vi:

Hi =
1

|Vi|

∫

Vi

H(x) dx,

and Un
i is the constant approximation to the average of the solution in the

cell Vi at time tn provided by the numerical scheme:

Un
i
∼=

1

|Vi|

∫

Vi

U(x, tn) dx.

In order to extend to 2D problems, the 1D HLL and two-waves WAF

Riemann solvers, a family of projected Riemman problems in the normal
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direction to each edge of the mesh is considered. These projected Riemann

problems can be easily defined as system (1) verifies the property of invari-

ance by rotations. Effectively, if we defined

Tηij
=











1 0 0

0 ηij,x ηij,y

0 −ηij,y ηij,x











,

where ηij is the normal unit vector at edge Eij pointing towards the cell Vj

and if we denote Fηij
(U) = F1(U)ηij,x + F2(U)ηij,y, S(U) = (S1(U), S2(U))

then

Fηij
(U) = F1(Tηij

U), S(U) · ηij = T−1
ηij

S1(Tηij
U). (2)

Moreover, it is easy to check that Tηij
U verifies the system

∂t(Tηij
U) + ∂ηij

F1(Tηij
U) = S1(Tηij

U)∂ηij
H + Qη⊥

ij
, (3)

where Qη⊥
ij

= Tηij

(

−∂η⊥
ij
Fη⊥

ij
(U)+S(U) ·η⊥ij∂η⊥

ij
H

)

. Now, the 1D projected

Riemman problems are defined by considering system (3), neglecting the

tangential term Qη⊥
ij
.

Thus, a general form of a first order numerical scheme for SWE (1) is

given by

Un+1
i = Un

i − ∆t

|Vi|
∑

j∈Ni

|Eij |F−
ij (Un

i , Un
j ,Hi,Hj) (4)

where F−
ij (Un

i , Un
j ,Hi,Hj) is defined from a 1D Riemman solver. In the

next two subsections we detail the definition of F−
ij (Un

i , Un
j ,Hi,Hj) when

the HLL (respectively WAF) solver is used.
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3.1. HLL scheme

Following [33], the numerical flux FHLL
ij

−
(Un

i , Un
j ,Hi,Hj) constructed

from the 1D HLL scheme introduced in [20] can be written in an equivalent

way as follows:

1. Let us define

Uηij
= [h qηij

]T = (Tηij
U)[1,2], and Uη⊥

ij
= q · η⊥ = (Tηij

U)[3],

where U[i1,··· ,is] is the vector defined from vector U , using its i1-th, . . . ,

is-th components.

2. Let Φ−
ηij

be the 1D HLL flux associated to the 1D one layer shallow-

water system defined using the 1-st, 2-nd equations of system (3) where

the term Qη⊥
ij

has been neglected:

Φ−
ηij

= D−
ij(Uηij ,i, Uηij ,j,Hi,Hj) + FC(Uηij ,i),

where FC(Uηij ,i) =

(

qηij ,i

q2
ηij ,i

hi

)T

and D−
ij(Uηij ,i, Uηij ,j,Hi,Hj) is

given by

D−
ij(Uηij ,i, Uηij ,j,Hi,Hj) =

1

2
(RSij − (αij,0DU ij + αij,1RSij)) (5)

where

RSij = F(Uηij ,j) − F(Uηij ,i) − Sij(Hj − Hi),

with Sij(Hj −Hi) =
(

0 g
hi + hj

2

)T
(Hj −Hi), F(Uηij

) = F1(Tηij
U)[1,2]

and

DU ij =
(

hj − Hj − (hi − Hi) qηij,j
− qηij,i

)T
.
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The coefficients αij,0 and αij,1 are defined by

αij,0 =
SR,ij|SL,ij|− SL,ij|SR,ij|

SR,ij − SL,ij
, αij,1 =

|SR,ij |− |SL,ij|
SR,ij − SL,ij

, (6)

where SR,ij (respectively SL,ij) is an approximation of the fastest (re-

spectively slowest) wave of the 1D system (3). Here we use the ap-

proximation proposed by Davis in [17]:

SL,ij = min(λmin,i,λmin,ij), SR,ij = max(λmax,j ,λmax,ij), (7)

where λmin,l = uηij ,l − cl and λmax,l = uηij ,l + cl with cl =
√

ghl and

uηij ,l = qηij ,l/hl, l = i, j; λmin,ij = uij − cij and λmax,ij = uij + cij ,

where cij =
√

g(hi + hj)/2 and

uij =
uηij ,i

√
hi + uηij ,j

√

hj√
hi +

√

hj
.

