May 27,2005 13:22 WSPC/INSTRUCTION FILE Aruiz_1LICIS

International Journal of Cooperative Information Systems
© World Scientific Publishing Company

IMPROVING THE AUTOMATIC PROCUREMENT OF WEB
SERVICES USING CONSTRAINT PROGRAMMING*

ANTONIO RUIZ-CORTES, OCTAVIO MARTIN-DIAZ, AMADOR DURAN AND M. TORO

Departamento de Lenguajes y Sistemas Informdticos, Universidad de Sevilla
E.T.S.1. de Informdtica, Avda. Reina Mercedes s/n
41012 Sevilla, Spain

Received (Day Month Year)
Revised (Day Month Year)

Software solutions to automate the procurement of web services are gaining importance
as the technology evolves, the number of providers increases and the needs of the clients
become more complex. There are several proposals in this field, but they all have im-
portant drawbacks, namely: many of them are not able to check offers and demands for
internal consistency; selecting the best offer usually relies on evaluating linear objective
functions—which is quite a naive solution—; the language to express offers is usually
less expressive than the language to express demands; and, last but not least, providers
cannot impose constraints on their clients. In this article, we present a solution to over-
come these problems that relies on constraint programming; furthermore, we present a
run—time framework, some experimental results, and a comparison with other proposals.

Keywords: Cross—Organizational Systems; Web Services; Procurement; Quality—of-
Service; Matchmakers; Constraint Programming.

1. Introduction

The Web is an environment in which service providers, communication links, and
traders may be set up or set down unpredictably. Furthermore, the e-society is be-
coming tightly dependent on web services', which argues for solutions to automate
their procurement. Thus, an effective, automated search and selection of the best
services is essential for administrators and matchmakers.

Many authors argue that the foundations for a set of criteria to select among
different software packages must lie on user requirements?3, and that web ser-
vices are just a particular case of software packages®®. These user requirements,
to which we refer to as demands, are usually specified using boolean expressions,
i.e. conditions, on parameters describing the desired features of a service, for ex-
ample PRICE < 90. On the other hand, providers usually describe the features

*This work has been funded by the Spanish Central Government under grant TIC 2003-02737—
C02-01 (AGILWEB).

May 27,2005 13:22 WSPC/INSTRUCTION FILE Aruiz_1LICIS

2 A. Ruiz-Cortés, O. Martin—-Diaz, A. Durdn, M. Toro

of the services they provide, i.e. their offers, using (parameter, value) pairs, for ex-
ample (PRICE, 75). Notice that the expressiveness of this way of describing offers,
known as parameter—value offers, is very limited because only the equality operator
is allowed, i.e. (parameter, value) pairs are simply a short form of the condition
parameter = value, for example PRICE = 75.

Procurement is the process of finding the best offer for a given demand and
it consists of the following major steps®: (1) a provider advertises its offers in a
repository, e.g., UDDI” or SalCentral®; (2) a customer asks its matchmaker for an
offer to meet its demands; (3) the matchmaker searches for matching offers and
returns a result which may be a set of matching offers, the optimal matching offer
according to a given customer criterion, or a failure message if no matching offers
are found.

Apparently, this is a simple process, but the first experiences in this field have
unveiled many open issues that are not well-supported by current proposals. Un-
fortunately, extending current proposals to overcome these drawbacks is not easy
without changing their formal foundations. Below, we briefly report on some major
problems and their implications, namely:

(1) Prior to advertising an offer and issuing a demand, they both should be checked
for consistency, i.e. to check that they do not have any internal contradictions.
It is usually assumed that this checking is very simple or even unnecessary, but
we do not agree with this idea. For instance, not every current proposal is able
to detect an inconsistency in a very simple demand containing conditions such
as MTTF « 90 and MTTF > 1202.

(2) Checking whether an offer fulfills a given demand, i.e. checking them for con-
formance, is usually performed simply by substituting parameters names in the
expressions in the demand for the parameter values the provider guarantees
in its offer. If after the substitution, all the resulting conditions are evaluated
as true, the demand and the offer are considered to be conformant. This form
of checking conformance is limited by the fact of having different languages
for demands and offers; any condition is allowed in demands but only equality
conditions are allowed in offers. Thus, a matchmaker is said to be expressively
symmetric, or simply symmetric, if it accepts offers and demands written in the
same language and that language includes other logical operators apart from
the equality operator; otherwise, a matchmaker is said to be asymmetric. Unfor-
tunately, most current matchmakers are asymmetric so they are not able to deal
with offers expressed in a more expressive language other than parameter—value
pairs; for example, offers asserting something like MTTF € [90..120].

2In our examples, MTTF denotes mean time to failure, MTTR denotes mean time to repair,
MEDIA denotes communication links, e.g., modem, ISDN, or ADSL, COUNTRY denotes the
country where a service is requested from, and PRICE denotes its price. They are all examples
of parameters describing the features of web services.

May 27,2005 13:22 WSPC/INSTRUCTION FILE Aruiz_1LICIS

Improving the Automatic Procurement of Web Services Using Constraint Programming 3

(3) The process to find the optimal offer out of a set of offers conformant to a
given demand, hereafter optimal selection, may range from using an objective
function to solving a linear optimization problem. In any case, current match-
makers have not been devised to deal with non-linear objective functions or
symmetric models. Thus, current matchmakers are not able to find the offer

that maximizes an objective given by a function like %

(4) A matchmaker that accepts conditions not only on providers but also on clients,
i.e. conditions that must be satisfied by clients in order to be served, is said to
be a two—way matchmaker; otherwise, it is said to be a one—way matchmaker.
Situations in which two—way matchmakers are necessary are very frequent in
practice. For instance, if a web service that offers 128-bit cryptographic func-
tions is hosted in the USA, then demands coming from other countries must
not be accepted due to current USA laws. Most current proposals do not take
these situations into account.

In this article, we present a proposal to improve the automatic procurement
of web services which overcomes the above limitations. Adopting Constraint Pro-
gramming as a formal basis has been the key point to achieve this improvement,
because: (1) constraints allow customers and providers to state their demands and
offers declaratively, endowing the symmetric model with a very powerful expressive-
ness; and (2) both customers and providers do not have to write specific procedures
for consistency and conformance checkings, and optimized search and selection; in-
stead, these operations are implemented by checking properties on demands and
offers by means of a constraint solver in order to get a solution automatically.

In addition, we present a proof—of-concept implementation which allows to evi-
dence that our proposal is feasible as well as to find out to what extent the match-
makers that can be built according to our model have a clear practical interest from
a computational complexity standpoint. We also present a comparison with other
proposals, remarking their solutions to the limitations pointed out at the beginning
of this section.

The rest of the article is structured as follows. First, Section 2 introduces the
theoretical basis for interpreting offers and demands by means of constraints. Section
3 presents our proposal to model the matchmaking process by means of constraint
satisfaction problems. Next, a proof—of—concept of our model is shown in Section
4, and experimental results are documented in Section 5. Then, Section 6 provides
a review of similar proposals. Finally, Section 7 concludes the article and presents
future work.

2. Constraint Programming in a Nutshell

In general, checking a set of constraints for consistency, conformance or finding an
optimal solution are well-known combinatorial problems that are difficult to solve,
not only from a computational complexity standpoint—they are NP-hard problems

May 27,2005 13:22 WSPC/INSTRUCTION FILE Aruiz_1LICIS

4 A. Ruiz-Cortés, O. Martin—-Diaz, A. Durdn, M. Toro

in general—but also from a programming standpoint, since they require expertise in
applied mathematics, algorithms, and software engineering®1°. These problems have
usually been tackled using brute—force and Mathematical Programming (MP)'!. We
propose using Constraint Programming (CP) as an alternative.

2.1. Generalities

CP is the study of computational models and systems based on constraints. CP has
recently attracted the attention of many experts from distant areas because of its
potential to solve hard, real-life problems. Currently, it is becoming the method of
choice for modeling many optimization problems. Not only it is based on a strong
theoretical foundation, but it is also attracting widespread commercial interest®.

A constraint is a relation among several variables, each of which ranges over a
given domain. Thus, a constraint restricts the values of its variables. Their most
important feature is their declarative nature, i.e., they specify what relationships
must hold without specifying a computational procedure to enforce them. The idea
of CP is to solve problems by stating constraints about the problem area and,
consequently, finding a solution that satisfies all of the constraints. This task is
carried out by so—called solvers.

