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Abstract

We consider an infinite chain of particles linearly coupled to their near-
est neighbours and subject to an anharmonic local potential. The chain is
assumed weakly inhomogeneous, i.e. coupling constants, particle masses and
on-site potentials can have small variations along the chain. We look for small
amplitude and time-periodic solutions, and in particular spatially localized
ones (discrete breathers). The problem is reformulated as a nonautonomous
recurrence in a space of time-periodic functions, where the dynamics is con-
sidered along the discrete spatial coordinate. Generalizing to nonautonomous
maps a centre manifold theorem previously obtained for infinite-dimensional
autonomous maps [Jam03], we show that small amplitude oscillations are de-
termined by finite-dimensional nonautonomous mappings, whose dimension
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depends on the solutions frequency. We consider the case of two-dimensional
reduced mappings, which occurs for frequencies close to the edges of the
phonon band (computed for the unperturbed homogeneous chain). For an
homogeneous chain, the reduced map is autonomous and reversible, and bi-
furcations of reversible homoclinic orbits or heteroclinic solutions are found
for appropriate parameter values. These orbits correspond respectively to
discrete breathers for the infinite chain, or “dark” breathers superposed on a
spatially extended standing wave. Breather existence is shown in some cases
for any value of the coupling constant, which generalizes (for small amplitude
solutions) an existence result obtained by MacKay and Aubry at small cou-
pling [MA94]. For an inhomogeneous chain the study of the nonautonomous
reduced map is in general far more involved. Here this problem is considered
when the chain presents a finite number of defects. For the principal part of
the reduced recurrence, using the assumption of weak inhomogeneity, we show
that homoclinics to 0 exist when the image of the unstable manifold under a
linear transformation (depending on the defect sequence) intersects the stable
manifold. This provides a geometrical understanding of tangent bifurcations
of discrete breathers commonly observed in classes of systems with impuri-
ties as defect strengths are varied. The case of a mass impurity is studied
in detail, and our geometrical analysis is successfully compared with direct
numerical simulations. In addition, a class of homoclinic orbits is shown to
persist for the full reduced mapping and yields a family of discrete breathers
with maximal amplitude at the impurity site.

1 Introduction

It is now well established that many nonlinear networks of interacting particles sus-
tain time-periodic and spatially localized oscillations commonly denoted as discrete
breathers. In spatially periodic systems, breathers are also called intrinsically lo-
calized modes [ST88] in distinction to Anderson modes of disordered linear systems
[And58]. The properties of discrete breathers have been analyzed in an important
number of numerical works (see the reviews [FW98, VMZ03, DLHMS04]) and their
existence in periodic systems has been proved analytically in different contexts, see
[MA94, Aub98, SM97, AS98, AKK01, Pan05, Fla95, Jam03] and references therein.
In the context of numerical simulations or experiments discrete breathers often de-
note a larger class of spatially localized oscillations, such as metastable states, oscil-
lations with a certain degree of periodicity, or even chaotic oscillations interacting
with a noisy extended background [IKSF04, GLC05]. Nonlinear waves of this type
are now actually detected in real materials [SS04, Swa99, SES99, EH02, Man06] and
also generated in artificial systems such as Josephson junction arrays, micromechan-
ical cantilever arrays and coupled optical waveguides (see references in [CFK04]).
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They are thought to play a role in various physical processes such as the formation
of local fluctuational openings in the DNA molecule [PB89, Pey04], which occurs in
particular during thermal denaturation experiments.

Beyond spatially periodic systems, it is a fundamental and challenging problem
to understand breather properties in nonlinear and inhomogeneous media, such as
non-periodic or disordered crystals, amorphous solids and biological macromolecules.
For example the interplay between nonlinearity and disorder can provide an alter-
native interpretation for slow relaxation processes in glasses [KA99-00]. In quasi-
one-dimensional media, moving localized waves interacting with impurities [KBS94,
CPAR02, FPM94], extended defects [TP96] or local bends of the lattice (see [CK04]
and its references) can remain trapped and release vibrational energy at specific
sites.

The modelling of thermal denaturation of DNA and the analysis of its local fluc-
tuational openings, also known as denaturation bubbles, represents another problem
where heterogeneity is important. In order to describe these phenomena, a nonlinear
model at the scale of the DNA base pair has been introduced by Peyrard and Bishop
[PB89] and further improved by Dauxois et al [DPB93]. The model describes the
stretching xn(t) of the H-bonds between two bases, in the nth base pair along a
DNA molecule (a large value of xn corresponding to a local opening). Each bond
fluctuates in an effective anharmonic potential V and interacts with its nearest-
neighbours. The model is described by an Hamiltonian system, and can be coupled
with a thermostat to study the effect of thermal noise in denaturation experiments.
This model accurately describes the thermal denaturation of certain real DNA seg-
ments provided their heterogeneity is taken into account [CG98]. In its simplest
form, the model incorporates different dissociation energies for the adenine-thymine
(AT) and guanine-cytosine (GC) base pairs. The Hamiltonian of the system reads

H =
+∞∑

n=−∞

m

2
ẋ2

n + Vsn(xn) +
k

2
(1 + ρ e−β(xn+1+xn)) (xn+1 − xn)2, (1)

where Vsn(x) = Dsn(1 − e−asnx)2 is a Morse potential depending on the base pairs
sequence sn ∈ {AT,GC}. The case ρ = 0 yields a particular case of a Klein-Gordon
lattice, i.e. the model consists in a chain of anharmonic oscillators with harmonic
nearest-neighbours coupling. For parameters corresponding to real DNA sequences,
Langevin molecular dynamics of (1) have shown that some locations of discrete
breathers heavily depend on the sequence and seem to coincide with functional
sites in DNA [KRBCU04], but at the present time this topic remains controversial
[vECLP06].

¿From a mathematical point of view, Albanese and Fröhlich have proved the ex-
istence of breathers for a class of random Hamiltonian systems describing an infinite
array of coupled anharmonic oscillators [AF91] (see also the earlier work [FSW86] of
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Fröhlich et al concerning quasiperiodic localized oscillations). These breather fam-
ilies can be parametrized by the solutions frequencies, which belong to fat Cantor
sets (i.e. with nonzero Lebesgue measure) of asymptotically full relative measure
in the limit of zero amplitude. These solutions are nonlinear “continuations” of a
given Anderson mode from the limit of zero amplitude, and the gaps in their fre-
quency values originate from a dense set of resonances present in the system. For
disordered Klein-Gordon lattices, complementary numerical results on the continu-
ation of breathers with respect to frequency or the transition between breathers to
Anderson modes are available in [KA99-00, AMM99].

In addition, the existence of breathers in inhomogeneous Klein-Gordon lattices
(with disordered on-site potentials) has been proved by Sepulchre and MacKay
[SM98, SM97] for small coupling k. The proof is based on the continuation method
previously introduced by MacKay and Aubry [MA94] for an homogeneous chain
(method considerably generalized in [SM97]). For k = 0 the system reduces to
an array of uncoupled non-identical anharmonic oscillators, and the simplest type
of discrete breather consists of a single particle oscillating while the others are at
rest. Under a nonresonance condition [SM98, SM97], this solution can be continued
to small values of k (in most cases at fixed frequency) using the implicit function
theorem, yielding a spatially localized solution.

In this paper we provide complementary mathematical tools for studying time-
periodic oscillations (not necessarily spatially localized) in inhomogeneous infinite
lattices. The theory is developed in a very general framework, and applied to
breather bifurcations in inhomogeneous Klein-Gordon lattices as lattice parameters
and breather frequencies are varied. We start from a general Klein-Gordon lattice
with Hamiltonian

H =
+∞∑

n=−∞

Mn

2
ẋ2

n + DnV (Anxn) +
Kn

2
(xn+1 − xn)2 (2)

(case ρ = 0 of (1) with more general inhomogeneities). The potential V is assumed
sufficiently smooth in a neighbourhood of 0 with V ′(0) = 0, V ′′(0) = 1. The general
theory is a priori valid for small inhomogeneities and small amplitude oscillations.
In particular, in our application to system (2) we assume Mn, Dn, An, Kn to be
close (uniformly in n) to positive constants. However, considering an example of
Klein-Gordon lattice with a mass defect, we check using numerical computations
that our tools remain applicable up to strongly nonlinear regimes, and sometimes
for a large inhomogeneity.

Our analysis is based on a centre manifold reduction and the concept of spatial
dynamics. This concept was introduced by K. Kirchgässner [Kir82] for nonlinear
elliptic PDE in infinite strips, considered as (ill-posed) evolution problems in the
unbounded space coordinate, and locally reduced to a finite-dimensional ODE on
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an invariant centre manifold. This idea was transposed to the context of travelling
waves in homogeneous infinite oscillator chains by Iooss and Kirchgässner [IK00],
and centre manifold reduction has been subsequently applied to the analysis of trav-
elling waves and pulsating travelling waves in different one-dimensional homogeneous
lattices [Ioo00, JS05, IJ05, Sir05, PR05, IP06]. Indeed, looking for travelling waves
in an oscillator chain yields an advance-delay differential equation (a system of such
equations in the case of pulsating travelling waves), which can be reformulated as an
infinite-dimensional evolution problem in the moving frame coordinate, and locally
reduced to a finite-dimensional ODE under appropriate spectral conditions.

In [Jam01], one of us has proved the existence of breathers in Fermi-Pasta-
Ulam (FPU) lattices using a similar technique in a discrete context. The dynamical
equations for time-periodic solutions were reformulated as an infinite-dimensional
recurrence relation in a space of time-periodic functions, and then locally reduced to
a finite-dimensional mapping on a centre manifold, where breathers corresponded to
homoclinic orbits to 0. A general centre manifold theorem for infinite-dimensional
maps with unbounded linearized operator has been proved subsequently [Jam03] and
has been used to analyze breather bifurcations in diatomic FPU lattices [JN04, JK07]
and spin lattices [Nob04]. More generally, the dynamical equations of many one-
dimensional lattices can be reformulated as infinite-dimensional maps in loop spaces
as one looks for small amplitude time-periodic oscillations ([Jam03], section 6.1).

As shown in the present paper, the centre manifold reduction theorem readily
applies to homogeneous Klein-Gordon lattices, where Mn = m, Dn = d, An = a,
Kn = k in (2) and m, d, a, k > 0. This reduction result rigorously justifies (in
the weakly nonlinear regime) a formal one-Fourier mode approximation previously
introduced in [BCKRBW00]. The equations of motion read

m
d2xn

dt2
+ da V ′(a xn) = k (xn+1 − 2xn + xn−1), n ∈ Z. (3)

Looking for time-periodic solutions (with frequency ω) and setting xn(t) = x̃n(ω t),
(3) can be formulated as an (ill-posed) recurrence relation (x̃n+1, x̃n) = F (x̃n, x̃n−1)
in a space of 2π-periodic functions. Using the theorem of [Jam03], one can locally
reduce the problem to a finite-dimensional mapping on a centre manifold whose
dimension depends on the frequency ω. More precisely, equation (3) linearized
at xn = 0 admits solutions in the form of linear waves (phonons) with xn(t) =
A cos (qn− ωqt), whose frequency satisfies the dispersion relation

mω2
q = a2d + 2k(1− cos q). (4)

The frequencies ωq lie in a band [ωmin, ωmax] with ωmin > 0. In the nonlinear
case, the dimension of the centre manifold depends on how many multiples of ω
belong to (or are close to) the phonon band. When ω ≈ ωmax or ω ≈ ωmin (with
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no additional resonance), the centre manifold is two-dimensional if solutions are
searched even in time, which reduces (3) locally to a two-dimensional reversible
mapping on the centre manifold. For appropriate parameter values, this map admits
small amplitude homoclinic solutions to 0 corresponding to breather solutions of
(3). Breather solutions in this system have been proved to exist by MacKay and
Aubry [MA94] for small values of the coupling parameter k. Known regions of
breather existence are considerably extended here, since we prove the existence of
small amplitude breathers for arbitrary values of k in some cases and for frequencies
close to the phonon band edges (see theorem 7 p.32). In addition we prove the
existence of “dark breather” solutions, which converge towards a nonlinear standing
wave as n → ±∞ and have a much smaller amplitude at the centre of the chain.
These solutions correspond to heteroclinic orbits of the reduced two-dimensional
map.

Furthermore, we extend this analysis to the case when small lattice inhomo-
geneities are present. The dynamical equations of the inhomogeneous system (2)
take the form

Mn
d2xn

dt2
+ DnAn V ′(An xn) = Kn (xn+1 − xn)−Kn−1(xn − xn−1), n ∈ Z, (5)

and time-periodic solutions can be obtained as orbits of a nonautonomous map
(xn+1, xn) = F (λn, xn, xn−1), where the nonconstant lattice parameters are embed-
ded in a multicomponent parameter λn. Fixing Mn = m + mn, Dn = d + dn,
An = a + an, Kn = k + kn, we consider the case when constant lattice parameters
m, d, a, k > 0 are perturbed by uniformly small sequences (mn)n∈Z, (dn)n∈Z, (an)n∈Z,
(kn)n∈Z. We prove (see theorem 3 p.19) that small amplitude time-periodic solutions
with frequencies close to ωmin or ωmax are determined by a two-dimensional nonau-
tonomous map. Moreover, we generalize this reduction result in the case when
several multiples of ω are close to the band [ωmin, ωmax], which yields a higher-
dimensional reduced problem (see theorem 4 p.21).

In fact we prove this type of reduction result in a very general framework, for
infinite-dimensional mappings with small nonautonomous perturbations, considered
in a neighbourhood of a non-hyperbolic fixed point, or close to a bifurcation. The
linear autonomous part of the map must satisfy a property of spectral separation (see
theorem 1 p.15), but a large number of one-dimensional lattices with finite-range
coupling fall within this category. We obtain a direct proof of the reduction result
by observing that any nonautonomous mapping un+1 = F (λn, un) can be seen as a
projection of an extended autonomous mapping, to which the centre manifold theo-
rem of [Jam03] can be applied under appropriate assumptions. The centre manifold
of the extended map is infinite-dimensional, but this case is also covered in [Jam03].
The reduced nonautonomous mapping for the original system can be interpreted as
a projection on a finite-dimensional subspace of the extended autonomous mapping
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restricted to the invariant centre manifold.
We use this reduction result to analyse the case when equation (5) presents a

mass defect at a single site, all other lattice parameters being independent of n. In
that case, the linearized problem admits a spatially localized mode (usually denoted
as an impurity mode or defect mode), and a nonlinear continuation of this mode
can be computed [FPM94], corresponding to a Lyapunov family of periodic orbits.
Klein-Gordon systems with a coupling defect or a harmonic impurity in the on-site
potential share similar characteristics [CPAR02], as well as nonlinear lattices with a
different type of nonlinearity [KZK97]. In addition to this simple localization phe-
nomenon, single impurities can have more complex effects in a nonlinear system.
Indeed it is a common feature to observe a complex sequence of tangent bifurca-
tions between (deformations of) site-centered and bond-centered breathers in some
neighbourhood of the defect as the strength of an impurity is varied [CK04, KZK97].
Using numerical computations we show some examples of such bifurcations in the
present paper, as one varies the strength of a mass defect in system (5). From a
physical point of view it is quite important to understand how a local change in the
lattice parameters modifies the set of spatially localized solutions. For example, this
could contribute to explain how a mutation at a specific location of an homogeneous
sequence of (artificial) DNA would modify the structure of fluctuational openings
[KRBCU04].

This paper provides a qualitative explanation of such tangent bifurcations, which
reveals also very precise quantitatively when compared with numerical simulations
of the Klein-Gordon model. According to the previously described reduction theo-
rem, for a small mass defect of size ε, small amplitude breather solutions of (5) with
frequencies below (and close to) ωmin are described by a two-dimensional nonau-
tonomous mapping vn+1 = f(vn, ω) + ε g(n, vn, ω, ε). Here we consider the principal
part of the reduced mapping as (vn, ω, ε) ≈ (0, ωmin, 0). We show that this truncated
reduced map admits an homoclinic orbit to 0 (corresponding to an approximate
breather solution for the oscillator chain) if, for ε = 0, the image of the unstable
manifold of 0 under a certain linear shear intersects its stable manifold. The linear
shear is O(ε)-close to the identity. When the on-site potential is soft (i.e. the period
of small oscillations in this potential increases with amplitude), these manifolds have
very complicated windings characteristic of homoclinic chaos, hence the set of their
intersections changes in a complex way as the linear shear varies, or equivalently as
one varies the mass defect. This phenomenon explains the existence of the above
mentioned tangent bifurcations, at least for small defect sizes, and for small ampli-
tude breathers with frequencies close to the phonon band. In addition, we show (by
comparison with direct numerical simulations of the Klein-Gordon model) that this
picture remains valid quite far from the weakly nonlinear regime.

Let us note that, to obtain an exact solution of (5) from an orbit of the truncated
map, it would be necessary to control the effect of higher order terms (with respect
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to vn, ω− ωmin, ε) present in the full reduced mapping and prove the persistence of
this solution. This result is obtained for Lyapunov families of periodic orbits, which
correspond here to discrete breathers with maximal amplitude at the impurity site
(see theorem 8 in section 4.1.5). In that case, the corresponding orbits of the reduced
mapping appear through a pitchfork bifurcation when ω reaches the linear defect
mode frequency. The persistence of the above mentioned tangent bifurcations of
discrete breathers is a much more complex problem, which study would require
asymptotical techniques beyond all algebraic orders (more details in this respect are
given in section 4.1.4). This problem is not examined here from the analytical side,
but we compare instead numerically computed solutions of (5) with approximate
solutions deduced from the truncated map. The very good agreement leads us to
conjecture that most of the tangent bifurcations existing for the truncated problem
persist for the full reduced system.