3. Let us define

Φ−

η⊥
ij

= (Φ−
ηij

)[1]u
ij
η⊥

ij

, (8)

where uij
η⊥

ij

is computed as follows

uij
η⊥

ij

=











ui · η⊥ij if (Φ−
ηij

)[1] > 0

uj · η⊥ij otherwise

(9)

Let us remark that Φ−

η⊥
ij

is the numerical flux associated to the 3-rd

equation of system (3) where, again, the term Qη⊥
ij

has been neglected.
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4. Finally, FHLL
ij

−
is defined by FHLL

ij
−

= T−1
ηij

F−
ij , where

F−
ij =

[

(Φ−
ηij

)[1] (Φ−
ηij

)[2] Φ−

η⊥
ij

]

.

Remark 1. Note that qη⊥
ij

can be seen as a passive scalar that is

advected by the flow. Thus, F−
ij is a HLLC (Harten-Lax-van Leer-

Contact see [33]) numerical flux associated to 1D system (3).

Remark 2. The numerical flux introduced in [20] and the one pre-

sented here are equivalent, but they are not written in the same form.

Here, we have rewritten the HLL flux as a flux-difference scheme in-

stead of using its standard writing. The main reason is that flux-

difference schemes are easier to correct for dealing with wet/dry fronts

and, from the computational point of view, they usually requires less

computational effort.

3.2. Two-waves TVD-WAF scheme

Let us now define the numerical flux FWAF
ij

−
(Un

i , Un
j ,Hi,Hj) corre-

sponding to the natural extension of the two-waves TVD-WAF method in-

troduced in [19] to 2D domains using the method of lines. WAF schemes

were first introduced by Prof. E. Toro in [30] in the framework of conserva-

tive systems. They are second order accurate for one dimensional conserva-

tive systems but its extension to multidimensional problems by the method

of lines is no more second order. Nevertheless, this extension provides as

good results as a multidimensional second order scheme with less computa-

tional effort as we will show in the numerical test Section. In [19], authors

propose a redefinition of the two-waves WAF method that mimics the struc-

ture of the HLL scheme for the 1D SWE. Thus, following the same ideas,
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FWAF
ij

−
(Un

i , Un
j ,Hi,Hj) can be defined using the same four steps previously

enumerated, where the coefficients αij,k, k = 0, 1 in (5) are now defined by

αij,0 = (Lij(SL,ij ,χL,ij) − Lij(SR,ij ,χR,ij)
SL,ijSR,ij

SR,ij − SL,ij

αij,0 =
Lij(SR,ij ,χR,ij)SR,ij − Lij(SL,ij,χL,ij)SL,ij

SR,ij − SL,ij
,

(10)

with

Lij(S,χ) = sign(S)(1 − χ) +
∆t

dij
χS.

χL,ij (equally χR,ij) is defined by

χL,ij =







1 if pmax,L < β

φ(rL,ij) otherwise
(11)

where

φ(x) =
x(1 + x)

1 + x2
,

and rL,ij is defined by

rL,ij =
pmin,L

pmax,L

where

pmin,L =







min(|eij |, |eij,L|) if SL,ij > 0

min(|eij |, |eij,R|) if SL,ij <= 0

and

pmax,L =







max(|eij |, |eij,L|) if SL,ij > 0

max(|eij |, |eij,R|) if SL,ij <= 0

where eij = hj − Hj − (hi − Hi), eij,L = hi − Hi − (hi,L − Hi,L) and eij,R =

hj,R−Hj,R− (hj −Hj), where hi,L (respectively hj,R) and Hi,L (respectively

Hj,R) are the water height and bottom topography corresponding to cell
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Vi,L (respectively Vj,R) shown in Figure 1. The parameter β is set to d3
ij .

Figure 1: Stencil of the WAF method for a vertical edge

Finally, the value uij
η⊥

ij

in (8) is replaced by

uij
η⊥

ij

=
uj · η⊥ij + ui · η⊥ij

2
−1

2

(

sign((Φ−
ηij

)[1])(1 − χ⊥) +
∆t

dij
u∗

ijχ
⊥

)

(uj ·η⊥ij−ui·η⊥ij),

where

u∗
ij = sign

(

(Φ−
ηij

)[1]
)

|uij |,

and χ⊥ is defined as χL,ij by setting eij = uj · η⊥ij −ui · η⊥ij , eij,L = ui · η⊥ij −

ui,L · η⊥ij , and eij,R = uj,R · η⊥ij − uj · η⊥ij and using u∗
ij instead of SL,ij.