The earliest ideas that led to CP date back to 1960s, and they arose from
the field of Artificial Intelligence. The main step towards CP was achieved when
Gallaire!? and Jaffar and Lassez'® noted that Logic Programming (LP) was just a
particular kind of CP. In LP the user states what needs to be solved instead of how
to solve it, which is very close to the idea of constraints. Therefore, the combination
of constraints and LP is quite natural, and it is referred to as Constraint Logic
Programming (CLP). Furthermore, there are libraries to work with CP in languages
such as C++1%15 Javal®:1d or C#15.

A problem expressed as a set of constraints is formalized as a Constraint Satis-
faction Problem (CSP). A CSP is defined as a set of variables and a set of constraints
specifying which combinations of variables and values are acceptable. Although most
techniques to solve CSPs deal with constraints in which the variables range over the
set of real numbers, there exist well-known transformation schemata to deal with
integer, boolean, enumerated or even powerset domains.

2.2. Definitions

The core of our proposal is a set of definitions by means of which we can rigorously
define the consistency and conformance checks as well as optimal selection.

Definition 2.1. (CSP) A CSP is a three—tuple of the form (V,D,C) where
V # 0 is a finite set of variables, D # (is a finite set of domains (one for each
variable) and C is a set of constraints defined on V.

May 27,2005 13:22 WSPC/INSTRUCTION FILE Aruiz_1LICIS

Improving the Automatic Procurement of Web Services Using Constraint Programming 5

For instance, the following tuple denotes a simple CSP that is used to illustrate
several concepts throughout the paper:

({z,y},{[0..2],[0.2]}, {z +y <4z -y 2 1})

Constraints in CP are generally expressed in a rich language that includes, for
instance, linear and nonlinear constraints, the ability to index arrays with variables,
or logical combinations of constraints. In practice, its expressiveness is only limited
by the capabilities of the underlying solver.

A solution to a CSP consists of an assignment in which each variable gets a
value from its corresponding domain, as long as it satisfies each constraint. In the
previous example, the assignment o = {z — 2,y — 0} is a solution since it satisfies
24+40<4and2-02>1.

Definition 2.2. (Solution space) Let ¢ be a CSP of the form (V,D,(C), its
solution space, denoted as sol(1)), is composed of all its possible solutions.

sol()={oc eV >D|o(C)} (2.1)
where o(C) holds iff each assignment in o satisfies every constraint in C.

In the previous example the solution space is {{z — 1,y — 0}, {z — 2,y — 0},
{z—2,y—~1}}

Definition 2.3. (Satisfiability) Let ¢ be a CSP of the form (V, D, C), % is said
to be satisfiable, denoted as sat(¢), iff its solution space is not empty.

sat(vp) < sol(¥) #0 (2.2)

In the previous example, if the second constraint is replaced with z +y < —1,
then there are no solutions, and the CSP is therefore not satisfiable.

Given a CSP, there are three possible goals to be achieved:!'” i) just one solution,
with no preference regarding which one out of the solution space is selected; ii) all
of the solutions, if any; iii) an optimal solution according to an objective function
defined in terms of the set of variables of CSP. In the last case, such problems are
referred to as Constraint Satisfaction Optimization Problems'®.

Definition 2.4. (Minimum space) Let ¢ be a CSP of the form (V,D, (), its
minimum space with regard to an objective function O, denoted as ming (v, 0), is
composed of all of the solutions of ¢ that minimize O.

ming(v,0) ={ s € sol(¢)) | Y sr€ sol(yp) - O(s) <O(sr) } (2.3)

For instance, consider the CSP in the previous example and an objective func-
tion defined as O(z,y) = z?y. In this case, mins(¥,0) = {{z — 1,y — 0},
{z— 2,y — 0}}.

May 27,2005 13:22 WSPC/INSTRUCTION FILE Aruiz_1LICIS

6 A. Ruiz—Cortés, O. Martin—-Diaz, A. Durdn, M. Toro

Definition 2.5. (Minimum value) Let ¢ be a CSP of the form (V,D,C), its
minimum value with regard to an objective function O, denoted as miny (¢, 0), is
the value the objective function takes on ming(¢, O).

miny(,0) =m & Vs € ming(y,0) - O(s) =m (2.4)

In the previous example, the minimum value is 0.

2.2.1. Graphical representation

CSPs are usually represented by means of a graph, but we do not think this is ade-
quate enough to illustrate the CSPs associated with the conformance checking and
optimal solution problems. We prefer to use Venn Diagrams in which the universal
set (S) represents the multidimensional space whose dimensions are given by the
domains of the variables, and each Venn Diagram represents the solution space of
a particular CSP. Fig. 1 shows a graphical representation of the CSP used in the
example in Section 2.2.

Fig. 1. Graphical representation of a CSP as a Venn Diagram.

For the sake of simplicity and understandability, the elements of the solution
space are omitted when they are not relevant. Similarly, a constraint with only one
solution is depicted as a point.

2.3. Constraint programming versus mathematical programming

The successful use of CP in areas such as planning, scheduling or optimization
rises the question of whether the traditional field of Operations Research (OR) is a
competitor or a partner of CP. For instance, it is worth mentioning that there is a
significant overlap between CP and OR regarding NP-Hard combinatorial problems,
where OR has been used successfully. Whereas OR has a long research tradition
for solving problems using linear programming, CP emphasis is on higher-level
modeling and solving methods that are easier to understand. Most recent advances®
promise that both paradigms can benefit from each other. In particular, CP can be
used as a platform for integrating several constraint—solving algorithms, including

May 27,2005 13:22 WSPC/INSTRUCTION FILE Aruiz_1LICIS

Improving the Automatic Procurement of Web Services Using Constraint Programming 7

those developed and checked to be successful in OR. The reason for choosing to
represent and solve a problem as a CSP is twofold!7:

o The representation as a CSP is often much closer to the original problem than
the representation as an OR problem, since the variables of the CSP corre-
spond directly to domain entities, and the constraints can be expressed without
translating them into linear inequalities, as needed in OR. This makes the for-
mulation simpler, the solution easier to understand, and the choice of good
heuristics to guide the solution strategy more straightforward.

o Although CSP algorithms are essentially very simple, sometimes they can find
a solution faster than more complex integer programming algorithms.

3. Procurement using Constraint Programming

In this section, we show how CP can help automate the procurement tasks, i.e. the
checking for consistency and conformance, and the selection of optimal offers.

3.1. Demands and offers

The key to automating the procurement tasks is to map demands and offers onto
CSPs. In order to do so, each parameter must be mapped onto a variable (with
its corresponding domain), and each condition must be mapped onto a constraint.
For instance, consider the demand “The mean time to failure must be less than 100
minutes” and the offer “ The mean time to failure is greater than 120 minutes”. As-
suming that M'T'TF ranges over the natural numbers, the corresponding CSPs are
({MTTF},{[0, +00]},{MTTF < 100}) and ({MTTF},{[0, +o0]},{MTTF > 120})
respectively.

This mapping needs to be extended for two—way matchmakers since both de-
mands and offers may have complementary information. On the one hand, let §
denote a demand; in a two—way matchmaking context, we can consider é to be
composed of two parts to which we refer to as §7, which asserts the conditions
that the client meets, and §°, which asserts the conditions that the provider shall
meet.? Similarly, any offer w can also be considered to be composed of w” (what it
guarantees) and w? (what is required from its clients).

In general, with o being a demand or an offer, its corresponding CSP can be de-
noted as the pair of CSPs %% and ¥Y. In the case of one-way matchmakers, which
can be considered a particular case of two—way matchmakers, the corresponding
CSP is only ¢# for demands and v for offers, i.e. demands contain only require-
ments and offers contain only guarantees.

bIn other words, 87 represents the requirements a provider must fulfill in order to match the &
demand; that is why is denoted by the Greek letter rho (i.e. pequirements). On the other hand, §7
represents what a client guarantees about itself; that is why is denoted by the Greek letter gamma
(i.e. yuarantees). The same concepts are also applied to offers.