Lastly we consider the more general case when system (5) admits a finite number
of defects, i.e. perturbations mn, dn, an, kn have a compact support (as above these
perturbations are assumed to be small, of order ε). We show that the approach
developped for a single impurity can be extended to this case (see lemma 7 p.49),
where the linear shear is replaced by a more general linear near-identity transforma-
tion Aε. The linear transformation Aε provides a useful tool for studying breather
bifurcations in Klein-Gordon lattices with a finite number of impurities, as for the
single impurity case that we have analyzed in detail. By computing the principal
part of Aε as ε is small and frequencies are close to ωmin, we show that the effect
of the parameter sequence (λn)n∈Z on the set of small amplitude breather solutions
should mainly depend on weighted averages of the defect values.

The outline of the paper is as follows. Section 2 presents the centre manifold
reduction theory for time-periodic oscillations in weakly inhomogeneous nonlinear
lattices. We treat the case of Klein-Gordon lattices in detail in sections 2.1 and
2.3, and formulate the reduction theory in a much more general setting in section
2.2. Section 3 concerns spatially homogeneous Klein-Gordon lattices. Existence
theorems for small amplitude breather and dark breather solutions are deduced from
the dynamics of two-dimensional reversible maps on invariant centre manifolds. The
case of weakly inhomogeneous Klein-Gordon chains is considered in section 4, where
the truncated reduced map is analyzed for a finite number of defects. A geometrical
condition for the existence of homoclinic orbits to 0 is derived in section 4.2, and
some homoclinic bifurcations are studied in detail in section 4.1 for a single mass
defect. In the latter case, breather solutions are numerically computed in section 5
and the results are successfully compared with our analytical findings.
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2 Reduction result for small inhomogeneities

In this section we consider system (5) in the limit of small inhomogeneities. We
show that all small amplitude time-periodic solutions are determined by a finite-
dimensional nonautonomous map, whose dimension depends on the frequency do-
main under consideration. For this purpose we reformulate (5) as a map in a loop
space, perturbed by a small nonautonomous term (section 2.1). Then we prove
in section 2.2 a general centre manifold reduction theorem for infinite-dimensional
maps with small nonautonomous perturbations. This result is based on the centre
manifold theorem proved in [Jam03] for autonomous systems. Our general result
is applied to the inhomogeneous Klein-Gordon lattice, which yields the above men-
tioned reduction result (section 2.3).

2.1 The Klein-Gordon system as a map in a loop space

We set xn(t) = yn(ω(k/m)1/2t) in equation (5), where yn is 2π-periodic in t (hence
xn is time-periodic with frequency ω(k/m)1/2). The constant a > 0 being fixed, we
also define Ṽ (x) = a−2 V (ax). Equation (5) becomes

ω2(1+εn)
d2yn

dt2
+Ω2(1+ηn) Ṽ ′((1+γn)yn) = yn+1−yn−(1+κn) (yn−yn−1), n ∈ Z

(6)
where Ω2 = a2d/k and 1+ εn = (1+ mn

m
)/(1+ kn

k
), 1+ηn = (1+ dn

d
)(1+ an

a
)/(1+ kn

k
),

γn = an

a
, 1 + κn = (1 + kn−1

k
)/(1 + kn

k
). The sequences (εn)n∈Z, (ηn)n∈Z, (γn)n∈Z

(κn)n∈Z will be assumed sufficiently small in `∞(Z), where `∞(Z) is the classical
Banach space of bounded sequences on Z, equiped with the supremum norm. To
simplify the notations, we shall drop the tilde in the sequel when referring to the
renormalized potential Ṽ . Moreover we shall use the shorter notations {ε} when
referring to sequences (εn)n∈Z.

To analyze system (6) we use the same approach as in [Jam03] for spatially
homogeneous systems. We reformulate (6) as a (nonautonomous) recurrence rela-
tion in a space of 2π-periodic functions of t, and locally reduce the (spatial) dy-
namics to one on a finite-dimensional centre manifold. We restrict our attention
to the case when yn is even in t in order to deal with lower-dimensional prob-
lems. More precisely, we assume yn ∈ H2

# for all n ∈ Z, where Hn
# = { y ∈

Hn
per(0, 2π), y is even } and Hn

per(0, 2π) denotes the classical Sobolev space of 2π-
periodic functions (H0

per(0, 2π) = L2
per(0, 2π)).

Since our analysis concerns small amplitude solutions and small inhomogeneities,
the first step consists in studying the linearized system at yn = 0 when εn, ηn, γn, κn
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are fixed equal to 0. In that case equation (6) yields

ω2 d2yn

dt2
+ Ω2yn = yn+1 − 2yn + yn−1, n ∈ Z. (7)

Now we rewrite the problem as an infinite-dimensional linear mapping. For this
purpose we introduce Yn = (yn−1, yn) ∈ D, where D = H2

# ×H2
#. Equation (7) can

be written
Yn+1 = Aω Yn, n ∈ Z, (8)

where

Aω(z, y) =
(

y , ω2 d2y

dt2
+ (Ω2 + 2)y − z

)
(9)

and equation (8) holds in X = H2
# × H0

#. The operator Aω : D ⊂ X → X is
unbounded in X (of domain D) and closed (we omit the additional parameter Ω in
the notation Aω).

The spectrum of Aω consists in essential spectrum at the origin and an infi-
nite number of eigenvalues σp, σ

−1
p (p ≥ 0) depending on ω, Ω, and satisfying the

dispersion relation
σ2 + (ω2p2 − Ω2 − 2)σ + 1 = 0 (10)

(it follows that σp is either real or has modulus one). Equation (10) is directly
obtained by setting yn = σn cos (pt) in equation (7). The invariance σ → σ−1 in
(10) originates from the invariance n → −n in (7). In the sequel we shall note σp

the solution of (10) satisfying |σp| ≥ 1 and Im σp ≤ 0. Clearly σp is real negative
for p large enough and limp→+∞ σp = −∞. Moreover σ−1

p accumulates at σ = 0 as
p → +∞. It follows that the number of eigenvalues of Aω on the unit circle is finite
for any value of the parameters ω, Ω.

In addition, the eigenvalues σp, σ
−1
p defined by (10) lie on the unit circle when

Ω ≤ ωp ≤ (4 + Ω2)1/2. This property has a simple interpretation. Multiplying (10)
by σ−1, setting σ = eiq and ωq = ω p (k/m)1/2, one finds the usual dispersion relation
(4). Consequently, if ω p (k/m)1/2 lies inside the phonon band [ωmin, ωmax] for some
p ∈ N, then Aω admits a pair of eigenvalues e±iq on the unit circle determined
by the dispersion relation (4). This condition on ω is equivalent to prescribing
Ω ≤ ωp ≤ (4 + Ω2)1/2.

Now let us describe the spectrum of Aω near the unit circle when Ω > 0 is
fixed and ω is varied. As we shall see, the number of eigenvalues of Aω on the
unit circle changes as ω crosses an infinite sequence of decreasing critical values
ω1 > ω2 > . . . > 0. Small amplitude solutions of the nonlinear system bifurcating
from yn = 0 will be found near these critical frequencies.

We begin by studying the evolution of each pair of eigenvalues σp, σ−1
p as ω

varies. Firstly, one can easily check that σ0, σ
−1
0 are independent of ω, real positive

and lie strictly off the unit circle.
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Secondly we consider the case p ≥ 1. For ω >
√

4 + Ω2/p, σp, σ
−1
p are real

negative and lie strictly off the unit circle. When ω decreases, they approach the
unit circle and one has σp = σ−1

p = −1 for ω =
√

4 + Ω2/p (this corresponds to
a frequency ωq at the top of the phonon band, for a wavenumber q = π). At this
critical parameter value, σp = −1 is a double non semi-simple eigenvalue of Aω.
For Ω/p < ω <

√
4 + Ω2/p, σp, σ

−1
p lie on the unit circle, and approach +1 as ω

decreases. One has σp = σ−1
p = 1 for ω = Ω/p, and then +1 is a double non semi-

simple eigenvalue of Aω (this corresponds to a frequency ωq at the bottom of the
phonon band, for a wavenumber q = 0). For ω < Ω/p, σp, σ

−1
p are real positive and

lie strictly off the unit circle.
Now let us qualitatively describe the evolution of the whole spectrum of Aω.

When ω >
√

4 + Ω2 the spectrum of Aω lies strictly off the unit circle (both inside
and outside the unit disc). When ω decreases, the eigenvalues σp approach the
unit circle for all p ≥ 1. As the first critical value ω1 =

√
4 + Ω2 is reached, the

eigenvalues σ1, σ
−1
1 collide and yield a double (non semi-simple) eigenvalue σ1 = −1,

while the remaining part of the spectrum is hyperbolic. When ω is further decreased,
two different situations occur depending on the value of Ω.

For Ω > 2/
√

3, σ1, σ
−1
1 are the only eigenvalues on the unit circle for Ω ≤ ω ≤√

4 + Ω2. One has σ1 = σ−1
1 = 1 at the second critical value ω2 = Ω. When ω is

further decreased, σ1, σ
−1
1 are real positive and lie strictly off the unit circle. One

has σ2 = σ−1
2 = −1 at the third critical value ω3 =

√
4 + Ω2/2 < Ω. The situation

is sketched in figure 1.

legend1 legend2 legend3

PSfrag replacements

Case ω > ω1

Case ω2 < ω < ω1

Case ω3 < ω < ω2

Figure 1: Spectrum of Aω near the unit circle as ω is varied, in the case Ω > 2/
√

3.
The unbounded part of the spectrum on the negative real axis is not shown. The
arrows indicate how the eigenvalues have moved from their positions in the previous
graph, after ω has been decreased.

The case Ω < 2/
√

3 is different, since σ1, σ
−1
1 are the only eigenvalues on the unit

circle in the smaller frequency range
√

4 + Ω2/2 < ω ≤ √
4 + Ω2. Indeed one has

σ2 = σ−1
2 = −1 at second critical value ω2 =

√
4 + Ω2/2 > Ω. For ω <

√
4 + Ω2/2

and ω ≈ √
4 + Ω2/2 the spectrum of Aω on the unit circle consists in two pairs

of simple eigenvalues σ1, σ
−1
1 , σ2, σ

−1
2 . In the interval Ω < ω <

√
4 + Ω2/2 other
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eigenvalues may collide at −1 depending on the value of Ω. The situation is sketched
in figure 2.

legend1 legend2 legend3

PSfrag replacements

Case ω > ω1

Case ω2 < ω < ω1

Case ω3 < ω < ω2

Figure 2: Spectrum of Aω near the unit circle as ω is varied, in the case Ω < 2/
√

3.
The unbounded part of the spectrum on the negative real axis is not shown. The
arrows indicate how the eigenvalues have moved from their positions in the previous
graph, after ω has been decreased.

In what follows we restrict our attention to the neighbourhood of critical fre-
quencies ω ≈ ω2 with Ω > 2/

√
3, and ω ≈ ω1. This leads us to consider the small

parameter µ defined by ω2 = ω2
i + µ. As ω equals one of the critical frequencies

ω1, ω2, the spectrum of Aω on the unit circle only consists in a double eigenvalue −1
or +1, isolated from the hyperbolic part of the spectrum. For ω ≈ ω1 and ω ≈ ω2,
this splitting of the spectrum of Aω will allow us to reduce (6) locally to a map
on a two-dimensional invariant centre manifold (see section 2.2). In addition, the
above spectral analysis shows that the fixed point Y = 0 of (8) is hyperbolic when
ω > ω1 or ω < ω2 and ω ≈ ω2. In this case, when nonlinear effects are taken into
account, we shall see that the stable and unstable manifolds W s(0), W u(0) may
intersect depending on the local properties of the anharmonic potential V , leading
to the existence of homoclinic orbits to Y = 0.

Although we shall restrict to the cases ω ≈ √
4 + Ω2 and ω ≈ Ω, it is interesting

to give some comments on the situation when ω is close to the other critical values√
4 + Ω2/p and Ω/p, for an interger p ≥ 2. Clearly if yn is a 2π-periodic solution of

(6) for a given value of ω, then so is yn(pt) when ω is replaced by ω/p. Consequently,
all solutions yn obtained for ω ≈ √

4 + Ω2 or ω ≈ Ω provide additional solutions
yn(pt) for ω ≈ √

4 + Ω2/p or ω ≈ Ω/p. These additional solutions are “artificial”,
since they become equal to the previous ones if one goes back to the unscaled sys-
tem (5). However, they should be embedded in larger families of small amplitude
solutions if Aω possesses additional pairs of eigenvalues on the unit circle (this is the
case e.g. for Ω < 2/

√
3 and ω ≈ ω2 =

√
4 + Ω2/2, see figure 2). Another interesting

remark can be made in the case when ω ≈ Ω and Ω < 2/
√

3. The dimension of the
centre manifold depends on Ω and is higher than 2 (at least 4). The bifurcations of
homoclinic solutions become much harder to analyze because slow hyperbolic modes
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coexist with fast oscillatory modes. In that case, subtle bifurcation phenomena be-
yond all algebraic orders can be expected, such as the existence of orbits homoclinic
to exponentially small periodic or quasi-periodic orbits whose size could not be can-
celled in general. Such phenomena have been analyzed e.g. in [Lom00] for reversible
flows, when only one oscillatory mode coexists with hyperbolic modes close to bi-
furcation (i.e. for reversible solutions homoclinic to exponentially small periodic
orbits). This situation occurs in particular for bifurcations of travelling waves and
pulsating travelling waves (travelling breathers) in different one-dimensional lattices
[IK00, JS05, IJ05, Sir05].

System (6) will be analyzed in the limit of small amplitude solutions and for
small parameters µ, {ε}, {η}, {γ}, {κ}. The parameter space will be denoted as
E = R × (`∞(Z))4. All parameters are embedded in a multicomponent parameter
{λ} = (µ, {ε}, {η}, {γ}, {κ}) ∈ E. In addition we denote by τn the index shift in
`∞(Z), i.e. {τn {ε}}k = εn+k.

Equation (6) can be rewritten in the form of a nonautonomous mapping in a
function space. More precisely we have

Yn+1 = LYn + N(Yn, λn), n ∈ Z, (11)

where Yn = (yn−1, yn) = (zn, yn) ∈ D, λn = (µ, εn, ηn, γn, κn) ∈ R5, L = Aωi
(for

i = 1 or 2) and N(z, y, λn) = ( 0 , N2(z, y, λn) ),

N2(z, y, λn) = (ω2
i εn+µ(1+εn))

d2y

dt2
+Ω2[(1+ηn)(1+γn)−1]y+κn(y−z)+W (y, ηn, γn),

W (y, η, γ) = Ω2 (1 + η)
(
V ′[(1 + γ) y]− (1 + γ) y

)
. (12)

Equation (11) holds in the Hilbert space X. The potential V is assumed sufficiently
smooth (Cp+1, with p ≥ 5) in a neighbourhood of 0. It follows that N : D×R5 → X
is Ck (k = p− 2 ≥ 3) in a neighbourhood of (Y, λ) = 0. The operator N consists in
higher order terms as (Y, λn) ≈ 0, i.e. we have N(0, λ) = 0, DY N(0, 0) = 0.

We note that (11) is invariant under the symmetry T Y = Y (·+π). Moreover the
usual invariance under index shifts {Y } → τ1{Y } is broken by the inhomogeneity
of the lattice, and replaced by the invariance ({Y }, {λ}) → (τ1{Y }, τ1{λ}).

In the next section we prove a general centre manifold reduction theorem for
maps having the form (11), under appropriate spectral conditions on L and for
small nonautonomous perturbations {λ} ∈ E. This analysis relies on the reduction
results proved in [Jam03] for autonomous maps. To simplify the proof, problem (11)
will be considered as a projection of a suitable autonomous mapping to which the
centre manifold theorem can be directly applied.
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2.2 Centre manifold reduction for nonautonomous pertur-
bations of infinite-dimensional maps

In this section we reformulate the situation of section 2.1 in a general framework,
and prove a local centre manifold reduction result for problems of this type. This
level of generality is relevant for nonlinear lattices, because the dynamical equations
of many one-dimensional lattices can be reformulated as infinite-dimensional maps
in loop spaces as one looks for small amplitude time-periodic oscillations. Indeed, if
the coupling between sites has finite range (i.e. xn is coupled to xk for |n− k| ≤ p),
then in general xn+p can be obtained locally as a function of xn+p−1, . . . , xn−p using
the implicit function theorem (for some examples see e.g. [Jam03], section 6.1, or
[JK07]).

To work in a general setting, let us consider a Hilbert space X and a closed linear
operator L : D ⊂ X → X of domain D, L being in general unbounded. We equip
D with the scalar product 〈u, v〉D = 〈Lu,Lv〉X + 〈u, v〉X , hence D is a Hilbert space
continuously embedded in X.

We denote by U × V a neighbourhood of 0 in D × Rp and consider a nonlinear
map N ∈ Ck(U×V , X) (k ≥ 2), where N(Y, λ) satisfies N(0, λ) = 0, DY N(0, 0) = 0.
We look for sequences (Yn)n∈Z in U satisfying

∀n ∈ Z, Yn+1 = LYn + N(Yn, λn) in X, (13)

where {λ} = (λn)n∈Z is a bounded sequence in V treated as a parameter. In what
follows we shall note E = `∞(Z,Rp) the Banach space in which {λ} lies. Notice
that Y = 0 is a fixed point of (13).

We assume that L has the property of spectral separation, i.e. L satisfies the
assumption (H) described below (in what follows we note σ(T ) the spectrum of a
linear operator T ).

