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Abstract
The need to investigate the static and dynamic stability
for unconventional planes requires development of a
code that automates the analysis for the airplane's
stability performance. Flying wings are unconventional
and challenging to analyze because they lack a tail to
control the plane in the longitudinal and the lateral
directions. With this motivation, an automated code
was designed that was able to accurately predict the
stability performance of flying wings. In general most
of the stability derivatives that govern the dynamic
behavior of an airplane are simplified so they would
only include the terms that represent the greatest
contribution to its final value. When the greatest
contribution to any of the derivatives comes from the
tail, and the airplane being analyzed lacks a tail, this
represents a problem. This study tries to solve this
problem by focusing on decoupling the longitudinal and
lateral stability derivatives into its wing and vertical fin
contributions.

Introduction
Through the centuries, men have always tried to

conquer all possible areas of our planet: "By sea, land
or air men will be there..." This last one has been one
of the most challenging since Mother Nature and
evolution decided that we should not have wings. For
centuries we have admired, from a distance, the
wonderful soaring of some of the most beautiful
creatures: eagles, storks or condors to name a few. Our
drive to conquer forbidden areas leaded our curiosity to
the extreme trying to emulate those wonderful soaring
kings of the skies. Probably one of the most significant
hits in aviation history was that of the Wright brothers'
flight on December 17th, 1903, when they accomplished
the first heavier-than-air flight in history, but indeed
this was not the first attempt. As early as the ancient
Greeks, with the myth of Daedalus and his son Icarus

men all over the world and time, have tried to emulate
birds. In Italy, Michelangelo and his extravagant
ornithopter flying devices in the late 15th century; in
France, Montgolfier and his balloons in the late 18th; in
England, Sir George Cayley with the first concept of a
fixed-wing aircraft in the late 18th century and early 19th

century; Otto Lilienthal and his gliders in the Germany
of the late 19th century or Langley in the United States
at the same time that the Wright brothers wrote history.
These are among some of the men that have tried to
rewrite history by literally dedicating their life to the
pursuit of flying like birds.1

In the recent years a wide variety of unconventional
planes have been soaring our skies, all of them trying to
emulate the magnificent flight of the soaring kings of
the skies. Not even the most agile and powerful of
today fighters can be compared to the superb and
delicate soaring of an eagle. The phrase, "A WING
ALONE SUFFICES" has been long ago coined and
used when designing airplanes with just a single wing
with no tail. Whatever its name -"tailless aircraft",
"flying wing aircraft", "flying wing" or "all-wing-
aircraft"- they all represent the purest and closest design
to the nature. It is important to define what airplanes
fall under this definition. Nickel and Wohlfahrt limit
the use of the term flying wing "...to be used only in
the special case where there is no fuselage and no
vertical fm(s)." Exceptions are made for planes with
small vertical fins such those of the Northrop YB 49.2
Some examples of historical flying wings are most of
the Horten brothers' creations during the 1930's and
throughout the century, the Lippisch's Storch models
created in the years prior to the WWII, the lifting
bodies created and tested by NASA from 1963 to 1975,
or the Northrop B-35, the YB 49, predecessor of the
latest and one of the most famous flying wing: the B-2
Spirit.

Tailless aircraft represent a distinct challenge when
trying to predict their static and dynamic stability
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performance since most of the literature that has been
written on this subject is geared towards conventional
planes. Conventional airplanes are those that consist of
a wing and a tail structure for their control.

With this in mind, and as a part of a design proposal,
a group of six student engineers, decided construct and
fly an unconventional unmanned aircraft for aerial
photography missions. The request for proposal (RFP)
requested that the aircraft should be capable of taking
photographs of objects on the ground from altitudes at
least 500 feet with a radius of operation of at least of %
mile. The airplane was to be economical to construct
and operate, and should not require exceptional piloting
skills.3 The decision was made to focus their efforts to
accomplish the RFP requirements by means of a highly
unconventional plane and a flying wing presented a
distinct challenge when compared to traditional plane
layouts. The group called themselves the Tailless
Wonders, and called their plane Ala Voladora, which is
Spanish for "flying wing". 4 Throughout this paper the
plane will be referred as Ala.

The analysis stage of the Tailless Wonders design
was divided in four major areas: aerodynamics,
propulsion and performance, structures, and stability
and control. This paper only focuses on the efforts that
were made by the author and member of the Tailless
Wonders to automate the analysis process conducted
during the last eight months towards predicting the
stability and control performance of Ala to obtain a
plane that not only would be pilot-friendly, but also
would be highly maneuverable. The other three major
areas involved in the final product of Ala,
aerodynamics, propulsion and performance, and
structures, are not included in this paper but were of
major importance during the entire analysis process
since they also defined the layout for the plane.