May 27,2005 13:22 WSPC/INSTRUCTION FILE Aruiz_1LICIS

8 A. Ruiz-Cortés, O. Martin—-Diaz, A. Durdn, M. Toro

For instance, consider the demand “The mean time to failure shall be less than
100 minutes” (6°) “and my host is in Spain” (67) and the offer “ The mean time to
failure is greater than 120 minutes” (w") “for USA and British clients only” (w?).
Agsuming the previous definition of MTTF and that the COUNTRY variable
ranges over the powerset of A = {ES, US, UK, FR}, i.e. P(A), their corresponding
CSPs are defined as follows:

6 =({MTTF },{[0,400] },{ MTTF < 100 })
67 =({ COUNTRY },{P(A) },{ COUNTRY={ES}})
W' =({MTTF },{[0,+00] },{ MTTF > 120 })
w? = ({ COUNTRY },{ P(A) },{ COUNTRY C { UK,US } })
Note that interpreting demands and offers as CSPs is also valid for both sym-
metric and asymmetric matchmakers since the latter can be viewed as a particular

case of the former in which the offers are expressed exclusively as parameter—value
offers.

3.2. Checking for consistency

Checking an offer or a demand for consistency allows to unveil whether they have
internal contradictions or not. In terms of CP, this amounts to verifying that their
equivalent CSPs are satisfiable.

Definition 3.1. (Consistency) A demand or an offer a is said to be consistent
iff its corresponding equivalent CSPs are satisfiable.

consistent(a) < sat(¢¥h) A sat(yp]) (3.5)

As an example, a demand that requires both MTTF < 90 and MTTF > 120
is inconsistent since it is not satisfiable. On the contrary, a demand that requires
MTTF > 90 and MTTF < 120 is consistent since it is satisfiable (the range of its
solution space is {91,...,119}).

3.3. Checking for conformance

Checking if an offer conforms to a demand allows to know whether the values
guaranteed by a party meet the values required by the other party and viceversa.
In terms of CP, this amounts to verifying that the solution space corresponding to
the guarantees is a subset of the solution space corresponding to the requirements.

Definition 3.2. (Conformance) An offer w and a demand § are said to be
conformant iff the solution space of 97 is a subset of the solution space of ¢§ and
the solution space of 1] is a subset of the solution space of ¥7.

conforming(w,8) < sol(¢]) C sol(¢5) A (3.6)
sol(1]) C sol(142)

May 27,2005 13:22 WSPC/INSTRUCTION FILE Aruiz_1LICIS

Improving the Automatic Procurement of Web Services Using Constraint Programming 9

For instance, an offer that guarantees MTTF € [100..120] is conformant to a
demand that requires MTTF > 100 since all of the values between 100 and 120
are greater or equal than 100, but it does not conform to a demand that requires
MTTF > 110 since the values between 100 and 109 are less than 110. Note that
this conformance semantics might be branded as pessimistic conformance, because
although some values in the guarantees could satisfy the requirements, only when
all possible values in the guarantees satisfy the requirements, an offer and a demand
are considered as conformant.

Fig. 2 depicts conformant and non—conformant situations. In Fig. 2.b, the non—
conformance is due to the customer not being able to guarantee the conditions
required by the provider, for example in a situation like the one described in Section
3.1, where the client of a host was neither from the USA nor British, but Spanish.
In Fig. 2.c, the non—conformance is due to the provider not being able to guarantee
the conditions required by the customer. Needless to say, this is the most usual
non—conformance situation in practice.

2% @ e

(a) Conformance (b) Non-conformance due to customer (c) Non-conformance due to provider

S S

Fig. 2. Conformance in two—way, symmetric matchmakers.

3.4. Finding the optimal

The final goal of matchmaking is, given a demand, finding a conformant offer that
is optimal from the customer’s point of view. In the same way the two previous pro-
curement tasks—checking for consistency and conformance—, finding the optimal
offer can also be interpreted as a CSP, more specifically as a Constraint Satisfaction
Optimization Problems (CSOP), which requires a preference order defined on the
offer set. In order to establish a preference order, a weighted composition of utility

functions'®20 can be used, whose general form is as follows:
n n
Upr,...,pn) =D ki Ui(pi) ki€l0,1] > k=1 (3.7)
=1 =1

where each p; denotes a parameter, each k; its associated weight, and each U; its
associated utility function ranging over [0,1] and describing how important the
parameter values are for the client.

May 27,2005 13:22 WSPC/INSTRUCTION FILE Aruiz_1LICIS

10 A. Ruiz—Cortés, O. Martin—-Diaz, A. Durin, M. Toro

In Fig. 3, three utility functions for the parameters used in the example in
the next section are shown. The utility function for MTTF is a piecewise linear
function that defines a minimum utility for MTTF under 60 minutes; for MTTF
between 60 and 120 minutes, the utility grows linearly, and for MTTF above 120,
utility reaches its maximum value. The second utility function, which is a decreasing
piecewise linear function, defines the utility for the MTTR parameter. The third
utility function in Fig. 3 is a point—defined function for the MEDIA parameter
in which the utility depends on the bandwidth of the different set of available
communication links.

L Utility for Mean Time To Failure A Utility for Mean Time To Repair 2 Utility for Communication Links
\
1 1 1
0,75 0,75 0,75
05 05 05
0,25 0,25 0,25 fndm
> >
° 45 75 o0 105 120 140~ ° 5 10 15 20)! 30 35 > 0 Modem 7
() Modem 1SDN Modem ppg Modem JSOM igpy
MTTF MTTR 1SoN ADSL ADSL
MEDIA

Fig. 3. Utility functions for MTTF, MTTR, and MEDIA.

As an example, consider an offer w; that guarantees that MTTF € [75,120] and
an offer wy that guarantees that MTTF € [90, 105]. Which is it the optimal offer
according to the utility function for MTTF in Fig. 3? At first sight, it could seem
that w; is the best one since its attainable maximum utility, i.e. its utility in the
best—case scenario—which is 1 for a MTTF of 120—is greater than the attainable
maximum utility of we—which is 0.75 for a MTTF of 105.

Nevertheless, if a pessimistic approach were considered, the best offer would be
wy since its attainable minimum utility, i.e. its utility in the worst-case scenario—
which is 0.5 for a MTTF of 90—is greater than the attainable minimum utility of
wi—which is 0.25 for a MTTF of 75.

Definition 3.3. (Optimal offer) Let Q5 be a set of offers conformant to a de-
mand 4, it is said that an offer w €)5 is optimal with regard to a utility function
U iff the minimum value of v, with regard to function U is the maximum of the
minimum values of all offers in 25 with regard to function U'. We denote the set of
optimal offers as QEU.

QGu={weQ | Yu' €95 - miny(s,,U) > miny(sb,,U) } (3.8)

May 27,2005 13:22 WSPC/INSTRUCTION FILE Aruiz_1LICIS

Improving the Automatic Procurement of Web Services Using Constraint Programming 11

3.5. An illustrative example

Consider that a company is interested in setting up a web portal specialized in
movies offering a potentially infinite catalog of movies and the same functionality
as a domestic video player. In order to achieve such a goal, the company should
subcontract at least three kinds of web services: a service for streaming videos on
the Internet, a service for managing catalogs and keeping them up-to—date, and a
service for managing virtual shops. In this way, the portal would provide a service
by means of the integration of other lower—level, third—party services.

Consider also that the interface IVideoServer abstracts the operations a web
service for on—demand video streaming must have in order to be integrated into
the web portal. Fig. 4 shows how the demand for such an interface, the offers
and the parameters involved in our example can be formalized in QRL?! (Quality
Requirements Language), which is a language specifically devised for that purpose
by one of the authors of this article as part of his PhD. thesis.??

In Fig. 4.a, two catalogs of parameters, the first one related to reliability and
the second one to service hosting, are described. In Fig. 4.b, the demand from the
web portal, including requirements, guarantees and preferences, is described. The
preferences are specified in the assessment section by means of weighted utility
functions, which in this case correspond to the utility functions depicted in Fig. 3.
In Fig. 4.c, the offer from the Velazquez provider, which is only available for Spanish,
British, American and Italian clients, is specified. In Fig. 4.d, the offer from a second
provider, Cervantes, which imposes no requirements about the country where client
must be located, is described.

