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1. Introduction and statement of the problem

The Navier-Stokes equations govern the motion of usual fluids like water, air, oil,
etc. These equations have been the object of numerous works since the first paper
of Leray was published in 1933 (see Constantin & Foias 1988; Lions 1969; Temam
1979, and the references therein). However, up to date, we have not found in the
literature any work which takes into account the possibility of appearing some
kind of delay in these equations. The main aim of this work is to consider several
situations in which the external force contains some hereditary features and prove
existence of solutions. These situations may appear when we want to control the
system (in certain sense) by applying a force which takes into account not only the
present state of the system but the history of the solution. It is worth pointing out
that a similar analysis was carried out by Artola (1969) for general linear partial
differential equations with delays.

Let Ω ⊂ RN (N = 2 or 3) be an open and bounded set with regular boundary
Γ, T > 0 given, and consider the following functional Navier-Stokes problem (for
further details and notations see Lions 1969 and Temam 1979):





∂u

∂t
− ν∆u +

∑N
i=1 ui

∂u

∂xi
= f −∇p + g(t, ut) in (0, T )× Ω,

div u = 0 in (0, T )× Ω,

u = 0 on (0, T )× Γ,

u(0, x) = u0(x), x ∈ Ω,

u(t, x) = φ(t, x), t ∈ (−h, 0) x ∈ Ω,

where we assume that ν > 0 is the kinematic viscosity, u is the velocity field of the
fluid, p the pressure, u0 the initial velocity field, f a nondelayed external force field,
g another external force containing some hereditary characteristic and φ the initial
datum in the interval of time (−h, 0), where h is a positive fixed number.
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2 T. Caraballo, & J. Real

To start, we consider the following usual abstract spaces:

V =
{

u ∈ (C∞0 (Ω))N : divu = 0
}

,

H = the closure of V in (L2(Ω))N with the norm |·| , and inner product (·, ·)
where for u, v ∈ (L2(Ω))N ,

(u, v) =
N∑

j=1

∫

Ω

uj(x)vj(x)dx,

V = the closure of V in (H1
0 (Ω))N with the norm ‖·‖ , and associated scalar

product ((·, ·)), where for u, v ∈ (H1
0 (Ω))N ,

((u, v)) =
N∑

i,j=1

∫

Ω

∂uj

∂xi

∂vj

∂xi
dx.

It follows that V ⊂ H ≡ H ′ ⊂ V ′, where the injections are dense and compact.
Now we denote a(u, v) = ((u, v)), and define the trilinear form b on V × V × V by

b(u, v, w) =
N∑

i,j=1

∫

Ω

ui
∂vj

∂xi
wjdx ∀u, v, w ∈ V.

Let X be a Banach space. Given a function u : (−h, T ) → X, for each t ∈ (0, T )
we denote by ut the function defined on (−h, 0) by the relation ut(s) = u(t+s), s ∈
(−h, 0).

Finally, we will use ‖·‖∗ for the norm in V ′ and 〈·, ·〉 for the duality 〈V ′, V 〉 .
In order to state the problem in the correct framework, let us firstly establish

the suitable assumptions on the term in which the delay is present.
In a general way, let X and Y be two separable Banach spaces, and g : [0, T ]×

C0([−h, 0]; X) → Y such that
(I) for all ξ ∈ C0([−h, 0]; X), the mapping t ∈ [0, T ] → g(t, ξ) ∈ Y is measur-

able,
(II) for each t ∈ [0, T ], g(t, 0) = 0,
(III) there exists Lg > 0 such that ∀ t ∈ [0, T ], ∀ ξ, η ∈ C0([−h, 0]; X)

‖g(t, ξ)− g(t, η)‖Y ≤ Lg ‖ξ − η‖C0([−h,0];X) ,

(IV) there exists Cg > 0 such that ∀ t ∈ [0, T ], ∀u, v ∈ C0([−h, T ];X)
∫ t

0

‖g(s, us)− g(s, vs)‖2Y ds ≤ Cg

∫ t

−h

‖u(s)− v(s)‖2X ds.