Assumption (H): The operator L has nonempty hyperbolic (|z| 6= 1) and central
(|z| = 1) spectral parts. Moreover, there exists an annulus A = { z ∈ C , r ≤ |z| ≤
R } (r < 1 < R) such that the only part of the spectrum of L in A lies on the unit
circle.

The situation corresponding to assumption (H) is sketched in figure 3. Under
assumption (H), the hyperbolic part σh of σ(L) is isolated from its central part σc.
In particular this allows one to split X into two subspaces Xc, Xh invariant under
L, corresponding to σc, σh respectively. More precisely, Lh = L|Xh

and Lc = L|Xc

satisfy σ(Lh) = σh and σ(Lc) = σc.
The invariant subspace Xc is called centre subspace, and Xh is the hyperbolic

subspace. The subspace Xc is finite-dimensional when the spectrum of L on the
unit circle consists in a finite number of eigenvalues with finite multiplicities (we do
not need this assumption for the reduction theorem constructed here).
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The spectral projection πc on the centre subspace can be defined in the following
way (see e.g. [Kat66])

πc =
1

2iπ

∫

C(R)

(zI − L)−1 dz − 1

2iπ

∫

C(r)
(zI − L)−1 dz,

where C(r) denotes the circle of centre z = 0 and radius r (see figure 3). One has
πc ∈ L(X, D), Xc = πcX ⊂ D and πc L = Lπc, where L(X, D) denotes the set of
bounded operators from X into D. In the sequel we note πh = I−πc and Dh = πh D.

C(r)

C(R)

Figure 3: Spectrum of L (dots), unit circle (dashed) and oriented circles C(r), C(R).

Remark 1 Let us consider the situation of section 2.1 and the linear operator L of
equation (11). In the case ω = ω2 and Ω > 2/

√
3, the spectrum of L on the unit

circle consists in a double non semi-simple eigenvalue +1. Moreover, for ω = ω1

the spectrum of L on the unit circle consists in a double non semi-simple eigenvalue
−1. In both cases the associated invariant subspace Xc is spanned by Vz = (cos t, 0),

Vy = (0, cos t) and we have πc Y = 1
π
(
∫ 2π

0
Y (t) cos t dt) cos t. In addition the unit

circle is isolated from the remainder of the spectrum, since the latter is discrete and
only accumulates at the origin and at −∞ on the real axis. It follows that L satisfies
assumption (H).

Now we state the centre manifold reduction theorem in the general case. In the
sequel we note Y c = πc Y , Y h = πh Y .

Theorem 1 Assume that L has the property of spectral separation, i.e. satisfies
assumption (H). There exists a neighbourhood Ω × Λ of 0 in D × E and a map
ψ ∈ Ck(Xc ×Λ, Dh) (with ψ(0, {λ}) = 0, DY cψ(0, 0) = 0) such that for all {λ} ∈ Λ
the following holds.
i) If {Y } is a solution of (13) such that Yn ∈ Ω for all n ∈ Z, then Y h

n = ψ(Y c
n , τn{λ})

for all n ∈ Z and Y c
n satisfies the nonautonomous recurrence relation in Xc

∀n ∈ Z, Y c
n+1 = fn(Y c

n , {λ}), (14)
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where fn ∈ Ck((Xc ∩ Ω)× Λ, Xc) is defined by

fn(., {λ}) = πc (L + N(., λn)) ◦ (I + ψ(., τn{λ})).
ii) Conversely, if {Y c} is a solution of (14) such that Y c

n ∈ Ω for all n ∈ Z, then
Yn = Y c

n + ψ(Y c
n , τn{λ}) satisfies (13).

iii) If L+N(., λ) commutes with a linear isometry T ∈ L(X)∩L(D) then Tψ(., {λ}) =
ψ(., {λ}) ◦ T and Tfn(., {λ}) = fn(., {λ}) ◦ T .

Properties i), ii) reduce the local study of (13) to that of the nonautonomous
recurrence relation (14) in the subspace Xc. Note that the dependency of ψ and the
reduced map fn with respect to sequences {λ} is nonlocal.

In what follows we give a simple proof of theorem 1 which relies on the fact
that the nonautonomous mapping (13) can be seen as a projection of an extended
autonomous mapping, to which the centre manifold theorem proved in [Jam03] can
be applied. This procedure will explain why the result of theorem 1 can be seen
as a centre manifold reduction, since the reduction function ψ will appear as one
component of the function having the centre manifold as its graph. The reduced
nonautonomous mapping (14) will be interpreted as a projection of the extended
autonomous mapping restricted to the invariant centre manifold.

Theorem 1 has been proved in [Jam03] in the case of an autonomous mapping,
when the sequence {λ} is absent or replaced by a simple parameter λ ∈ Rp.

To recover this autonomous case we introduce the additional variable Sn =
τn{λ} ∈ E. Note that for any fixed n ∈ Z, Sn denotes a bounded sequence in
Rp (to simplify the notations we use the symbol Sn instead of {Sn}). Given a
sequence {λ} ∈ E we also note δ0{λ} = λ0. Equation (13) can be rewritten

Yn+1 = LYn + N(Yn, δ0Sn), Sn+1 = τ1Sn, (15)

which consists in an autonomous mapping in X × E.
In what follows we apply the theory of [Jam03] to system (15). As we shall

see the corresponding centre manifold will be infinite-dimensional due to the sec-
ond component of (15). The case of infinite-dimensional centre manifolds has been
treated in [Jam03], with the counterpart that theory is restricted to maps in Hilbert
spaces. Consequently the first step is to search for Sn in a suitable Hilbert space
instead of the Banach space E. For this purpose we consider the space of sequences

h−1 = { {u} / uk ∈ Cp, ‖{u}‖−1 < +∞},
where ‖{u}‖2

−1 =
∑

k∈Z (1 + k2)−1 ‖uk‖2. The space h−1 defines a Hilbert space
equiped with the scalar product 〈{u}, {v}〉 =

∑
k∈Z (1 + k2)−1 uk · vk, where · de-

notes the usual scalar product on Cp and ‖ ‖ the associated norm. For all n ∈ Z we
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now search for Sn in the space H = h−1 ∩ (Rp)Z consisting of real sequences in h−1.
Note that E ⊂ H, the embedding being continuous.

Since sequences in H may be unbounded and N(Y, .) is defined on a neighbour-
hood V of λ = 0 in Rp, we replace (15) by a locally equivalent problem

(Yn+1, Sn+1) = F (Yn, Sn) (16)

where
F (Y, S) =

(
LY + N(Y, γ(δ0S) ) , τ1S

)
,

γ : Rp → V is a C∞ cut-off function satisfying ‖γ(x)‖ ≤ ‖x‖, γ(x) = x for ‖x‖ < r,
γ(x) = 0 for ‖x‖ > 2r, r being chosen small enough (with B(0, 2r) ⊂ V).

Problem (16) consists in an autonomous mapping in X ×H. In order to apply
the centre manifold theorem of [Jam03] we need to study the spectrum of DF (0) =
L× τ1. One has clearly σ(DF (0)) = σ(L) ∪ σ(τ1), where σ(τ1) is determined in the
following lemma.

Lemma 1 The spectrum σ(τ1) of τ1 : H → H consists of the unit circle.

Proof. Consider the complexification h−1 of H. Given a sequence {f} ∈ h−1 and
z ∈ C, we look for {u} ∈ h−1 satisfying

(zI − τ1){u} = {f}. (17)

Equation (17) can be solved in a simple manner using Fourier series. Recall that
the periodic Sobolev space H1

per(0, 2π) can be defined as the set of functions in
L2(R/2πZ,Cp) whose Fourier coefficients form a sequence in h1, where

h1 = { {u} / uk ∈ Cp,
∑

k∈Z
(1 + k2) ‖uk‖2 < +∞}.

In the same way its dual space H−1
per(0, 2π) is isomorphic to h−1, where the iso-

morphism C : H−1
per(0, 2π) → h−1 is again given by Cn(T ) = 1

2π
〈T, e−int〉 for all

T ∈ H−1
per(0, 2π). In addition one has the useful property τ1C(T ) = C(e−it T ) for

all T ∈ H−1
per(0, 2π). Now return to equation (17) and consider T = C−1({u}) and

S = C−1({f}). One obtains the equivalent problem in H−1
per(0, 2π)

(z − e−it) T = S. (18)

If |z| 6= 1 then (18) has the unique solution T = (z − e−it)−1S, hence z /∈ σ(τ1). If
z = eiθ is chosen on the unit circle, T = 2πδ−θ is a solution for S = 0, corresponding
to an eigenvector {u} = {einθ} of τ1.

2
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As it follows from lemma 1, σ(DF (0)) consists of the union of σ(L) with the
unit circle. Consequently DF (0) has the property of spectral separation, i.e. the
hyperbolic part of its spectrum is isolated from the unit circle. Moreover the centre
subspace of DF (0) is simply Xc × H. With these spectral properties at hand, we
now apply the centre manifold theorem of [Jam03] which states the following.

Theorem 2 There exists a neighbourhood Ω× Λ̃ of (Y, S) = 0 in D×H and a map
ψ ∈ Ck(Xc ×H, Dh) (with ψ(0, 0) = 0, Dψ(0, 0) = 0) such that the manifold

M = { (Y, S) ∈ D ×H / Y = Y c + ψ(Y c, S), Y c ∈ Xc }

has the following properties.

i) M is locally invariant under F , i.e. if (Y, S) ∈M∩ (Ω× Λ̃) then F (Y, S) ∈M.

ii) If {(Y, S)} is a solution of (16) such that (Yn, Sn) ∈ Ω × Λ̃ for all n ∈ Z,
then (Yn, Sn) ∈ M for all n ∈ Z (i.e. Y h

n = ψ(Y c
n , Sn)) and (Y c

n , Sn) satisfies the
recurrence relation in Xc ×H

Y c
n+1 = f̃(Y c

n , Sn), Sn+1 = τ1Sn, (19)

where
f̃(Y c, S) = πc [L + N(., γ(δ0S))](Y c + ψ(Y c, S)).

iii) Conversely, given a solution {(Y c, S)} of (19) such that (Y c
n , Sn) ∈ Ω× Λ̃ for all

n ∈ Z, consider Yn = Y c
n + ψ(Y c

n , Sn). Then (Yn, Sn) defines a solution of (16) lying
on M.

iv) If L+N(., λ) commutes with a linear isometry T ∈ L(X)∩L(D) then Tψ(Y c, S) =
ψ(TY c, S) and T f̃(Y c, S) = f̃(TY c, S).

The manifold M is called a local Ck centre manifold for (16). It is locally
invariant under F (as stated by property i) ) and the linear isometries of (16).
Property iv) expresses the invariance of M under the linear isometry T × I of (16).

Now the proof of theorem 1 follows directly from theorem 2. Since E is contin-
uously embedded in H, ψ defines a Ck map from Xc × E into Dh. In theorem 1
we choose Λ as a ball of centre 0 in E such that Λ ⊂ Λ̃ and γ = I on Λ. Then
problems (13) and (16) are equivalent for all {λ} ∈ Λ, with Sn = τn{λ}, and proper-
ties i)-ii)-iii) of theorem 1 are directly deduced from properties ii)-iii)-iv) of theorem
2. In addition, since (0, τn{λ}) is a solution of (16) for all {λ} ∈ Λ it follows
ψ(0, τn{λ}) = 0 (by property ii) of theorem 2), and consequently ψ(0, {λ}) = 0.
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2.3 Application to the Klein-Gordon lattice

2.3.1 Reduction result

In this section we apply the reduction theorem 1 to the inhomogeneous Klein-Gordon
lattice considered in section 2.1. We recall that the inhomogeneous system (6) has
been reformulated as a nonautonomous map in a loop space given by expression (11).
All parameters (sequences of heterogeneities and frequency shift µ) are embedded in
the multicomponent parameter {λ} = (µ, {ε}, {η}, {γ}, {κ}) ∈ E = R × (`∞(Z))4.
The problem has exactly the general form (13) (in the particular case in which
the first component of {λ} is constant) and consequently the reduction theorem 1
can be applied to (11). This yields the reduction result for the original system (6)
stated below (theorem 3). It is straightforward to check that system (6) has the
reduction properties i) and ii) described in this theorem since the equivalent system
(11) satisfies properties i) and ii) of theorem 1 (see remark 1 p.15). However there
remains to compute the explicit forms (21) and (24) of the recurrence relations given
below. These expressions do not simply correspond to the two-dimensional mapping
(14) rewritten as a second order recurrence relation. In addition we rewrite (14) in
normal form, i.e. we perform a polynomial change of variables which simplifies
(14) by keeping only its essential terms. These computations will be the object of
the next three sections 2.3.2, 2.3.3 and 2.3.4. Property iii) below is equivalent to
property iii) of theorem 1, where the symmetry T is the half period time shift which
satisfies T|Xc = −I.

Theorem 3 Fix ω2 = ω2
c + µ in equation (6), where ωc =

√
4 + Ω2 or ωc = Ω (in

that case we further assume Ω > 2/
√

3). There exist neighbourhoods U , V and W of
0 in H2

#, E and R respectively, and a Ck map φ : R2×E → H2
# (with φ(0, {λ}) = 0,

Dφ(0, 0) = 0) such that the following holds for all {λ} ∈ V.

i) All solutions of (6) such that yn ∈ U for all n ∈ Z have the form

yn(t) = βn cos t + [ φ(βn−1, βn, τn{λ}) ](t).

For ωc = Ω, βn satisfies a recurrence relation

βn+1 − 2βn + βn−1 = Rn(βn−1, βn, {λ}) (20)

where Rn : W2 × V → R is Ck. The principal part of Rn reads

Rn(α, β, {λ}) = (Ω2ηn(1+γn)− (Ω2 +µ)εn +Ω2γn−µ) β +κn(β−α)+B β3 +h.o.t.,
(21)

B =
Ω2

8
( V (4)(0)− 5

3
(V (3)(0))2 ). (22)
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For ωc =
√

4 + Ω2 one has

βn+1 + 2βn + βn−1 = Rn(βn−1, βn, {λ}), (23)

with

Rn(α, β, {λ}) = (Ω2ηn(1+γn)−(4+Ω2+µ)εn+Ω2γn−µ) β+κn(β−α)+B̃ β3+h.o.t.,
(24)

B̃ =
Ω2

8
( V (4)(0) + (V (3)(0))

2
(

Ω2

16 + 3Ω2
− 2) ). (25)

In both cases, higher order terms in Rn are O(‖(α, β)‖3 ‖{λ}‖E + ‖(α, β)‖5) and
non-local in {λ}.
ii) If βn is a solution of problem (20) or (23) (respectively for ωc = Ω or ωc =√

4 + Ω2), such that βn ∈ W for all n ∈ Z, then yn(t) = βn cos t+φ(βn−1, βn, τn{λ})
satisfies equation (6).
iii) The functions φ and Rn have the following symmetries

φ(−α,−β, {λ}) = Tφ(α, β, {λ}), Rn(−α,−β, {λ}) = −Rn(α, β, {λ}),
where T denotes the half period time shift [Tφ(.)](t) = [φ(.)](t + π).

A possible way of computing the reduced recurrence relations (20) and (23)
would be to consider the equivalent autonomous mapping (15) and use a classical
computation scheme for centre manifolds of autonomous systems (see e.g. [Van89]
for a description of the method). The first step consists in computing the Taylor
expansion of the reduction function ψ up to a given order. This can be done us-
ing a nonlocal equation for Yn (obtained by expressing Yn in (15) as a function of
N(Yn, δ0Sn)) and computing the Taylor coefficients of ψ by induction (see [Van89]).
The second step is to compute the reduced recurrence relation (19) which is com-
pletely determined by ψ.

In the next three sections we shall use a different method yielding simpler com-
putations. Firstly we compute the expressions (21) and (24) in the autonomous case
{ε} = {η} = {γ} = {κ} = 0, using the method of [Jam03]. Then, using a symmetry
argument, we deduce how the leading order part of the reduced equation is modified
by the nonautonomous terms of (11).

To end this section we point out a generalization of theorem 3. As it follows from
the analysis of section 2.1, the dimension of the centre space Xc of Aω is twice the
number of multiples of ω lying within the band [Ω, (4 + Ω2)1/2]. More precisely, if
Ω ≤ ωp ≤ (4 + Ω2)1/2 for all integers p ∈ {p0, . . . , p1}, with no additional multiples
entering the band, then the centre space is spanned by the corresponding Fourier
modes (cos(pt), 0), (0, cos(pt)). As above the following reduction result follows from
theorem 1.
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Theorem 4 Consider ωc > 0 such that ωc p ∈ [Ω, (4 + Ω2)1/2] for all integers p ∈
{p0, . . . , p1}, with no additional multiples in this interval. Fix ω2 = ω2

c + µ in
equation (6) and note N = p1 − p0 + 1. Consider the subspace Hc of H2

# spanned

by the N Fourier modes cos(p0t), . . . , cos(p1t) and its complementary subspace H⊥
c

consisting of orthogonal Fourier modes. There exist neighbourhoods U , V of 0 in
H2

#, E respectively, and a Ck map φ : R2N × E → H⊥
c (with φ(0, {λ}) = 0,

Dφ(0, 0) = 0), such that for all {λ} ∈ V, all solutions of (6) such that yn ∈ U for
all n ∈ Z have the form

yn(t) =

p1∑
p=p0

[ β(p)
n cos (pt) ] + φ(β

(p0)
n−1, β

(p0)
n , . . . , β

(p1)
n−1, β

(p1)
n , τn{λ}). (26)

Moreover, all small amplitude solutions of (6) are determined by a finite-dimensional
recurrence relation obtained by projecting (6) on Hc and using the ansatz (26).

In the following sections 2.3.2, 2.3.3 and 2.3.4, we compute the explicit forms of
the reduced recurrence relations given in theorem 3.