In Fig. 5, the solution spaces of the demands and offers in the example are
depicted. As can be seen, all solution spaces are not empty, implying that the cor-
responding demands and offers are all consistent. Taking into account that the two
offers and the demand are conformant with respect to COUNTRY and MEDIA
parameters—see Fig. 5.a for the space solutions related to the MEDIA parameter—
, and that Fig. 5.b shows the inclusion of the solution spaces of both offers in the
solution space of the demand, we can also say that the two offers and the demand
are conformant.

As stated in Eq. 3.8, to select the optimal offer, the minimum value the weighted
composition of utility functions (see Eq. 3.7) takes in the solution spaces of the offers
must be computed. In order to do so, the minimum value of each parameter utility
function must be computed and weighted. Applying Eq. 3.7 to the two offers, the
results are the following:

miny (¥ velazquez) = 0.9 % 0.25 + 0.05 % 0.85 + 0.05 * 1.0 = 0.32
miny (1 Cervantes) = 0.9 % 0.50 + 0.05 % 0.75 + 0.05 % 0.5 = 0.51

80, the optimal offer is the offer from the Cervantes provider.

May 27,2005 13:22 WSPC/INSTRUCTION FILE

Aruiz_1LICIS

12 A. Ruiz—Cortés, O. Martin-Diaz, A. Durin, M. Toro

// A catalog of reliability parameters

catalog Reliability {
MTTF{
description : "Mean Timeto Failure";
domain : integer [0,10000] minute;

}

MTTR{
description : "Mean Time To Repair";
domain : integer [0,10000] minute;
}
}

// A catalog of hosting parameters

catalog Hosting {
MEDIA {
description:
"Communication links the service can be
delivered over";
domain : powerset { modem, ISDN, ADSL};
t

COUNTRY {
description:
"Country where the service is requested from";
domain : powerset {ES, UK, IT, US, FR, BF};
}
}

(a) Parameter catalogs

// Web service offer provided by Velazquez

using Reliability,Hosting;
product [VideoServer;

gduarantees {

O1:MTTF >=75 and MTTF<=120;
02:MTTR>=5 and MTTR<=3§;
03: MEDIA = {ADSL,ISDN,modem};

}

requires {
R1:COUNTRY O{ES, UK, US, T };
}

(c) Velazquez's offer.

// Web service demand for IVideoServer

using Reliability, Hosting;
product [VideoServer;

requires {
D1:MTTF/(MTTF+MTTR)>=0.9;
D2: MEDIA O {modem,ISDN};

}

assessment {
MTTF { weight=0.9,
{(0,0), (60,0), (90,0.5),(120,1) }
}
MTTR{weight=0.05,
{(0,1), (5,1),(15,0.5),(25,0) }
}
MEDIA { weight =0.05,
{case MEDIA={}:0;
case MEDIA = {modem} : 0.1;
case MEDIA = {ISDN} : 0.3;
case MEDIA = {ISDN, modem} : 0.5;
case MEDIA = {ADSL} : 0.9;
case MEDIA = {modem, ADSL} : 1;
case MEDIA = {ISDN, ADSL} : 1;
case MEDIA = {modem, ISDN, ADSL} : 1;
}
}

guarantees {
P1:COUNTRY ={ES};
}

(b) Customer's demand.

// Web service offer supplied by Cervantes

using Reliability, Hosting;
product [VideoServer;

guarantees {
O1:MTTF>=90 and MTTF <=105;
02:MTTR>=8 and MTTR<=10;
O3: MEDIA = {modem,ISDN};

}

(d) Cervantes'soffer.

Fig. 4. Catalogues, demands, and offers written in QRL.

May 27,2005 13:22 WSPC/INSTRUCTION FILE Aruiz_1LICIS

Improving the Automatic Procurement of Web Services Using Constraint Programming 13

15 - MTTF / (MTTF + MTTR) >= 0.9
13 | MTTF>=903and MTTR <= 105

MTTR > 8 and MTTR <= 1D L
s o
°o{ —

MTTR

MTTF >={75 and MTTR <= 120
MTTR > 5 and MTTR <=8

0 — :
70 80 90 100 110 120 130
MTTF

(a) Solutions regarding MTTF and MTTR.

MEDIA

customer's
demand

Cervantes

Velazquez

(b) Solutions regarding MEDIA.

Fig. 5. Solution spaces of customer’s demand, Velazquez’s and Cervantes’s offers.

4. Proof-of—Concept Implementation

In this section, the most relevant aspects of the prototype of the symmetric, two—way
matchmaker developed as a proof-of-concept are described. Firstly, the constraint
solver used in the prototype is briefly commented. Then, we describe how procure-
ment tagks can be performed using the solver capabilities. At the end of the section,
the architecture of the prototype is presented®.

4.1. ILOG OPL Studio

ILOG OPL Studio'® version 3.6 has been the constraint solver chosen for the imple-
mentation of the proof-of-concept prototype. Apart of an application programming
interface (API) which can be used from many programming languages, OPL Studio
offers an integrated development environment (IDE) for modeling and solving CSPs
and CSOPs with an intuitive graphical user interface.

¢The interested reader can try a sample web application using the proof-of-concept prototype
which is available at http://www.tdg-seville.info/topics/procurement.html.

May 27,2005 13:22 WSPC/INSTRUCTION FILE Aruiz_1LICIS

14 A. Ruiz—Cortés, O. Martin—-Diaz, A. Durin, M. Toro

CSP =({x,y}, {[0..2],[0..2]}, {x+y <4, x-y>=1}) CSOP = min O(xy) = x%
| st x+y < 4, x-y >=1

: | varint x in 0..2;
{ varintx in 0..2; : varinty in 0..2;
: varintyin 0..2; : minimize
e solve { Ml XTXTy
i T)}':f{, subject to {
¥ ! X+y<4;
’ x-y>=1;
b
(a) Mapping for a CSP. (b) Mapping for a CSOP.

Fig. 6. Mapping CSPs and CSOPs onto OPL models.

To solve a constraint problem in OPL Studio, a model of the problem specified
in the OPtimisation Language® (OPL) is needed. Figure 6 depicts how to model in
OPLA the CSP and the CSOP used in the examples in Section 2. In the case of a
CSP, its equivalent OPL model consists of a declaration section where variables and
their domains are declared, and a solve section where constraints to be solved are
defined. In the case of a CSOP, its equivalent OPL model consists of a declaration
section, a mazimize/minimize section where the optimization function is defined,
and a subject to section where constraints to which the optimization function is
subject to are defined.

Once a model is defined in OPL, it is possible to query whether is satisfiable or
not. If the model is satisfiable and all solutions are required, the OPL user must ask
iteratively for the next solution. If the problem is a CSOP, solutions are returned
ordered by their objective function value, which can also be delivered with the
solution.

4.2. Mapping procurement tasks onto OPL models

QRL semantics assumes the existence of an ideal underlying solver. Thus, when
translating offers and demands expressed in QRL into OPL, some details must be
taken into account. As a case of QRL—t0—-OPL translation, the example in section
3.5 will be used for that purpose.

4.2.1. Checking consistency

According to Eq. 3.5, checking the consistency of an offer or a demand is equiv-
alent to ask a constraint solver whether their corresponding CSPs are satisfiable
or not. Fig. 7.a shows the OPL model for the consistency checking of the de-
mand in Fig. 4.b. Notice that OPL does not allow to declare set variables, al-
though they can be supported by means of boolean arrays indexed by an enu-
meration representing the set elements. A side—effect of this way of supporting set

dQOPL also allows modeling more complex problems and specifying the solution search procedure.
The details of such capabilities are out of the scope of this article.