Remark 3. Let us remark that if χL,ij = χR,ij = χ⊥ = 0, then, the two-

waves WAF scheme previously described exactly coincides with the HLL

scheme given in Section 3.1.

Remark 4. As in the previous section, The two-waves TVD-WAF numeri-

cal flux introduced in [19] and the one presented here are equivalent, but they

are not written in the same form. Here, we have rewritten the TVD-WAF

flux as a flux-difference scheme instead of using its standard writing.
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3.3. Second order HLL scheme

Finally, let us briefly describe the second order HLL scheme that we use

here. More details about the construction of second or higher order finite

volume schemes for balance laws and nonconservative problems can be found

in [12].

First, we consider the second order reconstruction operator defined at

cell Vi by

Ui(x, t) = Ui(t) + (Ux(t))i(x − xi) + (Uy(t))i(y − yi), (12)

where Ui(t) is the cell average of the solution at time t provided by the

numerical scheme and (Ux(t))i (respectively (Uy(t))i) is a constant approxi-

mation of the partial derivative of the solution with respect to x (respectively

y). Here, we use the MUSCL type reconstruction described in [24] where

(Ux(t))i = minmod

(

θ
Ui − Ui,W

∆x
,
Ui,E − Ui,W

2∆x
, θ

Ui,W − Ui

∆x

)

, θ ∈ [1, 2],

(13)

(Uy(t))i = minmod

(

θ
Ui − Ui,S

∆y
,
Ui,N − Ui,S

2∆y
, θ

Ui,N − Ui

∆y

)

, θ ∈ [1, 2],

(14)

and

minmod(z1, z2, . . .) =



















minj zj if zj > 0∀ j,

maxj zj if zj < 0∀ j,

0 otherwise.

(15)

Ui,l, l = E,W,S,N are those given in Figure 2. The parameter θ can be

used to control the amount of numerical viscosity present in the resulting

scheme: larger values of θ correspond to less dissipative, but, in general,

more oscillatory scheme. Here θ is fixed to 1.2.
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Figure 2: Stencil of the second order reconstruction.

Remark 5. In order to obtain an exactly well-balanced scheme for water at

rest solutions, first, the reconstruction of the free surface zs = h − H and

the bottom topography H are computed following the previous procedure and

next, the reconstruction of the water depth at cell Vi is computed as

hi(x, t) = zsi(x, t) + Hi(x).

This simple procedure guarantees that the reconstruction operator is exactly

well-balanced in the sense defined in [12] for the water at rest solutions.

In regions close to dry areas, the previous procedure does not guarantee the

positivity of the reconstructed water depth. Here we follow [24] to modify

the reconstruction in order to preserve the positivity of the water depth.

Finally, the semi-implicit expression of the second order HLL scheme is

15



as follows:

U ′
i(t) = − 1

|Vi|
∑

j∈Ni

|Eij |FHLL
ij

−
(U−

ij (t), U+
ij (t),H−

ij ,H
+
ij )

− 1

|Vi|

∫

Vi











0

ghi(x, t)(zsx(t))i

ghi(x, t)(zsy(t))i











(16)

where U−
ij (t) and H−

ij (respectively U+
ij (t) and H+

ij ) are the values of the

reconstruction defined by (12) at cell Vi (respectively Vj) at the center of

the edge Eij at time t, and (zsx(t))i (respectively (zsy(t))i) is the constant

approximation of the partial derivative of free surface with respect to x

(respectively y) at cell Vi provided by the reconstruction.

In order to obtain a fully discrete scheme, the integral appearing in (16)

is approximated by the trapezoidal rule and a second order Runge-Kutta

TVD scheme is used to approximate the time derivative (see [29]).

Remark 6. As mentioned before, the major difference between this scheme

and the one presented in [24] is that they consider a continuous reconstruc-

tion of the bottom topography, while we do not use this fact.

Remark 7. Let us remark that the usual CFL (Courant-Friedrichs-Lewy)

condition must be imposed to ensure stability of the three schemes.

Remark 8. To ensure the positivity of the numerical schemes, first we use

the desingularization formula (see [24])

uα =

√
2 h qα

√

h4 + max(h4, ε)
, α = x, y (17)

where ε = max{(∆x)4, (∆y)4}, and qx (respectively qy) is redefined by qx :=
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uxh (respectively qy := uyh). Next, if the second order HLL scheme is used,

we follow [24] to modify the reconstruction of the water height to guarantee

the positivity of its reconstructed value at the edges. Finally, we follow a

similar procedure to the one described in [6] to compute a local ∆t that

limits the outflow across the edges closed to a wet/dry front that violates

the positivity of the water height. As remarked in [6], this procedure has no

impact on the global time step, that is computed by the usual CFL condition.