After an initial aerodynamic and preliminary static
stability analysis the original layout of Ala was defined
as a symmetrical swept wing, spanning 96 in. and
measuring 47.6 in. from nose to trailing tip. The
quarter-chord of the wing is swept back 35°, A w c / 4 . On
the extreme outboard trailing edge of the wing of the
wing are the elevators (L875"xll.25"\ and
immediately inboard of the elevators were the ailerons
(1.875"xll.25"). 4 The nose of Ala was used as the
reference point for all measurements. Figure 1 shows a
computer-generated view of the original design. Note
that the original layout did not include any vertical
surfaces therefore remaining a "pure" flying wing.
Figure 2 shows a computer-generated view of the final
design, which included winglets at the tips. Later
sections will discuss the reasoning for adding winglets
to the original design. Figure 3 shows a snapshot of the
final plane with The Tailless Wonders. The computer-
generated models were created using CATIA.4

In order to ease the analysis process, the author
created a MATLAB interface that automated the
process of analyzing the stability and controllability of
the plane. From the analysis of the results obtained
from the MATLAB interface it was learned that the
original layout would not be laterally stable and further
analysis was conducted to produce reasonable levels of
lateral stability considering the impossibility of using
augmented flight controls. The final analysis yielded
implementation of the original layout with winglets.
The dimensions of the winglets were: root chord equal
to the tip chord of the wings, 12 in., the tip chord of 7.2
in., semi-span of 9.8 inches and a leading edge swept
40°, KLE v. The consequent sections will analyze the
longitudinal and lateral static and dynamic stability
analysis for flying wings and will discuss in more detail
the reasoning behind the need for winglets to improve
the lateral stability when augmented flight controls are
not possible.

This paper is divided in seven sections. The first
section gives an introduction to stability. The second
and third section deal with the static and dynamic
stability of Ala. The fourth section presents the results
for the longitudinal dynamic stability. The analysis of
the dynamic lateral stability is presented in the fifth
section. The analysis of the results for the lateral
dynamic stability are discussed in the sixth section.
Conclusions and future work are presented in sections
eight and nineth.

Section I: Introduction to Ala's Stability
Ala's stability analysis was divided into static

stability and dynamic stability. An airplane is
considered to be statically stable if: the forces and
moments on the body caused by a disturbance tend
initially to return the body toward its equilibrium
position.1 An airplane is dynamically stable if: out of its
own accord, it eventually returns to and remains at its
equilibrium position over a period of time. In order to
simplify the stability and control analysis the xyz
orthogonal axis system fixed relative to the airplane is
used. For this system the x-axis is along the fUselage,
the y-axis is along the starboard wing perpendicular to
the x-axis, and the z-axis is directed downward,
perpendicular to the xy-plane. In order to have a
trimmed (or equilibrium) flight the moments about the
center of gravity of the plane, xc must be zero. The
sign convention for the direction of the moments along
each of the three axes is that of the right hand rule with
the thumb pointing away from the center of gravity
where all the three axes meet. The stability modes
associated with the x-axis, y-axis and z-axis are named
lateral, longitudinal, and directional stability,
respectively1. For example, for the longitudinal
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stability, a positive moment causes a nose-up
movement of the plane.

The controllability of the airplane relates the ease of
the airplane changing from its original trimmed position
to a different one (i.e.: maneuverability). Stability and
control about all three axes is usually a necessity in the
design of conventional planes, but due to the
complexity and the time involved in the analysis of all
three axes, the analysis was limited to the y-axis and x-
axis (longitudinal and lateral stability).

Section II; Static Stability Criteria for
Longitudinal Stability

The necessary criteria for longitudinal balance and
static stability is that^ , the moment coefficient of the
airplane at zero angle of attack, (ao), must be positive,
so after a disturbance the initial tendency of the airplane
will be to return to its equilibrium position. The second
criteria is that^M,cg/ , the moment coefficient of the

/8<*a

airplane with respect to its angle of attack (also
detonated as cMa\ must be negative such that an
equilibrium or trim angle of attack at which the
moments about the center of gravity are zero can be
achieved. l For such a configuration after a wind
disturbance on a conventional aircraft, the horizontal
tail counteracts the moment generated by the wing. The
result is that, after the airplane is disturbed by a wind
gust producing a pitching upward moment, the tail
creates a negative moment about the center of gravity
tending to pitch the nose downward. When the wind
disturbance produces a pitching downward moment, the
tail produces a positive moment that tends to pitch the
nose up. Figure 4 shows the static stability behavior for
a conventional airplane. However, Ala has no tail to
provide longitudinal static stability, and therefore the
means for static stability must be within the wing alone.
Therefore the choice of the airfoil to be used was of
critical importance. Cambered airfoils, although having
high lift capabilities, could not be used for Ala due to its
inherent negative C M O - For most flying wings,
longitudinal stability is achieved through aerodynamic
means (reflex airfoils) and/or geometric twist (changing
of local incidence angle with change in span). 2 Both
geometric twisting and reflex airfoils increase the
complexity of both analysis and construction, but
geometric twist is far simpler and lends itself to
manufacturing easier than aerodynamic twist, so it was
decided that Ala would incorporate only the former
along with symmetric airfoils in order to satisfy the
necessary criteria for static stability4. The airfoils
chosen were NACA 653-0018 for the root and NACA
65r0012 for the tip. The wingtip camber lines were set
at -4° angle of attack relative to the root camber line.