May 27,2005 13:22 WSPC/INSTRUCTION FILE Aruiz_1LICIS

Improving the Automatic Procurement of Web Services Using Constraint Programming 15

enum TYPE_MEDIA {MEDIA_modem,MEDIA_ISDN,MEDIA_ADSL};
var int MEDIA[TYPE_MEDIA] in 0..1;

enum TYPE_COUNTRY {COUNTRY_ES, COUNTRY_UK, COUNTRY_IT,
COUNTRY_US, COUNTRY_FR, COUNTRY_BF};
var int COUNTRY[TYPE_COUNTRY]in 0..1;

range TYPE_MTTF 0..10000;
var TYPE_MTTF MTTF;

range TYPE_MTTR 0..10000;
var TYPE_MTTR MTTR;

solve {
(MTTF * 100) / (MTTF + MTTR) >= 90;
MEDIA[MEDIA_modem]=1 & MEDIA[MEDIA_ISDN]=1;
COUNTRY[COUNTRY_ES] = 1
& COUNTRY[COUNTRY_UK] = 0 & COUNTRY[COUNTRY_IT] = 0
& COUNTRY[COUNTRY_US] = 0 & COUNTRY[COUNTRY_FR] = 0
& COUNTRY[COUNTRY_BF] = 0;
I
(a) Checking consistency.

enum TYPE_MEDIA { MEDIA_modem,MEDIA_ISDN,MEDIA_ADSL};
var int MEDIA[TYPE_MEDIA] in 0..1;

enum TYPE_MEDIA var int UTILITY_MEDIA_VALUE in 0..111;
{ MEDIA_modem,MEDIA_ISDN,MEDIA_ADSL};
var int MEDIA[TYPE_MEDIA] in 0..1; range TYPE_MTTF 0..10000;

var TYPE_MTTF MTTF;
range TYPE_MTTF 0..10000;
var TYPE_MTTF MTTF; range TYPE_MTTR 0..10000;
var TYPE_MTTR MTTR;
range TYPE_MTTR 0..10000;

var TYPE_MTTR MTTR; minimize
0.90 * piecewise{0->60;1.67->90;1.67->120;0} MTTF+
solve { 0.05 * (100 - piecewise{0->5;5->15;5->25;0} MTTR) +
/I CERVANTES'S IVIDEOSERVER OFFER 0.05 * piecewise{1->1;3.22->10;20->11;0.45->100;10->101;0}
90 <= MTTF <= 105; UTILITY_MEDIA_VALUE
8 <= MTTR <= 10;
MEDIA[MEDIA_modem] = 1 subject to {
& MEDIA[MEDIA_ISDN] = 1 & MEDIA[MEDIA_ADSL] = 0; UTILITY_MEDIA_VALUE
= sum(AUX_MEDIA in TYPE_MEDIA)
not(// IVIDEOSERVER DEMAND MEDIA[AUX_MEDIA] * pow(10,0rd(AUX_MEDIA));
((MTTF * 100) / (MTTF+MTTR) >=90)
& (MEDIA[MEDIA_ISDN] = 1 /I VELAZQUEZ'S IVIDEOSERVER OFFER
& MEDIA[MEDIA_modem] = 1)); 75 <= MTTF <= 120;
I3 5<=MTTR <= 8;

MEDIA[MEDIA_modem] = 1
& MEDIA[MEDIA_ISDN] = 1 & MEDIAIMEDIA_ADSL] = 1;
I3
(b) Checking conformance. (c) Computing minimum value.

Fig. 7. OPL models for computing the procurement tasks.

variables is that constraint and utility function definitions become awkward. Also
notice that the constraint MTTF/(MTTF + MTTR) > 0.9 is translated into
100(MTTFEF/(MTTF + MTTR)) > 90 due to the impossibility of OPL to deal
with real non—linear constraints.

4.2.2. Checking conformance

According to Eq. 3.6, a possible way of checking conformance is computing the
corresponding solution spaces and then checking whether they are subsets or not. Set
inclusion is supported neither by OPL Studio nor—to the best of our knowledge—
by any other constraint solver. Fortunately, there is an indirect way of checking

May 27,2005 13:22 WSPC/INSTRUCTION FILE Aruiz_1LICIS

16 A. Ruiz—Cortés, O. Martin-Diaz, A. Durin, M. Toro

whether the solution space of a CSP is a subset of the solution space of another
CSP by means of the constraint implication defined by Marriot and Stuckey?3:

Definition 4.1. (Constraint implication) Let ¢, be a CSP of the form
(V,D,C,) and let 15 be a CSP of the form (V, D, Cjs). The solution space of ¥,
is a subset of the solution space of 15 iff the CSP defined as (V,D,C, — Cjs) is
satisfiable, or iff its equivalent CSP (V, D, C, A —Cj) is not satisfiable.

Thus, applying the constraint implication, both consistency and conformance
checking can be considered as CSPs. In Fig. 7.b, the OPL model for checking
whether the offer from the Cervantes provider and the demand in Fig. 4 are con-
formant, is shown. Notice the use of the not operator for expressing the negation
of the demand, as indicated by the constraint implication definition.

4.2.3. Finding the optimal offer

According to Eq. 3.8, the optimal offer is the offer with the maximum of the mini-
mum values of all conformant offers. The minimum value of an offer subject to an
utility function (see Eq. 2.4) is obtained in OPL Studio requesting the solver for the
first solution, which is the solution with the lowest utility value. The OPL model
for finding the minimum value of the offer from Velazquez subject to the utility
function in Fig. 4.b is shown in Fig. 7.c. Once the set of minimum values has been
computed for all offers, the optimal offer is the one corresponding to the maximum
value in the set.

Notice that in current version of OPL, piecewise linear functions are defined not
as a sequence of points (z,y) but as a sequence of slopes at a point (s,). Also notice
that decreasing utility functions—like the utility function for MTTR in Fig. 3—are
not allowed, so a translation into an equivalent increasing function is required.

4.3. Architecture

A prototype of the symmetric, two—way matchmaker has been developed using a
component—oriented architecture, which is depicted in Fig. 8 The major compo-
nents are briefly described below.

e ST-Matchmaker. In order to provide a unified interface to the matchmaker clients
as well as minimize the communication and dependencies among components of
the prototype, we have decided to apply the facade design pattern.2* The ST—
Matchmaker component plays this role.

e Translator. We assume that both demands and offers are specified in QRL, so
a translation from QRL into OPL is needed. As an XML-based abstract syntax
for QRL is available, this translation is carried out by using XSLT stylesheets??
taking into account the mapping issues described in previous sections.

May 27,2005 13:22 WSPC/INSTRUCTION FILE Aruiz_1LICIS

Improving the Automatic Procurement of Web Services Using Constraint Programming 17

? ISTMatchmaker

ST-Matchmaker
@) (@ (@)
ITranslator ISolver IPreprocessor
Translator Solver Pre-processor

Fig. 8. Matchmaker architecture.

o Pre—processor. The goal of this component is to improve the solving process by
using symbolic processing techniques very similar to the techniques used by the
authors in previous works!?. These techniques transform the OPL model into an
equivalent model which can be solved more efficiently.

o Solver. This is the central component of the architecture. In the current prototype,
this component is an adapter?* of the OPL Studio APIL. Thus, this component
shields the matchmaker from solver specific details, allowing the use of different
solvers in the future.

The activities needed to support the matchmaking process are depicted in the
self-explaining activity diagram in Fig. 9.

5. Experimental Results

In this section, the experiments carried out to empirically analyze the behavior of
our symmetric, two—way matchmaker performing procurement tasks are presented.
The empirical results have made evident that using a constraint solver is a viable
technique from a practical point of view, provided several conditions on significant
constraint factors are fulfilled.

5.1. Ezxecution environment

The experiments were implemented using the J# programming language, which
is an efficient Java dialect for the Microsoft .NET platform. The tests were per-
formed on a computer with the Microsoft Windows 2000 Professional operating sys-
tem, a 1.8 Ghz AMD Athlon microprocessor, and 512 megabytes of RAM memory.
The background tasks of the operating system—known as services in Microsoft’s
terminology—except the .NET garbage collector were reduced to the minimum in

’ May 27,2005 13:22 WSPC/INSTRUCTION FILE Aruiz_1LICIS

18 A. Ruiz—Cortés, O. Martin-Diaz, A. Durin, M. Toro

ST-Matchmaker Pre-processor Translator Solver

ng demand
and offers

Pre-processing
demand

Translating
demand

Checking
consistency
of demand

[else] [deman(d is consistent]

Processing
offers

Pre-processing
offer

Translating
offer

Checking
consistency
of offer

[else]
[offer is corjsistent]

Checking
conformance

of offer with
demand

[else]

[offer is conformant]
Declaring
offer as

conformant

Computing
utility of offer

* [for ea¢h offer in offers

Selecting
the optimum
offer

Fig. 9. Matchmaking activities.