Observe that (I)-(III) imply that given u ∈ C0([−h, T ]; X), the function gu : t ∈
[0, T ] → Y defined by gu(t) = g(t, ut) ∀ t ∈ [0, T ], is measurable (see Bensoussan et
al. 1992) and, in fact, belongs to L∞(0, T ; Y ). Then, thanks to (IV), the mapping

G : u ∈ C0([−h, T ];X) → gu ∈ L2(0, T ; Y )
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Navier-Stokes equations with delays 3

has a unique extension to a mapping G̃ which is uniformly continuous from L2(−h, T ; X)
into L2(0, T ; Y ). From now on, we will denote g(t, ut) = G̃(u)(t) for each u ∈
L2(−h, T ;X), and thus, ∀ t ∈ [0, T ], ∀u, v ∈ L2(−h, T ; X), we will have

∫ t

0

‖g(s, us)− g(s, vs)‖2Y ds ≤ Cg

∫ t

−h

‖u(s)− v(s)‖2X ds.

With the convention above, assume that u0 ∈ H, φ ∈ L2(−h, 0; V ), f ∈ L2(0, T ; V ′),
g1 : [0, T ] × C0([−h, 0]; V ) → (L2(Ω))N satisfies hypotheses (I)-(IV) with X = V ,
Y = (L2(Ω))N , Lg1 = L1 and Cg1 = C1, and g2 : [0, T ] × C0([−h, 0];V ) → V ′

satisfies hypotheses (I)-(IV) with X = V , Y = V ′, Lg2 = L2 and Cg2 = C2.
We are interested in the following problem:




To find u ∈ L2(−h, T ; V ) ∩ L∞(0, T ; H) such that, for all v ∈ V,
d

dt
(u(t), v) + νa(u(t), v) + b(u(t), u(t), v) = 〈f(t), v〉+ (g1(t, ut), v)

+ 〈g2(t, ut), v〉 ,
u(0) = u0, u(t) = φ(t), t ∈ (−h, 0),

(1.1)

where the equation in (1.1) must be understood in the sense of D′(0, T ).

Remark 1.1. Observe that the terms in (1.1) are well defined. In particular, by
hypotheses (I)-(IV), if u ∈ L2(−h, T ; V ) the term g1(t, ut) defines a function in
L2(0, T ; (L2(Ω)N ), and the term g2(t, ut) defines a function in L2(0, T ;V ′). Thus
(see Lions 1969), if u ∈ L2(−h, T ; V )∩L∞(0, T ; H) satisfies the equation in (1.1), u
is weakly continuous from [0, T ] into H, and therefore the initial condition u(0) = u0

makes sense. Of course, for N = 2, if there exists a solution u to the problem (1.1),
it then belongs to the space C0([0, T ];H).

In the next section, we shall prove existence of solutions to (1.1) and the unique-
ness of solution to the problem in the case N = 2. In Section 3, we show several
general situations containing delayed terms including, in particular, those with vari-
able and distributed delays, and we conclude the work by proving, in the Appendix,
a finite-dimensional result needed for the proof of the existence of solutions to (1.1).

2. Existence of solutions

In this section we will prove a general theorem on the existence of solutions when
N = 2 or 3, and uniqueness if N = 2.