The geometric twist of the wing tip generated, fulfilled
the required criteria for static stability by inducing a
slightly positive moment on the entire wing hence
producing CMO =0.039 and CMa =-0.00719 per degree
which satisfied the criteria for static stability. The lift
coefficient at zero angle of attack wasCLO

=-0.117, and
lift curve slope was cLa

=4.119 per radian. The
aerodynamic data was obtained using PMARC, a
mature panel code capable of calculating inviscid flow
about arbitrary bodies. 4 Figure 5 and 6 show the lift
coefficient and the moment coefficient as a function of
angle of attack respectively.

Recommendations for tailless airplanes call for a
static margin at least 20% of the chord2. With this in
mind, it was clearly observed that the sweep of the
wing will greatly determine the location of the mean
aerodynamic center, xac, and to a smaller extent the
location of the center of gravity. The static margin is a
measure of the static stability of the airplane and is
defined as the percentage of the mean aerodynamic
chord, c, that the mean aerodynamic center lies behind
the center of gravity.

^1^100% W
c

For a statically stable airplane, the static margin
needs to be positive, which means that for flying wings
the center of gravity needs to be in front of the mean
aerodynamic center. With the approximate location and
weight of the different wing members, an automated
code was created to determine the sweep's influence on
the mean aerodynamic and center of gravity. The trends
for mean aerodynamic center, center of gravity and
static margin versus the variation of sweep angle can be
seen in Figure 7. From the aerodynamics stand point of
view, the less sweep is better, therefore to optimize
both aerodynamics and static stability the final layout
was set at 35°, with ^=1.709 ft from the nose of the

airplane, and C =1.361 ft. The center of gravity
depended on the desired static margin. The initial
design located the center of gravity at 1.3 ft from the
nose of the airplane, which corresponded to a static
margin of 30%. The initial large static margin gave
freedom to place equipment in the equipment bay and
allowed flexibility during the construction phase. In
case the construction techniques would not yield the
expected center of gravity value, it was easier to
increase the static margin of the plane (if needed) by
adding weight to the nose of the plane rather than
having to decrease it's static margin by adding weight
to the end of the airplane.

Moments of inertia were also output by CATIA
based on the complex physical aspects of every part
contained in the craft 4:
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/«= 1714.04 in4

Izz = 2290.70 in4
^ = 591.08 in4

Ixz = 0.00 in4

Section III: Dynamic Longitudinal Stability
Analysis

Following initial analysis MATLAB code was
expanded to determine both the longitudinal and lateral
dynamic stability of the plane. The small perturbation
equations of motion were used to obtain the
longitudinal and lateral motion equations. In general,
most of the stability derivatives that govern the
dynamic behavior of an aircraft are simplified so they
would only include the terms that represent the greatest
contribution to their final values. For the longitudinal
mode, obtaining the values for the derivatives, Q ,

represents a distinct challenge since,

in general literature, they are expressed as functions of
the horizontal tail. Literature research found a complete
study by Frederick Smetana that dated back to the
1970's. Smetana decoupled all the stability derivatives
regarding wing, vertical and horizontal fins and
fuselage contributions, providing empirical expressions
for all its contributions.5 This represented an important
advance in the task of trying to accurately predict the
performance of Ala. For the longitudinal dynamic
stability and response, the perturbed longitudinal
equations of motion were transformed into the Linear
Time Invariant (LTI), matrix form. Tiiis form of the
longitudinal stability can

M,,=

= qScCMf (13) = &«-„,. (H)
d T Ta r

M. = -

l,,

.(15)

Where qis the dynamic pressure at the flight
condition, S is the surface area of the aircraft (hence for
flying wings equal to the surface of the wing, Sw), and
m is the mass of the aircraft. The longitudinal derivative
coefficients are:

C^ =-0.117 CM,0=0.039 c =0.071923——
deg

Cu =-0.00719-
deg

CA =0.01995
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C =C
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(20)