May 27,2005 13:22 WSPC/INSTRUCTION FILE Aruiz_1LICIS

Improving the Automatic Procurement of Web Services Using Constraint Programming 19

order to avoid as much exogenous interferences as possible. In order to reduce signif-
icance of possible outliers produced by occasional interferences with the operating
system or the network, averaged times in 30 runs were registered and the maximum
and the minimum timings for each experiment were discarded.

5.2. Significant factors

Both from a theoretical and practical point of view, the analysis to determine the
tendency of the performance of a constraint solver is a difficult task. Most ex-
perimental studies are based on identifying significant factors that determine the
viability of CSP/CSOP resolution in the worst case. The validity of the results may
be different between different solvers because not all of them implement the same
solving heuristics. As an example, variables can be preprocessed and reordered in or-
der to adjust the CSP to a concrete solver and get a better performance. Therefore,
our experimental results are influenced by heuristics of the OPL Studio solver.

In our experiments, we have considered that the worst case is a CSP/CSOP
whose constraints are defined so that they reduce the initial search space as less as
possible. The significant constraint factors taken into account are the following;:

(1) The number of variables (N) of the CSP which, together with their domains,
determine the initial search space given by the Cartesian product of the do-
mains. We distinguish between small domains (unsigned integers providing 256
solutions per variable), medium domains (unsigned short integers providing
65536 solutions per variable), and large domains (signed long integers provid-
ing 4.2 * 10° solutions per variable).

(2) The number of constraints (C) of the CSP, which can affect solving time, espe-
cially in case of inequalities.

(3) The arity of a constraint (A), which is given by the number of bound variables
in a constraint. In general, solvers are able to reduce the initial search space
using unary constraints. For example, the unary constraint zg < 10 cuts off the
initial search space, whereas the binary constraint o + z; < 100 does not.

5.3. Consistency checking experiments

In the first experiment, the performance of consistency checking—of both consistent
and non—consistent CSPs—was measured. In order to reduce the initial search space
as less as possible, the tested CSPs contained the minimum number of constraints
needed to bind all variables, which is given by the expression Cp;y = N — A+ 1.
For example, Fig. 10.a depicts the CSP used for N = 3, A = 1 and Fig. 10.c depicts
the CSP used for N = 5, A = 3. In the case of non—consistent CSPs, a constraint
to induce the inconsistency was explicitly added (see Fig. 10.b and 10.d).

May 27,2005 13:22 WSPC/INSTRUCTION FILE Aruiz_1LICIS

20 A. Ruiz—Cortés, O. Martin-Diaz, A. Durdn, M. Toro

var int x0 in 0..255; var int x0 in 0..255;
var int X2 in 0..255; var int x2 in 0..255;
solve { solve {
x0 > 10; X0 > 10; x0 < 10;
x1>10; x1>10;
x2 > 10; X2 > 10;
h L

(a) Unary constraints (consistency) (b) Unary constraints (non-consistency)

solve { solve {
X0 + x1 +x2 > 10; X0 + x1 +x2 > 10; x0 + x1 + x2 < 10;
x1 + x2 + x3 > 10; x1 + x2 +x3 > 10;
X2 + x3 + x4 > 10; X2 + x3 + x4 > 10;
h h
(c) 3-ary constraints (consistency) (d) 3-ary constraints (non-consistency)

Fig. 10. A number of OPL models for consistency checking experiments.

The first series of experiments aimed to study consistency checking in small and
large domains. In the CSPs tested with small domains, N ranged from 1 to 1500
and A ranged from 1 to 10. The results of these experiments are shown in Fig. 11.a.
As can be seen, the performance presents a linear behavior so that execution times
slightly increase with respect to A and IN. This was the expected behavior since the
consistency checking is actually a satisfiability problem, so the solver only needs to
find a solution for determining whether a CSP is satisfiable or not.

In CSPs tested with large domains, N ranged from 1 to 30 and A ranged from 1
to 10. Results are shown in Fig. 11.b. Note that for arities below 4, execution times
are very similar in small and large domains, but for arities above 4, execution time
gets considerably worse in large domains. For example, whereas in small domains it

350 4 350 4
300 1 300 1
250

200 4 W

150 A

0 5 g g p T = ="

50 4 50 1

250

200 1

150

Execution Time
(in milliseconds)
Execution Time
(in milliseconds)

100

1 2 3 4 9 10 1 2 3 4 5 6 7 8 9 10
Arity Arity
—%—N=50 5-N=100 —4— N=500 N =1000 ——N = 1500 —%-N=10 -A—~N=15 4-N=20 5 N=25 -4 N=30
(a) Consistency (small domain) (b) Consistency (large domain)

Fig. 11. Results from consistency checking experiments.

May 27,2005 13:22 WSPC/INSTRUCTION FILE Aruiz_1LICIS

Improving the Automatic Procurement of Web Services Using Constraint Programming 21

is possible to check the consistency of a constraint of 1500 variables with a maximum
arity of 4 in 200 milliseconds, in large domains it is only possible to check the
consistency a constraint of 30 variables with a maximum arity of 6 in the same period
of time. As can be seen in Fig. 11.b, there are some arity values in which execution
time suddenly decreases. Taking into account that the number of constraints in
the tested CSP decreases as the arity increases, the results in Fig 11.b are not
surprising. Notice that when the number of variables is equal to the arity, the
number of constraints is only one.

The second series of experiments aimed to studying non—consistency checking
in small and large domains. In the CSPs tested with small domains, N ranged from
1 to 20 and A ranged from 1 to 10. Results are shown in Fig. 12. As can be seen,
the performance presents an exponential behavior so that execution times heavily
increase with respect to A and N. This behavior is due to the fact that the solving
process derives to an exhaustive search when no solutions can be found.

Execution Time
(in milliseconds)

Arity

—>*—N=10 #-N=15 -N=20

Non-consistency (small domain)

Fig. 12. Results from non—consistency checking experiments.

With respect to large domains, the OPL solver throws an out—of-memory ex-
ception when tries to solve a non—consistent CSP with a binary constraint. This
behavior is due to the fact that the initial search space is 10® times bigger than in
the small domain cases.

Summing up, the performance of consistency checking is acceptable for demands
and offers using small domains and having an arity below 7. Since the usual arity
in demands and offers is usually lower than 4 and large domains are seldom needed,
we can conclude that consistency checking using our approach can be performed
efficiently in most cases.

5.4. Conformance checking erperiments

In the second experiment, the performance of conformance checking—again, of both
consistent and non—consistent CSPs—was measured. Since conformance checking
is also a satisfiability problem—and in order to avoid experiment repetition—in

May 27,2005 13:22 WSPC/INSTRUCTION FILE

22 A. Ruiz—Cortés, O. Martin—-Diaz, A.

var int x0 in 0..255;
var int x2 in 0..255;

solve {
x0>4; x1>2; x2>10;
not(x0 > 4 & x1 > 2 & x2 > 10);
b

(a) Binary constraints(conformance)

solve {

X0 + x1 +x2 > 10;

not (x0 + x1 + x2 > 10);
h

(c) 3-ary constraints (conformance)

Aruiz_1LICIS

Durdn, M. Toro

var int X0 in 0..255;
var int x2 in 0..255;

solve {
x0>4; x1>2; x2>10;
not(x0 > 4 & x1 > 2 & x2 < 10);
¥

(b) Binary constraints (non-conformance)

solve {
X0 + x1 + x2 > 10;
not(x0 + x1 + x2 < 10);
h

(d) 3-ary constraints (non-conformance)

Fig. 13. Some OPL models for conformance checking experiments.

this experiment we focused on the impact of the negation clause in Marriott and
Stuckey’s equation (see Section 4.2.2). Fig. 13 shows some examples of CSPs used
in this experiment, with significant factors taking similar values than in the first
experiment.

Experimental results of this experiment are shown in Fig. 14. In the case of
satisfiable CSPs, i.e. non—conformant demands and offers, the performance shows a
linear behavior with respect to the number of variables in both small and medium
domains. In the case of non-satisfiable constraints, i.e. conformant demand and
offers, the performance presents an exponential behavior with respect to the number
of variables for medium domains and a linear behavior for small domains.