Let us finally remark that in wet/dry fronts with emerging bottom to-

pographies, the numerical fluxes are modified following [9] to avoid spurious

pressure forces.

Remark 9. The three schemes considered here are path-conservative in the

sense introduced by Pares in [27], being the underlying path the segment

connecting the left and the right state. Therefore, they are well-balanced for

stationary solutions corresponding to water at rest.

Remark 10. Note that SF (U) can be considered as a function of h, ‖q‖,

qx and qy, that is, SF (U) = SF (h, ‖q‖, qx, qy). Thus, if the first order HLL

scheme is used (the same procedure can be applied if the two-waves TVD-

WAF method is used), the discretization of SWE (1), including the friction

term is as follows:

Un+1
i = Un

i −
∆t

|Vi|
∑

j∈Ni

|Eij |FHLL
ij

−
(Un

i , Un
j ,Hi,Hj)+∆tSF (hn

i , ‖qn
i ‖, qn+1

x,i , qn+1
y,i ).

(18)

Note that Un+1
i is updated by solving two simple linear equations: one for

qn+1
x,i and another for qn+1

y,i . This procedure can be easily extend to sec-

ond order by considering the corresponding second order Runge-Kutta TVD

scheme.
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4. Parallelism Sources

In this section we describe the main steps of the three numerical schemes

explained in section 3 and their main sources of parallelism.

4.1. Parallelism sources of the HLL and TVD-WAF schemes

The main steps of the first order HLL and WAF schemes can be rep-

resented by a single diagram, shown in Figure 3(a). The main calculation

phases are identified with circled numbers and they present a high degree

of parallelism because the computation performed at each edge or volume

is independent with respect to that performed at other edges or volumes.

When the finite volume mesh has been constructed, the time stepping

process is repeated until the final simulation time is reached:

1. Edge-based calculations: For each edge Eij which communicates

two cells Vi and Vj , two computations are performed:

a) Vector Mij = |Eij |F−
ij ∈ R3 is computed independently for each

edge and represents the contribution of an edge to the calculation

of the new states of its adjacent cells Vi and Vj . This contribution

must be added to the partial sums Mi and Mj associated to Vi

and Vj , respectively. In the first order HLL scheme, F−
ij corre-

sponds to FHLL
ij

−
(see section 3.1), and in the WAF method, F−

ij

corresponds to FWAF
ij

−
(see section 3.2).

b) The value Zij = |Eij |λij,max, where λij,max = max(|SL,ij|, |SR,ij |),

is also computed independently for each edge, and represents the

contribution of each edge to the calculation of the local ∆t values

of its adjacent cells Vi and Vj . This contribution must be added to

the partial sums Zi and Zj associated to Vi and Vj , respectively.
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(a) First order HLL and WAF methods (b) Second order HLL

Figure 3: Parallel algorithms
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2. Computation of the local ∆ti: For each volume Vi, the local ∆ti

is obtained by applying: ∆ti = 2γ |Vi|Z−1
i . In the same way, the

computation for each volume can be performed in parallel.

3. Computation of ∆t: The minimum of all the local ∆ti values pre-

viously computed for each volume is obtained. This minimum ∆t

represents the next time step size which will be applied in the simula-

tion.

4. Computation of Un+1
i : The (n + 1)-th state of each volume (Un+1

i )

is calculated from the n-th state and the data computed in previous

phases using the equation (4). If the friction term SF (U) is considered,

then the discretization of this term is performed here using the formula

(18). This phase can also be performed in parallel.

4.2. Parallelism sources of the second order HLL scheme

Figure 3(b) shows graphically the main steps of the second order HLL

scheme. As can be seen, this scheme also exhibits a high degree of paral-

lelism.

When the finite volume mesh has been constructed from the input data,

the time stepping is repeated, by applying a second order Runge-Kutta TVD

method which consists in two stages. These two stages mainly involve the

following computing phases:

1. Edge-based calculations: For each edge Eij which communicates

two cells Vi and Vj , four computations are performed:

a) The reconstructed values, (Un
ij)

−, (Un
ij)

+, as well as the recon-

structed topography values, H−
ij ,H

+
ij are computed using Un

i and

Hi.
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b) Vector Mij = |Eij |FHLL
ij

−
((Un

ij)
−, (Un

ij)
+,H−

ij ,H
+
ij ) is computed

independently for each edge (see (16)) and added to Mi and Mj

(see Figure 3(b)).

c) The contributions to the numerical approximation of the volume

integral (see (16)) is computed for volumes Vi (Ii) and Vj (Ij)

and added to Mi and Mj, respectively.

d) The value Zij = |Eij |λij,max is also computed independently for

each edge as in the previous subsection.