Theorem 2.1. Let us consider u0 ∈ H, φ ∈ L2(−h, 0; V ), f ∈ L2(0, T ; V ′),
and assume that g1 : [0, T ] × C0([−h, 0]; V ) → (L2(Ω))N satisfies hypotheses (I)-
(IV) with X = V , Y = (L2(Ω))N , Lg1 = L1 and Cg1 = C1, and g2 : [0, T ] ×
C0([−h, 0];V ) → V ′ satisfies hypotheses (I)-(IV) with X = V , Y = V ′, Lg2 = L2

and Cg2 = C2. Then:
a) If N = 2 and ν2 > C2, there exists at most one solution to problem (1.1).
b) If N ∈ {2, 3} and ν2 > C2, there exists a solution to (1.1) if, in addition,

the following assumption (C) holds:
(C) If vm converges weakly to v in L2(−h, T ; V ) and strongly in L2(−h, T ; H),

then gi(·, vm
· ) converges weakly to gi(·, v·) in L2(0, T ; V ′) for i = 1, 2.
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4 T. Caraballo, & J. Real

Proof. a) If N = 2 and ν2 > C2, let u, v be two solutions to (1) and set w = u−v.
Then, from the energy equality, and the bounds for the trilinear form (see Lions
1969), it follows that for all t ∈ (0, T )

|w(t)|2 + 2ν
∫ t

0
||w(s)||2 ds = −2

∫ t

0
b(w(s), u(s), w(s)) ds

+2
∫ t

0
(g1(s, us)− g1(s, vs), w(s)) ds

+2
∫ t

0
〈g2(s, us)− g2(s, vs), w(s)〉 ds

≤ 2k1

∫ t

0
|w(s)| (||w(s)||) ||u(s)|| ds

+2
∫ t

0
|g1(s, us)− g1(s, vs)| |w(s)| ds

+2
∫ t

0
‖g2(s, us)− g2(s, vs)‖∗ ||w(s)|| ds.

Then, from assumption (IV), taking into account that w(s) = 0 for s ∈ (−h, 0),
and denoting 2ε = ν −√C2 > 0, we have for all t ∈ (0, T )

|w(t)|2 + 2ν
∫ t

0
||w(s)||2 ds ≤ k2

1

ε

∫ t

0
|w(s)|2||v(s)||2 ds + ε

∫ t

0
||w(s)||2 ds

+
C1

ε

∫ t

0
|w(s)|2 ds + ε

∫ t

0
||w(s)||2 ds

+2
√

C2

∫ t

0
||w(s)||2 ds,

and so,

|w(t)|2 + 2ε

∫ t

0

||w(s)||2 ds ≤ k2
1

ε

∫ t

0

|w(s)|2||v(s)||2 ds +
C1

ε

∫ t

0

|w(s)|2 ds,

from which uniqueness follows thanks to the Gronwall lemma.
b) Now, we assume N ∈ {2, 3}, ν2 > C2 and that condition (C) holds. For the

proof of existence, we will follow a Galerkin scheme similar to the one in Constantin
& Foias (1988), so we only emphasize the details involving the new terms gi.

Let us consider {wj} ⊂ V ∩ (
H2(Ω)

)N the orthonormal basis of H of all the
eigenfunctions of the Stokes problem in Ω with homogeneous Dirichlet conditions.
The subspace of V spanned by w1, ..., wm will be denoted Vm. Consider the projector
Pm : H → Vm given by Pmu =

∑m
j=1(u,wj)wj , and define um(t) =

∑m
j=1 γmj(t)wj ,

where




um ∈ L2(−h, T ; Vm) ∩ C0([0, T ];Vm)
d

dt
(um(t), wj) + νa(um(t), wj) + b(um(t), um(t), wj) = 〈f(t), wj〉+

+ (g1(t, um
t ), wj) + 〈g2(t, um

t ), wj〉 in D′(0, T ), 1 ≤ j ≤ m,

um(0) = Pmu0, um(t) = Pmφ(t), t ∈ (−h, 0).