2.3.2 Homogeneous case near the lower phonon band edge

In this section we restrict our attention to the case when Ω > 2/
√

3 and ω ≈ ω2 = Ω.
We consider the autonomous case when {ε} = {η} = {γ} = {κ} = 0. Equation (11)
now reads

Yn+1 = LYn + N(Yn, µ), n ∈ Z (27)

where L = AΩ is given by (9) and

N((z, y), µ) =
(

0 , µ
d2y

dt2
+ W (y)

)
,

with W (y) = Ω2(V ′(y) − y). System (27) is a reformulation of the equations of
motion for the homogenous Klein-Gordon lattice

ω2 d2yn

dt2
+ Ω2 V ′(yn) = yn+1 − 2yn + yn−1, n ∈ Z. (28)

As in the nonautonomous case (11), system (27) is invariant under the symmetry
T Y = Y (· + π). Moreover, the invariance yn → y−n of (28) implies that (27) is
reversible with respect to the symmetry R(z, y) = (y, z), i.e. if Yn is a solution then
also RY−n. In other words, if Y and [L + N(., µ)](RY ) are in some neighbourhood
of 0 in D one has (L + N(., µ) ◦R)2Y = Y . Lastly, due to the existence of the addi-
tional symmetry T , it is worthwhile to notice that TR defines an other reversibility
symmetry.

21



In what follows we use the notations introduced in section 2.2. We recall that
the spectrum of L = AΩ on the unit circle consists in a double non semi-simple
eigenvalue +1, and the associated two-dimensional invariant subspace Xc is spanned
by the vectors Vz = (cos t, 0), Vy = (0, cos t), with

L|Xc =

(
0 1
−1 2

)

in the basis (Vz, Vy). For µ in some neighbourhood Λ of 0, (27) admits a Ck two-
dimensional local centre manifold Mµ ⊂ D (which can be written as a graph over
Xc), locally invariant under L + N(., µ) (see [Jam03], theorem 1 p. 32). One can
write

Mµ = {Y ∈ D /Y = aVz + bVy + ψ(a, b, µ), (a, b) ∈ R2 }, (29)

where ψ ∈ Ck(R2 × Λ, Dh) and ψ(a, b, µ) = O(‖(a, b)‖2 + ‖(a, b)‖|µ|). Moreover,
Mµ is invariant under T and R (see [Jam03], theorem 2 p. 34 and section 5.2).

In the sequel we use the notations P ∗(y) = 1
π

∫ 2π

0
y(t) cos t dt, Pc y = P ∗(y) cos t

and H2
h = { y ∈ H2

# /P ∗(y) = 0 }. The spectral projection πc on Xc reads πc(z, y) =
(Pc z, Pc y) and we have Dh = H2

h ×H2
h.

Since Mµ is invariant under R and Vz, Vy are exchanged by R, we have the
symmetry property Rψ(a, b, µ) = ψ(b, a, µ). Consequently, the function ψ has the
form

ψ(a, b, µ) = (ϕ(b, a, µ), ϕ(a, b, µ)) (30)

with ϕ ∈ Ck(R2 × Λ, H2
h). Since Mµ is invariant under T and T|Xc = −I we have

in addition
Tϕ(a, b, µ) = ϕ(−a,−b, µ). (31)

For µ ≈ 0, the centre manifold Mµ contains all solutions Yn of (27) staying in
a sufficiently small neighbourhood of Y = 0 in D for all n ∈ Z. Their coordinates
(an, bn) on Mµ are thus given by a two-dimensional mapping which determines all
small amplitude solutions when µ ≈ 0. The reduced mapping is given by

(
an+1

bn+1

)
= fµ

(
an

bn

)
(32)

where

fµ

(
a
b

)
=

(
b,

−a + 2b + r(a, b, µ)

)
, (33)

r(a, b, µ) = −µ b + P ∗W (b cos t + ϕ(a, b, µ)). (34)

One obtains equation (32) using the fact that

zn = an cos t + ϕ(bn, an, µ), yn = bn cos t + ϕ(an, bn, µ)
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for Yn = (zn, yn) ∈ Mµ and applying P ∗ to equation (27) (one has P ∗ϕ = 0 and

P ∗ ◦ d2

dt2
= −P ∗ on H2

#).
Since the reduced mapping inherits the symmetries of (27) [Jam03], fµ commutes

with T|Xc = −I and thus r(−a,−b, µ) = −r(a, b, µ). Moreover, fµ is reversible with
respect to the symmetry R(a, b) = (b, a), i.e. (fµ ◦R)2 = I. This yields the identity

r(a, b, µ) = r(−a + 2b + r(a, b, µ), b, µ).

This imposes the following structure for the Taylor expansion of r at (a, b, µ) = 0

r(a, b, µ) = −bµ + c1b
3 + c2ab2− 1

2
c2a

2b + O(|b| (|a|+ |b|)4 + |b| (|a|+ |b|)2|µ|), (35)

where coefficients c1, c2 have to be determined. Note that r(a, 0, µ) = 0 (see [Jam03]
p.53 for details).

For determining the unknown coefficients of (35), we first compute the leading
order terms in the Taylor expansion of ψ at (a, b, µ) = 0. This can be done using
the fact that Mµ is locally invariant under L + N(., µ) (see [Jam03], theorem 1 p.
32). For (a, b) ≈ 0, this yields

πh [L + N(., µ)] ( (a, b) cos t + ψ(a, b, µ) ) = ψ(fµ(a, b), µ) (36)

or equivalently
ϕ(−a + 2b + r(a, b, µ), b, µ) = ϕ(a, b, µ), (37)

ϕ(b,−a + 2b + r(a, b, µ), µ) =

(Ω2 d2

dt2
+ 2 + Ω2)ϕ(a, b, µ)− ϕ(b, a, µ) + (1− Pc) [µ d2

dt2
+ W ] (b cos t + ϕ(a, b, µ)).

(38)
Thanks to the symmetry property (37), the Taylor expansion of ϕ at order 2 takes
the form

ϕ(a, b, µ) = ϕ011bµ− 1

2
ϕ110a

2 + ϕ110ab + ϕ020b
2 + h.o.t. (39)

By an identification procedure we now compute the coefficients ϕpqr in (39), using
(38) and the expansion

W (y) = Ω2(
1

2
V (3)(0) y2 +

1

6
V (4)(0) y3 + O(y4) ). (40)

Identification at order bµ gives

(
d2

dt2
+ 1)ϕ011 = 0,

hence ϕ011 = 0 since ϕ011 ∈ H2
h. Identification at order ab leads to

ϕ020 = −1

4
(Ω2 d2

dt2
+ 2 + Ω2)ϕ110 (41)
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and identification at order b2 yields

−ϕ110 + (Ω2 d2

dt2
− 2 + Ω2)ϕ020 = −1

2
Ω2V (3)(0) cos2 t. (42)

Reporting (41) in (42) gives

(
d2

dt2
+ 1)2ϕ110 =

2

Ω2
V (3)(0) cos2 t

and consequently

ϕ110 =
1

Ω2
V (3)(0) (1+

1

9
cos (2t)), ϕ020 =

1

2
V (3)(0) (−1

2
− 1

Ω2
+(

1

6
− 1

9Ω2
) cos (2t)).

As a conclusion, we obtain

ϕ(a, b, µ) = 1
Ω2 V

(3)(0) (1 + 1
9
cos (2t)) (ab− 1

2
a2)

+1
2
V (3)(0) (−1

2
− 1

Ω2 + (1
6
− 1

9Ω2 ) cos (2t)) b2 + h.o.t.
(43)

We now compute the two-dimensional mapping giving the coordinates (an, bn)
of the solutions on Mµ. Equation (32) can be written

an+1 = bn, bn+1 − 2bn + bn−1 = r(bn−1, bn, µ). (44)

Using (34), (43) and (40) yields in equation (35)

c1 =
1

8
Ω2V (4)(0)− (

19

9
+

5

6
Ω2)

1

4
(V (3)(0))2, c2 =

19

18
(V (3)(0))2. (45)

Lastly, one can write (44) in normal form using the change of variables bn =
βn − c2

12
β3

n. The normal form of (44) at order 3 reads

βn+1 − 2βn + βn−1 = −µβn + B β3
n + h.o.t. (46)

with

B = c1 +
c2

2
=

Ω2

8
( V (4)(0)− 5

3
(V (3)(0))2 ). (47)

This yields the explicit form (20) of the reduced recurrence relation in the au-
tonomous case {ε} = {η} = {γ} = {κ} = 0.
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2.3.3 Homogeneous case near the upper phonon band edge

In this section we consider the case ω ≈ ω1 =
√

4 + Ω2, in the autonomous case when
{ε} = {η} = {γ} = {κ} = 0. Equation (11) takes the form (27), where L = Aω1 is
given by (9). The spectrum of L on the unit circle consists in a double non semi-
simple eigenvalue −1, and the centre space Xc is again spanned by Vz = (cos t, 0),
Vy = (0, cos t).

For µ = ω2 − ω2
1 in some neighbourhood Λ of 0, there exists a smooth two-

dimensional local centre manifold Mµ ⊂ D locally invariant under L + N(., µ), T ,
R and having the form (29). The function ψ having the centre manifold as its graph
has the form (30) and shares the property (31). For µ ≈ 0, the centre manifold
Mµ contains all solutions Yn of (27) staying in a sufficiently small neighbourhood
of Y = 0 in D for all n ∈ Z. Their coordinates (an, bn) on Mµ are then given by
a two-dimensional mapping, which determines all small amplitude solutions when
µ ≈ 0.

The operator L has the following structure in the basis (Vz, Vy)

L|Xc =

(
0 1
−1 −2

)

and the reduced mapping is given by
(

an+1

bn+1

)
= fµ

(
an

bn

)
(48)

where

fµ

(
a
b

)
=

(
b,

−a− 2b + r(a, b, µ)

)
(49)

and r is defined by (34). Since the reduced mapping inherits the symmetries of (27),
fµ commutes with T|Xc = −I hence r(−a,−b, µ) = −r(a, b, µ). Moreover, (48) is
reversible with respect to the symmetry R(a, b) = (b, a), which yields the identity

r(a, b, µ) = r(−a− 2b + r(a, b, µ), b, µ).

This implies r(a, 0, µ) = 0 and

r(a, b, µ) = −bµ + c1b
3 + c2ab2 +

1

2
c2a

2b + h.o.t, (50)

where the coefficients c1, c2 have to be determined.
For this purpose, we first compute the leading order terms in the Taylor expan-

sion of ψ at (a, b, µ) = 0, using the fact thatMµ is locally invariant under L+N(., µ).
Equation (36) yields

ϕ(−a− 2b + r(a, b, µ), b, µ) = ϕ(a, b, µ), (51)
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ϕ(b,−a− 2b + r(a, b, µ), µ) =

(ω2
1

d2

dt2
+ 2 + Ω2)ϕ(a, b, µ)− ϕ(b, a, µ) + (1− Pc) [µ d2

dt2
+ W ] (b cos t + ϕ(a, b, µ)).

(52)
The Taylor expansion of ϕ at order 2 takes the following form (due to the symmetry
property (51))

ϕ(a, b, µ) = ϕ011bµ +
1

2
ϕ110a

2 + ϕ110ab + ϕ020b
2 + h.o.t. (53)

By an identification procedure we now compute the coefficients ϕpqr in (53), using
(52) and the expansion (40). Identification at order bµ gives

(
d2

dt2
+ 1)ϕ011 = 0,

hence ϕ011 = 0 since ϕ011 ∈ H2
h. Identification at order ab leads to

ϕ020 =
1

4
(ω2

1

d2

dt2
+ 2 + Ω2)ϕ110 (54)

and identification at order b2 yields

ϕ110 + (ω2
1

d2

dt2
− 2 + Ω2)ϕ020 = −1

2
Ω2V (3)(0) cos2 t. (55)

Reporting (54) in (55) gives

(ω2
1

d2

dt2
+ Ω2)2ϕ110 = −2Ω2V (3)(0) cos2 t

and consequently

ϕ110 = −V (3)(0)(
1

Ω2
+

Ω2

(16 + 3Ω2)2 cos (2t)),

ϕ020 = −1

4
Ω2V (3)(0)(

1

Ω2
+

2

Ω4
+ (

2

(16 + 3Ω2)2 −
1

16 + 3Ω2
) cos (2t)).

As a conclusion, we obtain

ϕ(a, b, µ) = −V (3)(0)( 1
Ω2 + Ω2

(16+3Ω2)2
cos (2t)) (ab + 1

2
a2)

−1
4
Ω2V (3)(0)( 1

Ω2 + 2
Ω4 + ( 2

(16+3Ω2)2
− 1

16+3Ω2 ) cos (2t)) b2 + h.o.t.

(56)
We now compute the two-dimensional mapping giving the coordinates (an, bn)

of the solutions on Mµ. Equation (48) can be written

an+1 = bn, bn+1 + 2bn + bn−1 = r(bn−1, bn, µ). (57)
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Using (34), (56) and (40) yields in equation (50)

c1 =
1

8
Ω2

[
V (4)(0)− (V (3)(0))

2
Ω2(

2

Ω2
+

4

Ω4
+

2

(16 + 3Ω2)2 −
1

16 + 3Ω2
)
]
, (58)

c2 = −Ω4(V (3)(0))
2[ 1

Ω4
+

1

2

1

(16 + 3Ω2)2

]
. (59)

The transformation bn = βn − c2
12

β3
n yields the normal form of (57) of order 3

βn+1 + 2βn + βn−1 = −µ βn + B̃ β3
n + h.o.t. (60)

with B̃ defined by (25). This yields the explicit form (23) of the reduced recurrence
relation in the autonomous case {ε} = {η} = {γ} = {κ} = 0.

2.3.4 Inhomogeneous cases

Using the normal form computations performed in the above sections for the au-
tonomous case, one can obtain by perturbation the principal part (20) (or (23)) of
the normal form for ω ≈ ω2 (or ω ≈ ω1) in the nonautonomous case. In what follows
this computation is described for ω ≈ ω2, the treatment for ω ≈ ω1 being completely
similar.

Theorem 3 is obtained by applying the reduction theorem 1 to the first order
system (11). According to theorem 1-i), small amplitude solutions Yn = (zn, yn) of
(11) have the following form for small {λ} ∈ E

Yn = (an, bn) cos t + Ψ(an, bn, τn{λ}), (61)

where Ψ(a, b, {λ}) = ψ((a, b) cos t, {λ}) ∈ Dh and ψ denotes the reduction function
of theorem 1. In the sequel we shall note Ψ = (Ψ1, Ψ2).

Let us compute the explicit form of the reduced map (14). For this purpose, one
has to use the ansatz (61) in equation (11) and project the latter on the Fourier
mode cos t. Setting Fn(a, b, {λ}) cos t = fn((a, b) cos t, {λ}), the reduced map (14)
becomes (

an+1

bn+1

)
= Fn(., {λ})

(
an

bn

)
, (62)

Fn(., {λ})
(

a
b

)
=

(
b,

−a + 2b + rn(a, b, {λ})
)

, (63)

where (recall {λ} = (µ, {ε}, {η}, {γ}, {κ}))
rn(a, b, {λ}) = −(Ω2εn + µ(1 + εn)) b + Ω2[(1 + ηn)(1 + γn)− 1]b + κn(b− a)

+ P ∗W (b cos t + Ψ2(a, b, τn{λ}), ηn, γn)
(64)
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and the function W is defined by (12).
Since fn(., {λ}) commutes with T and T|Xc = −I, the map Fn(., {λ}) commutes

with −I. We have consequently

rn(a, b, {λ}) = −(Ω2εn + µ(1 + εn)) b + Ω2[(1 + ηn)(1 + γn)− 1]b + κn(b− a)
+ c1 b3 + c2 ab2 + c3 a2b
+ O(‖(a, b)‖3 ‖{λ}‖E + ‖(a, b)‖5),

(65)
where the coefficients ci need to be determined. Now, since rn[a, b, (µ, 0, 0, 0, 0)] =
r(a, b, µ) in the homogeneous case (see section 2.3.2), we have c3 = −1

2
c2 and c1,

c2 are defined by (45). Consequently we have computed the principal part of the
reduced equation (62) in the nonautonomous case.

To obtain the normal form of (62) of order three we now define P (β) = β− c2
12

β3

and consider as in section 2.3.2

an = P (αn), bn = P (βn).

This yields the normal form of (62) of order 3 given in equation (20).
Moreover, the small amplitude solutions of (6) have the form

yn = (βn − c2

12
β3

n) cos t + Ψ2(P (βn−1), P (βn), τn{λ}),

therefore the reduction function φ of theorem 3 is given by φ(α, β, {λ}) = − c2
12

β3 cos t+
Ψ2(P (α), P (β), {λ}). Note that the reduction function φ has a component along the
Fourier mode cos t after the normal form transformation.

3 Exact periodic solutions for an homogeneous

lattice

Here we consider the case of the homogeneous Klein-Gordon lattice (3), which leads
us to system (6) with {ε} = {η} = {γ} = {κ} = 0. Breather solutions have been
proved to exist by MacKay and Aubry [MA94] for system (3) with small values of
the coupling parameter k and nonresonant breather frequencies. Here we prove the
existence of small amplitude breathers for arbitrary values of k in some cases and
frequencies close to the phonon band edges (see theorems 5-i), 6-i) and 7 below).
We also prove the existence of dark breather solutions, which converge towards a
nonlinear standing wave as n → ±∞ and have a much smaller amplitude at the
centre of the chain.