2. Computation of the local ∆ti: For each volume Vi, the local ∆ti

is computed.

3. Computation of ∆t: The minimum of all the local ∆ti values pre-

viously computed for each volume is computed.

4. Computation of Un+1/2
i : For each volume, the vector Un+1/2

i is com-

puted independently from Un
i and Mi. As in the previous section, if

the friction term SF (U) is considered, then the first step of its dis-

cretization is performed here.

5. Edge-based calculations: For each edge Eij which communicates

two cells Vi and Vj , four computations are performed:

a) The reconstructed values, (Un+1/2
ij )−, (Un+1/2

ij )+, as well as the

reconstructed topography values, H−
ij ,H

+
ij are computed using

Un+1/2
i and Hi.

b) Vector Mij = |Eij|FHLL
ij

−
((Un+1/2

ij )−, (Un+1/2
ij )+,H−

ij ,H
+
ij ) is com-

puted independently for each edge (see (16)) and added to Mi and

Mj (see Figure 3(b)).

c) The contributions to the numerical approximation of the volume
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integral (see (16)) is computed for volumes Vi (Ii) and Vj (Ij)

and added to Mi and Mj, respectively.

6. Computation of Un+1
i : The (n + 1)-th state of each volume (Un+1

i )

is calculated from Un
i , Un+1/2

i and Mi. If the friction term SF (U) is

considered, then the second step of its discretization is performed here.

5. CUDA Implementation of the schemes

In this section we describe the main details of the CUDA implementation

of the algorithms we have developed for one-layer shallow water systems.

5.1. Implementation of the HLL and TVD-WAF schemes

Since the structure of the first order HLL scheme is very similar to the

TVD-WAF scheme, their CUDA implementations share the same structure

(taking the most important details into account). In fact, the CUDA algo-

rithm used to accelerate these schemes is a variant of the algorithm described

in [1]. The general steps of this CUDA algorithm are depicted in Figure 4(a).

Each processing step executed on the GPU is assigned to a CUDA kernel.

Next, we describe in detail each step:

• Build data structure: In this step, the data structure that will be

used on the GPU is built. For each volume, we store its initial state

(h, qx and qy) and its depth H. To store these volume data, we define

an array of NV float4 elements which is stored as a 2D texture. The

area of the volumes and the length of the vertical and horizontal edges

are precalculated and passed to the CUDA kernels that need them.

We can know at runtime if an edge or volume is frontier or not and

the value of ηij of an edge by checking the thread position in the grid.
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(a) General structure (b) Different Edge Processing steps

Figure 4: Steps in the CUDA implementation for the HLL and TVD-WAF schemes

• Edge processing: We use four edge processing kernel launches to

process all the edges. In these edge processing kernels, each thread

represents an edge, and computes the contribution of the edge to their

adjacent volumes as described in Section 4. We have specific kernels

to process each of four disjoint edge sets: even vertical edges, odd

vertical edges, even horizontal edges, and odd horizontal edges. Here,

the terms even and odd refers to the column numbers for the vertical

edges and the row numbers for the horizontal edges in the finite volume

mesh, assuming that they are numbered starting with 0 (see Figure

4(b)). There are several reasons to use four kernel launches:

a) For the vertical edges, ηij,y = 0, and for horizontal edges, ηij,x =

0. Therefore, all the operations where these terms take part can be

avoided, increasing efficiency.
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b) With this partitioning, in each kernel execution there is not any vol-

ume which is accessed by more than one thread. This is shown in Fig-

ure 4(b) which illustrates the different edge processing substeps. As a

consequence, the edges (i.e. threads) of a single kernel does not need to

synchronize each other when contributing to a particular volume (the

synchronization between threads of different kernels is achieved by the

implicit synchronization between CUDA kernels). Thus, we only need

one accumulator array to store the contributions of the edges (in [1] we

used two accumulators for regular meshes) and an important reduc-

tion of the device memory requirements is achieved. This accumulator

is an array of NV float4 elements stored in global memory. In the

n-th time step, the element of the accumulator which corresponds to

the volume Vi stores the contribution of its neighbouring edges to the

state of the volume (Ui) (a 3 × 1 vector Mi) and to the local ∆t of

that volume (a float value Zi).

c) Additionally, the division of the edge processing into these four ker-

nels makes it possible to add a positivity step in each edge processing

kernel, which consists in an adjustment of the edge contributions in

order to guarantee the conservation of mass and the positivity of the

water heights.