Note that these derivatives are specified by the
airfoil's and airplane's design.
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be seen below, where the u is the forward speed, a is
the angle of attack, q is the pitch rate, and 0is the pitch
angle:

Where the linearized equations of motion can be
described such:

gS(CDa+CL})
mU}

mU,

Equations 20 through 27 are obtained from reference
6 assuming low-speed. Note that the rate derivatives
Q &C , equations 28 and 29 respectively, are a

function of the horizontal tail and therefore for flying
wings are equal to zero. Equations 30 and 31 represent
the wing's contribution of the pitch rate derivatives and
equations 32 and 33 represent the hinge derivatives.5

Once all the aerodynamic derivatives required to
complete the longitudinal LTI were implemented, the
MATLAB code was verified using geometric, mass,
inertia, stability, and control data for a Cessna 172 6 in
order to make sure that the results obtained were
correct.

Section IV: Longitudinal Dynamic Stability
results

The analysis of the longitudinal dynamic stability for
the flying wing is not dependent on any vertical
surfaces, therefore the MATLAB results for
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longitudinal stability hold for both flying wings with
and without vertical surfaces. The eigenvalues for the
longitudinal 177 matrix yielded the Phugoid mode poles
of -0.0509 ± 0.4332i and the Short Period mode poles
of-5.5859 ±31.72351. Since all the poles had a negative
real part it was predicted that the plane would be
inherently longitudinally stable. The Phugoid
Undamped Natural Frequency, &„ and the Damping
Frequency, gp9 give a better understanding of the
significance of the eigenvalues.7 The Phugoid poles are
underdamped with a natural frequency of a>n

 = 0.4361
and a damping ratio of fp= 0.1167. The Short Period
poles are also under damped with a natural frequency of
con = 32.2115 and a damping ratio of ^=0.1734.
Figure 8 represents the time response for the Phugoid
mode. It is observed from the trends of the figure that
the Phugoid produces a slow underdamped response
after the initial perturbation, as seen by the large period
of 12.6292 sec. Note that the units on the Y-axis are not
scaled. This is because the magnitude of the impulse
cannot be controlled and this causes large amplitude as
seen. The trends of period, however, are the same
despite the magnitude of a given impulse. This is true
for all the stability time-response plots. Figure 9 shows
the time response for the Short Period mode. It can be
observed that the short period produces a rapid
underdamped response after the initial perturbation,as
seen by the small period of 0.1981 sec. The forward
speed, angle of attack, pitch rate and pitch angle are
also analyzed to observe their time response after an
impulse perturbation. The forward speed, u, time
response is plotted in Figure 10, and it is seen that after
a perturbation, the forward speed slowly recovers to
equilibrium as predicted by its dependency on the
Phugoid mode. The angle of attack time response is
plotted in Figure 11, and after a perturbation, the angle
of attack recovers in a short time to equilibrium as
predicted by its dependency on the Short Period mode.

•
The pitch rate, q, time response is plotted in Figure 12
and it is observed to rapidly return to equilibrium after a
perturbation. The pitch angle time response is plotted in
Figure 13, and it can be observed that following a
perturbation it slowly recovers to equilibrium as
predicted by its dependency on the Phugoid mode.

Section V: Lateral Dynamic Stability Analysis
The analysis of the lateral dynamic stability for flying

wings had to be closely analyzed since most of the
lateral stability derivatives are a function of the vertical
tail, and decoupling of wing and vertical surfaces was
necessary for determining if winglets were required to
attain lateral stable flight. The 177 form of the lateral
stability can be seen below, where v is the side-slip

velocity, p is the roll rate, r is the yaw rate, </> is the
bank angle, and if/ is the heading angle. As in the case
of the dynamic longitudinal stability analysis, most of
the derivatives that govern the dynamic behavior of an
aircraft are simplified such that only account for the
vertical tail contribution. Again, Smetana's empirical
equations for the wing's contributions to the lateral
stability derivatives were used to be able to model the
dynamics of the flying wing.5 Note that in the lateral
Z77, the forcing function vector is only a function of the
aileron deflection. Ala did not have rudder control
hence the LTI was modified to account for this fact

ft
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.V.