Let us start with the case ω ≈ Ω and Ω > 2/
√

3 in (6). By theorem 3, small am-
plitude solutions of (6) in H2

# are determined by the recurrence relation (20). This
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recurrence becomes autonomous for an homogeneous lattice and takes the form (46).
It is important to note that the invariance n → −n of (6) in the homogeneous case is
inherited by (46) (see [Jam03], section 5.2 and theorem 2). This invariance implies
that the two-dimensional map (βn−1, βn) 7→ (βn, βn+1) is reversible. Bifurcations of
small amplitude homoclinic and heteroclinic solutions have been studied in [Jam03]
(section 6.2.3) for this class of maps. This yields the following result for the recur-
rence relation (46).

Lemma 2 Assume Ω > 2/
√

3 and B = Ω2

8
( V (4)(0)− 5

3
(V (3)(0))2 ) 6= 0. For µ ≈ 0,

the recurrence relation (46) has the following solutions.
i) For µ < 0 and B < 0, (46) has at least two homoclinic solutions β1

n, β2
n (and

also −β1
n, −β2

n) such that limn→±∞ βi
n = 0. These solutions have the symmetries

β1
−n+1 = β1

n, β2
−n = β2

n and satisfy 0 < βi
n ≤ C |µ|1/2 σ

−|n|
1 , with σ1 = 1 + O(|µ|1/2) >

1.
ii) If µ and B have the same sign, (46) has two symmetric fixed points ±β∗ =
O(|µ|1/2).
iii) For µ > 0 and B > 0, (46) has at least two heteroclinic solutions β3

n, β4
n (and

also −β3
n, −β4

n) such that limn→±∞ βi
n = ±β∗. These solutions have the symmetries

β3
−n+1 = −β3

n and β4
−n = −β4

n. Moreover, β3
n, β4

n are O(µ1/2) as n → ±∞ and O(µ)
for bounded values of n.

Note that for B > 0 and µ < 0 (µ ≈ 0), (46) has no small amplitude homoclinic
solution to 0.

For µ < 0, typical plots of the stable and unstable manifolds of the fixed point
βn = 0 are shown in figure 5 page 37 (nonintersecting case B > 0) and in figures 7
and 12 pages 41 and 57 (intersecting case B < 0).

Theorem 3 ensures that each solution βi
n in lemma 2 corresponds to a solution

yi
n of (6) given by

yi
n(t) = βi

n cos t + φ(βi
n−1, β

i
n, (µ, 0, 0, 0, 0)) (66)

with ω2 = Ω2 + µ in (6). This yields the following result (the symmetries of yi
n are

due to the symmetries of βi
n described in lemma 2).

Theorem 5 Fix {ε} = {η} = {γ} = {κ} = 0 in equation (6). Assume Ω > 2/
√

3
and b = V (4)(0) − 5

3
(V (3)(0))2 6= 0. For ω ≈ Ω, problem (6) has the following

solutions with yn ∈ H2
# for all n ∈ Z.

i) For ω < Ω and b < 0, (6) has at least two homoclinic solutions y1
n, y2

n (and
also y1

n(t + π), y2
n(t + π)) such that limn→±∞ ‖yi

n‖H2
#

= 0. These solutions satisfy

y1
−n+1 = y1

n, y2
−n = y2

n and have the form

yi
n = βi

n cos t + O(|ω − Ω|), (67)
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where 0 < βi
n ≤ C |ω − Ω|1/2 σ

−|n|
1 and σ1 = 1 + O(|ω − Ω|1/2) > 1. Solutions y1

n, y2
n

correspond to small amplitude breathers with a slow exponential decay as n → ±∞.
ii) If ω−Ω and b have the same sign, (6) admits a solution y0 ∈ H2

# independent of
n, corresponding to collective in-phase oscillations. It has the form y0(t) = β∗ cos t+
O(|ω − Ω|) and β∗ = O(|ω − Ω|1/2).
iii) For ω > Ω and b > 0, (6) has at least two heteroclinic solutions y3

n, y4
n

(and also y3
n(t + π), y4

n(t + π)) such that limn→−∞ ‖yi
n − y0(t + π)‖H2

#
= 0 and

limn→+∞ ‖yi
n − y0‖H2

#
= 0. These solutions satisfy y3

−n+1(t) = y3
n(t+π) and y4

−n(t) =

y4
n(t+π). Moreover, their norms ‖y3

n‖H2
#
, ‖y4

n‖H2
#

are O((ω−Ω)1/2) as n → ±∞ and

O((ω−Ω)) for bounded values of n. Solutions y3
n, y4

n correspond to small amplitude
dark breathers.

In addition, note that for b > 0 there exists no small amplitude discrete breather
yn ∈ H2

# with ω < Ω and ω ≈ Ω (since (46) has no small amplitude solution
homoclinic to 0).

Now we consider the case ω ≈ ωc with ωc =
√

4 + Ω2. In that case, equation
(6) can be locally reduced to the recurrence relation (23), which becomes again
autonomous if {ε} = {η} = {γ} = {κ} = 0 and has the invariance n → −n. This
class of recurrence relations has been studied in [Jam03] (section 6.2.3, lemma 7)
to which we refer for details. In addition one can note that the recurrence (60) can
be recast in the form (46) by setting βn = (−1)nβ̃n. The following result for the
recurrence relation (60) follows.

Lemma 3 Assume B̃ = Ω2

8
( V (4)(0) + (V (3)(0))

2
( Ω2

16+3Ω2 − 2) ) 6= 0. For µ ≈ 0, the
recurrence relation (60) has the following solutions.
i) For µ > 0 and B̃ > 0, (60) has at least two homoclinic solutions β1

n, β2
n (and

also −β1
n, −β2

n) such that limn→±∞ βi
n = 0. These solutions have the symmetries

β1
−n+1 = −β1

n, β2
−n = β2

n and satisfy 0 < (−1)nβi
n ≤ C µ1/2 |σ1|−|n|, with |σ1| =

1 + O(|µ|1/2) > 1.
ii) If µ and B̃ have the same sign, (60) has a period 2 solution β0

n = (−1)nβ∗, with
β∗ = O(|µ|1/2).
iii) For µ < 0 and B̃ < 0, (60) has at least two heteroclinic solutions β3

n, β4
n (and also

−β3
n, −β4

n) such that limn→±∞ |βi
n ∓ β0

n| = 0. These solutions have the symmetries
β3
−n+1 = β3

n and β4
−n = −β4

n. Moreover, β3
n, β4

n are O(|µ|1/2) as n → ±∞ and O(|µ|)
for bounded values of n.

In addition, for B̃ < 0 and µ > 0 (µ ≈ 0) problem (60) has no small amplitude
homoclinic solution to 0. As above, the solutions of the reduced recurrence relation
provided by lemma 3 yield the following solutions of (6).
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Theorem 6 Fix {ε} = {η} = {γ} = {κ} = 0 in equation (6). Assume b̃ =

V (4)(0) + (V (3)(0))
2
( Ω2

16+3Ω2 − 2) 6= 0. For ω ≈ ωc =
√

4 + Ω2, problem (6) has the
following solutions with yn ∈ H2

# for all n ∈ Z.

i) For ω > ωc and b̃ > 0, (6) has at least two homoclinic solutions y1
n, y2

n (and
also y1

n(t + π), y2
n(t + π)) such that limn→±∞ ‖yi

n‖H2
#

= 0. These solutions satisfy

y1
−n+1(t) = y1

n(t + π), y2
−n = y2

n and have the form

yi
n = βi

n cos t + O(|ω − ωc|), (68)

where 0 < (−1)nβi
n ≤ C (ω − ωc)

1/2 |σ1|−|n| and |σ1| = 1 + O((ω − ωc)
1/2) > 1.

Solutions y1
n, y2

n correspond to small amplitude breathers with a slow exponential
decay as n → ±∞.
ii) If ω − ωc and b̃ have the same sign, (6) admits a solution y0

n being 2-periodic in
n, corresponding to out-of-phase oscillations. It has the form y0

n(t) = y(t+nπ) with
y(t) = β∗ cos t + O(|ω − ωc|) (y ∈ H2

#) and β∗ = O(|ω − ωc|1/2).

iii) For ω < ωc and b̃ < 0, (6) has at least two heteroclinic solutions y3
n, y4

n

(and also y3
n(t + π), y4

n(t + π)) such that limn→−∞ ‖yi
n − y0(t + π)‖H2

#
= 0 and

limn→+∞ ‖yi
n − y0‖H2

#
= 0. These solutions satisfy y3

−n+1 = y3
n and y4

−n(t) =

y4
n(t+π). Moreover, their norms ‖y3

n‖H2
#
, ‖y4

n‖H2
#

are O(|ω−ωc|1/2) as n → ±∞ and

O(|ω−ωc|) for bounded values of n. Solutions y3
n, y4

n correspond to small amplitude
dark breathers.

In addition, for b̃ < 0 there exists no small amplitude discrete breather yn ∈ H2
#

with ω > ωc and ω ≈ ωc.

It is worthwhile mentioning that approximate breather solutions of (6) can be
obtained in the form of modulated plane waves, using multiscale expansions (see
[GM04, GM06] and references therein), where the error can be controlled over finite
time intervals. The envelope of a modulated wave satisfies the nonlinear Schrödinger
(NLS) equation, and does not propagate along the chain when a plane wave with
wavenumber q = 0 or q = π is modulated (its group velocity vanishes). In these
two cases the NLS equation is focusing (i.e. time-periodic and spatially localized
solutions exist) when b < 0 and b̃ > 0 respectively, which coincides (according to
theorems 5 and 6) with the parameter values for which exact breathers exist.

In addition, as shown in [Fla96] the condition b < 0 leads to the instability of
nonlinear standing waves with wavenumber q = 0. If periodic boundary conditions
are considered, these standing waves become unstable above a critical energy via a
tangent bifurcation. When the lattice period tends to infinity, the energy threshold
goes to 0 and bifurcating solutions are slowly spatially modulated. The same result
has been obtained for standing waves with q = π when V is even and b̃ > 0.
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In what follows we reformulate the results with respect to the unscaled original
system (3). For conciseness we only describe breather bifurcations, but conditions
for dark breather bifurcations are easily deduced from theorems 5 and 6. We express
the condition b̃ > 0 of theorem 6 in a different way using the relation

b̃ = b− 16

3

(V (3)(0))2

16 + 3Ω2
.

In addition, as the rescaled potential Ṽ of (6) is replaced by the original potential
V of (3), coefficients b and b̃ are simply replaced by h = a−2b and h̃ = a−2b̃.

Theorem 7 Consider the Klein-Gordon lattice (3), where the on-site potential V
satisfies V ′(0) = 0, V ′′(0) = 1 and m, d, a, k > 0. Assume h = V (4)(0)−5

3
(V (3)(0))2 6=

0 and note Ω2 = a2d/k, ω2
min = a2d/m, ω2

max = (a2d + 4k)/m and H = V (4)(0) −
2(V (3)(0))2.

i) If h < 0 and Ω2 > 4/3, system (3) admits two families of breather solutions x1
n, x2

n

parametrized by their frequency ω (in addition to phase shift), where ω ≈ ωmin and
ω < ωmin. These solutions satisfy x1

−n+1 = x1
n and x2

−n = x2
n and decay exponentially

as n → ±∞. As ω → ωmin, the amplitude of oscillations and the exponential rate
of decay are O(|ω − ωmin|1/2). The breather profile is a slow modulation of a linear
mode with wavenumber q = 0.

ii) If h > 0 and Ω2 > −16H/(3h), system (3) admits two families of breather
solutions x1

n, x2
n parametrized by their frequency ω (in addition to phase shift), where

ω ≈ ωmax and ω > ωmax. These solutions satisfy x1
−n+1(t) = x1

n(t + π/ω), x2
−n = x2

n

and decay exponentially as n → ±∞. As ω → ωmax, the amplitude of oscillations
and the exponential rate of decay are O(|ω−ωmax|1/2). The breather profile is a slow
modulation of a linear mode with wavenumber q = π.

To interpret the conditions on the on-site potential V in properties i) and ii), it
is interesting to note that V is soft for h < 0 and hard for h > 0 near the origin (i.e.
the period of small oscillations in this potential respectively increases or decreases
with amplitude). The condition on Ω in property i) corresponds to a nonresonance
condition, i.e. it ensures that no multiple of ω lies in the phonon band [ωmin, ωmax]
for ω ≈ ωmin. The condition on Ω in property ii) is of different nature and is
equivalent (with the condition h > 0) to fixing h̃ > 0.

Discrete breathers were known to exist in Klein-Gordon lattices for small cou-
pling k after the work of MacKay and Aubry [MA94]. Theorem 7 considerably
enlarges the domain of breather existence, with the limitation that it only provides
small amplitude solutions. In particular, it is interesting to note that small ampli-
tude breathers of property ii) exist for all values of k if H > 0.
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4 Normal form analysis for inhomogeneous lat-

tices

According to theorem 3, small amplitude solutions of (6) in H2
# are described (for

small inhomogeneities and frequencies close to the phonon band edges) by finite-
dimensional nonautonomous recurrence relations. In what follows we only consider
the case ω ≈ Ω, the situation when ω ≈ √

4 + Ω2 yielding similar phenomena. At
leading order, the reduced recurrence relation (20) can be approximated by

βn+1−2βn +βn−1 = (Ω2ηn(1+γn)−(Ω2+µ)εn +Ω2γn−µ) βn +κn(βn−βn−1)+B β3
n.

(69)
Different kinds of techniques can be employed to obtain homoclinic solutions of (69).
One can use variational methods for asymptotically periodic sequences [PZ01] (see
also [Wei99] in the homogeneous case), or proceed by perturbation near an uncou-
pled limit (also denoted anti-continuous or anti-integrable limit) where Ω and B are
large (see [AA90, Aub95, ABK04] and section 9 of [MA94]). Existence results of
localized solutions are also available in [AF88] for disordered defect sequences. An-
other approach is to start from a known uniformly hyperbolic homoclinic solution
in the homogeneous case, which persists for small inhomogeneities by the implicit
function theorem, and obtain estimates for defect sizes allowing persistence (see
the technique developed by Bishnani and MacKay [BM03]). Interesting related re-
sults on the structural stability of discrete dynamical systems under nonautonomous
perturbations can be found in [Fra74].

With a different point of view, we develop here a dynamical system technique,
valid for a finite number of defects, which allows to analyze bifurcations of homoclinic
solutions as defects are varied (see sections 4.1 and 4.2). For an isolated defect we
highlight, near critical defect values, bifurcations of new homoclinic solutions (having
no counterpart in the homogeneous system) or the disappearance of homoclinic
solutions existing in the homogeneous case. Our method is also generalized to a
finite number of defects, with the counterpart that (69) is modified by suitable
higher order terms depending on the defect sequence (this procedure only provides
approximate solutions of (69)). However this does not constitute a strong limitation
since the full reduced equation (20) is itself a higher order perturbation of (69). Note
that equation (69) is valid (according to theorem 3) for small defect sizes and µ ≈ 0,
where the parameter µ determines for µ < 0 the (weak) degree of hyperbolicity of
the fixed point βn = 0 in the homogeneous case. Our analysis does not impose
conditions on the relative sizes of these parameters.

In order to obtain exact breather solutions of (6) via theorem 3, it would be nec-
essary to proceed in two steps. The first step is the one described above, where exact
or approximate homoclinic solutions are obtained for the truncated problem (69).
The second step is to show that these solutions persist for the complete equation
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(20) as higher order terms are added. For this purpose a typical procedure would
be to solve (20) using the contraction mapping theorem in the neighbourhood of an
exact or approximate solution of (69). However, in section 4.1.4 we analyze tangent
bifurcations of homoclinic orbits for which the persistence problem would become
extremely complex, since it requires asymptotical techniques beyond all algebraic
orders (see section 4.1.4 for more details). We shall not analytically examine the
persistence of such bifurcations for the complete equation (20). Instead we shall
later compare approximate solutions yn(t) ≈ βn cos t (deduced from (69) and the-
orem 3) to numerically computed solutions of the original problem (6) (see section
5). This will allow us to study the validity of approximation (69) far from the small
amplitude limit and as inhomogeneities become larger.

The persistence of homoclinic solutions for the complete equation (20) will be
shown for particular homoclinic orbits which appear through a pitchfork bifurcation
at the origin when ω reaches a critical value. These orbits correspond to discrete
breathers with maximal amplitude at the impurity site (see theorem 8 in section
4.1.5). This part involves standard bifurcation techniques, in contrast with the
persistence problem of the above mentioned tangent bifurcations.

Note that other interesting bifurcations can exist when impurities act at a purely
nonlinear level (see [SKRC01, KKK03] for some examples in spatially discrete or con-
tinuous systems). This would correspond to the situation when the on-site potential
in (2) has an harmonic part independent on n, whereas higher order terms are in-
homogeneous. The subsequent analysis of the reduced recurrence relation would
be quite different, and in particular the method developed in sections 4.1 and 4.2
(based on a linear deformation of the unstable manifold) would not apply.

4.1 Case of a single mass defect

We start with the simplest case when the coefficients of (69) are constant, except at
n = 0 where their value changes. To fix the idea we consider the case of a single mass
defect in equation (5), i.e. Dn = d, Kn = k, An = a, Mn = 1 + mn, mn = m0δn0.
The case when all lattice parameters are allowed to vary over a finite number of
sites will be considered in section 4.2.

For equation (6) the above assumption yields ηn = γn = κn = 0 and εn = m0δn0.
Equation (69) reads (recall ω2 = Ω2 + µ)

βn+1 − 2βn + βn−1 = −(ω2m0δn0 + µ) βn + B β3
n. (70)

Setting βn−1 = αn and Un = (αn, βn)T , equation (70) can be rewritten

Un+1 = Gω(Un)− ω2m0δn0

(
0
βn

)
(71)
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where

Gω(Un) =

(
βn

−αn + 2βn + (Ω2 − ω2)βn + Bβ3
n

)
. (72)

One has in particular
U1 = A(ω,m0)Gω(U0) (73)

where the linear transformation

A(ω,m0) =

(
1 0

−ω2m0 1

)
(74)

corresponds to a linear shear. Note that the axis α = 0 consists of fixed points of
A(ω,m0).