(2.1)

The preceding is a system of ordinary functional differential equations in the
unknown γm(t) = (γm1(t), ..., γmm(t)). We can get existence and uniqueness of
solution by applying Theorem 3.1 in the Appendix. Observe that, according to
Theorem 3.1, we can ensure that problem (2.1) has one solution defined in an
interval [0, t∗] with 0 < t∗ ≤ T . However, as can be deduced by the a priori estimates
below, we can set t∗ = T.
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Navier-Stokes equations with delays 5

In fact, multiplying in (2.1) by γmj(t) and summing in j, we get for all t ∈ [0, t∗]

|um(t)|2 + 2ν
∫ t

0
‖um(s)‖2 ds ≤ |u0|2 + 2

∫ t

0
〈f(s), um(s)〉

+2
∫ t

0
(g1(s, um

s ), um(s)) ds

+2
∫ t

0
〈g2(s, um

s ), um(s)〉 ds,

and arguing in a similar manner as we did in the proof of uniqueness in the 2-
dimensional case, we easily get two constants (depending on φ, ν, f, g1, g2, h, T, but
not on m nor t∗) K1 and K2 such that

sup
t∈[0,t∗]

|um(t)|2 ≤ K1,

∫ t∗

0

||um(s)||2 ds ≤ K2.

So we can take t∗ = T , and obtain that {um} is bounded in L2(0, T ;V )∩L∞(0, T ; H).
Moreover, observe that um = Pmφ in (−h, 0) and, by the choice of the basis {wj},
the sequence um converges to φ in L2(−h, 0;V ), and, in particular, g1(·, um

· ) +
g2(·, um

· ) is bounded in L2(0, T ;V ′). Now, it is a standard matter to bound the
nonlinear term b(um, um, ·), and using the same reasoning that in Constantin &
Foias (1988) (see page 67), one can obtain that

{
dum

dt

}
is bounded in L4/3(0, T ; V ′)

(in fact, if N = 2,
{

dum

dt

}
is bounded in L2(0, T ;V ′)). Using the compactness of the

injection of the space W = {u ∈ L2(0, T ; V ) : du
dt ∈ L4/3(0, T ; V ′)} into L2(0, T ; H),

from the preceding analysis and the assumptions on g1 and g2, we can deduce that
there exist a subsequence (denoted again um) and u ∈ L2(−h, T ; V ) such that:

um → u weakly in L2(−h, T ; V ),
um → u weakly star in L∞(0, T ; H),
um → u in L2(−h, T ; H),
gi(·, um

· ) → gi(·, u·) weakly in L2(0, T ; V ′), i = 1, 2.

Now, as in the non-delay case, we can take limits in (2.1) after integrating over
the interval (0, t) (for t ∈ (0, T )), getting that u is a solution to our problem (1.1)
(see once again, e.g., Constantin & Foias 1988 for the complete details).

Remark 2.2. Observe that if g1 satisfies (I)-(IV) with X = H and Y =
(
L2(Ω)

)N ,
then, as a direct consequence of (IV), g1 satisfies assumption (C).

3. Some general situations

In this section, we are going to show some situations where our theory can be
applied. The cases considered include situations such as distributed delay, variable
delay, and delay in gradient or second order derivatives terms.

(a) Case 1

Let G : [0, T ] × RN → RN be a measurable function satisfying G(t, 0) = 0 for
all t ∈ [0, T ], and assume that there exists L1 > 0 such that

|G(t, u)−G(t, v)|RN ≤ L1|u− v|RN ,∀u, v ∈ RN .
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6 T. Caraballo, & J. Real

Consider a function ω(t), which is going to play the role of the delay function. We
suppose that ω ∈ C1([0, T ]), ω(t) ≥ 0 for all t ∈ [0, T ], h = maxt∈[0,T ] ω(t) > 0
and ω∗ = maxt∈[0,T ] ω

′(t) < 1. Then, we define g1(t, ξ)(x) = G(t, ξ(−ω(t))(x)) for
each ξ ∈ C0([0, T ];H), x ∈ Ω and t ∈ [0, T ]. Notice that, in this case, the delayed
term g1 in our problem turns to g1(t, ut) = G(t, u(t− ω(t))). Then, g1 satisfies the
hypotheses in Theorem 2.1 with X = H and Y = L2(Ω)N .