Notice that non—conformant cases perform better than conformant ones, mak-
ing evident the strong impact on performance of the negation clause in Marriott’s
equation. In the worst case, the problem is viable when the number of variables is

under 4.
100 250
200
gz " 23
F5 F S 150
<
g% s0 ER]
3= 3=
S E S E 100
X o X
wE we
25 50
R — e
0+ 0} !) R =,
2 4 6 8 10 12 14 16 18 20 2 3 4 5 6 7 8 9 10

Parameters (A = 1)

Parameters (A = N)

—3-conformance (small domain)
—&— conformance (medium domain)

—B- non-conformance (small domain)
—— non-conformance(medium domain)

—- conformance (small domain)
—&— conformance (medium domain)

—5- non-conformance (small domain)
—— non-conformance (medium domain)

Fig. 14. Results from conformance checking experiments.

May 27,2005 13:22 WSPC/INSTRUCTION FILE Aruiz_1LICIS

Improving the Automatic Procurement of Web Services Using Constraint Programming 23

Summing up, the performance of conformance checking is acceptable for de-
mands and offers using unary or binary constraints. For constraints with arity
greater than 2, performance gets worse exponentially. Although conformance check-
ing figures are worse than consistency checking figures, they can still be considered
as being acceptable.

5.5. Optimal selection experiments

In the third experiment, the performance of optimal selection was measured. We
were inspired by one of the experiments on AgFlow carried out by Zeng.!! In Zeng’s
experiment, the execution time needed to find the optimal offer from a set of candi-
date offers is computed. The number of demands ranged from 10 to 80 in steps of 10
demands and the number of offers ranged from 10 to 40 in steps of 10 offers. As our
matchmaker is symmetric, we performed this experiment for both parameter—value
and non—parameter—value offers.

Fig. 15 shows the OPL model template for computing the optimal selection,
where weights in objective functions (k;) and literal values in inequality constraints
(v;) are randomly assigned.

var int X0 in 0..65535;
var int x1 in 0..255;
var int x2 in 0..255;

minimize
kO * (100 - piecewise{0.1->1000;0} x0)

+ k1 * piecewise{1->100;0} x1
+ k2 * piecewise{1->100;0} x2

subject to {
X0 - x1 < VO0;
X1+ x2 >v1;

b

Fig. 15. OPL model template for optimal selection experiments.

Empirical results of this experiment are shown in Fig. 16. In the case of
parameter—value offers, performance shows a linear behavior with respect to the
number of variables. In the case of non—parameter—value offers, the result was a
second—grade polynomial function—the same as in Zeng’s experiment—so that per-
formance increases with the number of demands and offers.

As expected, non—parameter—value offers cases performed Dbetter than
parameter—value ones, making evident the strong impact on performance of com-
puting the minimum value of a function.

May 27,2005 13:22 WSPC/INSTRUCTION FILE Aruiz_1LICIS

24 A. Ruiz—Cortés, O. Martin-Diaz, A. Durdn, M. Toro

14000
12000
10000
8000
6000
4000
2000

700000
600000
500000
400000
300000
200000
100000

T T T T T T T d 0 T T T T T
10 20 30 40 50 60 70 80 10 20 30 40 50 60 70 80

Execution Time
(in milliseconds)
Execution Time
(in milliseconds)

Demands Demands
—%—10 ——20 30 —4—40 Offers —%—10 ——20 ——30 —A— 40 Offers
(a) Optimal selection (parameter-value offers) (b) Optimal selection (symmetric offers)

Fig. 16. Results from optimal selection experiments.

6. Related Work

In this section, some proposals that totally or partially perform the procurement
tasks described in this article are reviewed. They have been grouped according to
their underlying formalism, providing a summarized view of the current state—of-
the—art. A detailed explanation of each proposal is available for the interested reader
in a previous work?® by the authors of this article.

6.1. Proposals based on ad-hoc formalisms

The first group is constituted by those proposals whose semantics is defined by
using an ad-hoc formalism. The reviewed proposals are the following: (1) Service-
Globe?™ and UDDI Extension®® (UDDIe), both working on UDDI’ repositories; (2)
the IBM Web Services Level Agreement?® language (WSLA), which uses a tree—
based algorithm to check conformance; (3) the Hewlett—Packard Quality-of-service
Modeling Language®® (QML), whose semantics rely on the syntactic form of the
constraints; and (4) the IBM Web Services Matchmaking Engine®' (WSME), which
uses a Java—based language to specify demands and offers.

None of the above proposals are focused in improving the expressiveness of
demands and offers but in aspects related to matchmaker development in order to
get a successful integration in current service—oriented platforms. Thus, regardless
of specific aspects, all proposals can perform consistency and conformance checking
applying their own ad-hoc algorithms, which are much more limited than—and not
as efficient as—current CSP solvers, i.e. they are somehow reinventing the wheel.

6.2. Proposals based on semantic web formalisms

Proposals in this group are based on semantic web foundations®2:33. We have re-
viewed two proposals from Hewlett—Packard and one proposal from the Multichan-
nel Adaptive Information Systems project (MAIS).

The first proposal®* from Hewlett—Packard, which is based on RDF3%, uses an

May 27,2005 13:22 WSPC/INSTRUCTION FILE Aruiz_1LICIS

Improving the Automatic Procurement of Web Services Using Constraint Programming 25

ad-hoc algorithm whereas the second®%, which is based on the DAML-+OIL3" ontol-
ogy language, uses description logics®®3® (DL) reasoners. The MAIS proposal*? uses
ontology—based classification techniques, which are supported by the ARTEMIS tool
environment*!.

An advantage of using ad—hoc algorithms for carrying out the procurement tasks
is that they can be tailored for specific-problem optimizations. On the contrary,
there are a number of major disadvantages like development time, lower quality,
debugging time, maintenance, and so on.

Proposals based on DL solvers usually rely on external constraint solvers to
deal with numeric constraints.*? Notice that DL solvers are devised to reason on
relationships among objects not among numeric variables.

Summing up, in order to provide an expressiveness similar to our matchmaker,
current proposals need to use CP as their formal basis. Otherwise, a lot of already
known algorithms have to be reinvented.

6.3. Proposals based on constraint/mathematical programming

Apart from the one described in this article, only IBM AgFlow'! can be considered
as a proposal based on CP or MP. This proposal deals neither with consistency nor
with conformance, but it provides a solution for optimal selection which could even
deal with non—parameter—value offers. However, as commented in Section 2.3, MP
is not as expressive as CP, so interpreting consistency and conformance checking as
a MP problem may lead to a very artificial formulation.®

7. Conclusions and Future Work

In this article, we have shown how constraint programming can be used to improve
the automation of the procurement of web services and therefore of the current
matchmakers. We have also shown the soundness of our proposal from both theo-
retical and experimental points of view. The major advance of our proposal is to
provide a semantics for the procurement tasks such that demands and offers can
be modeled using a very expressive language, QRL, which allows inequalities and
non-linear expressions. From the experimental study we can conclude that, in the
domain of web service procurement, CP—based matchmakers are practically viable
despite of its—theoretical—combinatorial nature.

As future work, we are considering to improve the expressiveness of QRL by
allowing the association of temporal periods to constraints. Thus, it would be pos-
sible to state something like “The MTTF should be greater than 120 minutes on
weekends and greater than 60 minutes from Monday to Friday”. Another future im-
provement would be allowing that both offers and demands could be specified using
different parameter catalogs, i.e. different ontologies of web service features. For

€The interested reader can see the article in which AgFlow is described!! to compare the formu-
lation of the optimal selection using Integer Programming with our formulation using CP.

May 27,2005 13:22 WSPC/INSTRUCTION FILE Aruiz_1LICIS

26

A. Ruiz—Cortés, O. Martin—Diaz, A. Durdn, M. Toro

that purpose, we are currently considering using description logics together with
constraint programming, thus bringing together the best of both worlds.

Acknowledgements

The authors would like to thank Dr. Rafael Corchuelo, Mr. David Benavides and the
Quivir Group members for their helpful discussions. We also thank to the reviewers
of both the International Conference on Service Oriented Computing and the IJCIS
Journal whose comments and suggestions improved the presentation substantially.