It is worthwhile to notice that the map Gω is reversible under the symmetry
R : (α, β) 7→ (β, α), i.e. Gω ◦ R = R G−1

ω . In other words, if Un is a solution of
(71) for m0 = 0 then R U−n is also solution. This property is due to the fact that
equation (70) with m0 = 0 has the invariances n → n + 1 and n → −n. Obviously
the latter invariance still exists for m0 6= 0. Consequently, for all m0 ∈ R, if Un is a
solution of (71) then R U−n+1 is also solution.

Now we shall use a geometrical argument to find homoclinic orbits to 0 for
equation (70). In the sequel we consider the stable manifold W s(0) of the fixed
point (α, β) = 0 of Gω, and its unstable manifold W u(0), both existing for ω < Ω.
The following result follows immediately.

Lemma 4 For 0 < ω < Ω, equation (70) possesses an homoclinic orbit to 0 if and
only if W s(0) and A(ω, m0)W

u(0) intersect.

In addition it is useful to notice that W s(0) and W u(0) are exchanged by the
reversibility symmetry R.

4.1.1 Linear case

As a simple illustration, consider the linear case when V is harmonic, in which
B = 0. Equation (70) reads

βn+1 − 2βn + βn−1 = −(ω2m0δn0 + µ) βn. (75)

In that case, W s(0) and W u(0) correspond respectively to the stable and the unstable
eigenspace of a linear mapping in R2. The situation is sketched in figure 4 below.
The corresponding stable eigenvalue σ ∈ (0, 1) is given by

σ = 1− µ

2
− 1

2
(µ2 − 4µ)1/2, µ = ω2 − Ω2 < 0, (76)
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and W s(0) is the line β = σα, W u(0) being the line β = σ−1α. For fixed ω < Ω,
A(ω,m0) maps the unstable eigenspace on the stable eigenspace if and only if m0 > 0
(mass is increased at the defect) and

m0 = ml(ω), (77)

where

ml(ω) =
1

ω2
(σ−1 − σ). (78)
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Figure 4: Linear case (B = 0). (Left panel) Stable manifold (in the half plane
α > 0) and images of the unstable manifold by A(ω, m0) for m0 = 0.005, m0 = ml

and m0 = ml + 0.005. (Right panel) Homoclinic orbit to 0 for m0 = ml. In both
panels we have fixed Ω = 10, ω = 9.99, which implies ml = 0.0092.

Now keeping fixed m0 > 0, condition (77) can be rewritten ω = ωl(m0), where
(for ω < Ω)

ω2
l =

1

1−m2
0

[ Ω2 + 2− (4 + m2
0Ω

2(Ω2 + 4))1/2 ], m0 6= 1, (79)

ω2
l =

1

2
(Ω2 + 2)− 2

Ω2 + 2
, m0 = 1.

The solutions of (75) homoclinic to 0 are spanned by βn = σ|n|, and the correspond-
ing solutions of (6) in the linear case read yn(t) = βn cos t with ω = ωl(m0). One
recovers a classical result, i.e. if mass is increased at the defect then the linear
localized mode frequency lies below the phonon band and its frequency is given by
ωl.

Now let us consider the effects of nonlinear terms. For this purpose we start with
the simplest case of a hard potential, i.e. B > 0. The situation when B < 0 is far
more complex and will be investigated later.
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4.1.2 Nonlinear defect modes for hard on-site potentials

If B > 0, W s(0) and W u(0) do not intersect (except at the origin) for 0 < ω < Ω.
Indeed, one can show by induction that |βn| > |βn−1| > 0 for any nontrivial orbit
on W u(0), which implies W u(0) lies inside the sector formed by the lines α = β and
α = 0. In the same way, W s(0) lies inside the sector formed by the lines α = β
and β = 0 hence it does not intersect W u(0). The above property also implies that
W u(0) can be defined (globally) as the graph α = g(β) of an increasing function g,
and the same holds true for W s(0) = R W u(0) on which β = g(α).

For fixed ω ∈ (0, Ω), the local unstable manifold can be approximated by
α = g(β) = σβ + b β3 + O(|β|5), with b = σ2(σ2 − σ−2)−1B < 0 (this coefficient
can be computed by a classical identification procedure, using the fact that W u(0)
is invariant under Gω). Consequently, W s(0) and W u(0) have the local shape rep-
resented in figure 5. The same situation occurs in the limit ω ≈ Ω (one can locally
approximate the map Gω up to any order in U, µ using the time-one map of an
integrable flow [AP90], which allows to determine the shape of W s(0) and W u(0)
close to Un = 0).

In the case when m0 ≤ 0, the curves W s(0) and A(ω, m0)W
u(0) do not intersect

(A(ω,m0)W
u(0) remains inside the sector formed by the lines α = β and α = 0).

However, W s(0) and A(ω,m0)W
u(0) intersect if m0 > 0 provided

m0 > ml(ω), (80)

which means there exists an orbit homoclinic to 0 for equation (70). This property
is clear for m0 ≈ ml where there exists a unique intersection point (in the half plane
α > 0) close to U = 0 due to the local shape of W s(0) and W u(0). Moreover, we
numerically find a unique intersection point for all values of m0 satisfying (80).
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Figure 5: Case B > 0 and ω < Ω. Stable and unstable manifolds (in the half
plane α > 0), and image of the unstable manifold by A(ω,m0) for m0 = ml and
m0 = 0.05 > ml. We have fixed Ω = 10 and ω = 9.9.
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Condition (80) is equivalent to

ωl < ω < Ω. (81)

The amplitude of the homoclinic orbit is O(
√

ω − ωl) as m0 is fixed and ω → ωl

(at the limit A(ω,m0)W
u(0) and W s(0) become tangent at the origin), and its

spatial decay rate σ is given by equation (76). This homoclinic orbit corresponds
for equation (6) to a nonlinear defect mode, i.e. a nonlinear analogue of the above
mentioned linear localized mode. This solution can be approximated by yn(t) ≈
βn cos t for m0 ≈ 0 and the frequency ω varies with amplitude contrarily to the linear
case. In section 4.1.5 we show the persistence of the above homoclinic solution βn

for the full normal form (20) and the existence of corresponding small amplitude
solutions of (5) (see theorem 8). Alternatively, these solutions could be obtained
using an infinite-dimensional version of the Lyapunov centre theorem (see section
4.1.5 for more details).

Lastly, let us notice that the above homoclinic orbit possesses the symmetry
β−n = βn, or equivalently R U−n+1 = Un. It suffices to check the latter relation for
n = 0 to prove it for any n, since both solutions R U−n+1 and Un coincide if they
satisfy the same initial contidion. Since U0 lies on the unstable manifold we have
α0 = g(β0), and in the same way β1 = g(α1) since U1 lies on the stable manifold.
Since by definition α1 = β0, this implies α0 = β1 and thus R U1 = U0. Using the
properties U1 = Gω(U0)− ω2m0(0, β0)

T and R U1 = U0 we also deduce the relations

2α0 = [2 + Ω2 − ω2(m0 + 1)]β0 + B β3
0 (82)

2β1 = [2 + Ω2 − ω2(m0 + 1)]α1 + B α3
1, (83)

which are useful in particular for the numerical computation of U0, U1.

4.1.3 Nonlinear defect mode with algebraic decay

In the situation of section 4.1.2 (B > 0), the case when m0 is fixed and ω → Ω
deserves a special attention. Indeed, the homoclinic orbit (αn, βn) converges in this
limit towards a solution having an algebraic decay as n → ±∞.

More precisely, if ω = Ω and m0 > 0 then W s(0) and A(ω, m0)W
u(0) intersect

at a unique point (α1, β1) in the half plane α > 0 (see figure 6). This can be checked
analytically for m0 ≈ 0 and (α, β) ≈ 0, since the unstable manifold can be locally
parametrized by α = β−(B/2)1/2β2+O(|β|3) in the half plane α > 0 (this expansion
follows from a classical identification procedure). Using this relation for (α0, β0) in
conjunction with (82) we find as m0 → 0

β0 = Ω2(2B)−1/2m0 + O(m2
0). (84)
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Note that in this non-hyperbolic case, the function g having the unstable manifold
as its graph is not C2 at β = 0 (in the half plane α < 0, one has α = β+(B/2)1/2β2+
O(|β|3) on the local unstable manifold). Far from the small amplitude limit, we have
also checked numerically the existence and uniqueness of W s(0) ∩ A(ω,m0)W

u(0)
in the half plane α > 0.
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Figure 6: Case B > 0 and ω = Ω. Stable and unstable manifolds (in the half plane
α > 0), and image of the unstable manifold by A(ω,m0) for m0 = 0.05. We have
fixed Ω = 10 in this example.

Consequently, there exists a solution of (70) homoclinic to 0 for ω = Ω and
m0 > 0. This solution has an algebraic decay due to the fact that the origin is not
any more an hyperbolic fixed point for ω = Ω. One can approximate the solution
profile for m0 ≈ 0, using the fact that (70) admits at both sides of n = 0 a continuum
limit. Indeed, setting

βn ≈ m0β(x), x = m0n, (85)

one obtains the following differential equation

d2β

dx2
= Bβ3, x ∈ (−∞, 0) or (0, +∞),

from which we deduce (multiply by β′ and integrate)

dβ

dx
= −sign(x) (B/2)1/2 β2 (86)

since β(x) → 0 as x → ±∞. Using (86) and (84) one obtains the following approx-
imation of the homoclinic solution for m0 ≈ 0

βn ≈ m0

√
2

B
(m0|n|+ 2

Ω2
)−1. (87)

This yields an approximate solution yn(t) ≈ βn cos t of (6), corresponding to
a breather with an algebraic decay and a frequency ω = Ω at the bottom of the
phonon band.
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4.1.4 Case of soft on-site potentials

In this section we make some considerations on the case B < 0 (soft on-site potential
V ) which is far more complex. We fix the parameter ω in equation (70) and let m0

vary. Using a geometrical argument, we show that two (asymmetric) homoclinic
solutions of (70) having one hump near the defect site n = 0 disappear through a
tangent bifurcation, at a critical value of m0 which can be estimated. As we shall
later numerically check (see section 5), the same features occur for the Klein-Gordon
model which was locally reduced to (20), i.e. to a higher order perturbation of (70).
In addition, we show (again using a geometrical argument) that a symmetric solution
βn of (70) homoclinic to 0 and centered at n = 0 disappears through a pitchfork
bifurcation with −βn for m0 = ml(ω). This bifurcation persists for the full normal
form (20) as we shall see in section 4.1.5. In the present section we only study the
simplest homoclinic bifurcations that occur in the soft potential case when m0 is
varied, but an infinity of tangent bifurcations occur in fact due to the complicated
structure of the stable and unstable manifolds of the origin.

In order to treat the case when m0 ≈ 0, we start by fixing m0 = 0 and proceed
perturbatively. For m0 = 0, µ < 0 and B < 0, equation (70) possesses homoclinic
solutions to 0. This case has been analyzed in several references with different
viewpoints and for different parameter ranges, see e.g. [QX07, HT99, ABK04, PZ01,
Wei99, Jam03].

The dynamics of the map Gω is rather complex due to the fact that the stable
and unstable manifolds of the origin intersect transversally in general (see figures 7
and 12). This implies the existence of an invariant Cantor set on which some iterate
Gp

ω is topologically conjugate to a full shift on N symbols [AP90], which yields a
rich variety of solutions and in particular an infinity of homoclinic orbits to 0.

Among these different homoclinic orbits one can point out two particular ones
U i

n = (αi
n, β

i
n)T (i = 1, 2), corresponding for the Klein-Gordon chain to breather

solutions with a single hump near n = 0 (site-centered or bond-centered). These
solutions have been described in lemma 2 and theorem 5 in the small amplitude limit.
The corresponding homoclinics U1

n, U2
n are reversible, i.e. they satisfy R U2

−n+1 = U2
n

(β2
−n = β2

n) and R U1
−n+2 = U1

n (β1
−n+1 = β1

n). In figure 7, the point with label 2 lying
on the axis α = β corresponds to U1

1 , and the points with labels 3, 1 correspond to
U2

0 , U2
1 respectively. Obviously any translation of U i

n generates a breather solution
of (6) having its maximal amplitude near a different site.

Now let us consider the situation when ω is kept fixed and a small mass defect
m0 is introduced in (70). As illustrated in figure 7, each of the above solutions is
structurally stable.

For example, let us consider in figure 7 the intersection points 1, 2, 3 between
W u(0) and W s(0). Each of these intersections persists (points 1′, 2′, 3′ in figure 7)
as the linear shear A(ω, m0) is applied to W u(0) for m0 ≈ 0 (dashed line in figure
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Figure 7: First intersection points between the stable and unstable manifolds for
parameters ω = 9.9 (µ = −1.99) and B = −75. The dashed line depicts the image
of the unstable manifold by the linear shear A(ω, m0) for m0 = 0.005.

7). Let us examine the corresponding solutions of (71) and the related breather
solutions of the Klein-Gordon model.

We denote by Ũ2
n = (α̃2

n, β̃
2
n)T the solution of (71) with initial data Ũ2

1 at the point
1′. This solution is homoclinic to 0 according to lemma 4. Repeating an argument
of section 4.1.2, one can show that R Ũ2

−n+1 = Ũ2
n, i.e. β̃2

−n = β̃2
n. Consequently,

Ũ2
n corresponds to an (approximate) breather solution of (6) centered at the defect

site n = 0. This solution is a small deformation of the site-centered breather y2
n of

theorem 5.
Now let us denote by Ũ1

n the homoclinic solution of (71) with initial data Ũ1
1

at the point 2′. It corresponds to an (approximate) breather solution of (6), whose
profile is a small deformation of the breather y1

n centered between n = 0 and n = 1
(see theorem 5). Since Ũ1

1 does not belong to the line α = β (it lies at a distance
O(|m0|)), the corresponding breather solution is not symmetric any more, which
was expected since the atomic masses at n = 0, 1 are different.

Lastly we note Ũ3
n = (α̃3

n, β̃3
n)T the homoclinic solution of (71) with initial data

Ũ3
1 at the point 3′. Since Ũ3

1 is O(|m0|)-close to U2
0 (point with label 3), Ũ3

n is a
small deformation of the solution U2

n−1 existing for m0 = 0. In other words, Ũ3
1

corresponds to a small deformation of the breather y2
n−1 centered at n = 1. The

mass defect at n = 0 breaks the mirror symmetry of the solution, since its amplitude
has only the imperfect symmetry β̃3

−n+1 − β̃3
n+1 = O(|m0|) for n 6= 0.

A more delicate question concerns the continuation and the possible bifurcations
of the above homoclinic solutions as m0 is further varied. The evolution of Ũ1

n, Ũ2
n, Ũ3

n

depends on the structure of the homoclinic windings near U1
1 , U2

1 , U2
0 . Numerically

we find that the lobes formed near these points by the stable and unstable manifolds
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have the structure shown in figure 7. These manifolds windings can be analytically
approximated as explained in [HT99] (section 3.5) or [HRGB96] (section 4).

At a critical value m0 = mc(ω) > 0, the points with label 2′ and 3′ on W s(0) ∩
A(ω,m0)W

u(0) collide as W s(0) and A(ω, m0)W
u(0) become tangent. Consequently

the solutions Ũ3
n and Ũ1

n disappear through a tangent bifurcation above this critical
value of m0.

Obviously, since we consider the truncated map (71) instead of the full recurrence
relation (20), these solutions only correspond to approximate breather solutions of
(6). It should be hard to prove that the above tangent bifurcation of homoclinic
solutions persists for the full reduced equation (20), because it involves phenomena
beyond all algebraic orders for µ ≈ 0. Indeed, for the truncated map (71) with
m0 = 0, the splitting of W s(0) and W u(0) lies beyond all orders in µ. This is due to
the fact that the map (72) can be approximated up to an arbitrary order in (Un, µ)
using the time-one map of an integrable flow [AP90], for which W s(0) and W u(0)
coincide and form a pair of symmetric homoclinic loops. The analysis of the above
tangent bifurcation, which requires to estimate the splitting distance between W s(0)
and W u(0) and the angles at their intersection, would therefore involve difficult
beyond all orders asymptotics. In particular, the critical value of m0 at which
tangent bifurcation occurs for the truncated map (71) lies beyond all orders in µ
(since it is of the order of the splitting distance between W s(0) and W u(0)), and the
same phenomenon can be expected when the higher order terms of (20) are taken
into account. Analytical results on the exponentially small splitting of separatrices
have been derived for some families of analytic maps (see [Gel00, DRR98, FS96]
and references therein), but our case is more complex since (for an analytic on-
site potential V ) the centre manifold reduction breaks in general the analyticity
of the reduced equation. A strategy to tackle this problem would be to proceed
as in [Lom00] (section 8), where the centre manifold reduction is replaced by an
infinite-dimensional normal form reduction. This would lead to difficult analytical
problems which lie beyond the scope of this paper. Instead, in section 5 we shall
check numerically that the above tangent bifurcation occurs for breather solutions
of (6) close to our approximate solutions, at a critical value of m0 close to mc(ω).