=

Ya-?- Yp Yr - U, gcos00 0
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COS00

ft'
p
r
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Where the linearized equations of motion can be
described such:

y -
m

(37) K =
qSCr

m

(36)

qSC,
m

L - (40) L -.
' " / » '"

L =

(39)

(41)

qSbC,

N _

(44)

(46) N _

2L (45)

(48) (49)

(50)

Where b is the wingspan. All the lateral derivative
coefficients are decoupled to account for both wing and
vertical fin contributions. The subscript w denotes the
wing contribution, while the subscript v denotes the
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vertical surface contribution, which for this study is the
winglets' contribution.

c =c 2 6 tan A w sin A „ (52)

r --fcf r ^ n i \*v ^V-^ y .. — A/1 \_^ r /,. \ 1 T I —

>' a d/3 q &

C = -C q- Sv

Where AR is the aspect ration of the wing, Aw is the
sweep of the wing, A; is an empirical factor obtained

C^"2ltJQ-
Where CL is extracted from analytical graphs in

reference 5.
- =^L (69)
/„* 3

, l*z* r (70) or- ~ 2 ~ C

r b

"— \cydy (71)

_ Sv z^_ _ (72) since no rudder on Ala
-^ , -u

from reference 5,

curve slope of the

^y is the dynamic

(CL )vis the three

vertical fin, n + ^°")

pressure ratio and
q

area ratio.
C — C +-CY — Y w y v

„ ^ [ ^4/? + cos Ar^.. — r*. w tfin A

dimensional lift

is the sidewash,
Cn ^ = Q 2

^y is the surface M / ? > w

/^ /^ 1(54) c«,,v-^i

^ 1 1 (55) Where JC is the

c =c^ f W+cw / ? t V
f 1 tanAw ")

y4,R AR2 . , x sin Aw

(73)

(74)

(cos Aw - —— - ———— ) + 6 — ———
^ 2 8cosAw c AR J

da | 5V zv ^v (75) or ^ Sv zv qv

df3)Sw b q n/>'v v Sw b q

longitudinal distance rearward from the
AR

CYV=-2CL
°'v b S

(56)

Where zv is the height of the vertical tail center of
pressure above the longitudinal axis.

(58) c = - 2 ^ C

X to xac , and r is an empirical parameter obtained
from reference 5.

c =c+c (76)

AR 12

(77)
(78)

where /v is the moment arm from the center of pressure
of the vertical tail to the center of gravity of the aircraft.

Equation 60 is an approximation for light aircraft6,
and equation 61 is due to the fact that Ala lacks of
rudder control.

C^C^+C^ (62)
(63)

n v — ^ L ——9— —
p Uv u Q ^

where (£„, \ is an empirical parameter obtained from

(79)
reference 5.

(2+2^

ARA

Da

q sw

13 2.5

(82)

°r C - a S> Z« q*C|"-^
Where av is the lift curve slope of the vertical tail

and is determined using the effective aspect ratio
reference 5 to obtain aand A, is the

(65)
wing taper ratio of the wing.

clp =clt

Aw

where k obtained from reference 5 and c = 0, (83)
nSr

 LSa

since no rudder

Note that all the lateral stability derivatives have been
decoupled into wing and vertical tail contributions. This
predicted if the flying wing would be stable without
adding winglets

Section VI: Lateral Dynamic Stability Results
For the initial part of the lateral dynamic analysis,

only the wing contribution to the lateral stability
derivatives was used. The vertical tail contribution was
set equal to zero in order to determine if the plane
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would be stable without vertical fins. The eigenvalues
for the lateral LTI matrix produced Dutch Roll poles of
0.0704±1.0210i, a spiral pole of-0.0879 and a roll pole
of -7.5231. The real part of Dutch Foil poles was
positive, predicting an inherently laterally instable
airplane. For the Dutch Roll mode the time to half
amplitude was 9.84 sec. and the period 6.15 sec. Such
amplitude and period trends were too slow for a
desirable Dutch Roll mode. 6 The Dutch Roll Damping
Frequency, was gD =0.068, and the Undamped Dutch
Natural Frequency was & = 1.0235 rad/sec. The

nD

instability predicted by the sign of the real part of the
Dutch Roll poles was also corroborated by the
necessary criteria for lateral-directional stability which
required Q to be negative and with magnitude of half
of c •8 The MATLAB interface predicted that for thenf
original configuration, with no winglets, c =-0.0115

h

and c =-1.2654 e-4 which did not satisfy the secondnt>
criteria for lateral-direction stability.

In order to improve such instability it was decided to
focus on improving the Dutch Roll poles by studying
the possibility of increasing both the Dutch Roll
Undamped Natural Frequency and Damping Ratio.
According to MIL-F-8785, all type of airplanes can be
classified onto four classes9:

• Class I: Small, light airplanes.
• Class II: Medium weight, low-to-medium

maneuverability airplanes.
• Class III: Large, heavy, low-to-medium

maneuverability airplanes.
• Class IV: High maneuverability airplanes.