Indeed, (I)-(III) follow immediately. On the other hand, if u, v ∈ L2(−h, T ; H),
using the change of variable τ = s− ω(s) it is easy to see that

∫ t

0

|g1(s, us)− g1(s, vs)|2 ds ≤
∫ t

−h

|u(τ)− v(τ)|2 dτ ∀ t ∈ [0, T ],

and, consequently, (IV) and (C) are fulfilled.

(b) Case 2

Let now G : [0, T ] × [−h, 0] × RN → RN be a measurable function satisfying
G(t, s, 0) = 0 for all (t, s) ∈ [0, T ] × [−h, 0] and such that there exists a function
γ ∈ L2(−h, 0) such that

|G(t, s, u)−G(t, s, v)|RN ≤ γ(s)|u− v|RN , ∀u, v ∈ RN ∀ (t, s) ∈ [0, T ]× [−h, 0].

Then, we define g1(t, ξ)(x) =
∫ 0

−h
G(t, s, ξ(s)(x)) ds for each ξ ∈ C0([0, T ];H), x ∈ Ω

and t ∈ [0, T ]. In this case, the delayed term g1 in our problem becomes

g1(t, ut) =
∫ 0

−h

G(t, s, u(t + s)) ds.

As in Case 1, g1 satisfies the hypotheses in Theorem 2.1 with X = H and Y =(
L2(Ω)

)N .
Indeed, (I) and (II) can be deduced immediately. On the other hand, if ξ, η ∈

C0([0, T ]; H), for each t ∈ [0, T ] we obtain

|g1(t, ξ)− g1(t, η)|2 ≤ ∫
Ω

(∫ 0

−h
|G(t, s, ξ(s)(x))−G(t, s, η(s)(x))|RN ds

)2

dx

≤ ∫
Ω

(∫ 0

−h
γ(s)|ξ(s)(x)− η(s)(x)|RN ds

)2

dx

≤ ∫
Ω
‖γ‖2L2(−h,0)

(∫ 0

−h
|ξ(s)(x)− η(s)(x)|2RN ds

)
dx

≤ h‖γ‖2L2(−h,0)‖ξ − η‖2C0([0,T ];H).

Finally, if u, v ∈ L2(−h, T ; H) then, for each t ∈ [0, T ] it follows
∫ t

0

|g1(τ, uτ )− g1(τ, vτ )|2 dτ ≤ h‖γ‖2L2(−h,0)

∫ t

0

(∫ 0

−h

|u(s + τ)− v(s + τ)|2 ds

)
dτ,

and, with the change r = s + τ,

∫ t

0
|g1(τ, uτ )− g1(τ, vτ )|2 dτ ≤ h‖γ‖2L2(−h,0)

∫ t

0

(∫ τ

τ−h
|u(r)− v(r)|2 dr

)
dτ

≤ hT‖γ‖2L2(−h,0)

∫ t

−h
|u(r)− v(r)|2 dr.
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(c) Case 3

Now, we shall exhibit a situation where certain delay can appear in terms con-
taining partial derivatives with respect to the spatial variables.

Let B(·) ∈ L∞(0, T ;L(V ;
(
L2(Ω)

)N )) and ω ∈ C1([0, T ]), such that ω(t) ≥ 0
for all t ∈ [0, T ], h = maxt∈[0,T ] ω(t) > 0 and ω∗ = maxt∈[0,T ] ω

′(t) < 1. We now
define g1(t, ξ) = B(t)ξ(−ω(t)) for each ξ ∈ C0([0, T ];V ), and t ∈ [0, T ]. Thus, in
this case the delayed term g1 in problem (1.1) turns to g1(t, ut) = B(t)u(t− ω(t)).
It is easy to see that g1 satisfies the hypotheses in Theorem 2.1 with X = V and
Y =

(
L2(Ω)