In what follows we give a simple method to estimate mc(ω), which is based on
a simple approximation of W u(0). Note that the method doesn’t work in the limit
µ ≈ 0 in which the centre manifold reduction is achieved, but fits quite well our
numerical computations in a different parameter regime. Let us consider a cubic
approximation W u

app of the local unstable manifold of figure 7, parametrized by
β = λα − c2 α3. The coefficient c depends on µ and B and need not be specified
in what follows (a value of c suitable when λ is large is computed in [HRGB96],
equation (60)). We note λ = σ−1 = 1− µ/2 +

√
µ2 − 4µ/2 the unstable eigenvalue.

We have
β = λ0α− c2 α3 (88)
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on the curve A(ω,m0)W
u
app, where λ−ω2m0 = λ0. By symmetry we can approximate

the local stable manifold using the curve W s
app parametrized by

α = λβ − c2 β3. (89)

The curves A(ω,m0)W
u
app and W s

app become tangent at (α, β) when in addition

(λ− 3c2 β2)(λ0 − 3c2 α2) = 1. (90)

In order to compute m0 = mc as a function of ω, or, equivalently, the correspond-
ing value of λ0 as a function of λ, one has to solve the nonlinear system (88)-(89)-(90)
with respect to α, β, λ0, which yields a solution depending on λ. Instead of using λ
it is practical to parametrize the solutions by t = β/α. This yields

α =
1

c
√

2
(t +

1

t3
)1/2, β =

t

c
√

2
(t +

1

t3
)1/2,

λ0 =
3

2
t +

1

2t3
, λ =

3

2t
+

1

2
t3.

Since µ = 2− λ− λ−1 and m0 = (λ− λ0) (Ω2 + µ)−1 it follows

µ = 2− 3 + t4

2t
− 2t

3 + t4
, (91)

m0 =
1

2
(t− 1

t
)3(Ω2 + µ)−1. (92)

Given a value of µ ∈ (−Ω2,−1/2), one can approximate mc by the value of m0 given
by equations (91)-(92).

For example, in the case numerically studied in figure 7 we have ω = 9.9 and
µ = −1.99. Consequently λ ≈ 3.721, t ≈ 1.7935 and λ0 ≈ 2.777, which yields
mc ≈ 0.009632. A numerical study of the map yields mc ∈ (0.00963, 0.00964), and
consequently our approximation works very well in this parameter regime. Moreover,
the approximation is extremely close to the actual value of m0 at which a tangent
bifurcation occurs between the corresponding breather solutions of the Klein-Gordon
system (numerically we again find m0 ∈ (0.00963, 0.00964), see section 5 for more
details).

Despite it gives precise numerical results in a certain parameter range, the ap-
proximation (91)-(92) is not always valid. Indeed, the parameter regime µ > −1/2
is not described within this approximation. Moreover, one can check that W u

app in-
tersects W s

app on the line α = β with an angle depending solely on λ, and not on
the coefficient B (in particular, W u

app and W s
app become tangent for λ = 2). This

problem could be solved by adding a quintic term dα5 in equation (88).
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The intersection point with label 1′ between W s(0) and A(ω, m0)W
u(0) persists

for 0 < m0 < ml(ω), or equivalently 0 < ω < ωl(m0), and consequently the reversible
homoclinic solution Ũ2

n exists within this parameter range. At ω = ωl, this solution
disappears through a pitchfork bifurcation with the symmetric solution −Ũ2

n (the
amplitude of the homoclinic orbit is O(

√
ω − ωl) as m0 is fixed and ω → ωl). This

homoclinic orbit corresponds for equation (6) to a nonlinear defect mode, i.e. a
nonlinear analogue of the linear localized mode of section 4.1.1. The existence of
exact small amplitude solutions of this type (with ω ≈ ωl) is proved in section 4.1.5
(see theorem 8). For m0 ≈ 0 and ω ≈ ωl, the breather solution of (6) can be
approximated by yn(t) ≈ βn cos t, and the frequency ω varies with amplitude and
lies below ωl.

More generally, the evolution of the set A(ω, m0)W
u(0) ∩ W s(0) as m0 varies is

very complex, due to the complex shape of the stable and unstable manifolds and
the complicated structure of their intersection (see figure 12). In section 5 we shall
give some additional examples of breather bifurcations which can be deduced from
the fine structure of the stable and unstable manifolds.

Note that previous studies have examined, for certain families of reversible two-
dimensional maps, how parameter changes modify the intersections between the
stable and unstable manifolds of the origin and the associated set of homoclinic so-
lutions [BCKRBW00, CGTCM06]. These (autonomous) maps are directly obtained
from the discrete nonlinear Schrödinger equation or generalized versions (due to
their phase invariance), as one looks for oscillatory solutions with a single Fourier
component. Although we obtain similar types of tangent bifurcations as defect
strengths are varied, our situation is quite different since we are concerned with
a nonautonomous map, where the impurity leads to consider a linear shear of the
unstable manifold.

4.1.5 Persistence of a nonlinear defect mode

In sections 4.1.2 and 4.1.4 we have seen that symmetric homoclinic solutions corre-
sponding to a nonlinear defect mode exist for the truncated normal form (70), both
for hard and soft on-site potentials. In this section we prove that these solutions
persist for the full system (20). They appear through a pitchfork bifurcation at the
origin, when m0 > 0 is fixed (close to 0) and ω crosses the critical value ωl(m0). This
bifurcation is supercritical for hard on-site potentials and subcritical for soft ones.
As a consequence, the centre manifold theorem yields the existence of corresponding
defect modes for the Klein-Gordon system (3) (see theorem 8 below).

In the case of a single mass defect mn = m0 δn0, the normal form (20) reads

βn+1− 2βn + βn−1 + (ω2m0 δn0 + ω2−Ω2) βn−B β3
n + %n(βn−1, βn,m0, µ) = 0, (93)
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where %n(βn−1, βn,m0, µ) = O[ (|βn−1|3 + |βn|3) (|m0| + |µ| + β2
n−1 + β2

n) ] uniformly
in n ∈ Z (since in the nonlinear term (64), ‖τn{λ}‖`∞(Z) does not depend on n). In
the sequel we fix m0 > 0 close to 0 and vary ω2 (by now we omit m0 in notations).
For simplicity we shall note β the sequence {β}. Looking for solutions β of (93) in
`2(Z), equation (93) takes the form

F(β, ω2) = 0, (94)

where F : `2(Z) × R+ → `2(Z) is Ck in a neighbourhood B × O of (0, Ω2) and
F(−β, ω2) = −F(β, ω2) (Z2-symmetry). The neighbourhood O can be fixed inde-
pendently of m0 for m0 sufficiently small, since theorem 3 yields a reduction result
valid for (ω2,m0) in a neighbourhood of (Ω2, 0). Moreover, O contains the critical
value ωl(m0)

2 for m0 ≈ 0 since ωl(0) = Ω.

Now we look for solutions of (94) bifurcating from β = 0. ¿From the analysis
of section 4.1.1 it follows that DF(0, ω2) has a nontrivial kernel if and only if ω2 =
ωl(m0)

2. The kernel of L = DF(0, ω2
l ) is one-dimensional and spanned by the

eigenvector ξ given by ξn = σ|n| (see equation (76) for the definition of σ). To
determine the range R(L) of L, we note that L = T +A with

(T β)n = βn+1 − 2βn + βn−1 + (ω2
l − Ω2) βn,

(Aβ)n = ω2
l m0 δn0 βn.

Since ω2
l < Ω2, T is invertible in `2(Z) by Lax-Milgram’s theorem. Since A is

compact in `2(Z), it follows that L is Fredholm with index 0 and codimR(L) = 1.
In addition, R(L) = ξ⊥ since L is selfadjoint.

We now assume ω2 ≈ ω2
l . The solutions of (94) near (0, ω2

l ) can be deter-
mined using classical results for bifurcations at a simple eigenvalue, based on a
Lyapunov-Schmidt reduction (see e.g. [Kie04, MH94]). The Z2-symmetry of F and
the nondegeneracy conditions

( D2
β ω2F(0, ω2

l ) · ξ, ξ )`2 = m0 + c2 6= 0,

( D3
βF(0, ω2

l ) · [ξ]3, ξ )`2 = −6B b2 6= 0,

in which

c2 = ‖ξ‖2
`2

=
2

1− σ2
− 1, b2 =

∑

n∈Z
ξ4
n =

2

1− σ4
− 1, (95)

guarantee that the set of solutions of (94) near (0, ω2
l ) consists in a pitchfork lying

in a two-dimensional submanifold of `2(Z)×R (see [MH94], proposition 1.9 p. 438).
More precisely, the Lyapunov-Schmidt reduction yields the bifurcation equation

(m0 + c2) ε(ω2 − ω2
l )−Bb2ε3 + h.o.t. = 0,
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where ω2 − ω2
l ≈ 0 and ε ≈ 0 denotes the coordinate of small amplitude solutions

β along the kernel of L. The local branch of nontrivial solutions of (94) can be
therefore parametrized by

β = ε ξ + O(ε3) in `2(Z), (96)

ω2 = ω2
l +

B b2

m0 + c2
ε2 + O(ε4) (97)

(note that ω2 is even in ε). The pitchfork bifurcation is supercritical for B > 0 (i.e.
for hard on-site potentials) and subcritical for B < 0 (soft on-site potentials). In
the degenerate case B = 0, a branch of solutions bifurcating from β = 0 still exists,
and higher order terms of (97) determine the direction of bifurcation. As a corollary
of (96), note that bifurcating solutions are also O(|ε|) in `∞(Z).

Applying the centre manifold theorem 3, the homoclinic solutions (96)-(97) of
the reduced recurrence relation correspond to small amplitude solutions of (6), with
yn ∈ H2

# for all n ∈ Z and limn→±∞ ‖yn‖H2
#

= 0. This yields the following existence

result of a nonlinear defect mode in the original system (5).

Theorem 8 Consider the Klein-Gordon lattice (5), where the inhomogeneity lies in
the mass parameter Mn = m + m0δn0 (with m, m0 > 0 and m0 ≈ 0) and all other
lattice parameters Dn = d, An = a, Kn = k are constant (with d, a, k > 0). Assume
the on-site potential V satisfies V ′(0) = 0, V ′′(0) = 1 and note Ω2 = a2d/k.

i) In the linear case V (y) = 1
2
y2, equation (5) admits spatially localized solutions

yn(t) = ε σ|n| cos (Ω0t) (linear defect mode), with frequency Ω0 = ωl

√
k/m and

ωl(m0) defined by (79). Their spatial decay is fixed by σ(m0) ∈ (0, 1), which is
determined by equation (76) taken for ω = ωl.

ii) In the nonlinear case, assume in addition Ω2 > 4/3. Equation (5) admits a
family of spatially localized solutions yn(t) = ε σ|n| cos (Ωεt)+O(ε2) (nonlinear defect
mode), parametrized by ε ≈ 0 (in a neighbourhood of 0 whose size depends on m0),
with frequency

Ωε = Ω0 + h Ω1ε
2 + O(ε4),

where h = V (4)(0)− 5
3
(V (3)(0))2, Ω1 = kΩ2

16mΩ0

b2a2

m0+c2
> 0 and b, c are given by (95).

To end this section, we compare our approach with another analysis of (5) based
on the Lyapunov centre theorem in its infinite-dimensional version. Under a nonres-
onance condition, i.e. when no multiple of Ω0 lies in the phonon band [ωmin, ωmax],
the Lyapunov centre theorem ensures that yn = 0 is contained in a two-dimensional
invariant manifold of `2(Z) consisting of small amplitude periodic solutions, whose
frequency tends to Ω0 as they approach the equilibrium (see e.g. [Kie04] for more
details on the Lyapunov centre theorem). The nonlinear defect mode considered in
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theorem 8 corresponds to a Lyapunov family of periodic orbits, and for small enough
m0 > 0 the condition Ω2 > 4/3 implies the above nonresonance condition. Indeed,
assuming Ω2 > 4/3 is equivalent to fixing 2ωmin > ωmax (recall ω2

min = a2d/m,
ω2

max = (a2d+4k)/m). Since lim
m0→0

Ω0 = ωmin, one has 2Ω0 > ωmax when m0 > 0 and

m0 ≈ 0, which establishes the nonresonance condition since in addition Ω0 < ωmin

(recall ωl < Ω). More generally, one can see from the Lyapunov centre theorem
that a nonlinear defect mode exists when m0 is not necessarily small, provided the
nonresonance condition is fulfilled.

When m0 → 0, the Lyapunov centre theorem is not adequate to analyze (5)
because it is valid in a neighbourhood of yn = 0 which may vanish at the limit.
This is due to the fact that the frequency Ω0 enters the continuous spectrum for
m0 = 0, which violates the nonresonance condition. For example, the Lyapunov
centre theorem also asserts that the Lyapunov family of periodic orbits contains the
only periodic solutions near yn = 0 in `2(Z), with frequency close to Ω0. However, as
seen in section 4.1.4 for the principal part of the normal form (20), many spatially
localized solutions can exist in the vicinity of the defect mode when m0 is small (see
also section 5 where these results are checked numerically for the full Klein-Gordon
model). By opposition, the centre manifold reduction we employ is well adapted to
determine bifurcating solutions for m0 ≈ 0 and frequencies close to ωmin, although
their persistence for the full normal form would be hard to analyze here (except in
the special case of theorem 8).

4.2 Case of finitely many defects

This section generalizes the analysis of the above section to the case when equation
(5) admits a finite number of inhomogeneities. More precisely, we assume in equation
(6) ηn = γn = κn = εn = 0 if |n| ≥ n0 + 1, for a given integer n0 ≥ 0. Note that this
assumption allows one to cover the case of an odd number of defects as well as an
even number.

The situation is more complex than in section 4.1, because studying homoclinic
solutions of (69) leads to finding the intersections of the stable manifold with the
image of the unstable manifold under a nonlinear transformation (see lemma 5
below). However, one can recover the linear case if one replaces the relevant spatial
map by a suitable one, both being equal at leading order only. In what follows we
shall develop this leading order theory, considering as higher order terms all terms
being o(‖(αn, βn)‖3).

Equation (69) reads

βn+1 − 2βn + βn−1 = (θn − µ)βn − κnβn−1 + B β3
n, (98)
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where θn = Ω2(ηn + ηnγn + γn) − ω2εn + κn, ω2 = Ω2 + µ. In the sequel we shall
note ε = ‖ {θ} ‖`∞(Z) + ‖ {κ} ‖`∞(Z).

Setting βn−1 = αn and Un = (αn, βn)T , equation (98) can be rewritten

Un+1 = Fn(Un), (99)

Fn(α, β) =

(
β

−(1 + κn)α + (2 + θn − µ)β + Bβ3

)
. (100)

Noting F = Gω for simplicity (see definition (72)), one can observe that

Fn = (I + Tn) F + O(|κn||β|3), (101)

Tn =

(
0 0

θn + (µ− 2) κn κn

)
.

Note that higher order terms are absent from equation (101) if κn = 0.

Since Fn = F for |n| ≥ n0 + 1 one has the following property.

Lemma 5 Fix µ < 0 and denote by W s(0), W u(0) the stable and unstable manifolds
of the fixed point U = 0 of F . Consider the nonlinear map G = Fn0 ◦ Fn0−1 ◦ · · · ◦
F−n0 ◦ F−2n0−1. Equation (99) possesses an homoclinic orbit to 0 if and only if
W s(0) and G(W u(0)) intersect.

Lemma 5 is hard to use for analyzing homoclinic solutions since it involves a
nonlinear transformation G instead of a linear one as in lemma 4. However one can
recover the linear case when replacing Fn by a suitable approximation F̂n, equal to
Fn up to higher order terms. This is possible thanks to property (104) of lemma 6
below. In the sequel we note

L = DF (0) =

(
0 1
−1 2− µ

)
.

Lemma 6 Consider the collection of maps F̂n (−n0 ≤ n ≤ n0) defined by

F̂n = An F ◦ A−1
n−1, (102)

where A−n0−1 = I and for n ≥ −n0

An = Ln Ln−1 · · · L−n0 L−n−n0−1, Ln = (I + Tn)L. (103)

The map F̂n is a leading order approximation of Fn, i.e. F̂n = Fn + O(ε ‖(α, β)‖3).
Moreover one has the property

F̂n0 ◦ F̂n0−1 ◦ · · · ◦ F̂−n0 = A F 2n0+1, (104)

where A = An0 reads

A = Ln0 Ln0−1 · · · L−n0 L−2n0−1 = I + O(ε). (105)
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Proof.
First we note that the sequence An satisfies A−n0 = I + T−n0 and

An+1 = (I + Tn+1) LAn L−1 (106)

for all n ≥ −n0 − 1. It follows for −n0 ≤ n ≤ n0

F̂n = (I + Tn) LAn−1 L−1 F ◦ A−1
n−1. (107)

Now let us note that An = I + O(ε). Moreover, the following identity holds true for
any parameter-dependent matrix M ∈ M2(R) with ‖M‖ = O(ε)

F ◦ (I + M) = L (I + M) L−1 F + O(ε ‖(α, β)‖3). (108)

Consequently one has also

F = L (I + M) L−1 F ◦ (I + M)−1 + O(ε ‖(α, β)‖3).

Using this property in equation (107) leads to

F̂n = (I + Tn) F + O(ε ‖(α, β)‖3).

Using (101) this yields F̂n = Fn + O(ε ‖(α, β)‖3), therefore F̂n is a leading order
approximation of Fn. Property (104) follows directly from the definition of F̂n.

2

It is worthwhile stressing that A = DG(0), where G is the nonlinear transfor-
mation introduced in lemma 5.

Now we fix in addition F̂n = F = Fn for |n| ≥ n0 + 1. According to lemma 6
we have also F̂n = Fn + O(ε ‖(α, β)‖3) for |n| ≤ n0. In the sequel we approximate
system (99) by the new one

Un+1 = F̂n(Un). (109)

Property (104) implies the following result, since W u(0) is invariant under F 2n0+1.