References

1. G. Alonso, F. Casati, H. Kuno, and V. Machiraju. Web Services: Concepts, Architec-
ture and Applications. Springer—Verlag, 2004.

2. A. Finkelstein and G. Spanoudakis. Software Package Requirements and Procure-
ment. In Proc. of the 8" Int’l IEEE Workshop on Software Specification and Design
(IWSSD’96). IEEE Press, 1996.

3. X. Franch and J.P. Carvallo. Using Quality Models in Software Package Selection.
IEEE Software, 20(1):34-41, 2003.

4. O. Martin-Diaz, A. Ruiz-Cortés, D. Benavides, A. Duran, and M. Toro. A Quality-
aware Approach to Web Services Procurement. In Fourth International VLDB Work-
shop Technologies for E-Services, volume 2819 of Lecture Notes in Computer Science,
pages 42-53, Berlin, Germany, 2003. Springer Verlag.

5. O. Martin-Diaz, A. Ruiz-Cortés, A. Duran, D. Benavides, and M. Toro. Automating
the Procurement of Web Services. In 15 Int.l Conf. on Service-Oriented Computing,
volume 2910 of LNCS, pages 91-103, Trento, Italy, 2003. Springer Verlag.

6. K. Sycara, M. Klusch, S. Widoff, and J. Lu. Dynamic Service Matchmaking among
Agents in Open Information Environments. SIGMOD Record, 28(1):47-53, 1999.

7. UDDI web site, 2004. http://www.uddi.org.

8. SalCentral web site, 2004. http://www.salcentral. com.

9. P. Hentenryck. Constraint and Integer Programming in OPL. Informs Journal on
Computing, 14(4):345-372, 2002.

10. R. Martinez, J.A. Ortega, and M. Toro. A Framework for Semiqualitative Reasoning in
Engineering Applications. Applied Artificial Intelligence, 16(3):173-197, March 2002.

11. L. Zeng, B. Benatallah, A.H.H. Ngu, M. Dumas, J. Kalagnanam, and H. Chang. QoS-
Aware Middleware for Web Services Composition. IEEE Transactions on Software
Engineering, 30(5):311-327, May 2004.

12. H. Gallaire. Logic programming: Further developments. In IEEE Symposium on Logic
Programming. IEEE, 1985.

13. J. Jaffer and J.L. Lassez. Constraint logic programming. In 14 ACM Symposium on
Principles of Programming Languages, pages 111-119. ACM, 1987.

14. G. Katsirelos. EFC web site. Class Library for Constraint Programming in C++, 2004.
http://www.cs.toronto.edu/ gkatsi/efc/.

15. ILOG. ILOG optimization suite web site. http://wuw.ilog.fr.

16. N. Tamura. Cream web site. Class Library for Constraint Programming in Java , 2005.
http://bach.istc.kobe-u.ac. jp/cream/.

17. B. Smith. A Tutorial on Constraint Programming. Research Report 95.14, School of
Computing. University of Leeds, 1995.

18. E. Tsang. Foundations of Constraint Satisfaction. Academic Press, 1995.

May 27,2005 13:22 WSPC/INSTRUCTION FILE Aruiz_1LICIS

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

Improving the Automatic Procurement of Web Services Using Constraint Programming 27

J.J. Dujmovic. A Method for Evaluation and Selection of Complex Hardware and
Software Systems. In Proc. of the 294 Int7] Conf. for the Resource Management and
Performance Evaluation of Enterprise Computing Systems, pages 368-378, 1996.

J. Koistinen and A. Seetharaman. Worth—-based Multi-Category Quality—of-Service
Negotiation in Distributed Object Infrastructures. In Proceedings of the 2" Int’l En-
terprise Distributed Object Computing Workshop (EDOC’98), La Jolla, USA, 1998.
A. Ruiz-Cortés, R. Corchuelo, A. Duran, and M. Toro. Automated support for quality
requirements in web-services-based systems. In Proc. of the 8th IEEE Workshop on
Future Trends of Distributed Computing Systems (FTDCS’2001), Bologna, Italy, 2001.
IEEE Press.

A. Ruiz-Cortés. A Semiqualitative Approach for the Automatic Management of Quality
Requirements (in Spanish). PhD thesis, University of Seville, 2002.

K. Marriott and P.J. Stuckey. Programming with Constraints: An Introduction. The
MIT Press, 1998.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison—Wesley, 2005.

W3C. XSL Transformations Version 1.0, 1999. http://wuw.w3.org/TR/xslt.

O. Martin-Diaz, A. Ruiz-Cortés, R. Corchuelo, and M. Toro. A Framework for Clas-
sifying and Comparing Web Services Procurement Platforms. In First International
WISE Web Services Quality Workshop, pages 156-164, Rome, Italy, 2003. IEEE Press.
M. Keidl, S. Seltzsam, and A. Kemper. Reliable Web Service Execution and Deploy-
ment in Dynamic Environments. In Fourth International VLDB Workshop Technolo-
gies for E-Services, volume 2819 of Lecture Notes in Computer Science, pages 104-118,
Berlin, Germany, 2003. Springer Verlag.

A. ShaikhAli, O. Rana, R. Al-Ali, and D. Walker. UDDIe: An Extended Registry for
Web Services. In Proc. of the IEEE Int’l Workshop on Service Oriented Computing:
Models, Architectures and Applications at SAINT Conference. IEEE Press, January
2003.

P. Grefen, H. Ludwig, and S. Angelov. A Three-Level Framework for Process and Data
Management of Complex E-services. International Journal of Cooperative Information
Systems, 12(1):455-485, December 2003.

S. Frolund and J. Koistinen. Quality—of-service specification in distributed object
systems. Distributed Systems Engineering Journal, 5(4), 1998.

Y. Hoffner, S. Field, P. Grefen, and H. Ludwig. Contract-driven Creation and Oper-
ation of Virtual Enterprises. Computer Networks, (37):111-136, 2001.

T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web: A New Form of Web
Content that is Meaninful to Computers will Unleash a Revolution of New Possibili-
ties. The Scientific American, 284:34-43, 2001.

S. Mcllraith, T. Son, and H. Zeng. Semantic Web Services. IEEE Intelligent Systems.
Special Issue on the Semantic Web, 16(2):46-53, March/April 2001.

D. Trastour, C. Bartolini, and J. Gonzalez-Castillo. A Semantic Web Approach to
Service Description for Matchmaking of Services. Technical Report HPL-2001-183,
Hewlett-Packard, 2001.

O. Lassila and R. Swick. Resource Description Framework (RDF) Model and Syntax
Specification. Technical report, W3C Recommendation, 1999.

J. Gonzalez-Castillo, D. Trastour, and C. Bartolini. Description Logics for Matchmak-
ing of Services. Technical Report HPL-2001-265, Hewlett-Packard, 2001.

Joint US/EU Agent Markup Language Committee. DARPA Agent Markup Language.
Technical report, US’s DARPA Defense Advance Research Projects Agency and EU’s
IST Information Society Technologies, 2000. http://www.daml.org.

May 27,2005 13:22 WSPC/INSTRUCTION FILE Aruiz_1LICIS

28

38.

39.

40.

41.

42.

A. Ruiz—Cortés, O. Martin—Diaz, A. Durdn, M. Toro

I. Horrocks. Description of the RACER System and its Applications. In Proc. of the
Int’l Workshop on Description Logics (DL’99), 1999.

V. Haarslev and R. Moller. Description of the RACER System and its Applications.
In Proc. of the Interntional Workshop on Description Logics (DL-2001), 2001.

A. Maurino, S. Modafferi, and B. Pernici. Reflective Architectures for Adaptive Infor-
mation Systems. In First International Conference on Service-Oriented Computing,
volume 2910 of Lecture Notes in Computer Science, pages 115-131, Trento, Italy, 2003.
Springer Verlag.

D. Bianchini and V. De Antonellis. Ontology-based Integration for Sharing Knowledge
over the Web. In Proc. of the 37 International Workshop on Data Integration over
the Web, 2004.

V. Haarslev and R. Moller. Practical Reasoning in RACER with a Concrete Domain
for Linear Inequations. In Proc. of the Int’l Workshop on Description Logics (DL-
2002), 2002.