Each one of the four classes can be divided in
specific flight regimes, denoted as Flight Phase
Categories. According to MIL-F-8785 definitions Ala
qualified on the Flight Phase Category A for
reconnaissance regime, and the Class I type for small
light airplanes. Under these specifications the minimum
requirements for a Class I airplane with flight phase A
were that /- =0.19, and & = 1.0 rad/sec.6 It is known

U nD

that vertical surfaces are important, if not the sole
contribution, to lateral stability as seen by the lateral
derivatives coefficients in equations 53 through 82.
Using the specified requirements for minimum Dutch
Roll Undamped Natural Frequency and Damping Ratio
for a Class I airplane under a Flight Phase Category A,
analysis was started by varying the effective surface
area of both winglet relative to the percentage of the
total wing area, SWt the leading edge sweep of the
winglet, AL £ v , and the winglet's taper ratio, Jiv. The
effective surface area of the winglet was varied up to 30
% of the total Sw. The sweep of the winglet was varied
up to 40° in increments of 10 °, and the taper ratio was

varied from 0.2 to 0.8 in increments of 0.2. The analysis
yielded an sizable amount of information in the form of
graphs and empirical data describing the influence of
vertical winglet size and shape on the lateral dynamic
stability for a flying wing.

Figures 14 through 17 show the trends for Dutch Roll
damping ratio as a function of the winglet area, with
variation of winglet leading edge sweep and winglet's
taper ratio. It is observed that for a fixed leading edge
sweep (ALEv) of 10°, 20°, 30°and 40° (see figures 14
through 17 respectively) the Dutch Roll damping ratio
increases with decreasing winglet taper ratio keeping
the same percentage of total wing area, hence achieving
the required damping ratio with a smaller winglet. For a
fixed Dutch Roll damping ratio, the required winglet
area increases with increase of winglet taper ratio. Note
that the total winglet area, which is defined as a
percentage of the total wing area, accounts for the area
of both winglets.

Figures 18 through 21 show the behavior of Dutch
Roll Undamped Natural frequency as a function of the
winglet area, with variation of winglet leading edge
sweep and winglet taper ratio. It is observed that for a
fixed winglet leading edge sweep the Dutch Roll
natural frequency increases with decreasing winglet
taper ratio, while holding the winglet area constant,
hence achieving the required Dutch Roll natural
frequency with smaller winglet sizes. For a fixed Dutch
Roll natural frequency the required winglet area
increases with increase of winglet taper ratio.

Figures 22 through 25 show the behavior of
longitudinal mean aerodynamic center of the winglet as
a function of the winglet area, with variation of winglet
leading edge sweep and winglet taper ratio .It is
observed that for a fixed winglet leading edge sweep
the mean aerodynamic center increases linearly with
increasing winglet area and decreasing winglet taper
ratio while holding the winglet area constant. This
causes larger bigger mean aerodynamic center for a
smaller winglet taper ratio, which ultimately means an
increase of the effective moment arm, /v, which is a
direct measurement of the lateral dynamic stability as
seen on equations 59, 70, 78 and 81. For a fixed mean
aerodynamic center the required winglet area increases
with increasing winglet taper ratio. Figures 22 and 23
show a deviation from this linear behavior. For the
range of winglet areas of 5% to 12.5% of the total wing
area for Figures 22 and 23 it can be seen that for a
winglet taper ratio of 0.2 it generates smaller mean
aerodynamic values than those for a winglet taper ratio
of 0.4 for the same range of winglet area.

Figures 26 through 29 show the behavior of vertical
coordinate of the mean aerodynamic center of the
winglet, zv, as a function of the winglet area, with
variation of winglet leading edge sweep and winglet's
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taper ratio. It is observed that for a fixed winglet
leading edge sweep, the vertical coordinate of the mean
aerodynamic center increases linearly with increasing
winglet area and decreasing winglet taper ratio. This is
an important trend since the vertical coordinate of the
mean aerodynamic center of the winglet is a direct
measurement of the lateral dynamic stability as seen in
equations 56, 64, 67, 70, 72, 75 and 78. For a fixed
zv the required winglet area increases with increase of
winglet taper ratio.

With these results the MATLAB interface is used to
compare the dynamic lateral responses for different
Dutch Roll damping ratio. Figures 30 through 35 show
the Dutch Roll, side-slip velocity, roll rate, yaw rate,
bank angle, and heading angle respectively following
an impulse perturbation for three cases: no winglets,
winglets for fD= 0.19, which is the minimum
requirement for Class I airplanes, and winglets for
£D=0.25. Figures 30 through 32 show that the Dutch
Roll mode, the sideslip velocity and the roll rate for the
winglet cases come quickly to an equilibrium while the
no-winglet case shows an unstable oscillation for the
sideslip velocity and the roll rate (Figures 31 and 32),
and a extremely slow stable oscillation to equilibrium
for the Dutch Roll.