In the first order HLL scheme each edge needs the data of its two ad-

jacent volumes, while in the WAF method each edge needs the data of

four volumes: its two closer left and right volumes if the edge is verti-

cal, or its two closer upper and lower volumes if the edge is horizontal.

In the four edge processing kernels we assign a size of 48 KB to L1

cache and 16 KB to shared memory.

24



• Compute ∆ti for each volume: In this step, each thread represents

a volume and computes the local ∆ti of the volume Vi as described

in Section 4. The final Zi value is obtained from the position corre-

sponding to the volume Vi in the accumulator. Since there is only one

accumulator, the Zi value is obtained directly without performing any

reduction operation.

• Get minimum ∆t: This step finds the minimum of the local ∆ti

of the volumes by applying a reduction algorithm on the GPU. The

reduction algorithm applied is the most optimized kernel of the reduc-

tion sample included in the CUDA Software Development Kit [16].

• Compute Un+1
i for each volume: In this step, each thread repre-

sents a volume and updates the state Ui of the volume Vi as described

in section 4. The final Mi value is obtained from the position corre-

sponding to the volume Vi in the accumulator and the result is also

saved in that position of the accumulator. In the same way as the

reading of the Zi value, since there is only one accumulator, no fur-

ther reduction step is needed for obtaining the Mi value. After this

step, the 2D texture containing the volume data must be updated from

the accumulator array.

5.2. Implementation of the second order HLL scheme

The general steps of the CUDA implementation of the second order

HLL scheme are depicted in Figure 5. Each processing step in GPU which

is enclosed by a rectangle in the figure has been assigned to a CUDA kernel.

• Build data structure: This step is very similar to the correspond-

ing step of the CUDA implementation for the 1st order HLL scheme
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Figure 5: General steps of the CUDA implementation for the second order HLL scheme.

excepting that an additional array with the same structure and size

as the volume data array (see 5.1) is defined to store the new vector

state Un+1/2.

• Edge Processing: In a similar way as in 5.1, this step is divided into

four substeps (each substep is implemented using a different CUDA

kernel as shown in Figure 5) according to the type of edge which is af-

fected. Thus the efficiency is improved and it is possible to control the

positivity of the water height. In each substep, each thread represents

an edge Eij (which can be even vertical, odd vertical, even horizontal

or odd horizontal) and computes the contribution to their adjacent

volumes Vi and Vj and also computes part of the volume integral ap-

pearing in (16) using the trapezoidal rule. The resulting contributions

are also added to the partial sums Mi and Mj associated to Vi and

Vj, respectively. Note that, the previous computations require the
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use of the reconstruction values, U−
ij , U+

ij , as well as the reconstructed

topography values, H−
ij ,H

+
ij .

• Compute ∆ti for each volume and Get minimum ∆t: These

two kernels are similar to the corresponding kernels defined in 5.1.

• Compute Un+1/2
i for each volume: This step corresponds with the

first stage of the Runge-Kutta TVD scheme and it is identical to the

step which compute Ui in 5.1.

• Compute Un+1
i for each volume: This step implements the second

stage of the Runge-Kutta scheme. After repeating the Edge process-

ing, Un+1
i is computed using Un

i , Un+1/2
i and Mi using a similar pro-

cedure than the one described in 5.1. After this step,the 2D texture

containing the volume data must be updated from the accumulator

array.

6. Experimental Results

In this section we compare the first and second order HLL schemes and

the WAF scheme described in section 3 both computationally and numeri-

cally by applying them to several test problems.

6.1. Circular dam break problem

The first test problem consists in a circular dam break in the [−2, 2] ×

[−2, 2] domain. The depth function is H(x, y) = 1 − 0.8 e−x2−y2

and the

initial condition is U(x, 0) = (h(x, 0), 0, 0), where h(x, 0) = H(x, y)+f(x),

being

f(x) =







0.5 if
√

x2 + y2 < 0.5

0 otherwise
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All the numerical schemes are run for different mesh sizes. Simulations

are carried out in the time interval [0,0.1]. CFL parameter is 0.9 and wall

boundary conditions (q · η = 0) are considered. The CUDA programs are

executed on a GeForce GTX 480 and a GeForce GTX 580. Table 1 shows

all the execution times in seconds. Figure 6 shows a top view of the fluid

evolution for the 400 × 400 mesh size for the three numerical schemes at

different time instants. As it can be seen, for both two cards, the WAF

method is slightly slower that the first order HLL method and two times

faster than the second order HLL method, but it provides numerical results

almost as accurate as the second order HLL scheme.