Lemma 7 Fix µ < 0 and denote by W s(0), W u(0) the stable and unstable manifolds
of the fixed point U = 0 of F . Equation (109) possesses a solution Un homoclinic to
0 if and only if W s(0) and A(W u(0)) intersect, where the matrix A = I + O(ε) is
defined in lemma 6. The intersection point corresponds to Un0+1.

Consequently, as in section 4.1 one recovers the problem of finding the intersec-
tion of W s(0) with the image of W u(0) under the (near-identity) linear transforma-
tion A. Note that A = I + T0 in the single defect case n0=0.

Here we shall not attempt to relate the bifurcations of breather solutions of (6)
with the properties of the inhomogeneities, via an analysis of homoclinic solutions of
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(109). This question will be considered in future works using the simplification pro-
vided by lemma 7. As for a single defect, for B < 0 one can expect multiple tangent
bifurcations between (deformations of) site-centered and bond-centered breathers as
inhomogeneities are varied, due to the winding structure of W u(0) and W s(0).

It is now interesting to compute the leading order contribution of the sequence
of inhomogeneities to the matrix A. This is the object of the following lemma.

Lemma 8 The matrix A of lemma 6 takes the form A = I + M + O(ε2 + ε|µ|),
where

M =

(
M11 M12

M21 M22

)
,

M11 =

2n0∑
n=0

n(n + 1)ρn0−n − n κn0−n,

M12 =

2n0∑
n=0

−n2ρn0−n + n κn0−n,

M21 =

2n0∑
n=0

(n + 1)2ρn0−n − (n + 1) κn0−n,

M22 =

2n0∑
n=0

−n(n + 1)ρn0−n + (n + 1) κn0−n,

ρn = Ω2(ηn + γn − εn).

Proof.
Since Tn = O(ε) it follows from definition (105)

A = I +

2n0∑
n=0

Ln Tn0−n L−n + O(ε2). (110)

Now we use the expansions

Tn = Mn + O(ε2 + ε|µ|), Mn =

(
0 0

ρn − κn κn

)
,

L = Lc + O(|µ|), Lc =

(
0 1
−1 2

)
,

to obtain

A = I + M + O(ε2 + ε|µ|), M =

2n0∑
n=0

Ln
c Mn0−n L−n

c ,

50



where

Ln
c =

( −n + 1 n
−n n + 1

)
.

Then simple computations lead to the coefficients of M provided above.
2

Interestingly, lemma 8 shows that the influence of the inhomogeneities on the
set of homoclinic solutions depends at leading order (via the matrix I + M) on
algebraically-weighted averages of {κ} and {ρ}.

Now let us return to the original parameters mn, dn, an, kn describing the lattice
inhomogeneities (see equations (5) and (6)), with mn = dn = an = 0 for |n| ≥ n0+1,
kn = 0 for n ≤ −n0 − 1 and n ≥ n0. Let us note ε̃ = ‖{mn/m}‖`∞ + ‖{dn/d}‖`∞ +
‖{an/a}‖`∞ + ‖{kn/k}‖`∞ . One obtains

κn =
kn−1 − kn

k
+ O(ε̃2), ρn = rn + O(ε̃2),

where

rn = Ω2 (
dn

d
+ 2

an

a
− mn

m
)

is a linear combination of the on-site potential and mass defect impurities. Some
coefficients of M can be simplified since

2n0∑
n=0

κn0−n = O(ε̃2),

2n0∑
n=0

−nκn0−n =
1

k

n0−1∑
n=−n0

kn + O(ε̃2).

Noting

Ik =

n0∑
n=−n0

nk rn, J0 =
1

k

n0−1∑
n=−n0

kn,

one finally obtains A = I + M̃ + O(ε̃2 + ε̃|µ|) with

M̃ =

(
M̃11 −M̃11 + n0I0 − I1

M̃11 + (n0 + 1)I0 − I1 −M̃11

)

and M̃11 = n0(n0 + 1)I0 − (2n0 + 1)I1 + I2 + J0.
Consequently, the matrix A depends (at leading order in ε̃ and µ) on the average

values I0, J0 of rn, kn/k, and on the weighted averages I1, I2 of rn (with linear and
quadratic weights respectively). Since Tr(M̃) = 0, it follows Tr(A) = 2+O(ε̃2+ε̃|µ|)
and Det(A) = 1 + O(ε̃2) (Det(A) is independent of µ due to identity (105)). As a
consequence, in order to study the spectrum of A for ε̃, µ ≈ 0 (and determine to
which type of linear transformation it corresponds) it would be necessary to compute
the quadratic terms in (ε̃, µ) in its expansion.
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5 Numerical results

We have performed numerical computations in order to check the range of validity
of the analysis of section 4.1, and in particular if discrepancies appear for large
amplitude solutions or if parameters (m0, ω) are moved away from (0, Ω). More
precisely, we have computed breather solutions of the Klein-Gordon lattice

ω2(1 + mn)
d2yn

dt2
+ Ω2V ′(yn) = yn+1 − 2yn + yn+1 (111)

with a single mass defect mn = m0δn,0 and periodic boundary conditions y−N(t) =
yN(t). In general we have used a lattice with 101 particles, except for the compu-
tations of breathers with algebraic decay (case ω = Ω) where 401 particles have
been considered. The computations have been compared with homoclinic orbits to
0 of the two-dimensional map (71). For the numerical computations we have always
fixed Ω = 10 (recall Ω is the lower phonon band edge for the infinite system). This
can be done taking, for instance, k = 0.01, and d = 1 in the original problem (6).
For the potential V we have chosen a polynomial of degree 4 with V

′′
(0) = 1.

5.1 Hard potentials

To start we have considered the simplest case of a hard potential, i.e. a potential
with a strictly positive hardening coefficient B (see definition (22)). We have chosen

V (x) =
x2

2
+

x4

4
, (112)

for which B = 75.
In this case, the reduced map (71) possesses a unique orbit homoclinic to 0

in the sector α > 0, β > 0, for m0 > 0 and ωl < ω < Ω. An example of this
homoclinic orbit is shown in figure 5 for a frequency ω = 9.9 (µ = −1.99) and a
mass defect m0 = 0.05. In figure 8 (left panel) we compare the approximate solution
yn = βn cos t obtained with this homoclinic orbit (circles) with the exact breather
profile computed with the standard numerical method based on the anti-continuous
limit [MA96] (continuous line). The agreement is excellent even if the solution profile
is very localized. Indeed, as one computes the eigenvalues σ, σ−1 (equation (76)) of
the linearized map (75) with m0 = 0, one obtains σ ≈ 0.27, which implies a strong
spatial localization visible in figure 8. The accuracy of the centre manifold reduction
(a priori expected for σ ≈ 1) is surprisingly good in this parameter regime.

The breather solution can be continued for decreasing frequencies up to ωl ≈
9.8369, which is the frequency of the linear defect mode at which the breather
solution bifurcates. Figure 8 (right panel) compares again the numerically computed
breather profile and the approximate solution obtained with the homoclinic orbit,
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Figure 8: Comparison between the profile of a breather solution (continuous line)
of the Klein-Gordon system (111) with hard potential (112) and the approximate
solution yn = βn cos t (circles) constructed with the homoclinic orbit of (71). We
have considered a mass defect m0 = 0.05. In the left panel we have chosen a
frequency ω = 9.9 (µ = −1.99). In the right panel we have fixed ω = 9.837
(µ = −3.23) very close to ωl (note the change of scale for the vertical axis).

but now very close to this bifurcation point (at ω = 9.837, i.e. µ = −3.23). We
still observe an excellent agreement. Note that the oscillations amplitudes are very
small, but the solution is still strongly localized.

For increasing frequencies the continuation path ends up at the lower edge of
the phonon band ω = Ω (µ = 0). For this particular frequency value the breather
solution (see continuous line in figure 9, left panel) presents an algebraic decay which
is very well described by approximation (87). This approximation fails to describe
the maximum amplitude of the oscillation β0 for these parameter values. This is not
surprising since β0 is not small, and βn varies rapidly near n = 0, hence m0 should
be further decreased to attain the domain of validity of the ansatz (85) near the
solution centre.

However, the value of β0 obtained from the exact homoclinic orbit of (71) fits
very well the maximum amplitude of the breather solution, as it is shown in figure 9,
right panel. Note that the agreement is very good even for very large amplitudes or
very large mass defect i.e. within a surprisingly large parameter range for a local
theory.

It is interesting to remark that the accuracy of this fit depends on the symmetry
of the potential V (x) we have chosen. Figure 10 shows what happens if we add to
the polynomial potential (112) a cubic term x3/6 that breaks its symmetry. The
range of validity of our leading order approximation reduces significantly. A similar
result was obtained in [SRJCA04] for breather solutions in spatially homogeneous
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Figure 9: Left panel : breather solution at the lower edge of the phonon band ω = Ω
(µ = 0) for a mass defect m0 = 0.05 and the symmetric potential V (x) = x2/2+x4/4.
The continuous line corresponds to the numerically computed breather solution. The
circles represent approximation (87) of the homoclinic orbit that fits very well the
algebraic decay of the breather tails. Right panel : the continuous lines represent
the amplitude of the breather solution at n = 0 and n = 1 versus mass defect. The
circles correspond to the homoclinic solutions of the nonlinear map (71) (the upper
plot represents β0 and the lower plot β1).

Fermi-Pasta-Ulam lattices. Obviously the agreement would be improved by taking
into account the Taylor expansion of the reduction function φ (see theorem 3) and
computing the normal form at a higher order.
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Figure 10: Same computation as in figure 9, right panel, but now for the asymmetric
potential V (x) = x2/2 + x3/6 + x4/4.

Finally we have numerically studied the spectral stability of the breather solu-

54



tions by finding the eigenvalues of the Floquet operator, which gives us the evolution
of any small perturbation over one period [Aub97]. We have checked that all breather
solutions in the gap ωl < ω < Ω are spectrally stable, at least for the value of the
frequency parameter Ω = 10 we have considered.

5.2 Soft potentials

In the case of soft potentials (when the coefficient B defined by (22) is strictly nega-
tive), the situation is far more complex due to the much more intricate structure of
the intersections between the stable and unstable manifolds. Therefore one expects
a richer bifurcation scenario as parameters (breather frequency, mass defect) are
varied. Our computations have been performed with the symmetric potential

V (x) =
x2

2
− x4

4
, (113)

for which B = −75.
Let us recall some basic features of the analysis performed in section 4.1.4, in

order to compare the results with numerical computations. For the (truncated)
reduced mapping (71) with m0 = 0, figure 7 shows some intersections of stable and
unstable manifolds emanating from the saddle point at the origin, for a frequency
value ω = 9.9 < Ω. Iterating the map with an initial condition U1 at the homoclinic
point with label 1, we obtain an homoclinic orbit which corresponds to a one-site
breather centered at n = 0. With an initial condition U1 at the homoclinic point with
label 2, the corresponding breather is a two-site breather with maximal amplitude
at n = 0 and n = 1. An initial condition U1 at the homoclinic point with label 3
(symmetric of point 1 respect to the line α = β) corresponds to a one-site breather
centered at site n = 1.

The dashed line of figure 7 depicts the image of the unstable manifold by the
linear shear A(ω,m0) for m0 = 0.005. As m0 increases A(ω, m0) W u(0) moves
further down so that the intersection points 2’ and 3’, corresponding to homoclinic
orbits of the inhomogeneous problem, get closer and closer. So there exists a critical
value of m0 for which these intersection points collide and then disappear. In fact
we have checked numerically that this tangent bifurcation occurs at a critical value
m0 ∈ (0.00963, 0.00964) for problem (71). This critical value can be approximated
using equations (91)-(92), which yields m0 ≈ 0.009632 in the present case. These
results correspond very precisely to a breather bifurcation numerically observed in
the Klein-Gordon chain (at a critical value m0 ∈ (0.00963, 0.00964)) and depicted
in figure 11.

The upper branch of figure 11(a) represents the energy of a breather solution
corresponding to point 2’. For m0 ≈ 0, the breather has a maximal amplitude at
sites n = 0, 1. A profile of this breather for m0 = 0.0093, close to the bifurcation
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point, is shown in figure 11(b), where the amplitude is now much larger at n = 1.
The lower branch of figure 11(a) represents a one-site breather centered at n = 1
and corresponds to point 3’. Its profile for m0 = 0.0093 is shown in Figure 11(c).
We have numerically computed the Floquet spectra of these breather solutions for
the parameter values of figure 11. The solutions on the lower branch are spectrally
stable, whereas the solutions on the upper branch are unstable.

As in section 5.1, we have also computed one-site breathers centered at the
mass defect, corresponding to point 1’ in figure 7. Again we have found an excellent
agreement between the numerically computed breather profiles and the approximate
solutions obtained using the map (71). As expected from the analysis of section 4.1.4,
these breathers survive up to m0 = ml(ω), i.e. up to a much higher value of m0

than the families 2’, 3’ described above.
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Figure 11: Tangent bifurcation between breather solutions numerically computed in
a Klein-Gordon chain with a soft potential. The chain presents a mass defect m0 at
n = 0, and the bifurcation occurs as m0 is increased. In the left panel, the breathers
energies E =

∑
n∈ZΩ2V (yn(0)) + (yn+1(0)− yn(0))2/2 are depicted versus m0 (the

breathers are even in t with frequency ω = 9.9). For m0 ≈ 0, the upper branch
represents a two-site breather centered between sites n = 0 and n = 1. The lower
branch represents a one-site breather centered at n = 1. The breathers profiles close
to the bifurcation point are plotted in the right panels (the value of m0 is marked
with a dashed line in the left panel).

A part of the intersecting stable and unstable manifolds is shown in the left
panel of figure 12. Due to their complicated windings, new intersection points
appear between A(ω,m0) W u(0) and W s(0) as m0 is chosen in certain windows
of the parameter space, giving rise to new homoclinic solutions of (70).

An example is shown in the region marked with a rectangle (see the details
in the right panel of figure 12). For some value of m0 ∈ (0.01064, 0.01065), a
new intersection point between A(ω,m0) W u(0) and W s(0) appears. As m0 is
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further increased, this inverse tangent bifurcation gives rise to two new homoclinic
points 5’ and 6’. Correspondingly, we have numerically checked that an inverse
tangent bifurcation occurs in the Klein-Gordon chain at a critical value of m0 ∈
(0.01064, 0.01065), giving rise to new breather solutions which do not exist in the
homogeneous chain.

The point 4’ in figure 12 also exists for m0 = 0. Returning to figure 7, it
is obtained by applying the inverse map G−1

ω to the point with label 2. In the
homogeneous limit m0 = 0, this homoclinic point corresponds consequently to a
two-site breather centered between n = 1 and n = 2. As figure 12 shows, an
increase of the mass defect m0 moves point 5’ against point 4’ until they collide
and disappear through a new tangent bifurcation. This tangent bifurcation is also
numerically found in the Klein Gordon chain at critical value of the mass defect very
close to the theoretical one (in both cases one obtains m0 ≈ 0.01268).

Figure 13 shows the bifurcation diagram of the numerically computed breathers
corresponding to homoclinic points 4’, 5’, 6’ (left panel), and gives their profiles for
a given value of m0 in the right panel. A numerical computation of Floquet spectra
shows that all these breathers are unstable.
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Figure 12: Emergence of new intersection points between A(ω, m0)W
u (dashed

curve) and W s (drawn with a full line) as the mass defect is increased. The fig-
ure corresponds to m0 = 0.012 and ω = 9.9. The right panel shows a zoom of the
left panel over the region marked with a rectangle. The new homoclinic points 5’
and 6’ correspond to new breather solutions of the Klein-Gordon lattice. The point
with label 4’ corresponds to a two-site breather, which exists in the homogeneous
lattice and persists for m0 ≤ 0.012.

As a conclusion, we have seen that the truncated normal form (70) allows one
to predict with a high precision certain breather bifurcations in the Klein-Gordon
chain, which occur as the mass defect m0 is varied. These bifurcations depend on
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Figure 13: Bifurcation diagram of breather solutions numerically computed in the
Klein-Gordon chain, with a soft potential and a mass defect m0 at n = 0. In the left
panel the breathers energies E are depicted versus m0 (see the definition of E in the
caption of figure 11). The breathers frequency is ω = 9.9. The lower branch at the
left of the vertical line corresponds to a two-site breather centered between n = 1
and n = 2. The right panel shows the profiles of the three breathers for m0 = 0.012,
when all of them coexist (the value of m0 is marked with a vertical line in the left
panel).

the fine structure of the windings of the stable and unstable manifolds of the origin,
computed on the truncated normal form without defect.
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[FSW86] J. Fröhlich, T. Spencer and C.E. Wayne. Localization in disordered, non-
linear dynamical systems, J. Stat. Phys. 42 (1986), 247-274.

[Gel00] V. Gelfreich. Splitting of a small separatrix loop near the saddle-center
bifurcation in area-preserving maps, Physica D 136 (2000), 266-279.

[GLC05] B. Gershgorin, Yu.V. Lvov and David Cai. Renormalized waves and dis-
crete breathers in β-Fermi-Pasta-Ulam chains, Phys. Rev. Lett. 95 (2005),
264302.

[GM04] J. Giannoulis and A. Mielke. The nonlinear Schrödinger equation as a
macroscopic limit for an oscillator chain with cubic nonlinearities, Nonlinearity
17 (2004), 551-565.

[GM06] J. Giannoulis and A. Mielke. Dispersive evolution of pulses in oscillator
chains with general interaction potentials, Discrete and Continuous Dynamical
Systems B 6 (2006), 493-523.

[HRGB96] D. Hennig, K.Ø. Rasmussen, H. Gabriel and A. Bülow. Solitonlike so-
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