Figure 33 shows the yaw rate response following an
impulse perturbation for three cases. All three cases
show an unstable behavior. For the winglet cases, an
underdamped motion that tries to settle to a steady state
value is seen. The response retains this behavior as long
as the damping remains small following the initial
instants after an impulse perturbation. 'As soon as the
damping becomes larger, therefore diminishing the
oscillation of the yaw rate, the response becomes
overdamped and departs to an exponential unstable
mode. For the no-winglet case the yaw rate response
after an impulse perturbation is an increasing unstable
oscillatory motion. Figure 34 shows the bank angle
response following an impulse perturbation for the
three described cases. It is also seen that the winglet
cases follow an exponential unstable mode after a brief
overdamped motion. Figure 35 shows the heading
angle response following an impulse perturbation for
the three described cases. For the winglet cases, a
critically damped motion on the first half-second is
followed by an exponential unstable departure. For the
no-winglet case the heading angle response after an
impulse perturbation is an increasing unstable
oscillatory motion.

The unstable behavior of the yaw rate, bank and
heading angle for the winglet case can be explained by
the trends of the poles of the lateral LTI matrix. For the
winglet case of damping ratio of 0.19, the Dutch Roll
poles are -1.3728±7.0871i, a spiral pole of 0.0645 and
a roll pole of-7.6239. The real part of the Dutch Roll

poles is negative predicting an inherently laterally
dynamic stable airplane. The Dutch Roll response for
the winglet case is much faster than that of the no-
winglet case with time to half amplitude of 0.5 sec. and
a period 0.88 sec. This response is much appropriate for
a lateral-dynamic stable airplane. The Undamped Dutch
Natural Frequency is & = 7.2189 rad/sec. The criteria

nD

for lateral-directional stability is also satisfied by
givingc =-0.0258 and c =0.049. The slightlyIP n^
positive spiral pole in addition to the lack of rudder to
control the attitude of the airplane, produces the
unstable departure of the yaw rate, bank and heading
angle after a perturbation.

In order to have a better understanding of the
behavior of the dynamic lateral stability for different
Dutch damping ratios, three cases are further analyzed:
winglets for ^=0.15, smaller than the minimum
requirement, winglets for ^=0.19 and winglets for
^=0.25, above the minimum requirement. Figures 36
and 37 show the Dutch Roll and sideslip velocity
response after an impulse perturbation for the three
winglet cases. It is observed that the amplitude and
period decrease while the frequency increases with
increasing Dutch damping ratio. Figure shows the roll
rate response after an impulse perturbation for the three
winglet cases, and as previously mentioned it is
observed that the overdamped motion of response gets
augmented with increasing winglet area. Figures 39
through 40 show the response after an impulse
perturbation for the yaw rate, bank and heading angle
respectively for the three winglet cases. The instability
modes of the responses get slightly diminished as the
damping ratio is increased.

The data obtained from the iterations yielded a series
of different winglet planforms that meet or exceed the
minimum required Dutch damping ratios for lateral-
dynamic stably flight. Figure 42 shows a sample of the
winglet planforms generated. At this point, since all
presented planforms meet or exceed the minimum
requirements 9 the choice for the desired winglet was
based on what was most aesthetically pleasing for the
members of the group.

The results yielded that winglet with the following
dimensions be used: root chord equal to the tip chord of
the wings, 12 inches, tip chord of 7.2 inches, semi-span
of 9.6 in. and with a leading edge swept 40°. This
would produce a Dutch damping ratio of ^=0.19.

Section VII: Conclusions
The actual performances of the flying wing exceed

the MATLAB's predictions. The airplane accomplished
numerous acrobatic maneuvers such loops, barrel rolls,
inverted flight and quasi-hammerheads. It has been
shown that by decoupling the longitudinal and lateral
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stability derivatives into their wing and vertical tail
components, and subsequent analysis of the Z7Y, one
can achieve longitudinal and lateral stability for
unconventional airplanes, such flying wings, without
the aid of augmented systems.

It is also shown that by selecting the correct winglet
parameters, leading edge sweep, taper ratio and winglet
area, the effective moment arm, 7V, and the vertical
coordinate of the mean aerodynamic center of the
winglet, zv, a model can be constructed so the desired
lateral stability characteristics for an airplane can be
achieved.

Section VIII: Future Work
Future work include the refinement of .all the codes to
convert it into a Windows based interface. Currently
working in introducing fuselage contributions to be able
to have a better model, and ideally if time and resources
permit it, wind tunnel analysis to check empirical
results for lateral stability derivatives.
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Figure 1 Ala with no winglets

Fig. 2 Ala Voladora with winglets.