We have also implemented a serial CPU and a quadcore OpenMP version

for the three numerical schemes, both written in C++ and using the Eigen

library [18]. These versions have been run on an Intel Core i7 920 processor

with 4 GB RAM. The GPU implementations reach speedups of more than

200 for the three numerical schemes in both graphics cards with respect

to the monocore CPU version, and approximately 80 with respect to the

quadcore version using the GTX 580 card.

We have analyzed the influence of the wet/dry treatment and the friction

term in the speedup reached. Since the dealing of wet/dry fronts involves

very few mathematical operations, its influence in the speedup is almost

negligible. On the other hand, the dealing of the friction term is more

complex and the speedup achieved has reduced approximately the 5 % when

adding this treatment in both CPU and GPU implementations.

28



Table 1: Execution times in seconds for all the meshes, programs and graphics cards.

GTX 480 GTX 580
N. cells 1st order 2nd order 1st order 2nd order

HLL HLL WAF HLL HLL WAF

100 × 100 0.0048 0.011 0.0058 0.0043 0.0097 0.0051
200 × 200 0.026 0.059 0.031 0.022 0.051 0.026
400 × 400 0.17 0.41 0.21 0.15 0.34 0.17
800 × 800 1.30 3.09 1.56 1.10 2.60 1.31

1600 × 1600 10.24 24.30 12.22 8.62 20.45 10.25
2000 × 2000 19.95 47.36 23.78 16.79 39.85 19.94

Table 2: Accuracy test: HLL scheme. L1 errors and orders.

N. cells error h order h error qx order qx error qy order qy

25 × 25 3.28 · 10−01 – 7.96 · 10−01 – 1.79 –
50 × 50 1.75 · 10−01 0.90 4.65 · 10−01 0.77 1.04 0.78

100 × 100 8.97 · 10−02 0.97 2.48 · 10−01 0.91 5.57 · 10−01 0.91
200 × 200 4.32 · 10−02 1.05 1.22 · 10−01 1.02 2.73 · 10−01 1.02
400 × 400 2.11 · 10−02 1.05 5.88 · 10−02 1.05 1.30 · 10−01 1.05

Table 3: Accuracy test: 2nd order HLL scheme. L1 errors and orders.

N. cells error h order h error qx order qx error qy order qy

25 × 25 8.67 · 10−02 – 2.87 · 10−01 – 4.90 · 10−02 –
50 × 50 3.22 · 10−02 1.42 1.09 · 10−01 1.38 2.01 · 10−02 1.28

100 × 100 8.81 · 10−03 1.87 3.12 · 10−02 1.81 6.18 · 10−03 1.70
200 × 200 2.32 · 10−03 1.92 8.12 · 10−03 1.94 1.67 · 10−04 1.88
400 × 400 6.02 · 10−04 1.95 2.11 · 10−03 1.94 4.38 · 10−05 1.93

Table 4: Accuracy test: WAF scheme. L1 errors and orders.

N. cells error h order h error qx order qx error qy order qy

25 × 25 1.12 · 10−01 – 3.81 · 10−01 – 6.94 · 10−01 –
50 × 50 4.37 · 10−02 1.36 1.79 · 10−01 1.08 2.74 · 10−01 1.33

100 × 100 1.78 · 10−02 1.29 8.22 · 10−02 1.12 1.14 · 10−01 1.25
200 × 200 7.19 · 10−03 1.31 3.54 · 10−02 1.21 5.04 · 10−02 1.18
400 × 400 2.89 · 10−03 1.31 1.52 · 10−02 1.21 2.17 · 10−02 1.21

29



(a) t = 1s (b) t = 2s

Figure 6: Top view of the evolution of the circular dam break problem at different time
instants with the 400 × 400 mesh. From top to bottom: 1st order HLL, 2nd order HLL,
and WAF.
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(b) t = 3T + T/6

Figure 7: 2-d oscillating lake: surface elevation vs y-coordinate, for y = 0 at different
times steps: Exact solution in black, 1st order HLL in blue, 2nd order HLL in red and
WAF in green
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6.2. Accuracy test.

Next, we consider a test proposed in [35] in order to measure the accuracy

of the three schemes for a non-stationary smooth solution. Specifically, the

bottom topography is defined as H(x) = 2 − sin(2πx) − cos(2πy), and the

initial water height is h(x, 0) = 10 + esin(2πx) cos(2πy), while the initial

discharges are given by

qx(x, 0) = sin(cos(2πx))sin(2πy), qy(x, 0) = cos(2πx) cos(sin(2πy)).

The computational domain is the unit square and periodic boundary condi-

tions have been imposed.

Tables 2-4 show the results obtained at time t = 0.05 for the three

schemes considered here, as shocks developed later for this problem. A

reference solution has been computed using the second order HLL scheme

on a mesh with 1600 × 1600 grid points. The CFL number has been set to

0.5. As it can be seen, HLL achieves first order accuracy (see Table 2), the

second order HLL scheme achieves second order and the WAF scheme is not

second order of accuracy, but its convergence rate is grater that one for this

test (see Table 4).

6.3. A two-dimensional oscillating lake

This numerical test is design to show its performance in solutions where

wet/dry fronts appear. In this case we follow [9] in order to modify the

numerical scheme in such situations. Let us remark that in the case of the

second order HLL scheme is critical to ensure the positivity of the recon-

struction of the water height at the intercells. Here we follow the technique

proposed in [24].
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Let us consider the paraboloidal topography defined by the depth func-

tion

H(x) = h0

(

1 − x2 + y2

a2

)

, x ∈ [−2, 2] × [−2, 2],

together with the periodic analytical solution of the two-dimensional shallow

water equations stated in [34]:

h(x, t) = max

(

0,
σh0

a2

(

2x cos(ωt) + y sin(ωt) − σ
)

+ H(x)

)

,

ux(x, t) = −σω sin(ωt), uy(x, t) = σω cos(ωt),

where ux and uy are the velocities in the x and y directions, and ω =
√

2gh0/a. The values a = 1, σ = 0.5 and h0 = 0.1 have been considered for

this test.

The computations have been performed using a quadrilateral mesh with

∆x = ∆y = 0.02 and CFL number 0.7. Comparisons between the numerical

and the analytical free surfaces at different times are shown in Figure 7,

where T represents the oscillation period. Although a small distortion near

the shorelines can be observed in some cases, they can be reduced using a

finer spatial discretization. On the other hand, the planar form of the free

surface is maintained throughout the computation. Note that the quality

of the solution of the WAF method is as good as the one provided by the

second order HLL scheme in this test case, being the first order HLL method

the more diffusive one as expected.

6.4. Dam break problem over real topography

Finally, let us consider a dam break problem over a real topography.

More precisely, the considered zone corresponds to the neighbourhood of El

Limonero Dam. This dam is located on the Guadalmedina River at around
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5.5 km upstream from the estuary and at least 1 km from the city of Málaga.

The dam is built with non cohesive heterogeneus loose material with a im-

permeable centre. The essential objective of this dam is the protection of

the city of Málaga against freshets from the Guadalmedina river. The total

reservoir capacity is about 30.000 hm3.

The considered domain is a square of 3260 m width and 8000 m long,

discretized using 1.043 millions cell of 5m × 5m. Only the closest portion

of the dam is considered in the domain. Wall boundary conditions are

imposed and as initial condition we consider that the water is at rest and

confined inside the dam, that it is fill up to 90% of its total capacity. The

CFL parameter is set to 0.8 and Manning coefficient n is set to 0.03. At

time t = 0, the dam is partially broken and a flood starts. Figure 8 shows

the evolution of the flood at different time steps computed with the WAF

method.

7. Conclusions

In this paper first we present a reformulation of a first and second order

HLL method and a two-waves TVD-WAF method under a similar structure

that allows us to design the same structure for their CUDA implementations.

The application to the two-dimensional SWE is done using its property of

invariance by rotation. Then, at each edge of the mesh, a 1D projected

SWE is considered. This technique is specially suitable for GPU implemen-

tation. This two dimensional WAF method is not second order of accuracy,

but we show in the numerical tests that it is two times faster than the sec-

ond order HLL method, providing almost the same numerical results. This

reformulation of the WAF method and an improved definition of the flux
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limiters allows us to obtain a fast and accurate solver, well suitable for GPU

implementation and more robust in situations like wet/dry fronts.
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High order extension of Roe schemes for two dimensional nonconserva-

tive hyperbolic systems. J. Sci. Comput. 39: 67–114.

[13] M.J. Castro, T. Chacón Rebollo, E.D. Fernández-Nieto, J.M. González
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(a) t=1m 50s (b) t=4m 45s

(c) t=5m 41 s (d) t=19m 59s

Figure 8: Views of the evolution of the flood after the dam break computed with the WAF
method.
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