Fig. 3 Ala Voladora and the Tailless Wonders
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Center of gravity (X ) and aerodynamic pressure (X ) vs. Sweep Forward speed impulse-time response
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Fig. 7 Xcg and Xac vs Angle of Attack
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Fig. 10 Forward Speed Response After an Impulse
Perturbation

Phugoid mode impulse-time response Angle of attack impulse-time response
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Fig. 8 Phugoid Response After an Impulse
Perturbation
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Fig. 11 AoA Response After an Impulse Perturbation

Short-period mode impulse-time response Pitch rate impulse-time response
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Fig. 9 Short-Period Response After an Impulse
Perturbation
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Fig. 12 Pitch Rate Response After an Impulse
Perturbation
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Pitch angle impulse-time response Dutch Roll Damping ratio vs. % Sw for sweep 30 deg
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Fig. 13 Pitch Angle Response After an Impulse
Perturbation

25 30

Fig. 16 CD vs. Winglets' Area for AV,L.E. -30°

Dutch Roll Damping ratio vs. % Sw for sweep 10 deg Dutch Roll Damping ratio vs. % Sw for sweep 40 deg

Fig. 14 CD vs. Winglets' Area for AV,L.E. =10° Fig. 17 CD vs. Winglets' Area for AV,L.E. =40°

Dutch Roll Damping ratio vs. % Sw for sweep 20 deg Dutch Roll Natural Frequency vs. %Sw for sweep 10 deg

Fig. 15 CD vs. Winglets' Area for AV,L.E. =20° Fig. 18 coon vs. Winglets' Area for AV5L.E. =10°
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Dutch Roll Natural Frequency vs. %Sw for sweep 20 deg
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Variation of mean aerodynamic center (xac) vs. % Sw for sweep 10 deg
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Fig. 19 03^ vs. Winglets' Area for AVjL.E. =20° Fig. 22 Xac vs. Winglets' Area for AVfL.E. =10°

Dutch Roll Natural Frequency vs. %Sw for sweep 30 deg Variation of mean aerodynamic center (xac) vs. % Sw for sweep 20 deg

Fig. 20 coon vs. Winglets' Area for AV5L.E. =30°
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Fig. 23 Xac vs. Winglets' Area for AV,L.E. =20°

Dutch Roll Natural Frequency vs. %Sw for sweep 40 deg Variation of mean aerodynamic center (xac) vs. % Sw for sweep 30 deg
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Fig. 21 coon vs. Winglets' Area for AV5L.E. =40° Fig. 24 Xaevs. Winglets' Area for AV,L.E. =30°
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Variation of mean aerodynamic center (xac) vs. % Sw for sweep 40 deg

0.7
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Fig. 25 Xac vs. Winglets' Area for AV,L.E. =40

Variation ZBAR vs. % Sw for sweep 30 deg

Fig. 28 z vs. Winglets' Area for AV?L.E. =30°

Variation ZBAR vs. % Sw for sweep 10 deg

10 15 20 25 30
%Sw

Fig. 26 z vs. Winglets' Area for AVjL.E =10°

Variation ZBAR vs. % Sw for sweep 40 deg
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Fig. 29 z vs. Winglets' Area for AV,L.E. =40°

Variation ZBAR vs. % Sw for sweep 20 deg
Dutch Roll Impulse Time Response

--- No Winglets
—— Winglets for Dutch damping ratio=0.19
_ _ Winglets for Dutch damping ratio=0.25

Fig. 27 z vs. Winglets' Area for AV?L.E. =20° Fig. 30 Dutch Roll Response After an Impulse
Perturbation
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Sideslip Velocity Impulse-time Responsi
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Fig. 31 Sideslip Velocity Response After an Impulse
Perturbation

Fig. 34 Bank Angle Response After an Impulse
Perturbation

Roll Rate Impulse-time Response Heading Angle Impulse-time Response
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Fig. 32 Roll Rate Response After an Impulse
Perturbation
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Fig. 35 Heading Angle Response After an Impulse
Perturbation

Yaw rate Impulse-time Response Dutch Roll Impulse Time Response
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Fig. 33 Yaw Rate Response After an Impulse
Perturbation
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Fig. 36 Dutch Roll Response After an Impulse
Perturbation
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Sideslip Velocity Impulse-time Response Bank Angle Impulse-time Response

Winglets for Dutch damping ratio=0.15
Winglets for Dutch damping ratio=0.19

Fig. 37 Sideslip Velocity Response After an Impulse
Perturbation
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Fig. 40 Bank Angle Response After an Impulse
Perturbation
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Fig. 38 Roll Rate Response After an Impulse
Perturbation
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Fig. 41 Heading Angle Response After an Impulse
Perturbation
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Fig. 39 Yaw Rate Response After an Impulse Fig- 42 Winglets iterations for Dutch damping ratios of 0.15, 0.19 and 0.25 (column-wise)
Perturbation ^ sweeP leading edge of 10°, 20°, 3 and 40° respectively (row-

wise)
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