)N .
Indeed, (I)-(IV) obviously hold. On the other hand, if vm converges to zero

weakly in L2(−h, T ; V ) and ψ ∈ L2(0, T ;V ) is given, we have

∫ T

0

〈g1(t, vm
t ), ψ(t)〉 dt =

∫ T

0

〈B∗(t)ψ(t), vm(t− ω(t))〉 dt,

with B∗(·) ∈ L∞(0, T ;L(L2(Ω)N ; V ′)) ⊂ L∞(0, T ;L(V ; V ′)) the adjoint of B(·).
Using the change of variables τ = t− ω(t) = ρ(t), we obtain

∫ T

0
〈g1(t, vm

t ), ψ(t)〉 dt =
∫ ρ(T )

ρ(0)

〈
B∗(ρ−1(τ))ψ(ρ−1(τ)), vm(τ)

〉 1
ρ′(ρ−1(τ))

dτ

=
∫ T

−h
〈Ψ(τ), vm(τ)〉 dτ,

with

Ψ(τ) =





1
ρ′(ρ−1(τ))

B∗(ρ−1(τ))ψ(ρ−1(τ)) if τ ∈ [ρ(0), ρ(T )],

0 if τ ∈ [−h, T ] \ [ρ(0), ρ(T )].

For this function Ψ it follows

∫ T

−h

‖Ψ(τ)‖2∗ dτ =
∫ ρ(T )

ρ(0)

1
(ρ′(ρ−1(τ)))2

‖B∗(ρ−1(τ))ψ(ρ−1(τ))‖2∗ dτ,

and thus, by means of the change τ = ρ(t) = t− ω(t),

∫ T

−h

‖Ψ(τ)‖2∗ dτ =
∫ T

0

1
1− ω′(t)

‖B∗(t)ψ(t)‖2∗ dt ≤ b2
0

1− ω∗

∫ T

0

‖ψ(t)‖2 dt,

where b0= ‖B∗(·)‖L∞(0,T ;L(V ;V ′)) . Consequently, Ψ ∈ L2(−h, T ;V ′) and

lim
m→∞

∫ T

0

〈g1(t, vm
t ), ψ(t)〉 dt = lim

m→∞

∫ T

−h

〈Ψ(τ), vm(τ)〉 dτ = 0.

Therefore, hypothesis (C) is satisfied and once again we can apply our theory to
this situation.
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8 T. Caraballo, & J. Real

(d) Case 4

Let K ∈ L∞(−h, T ;L(V ;V ′)) and consider in problem (1.1) a term of the
form g2(t, ut) =

∫ 0

−h
K(t+s)u(t+s) ds, defined for all u ∈ L2(−h, T ; V ). This term

corresponds to the situation g2(t, ξ) =
∫ 0

−h
K(t+s)ξ(s) ds for each t ∈ [0, T ] and ξ ∈

C0([0, T ]; V ). In this case, it is easy to see that g2 is well defined and satisfies (I)-(IV)
with X = V and Y = V ′. In particular, if we denote k = ‖K(·)‖L∞(−h,T ;L(V ;V ′)),
we can see that, for each t ∈ [0, T ] and each u ∈ L2(−h, T ;V ), we have

∫ t

0

‖g2(s, us)‖2∗ ds ≤ k2h min(h, T )
∫ t

−h

‖u(s)‖2 ds,

and thus, (IV) holds by setting C2 = k2h min(h, T ).
On the other hand, let vm be weakly converging to zero in L2(−h, T ; V ), and

fix ψ ∈ L2(0, T ; V ). Then
∫ T

0

〈g2(t, vm
t ), ψ(t)〉 dt =

∫ T

0

〈∫ t

t−h

K(τ)vm(τ) dτ, ψ(t)
〉

dt,

and, by Fubini’s theorem, it is easy to see that
∫ T

0

〈g2(t, vm
t ), ψ(t)〉 dt =

∫ T

−h

〈Σ(τ), vm(τ)〉 dτ,

with Σ(τ) = K∗(τ)Ψ(τ) and

Ψ(τ) =





∫ τ+h

0
ψ(t) dt if − h ≤ τ < 0,

∫ τ+h

τ
ψ(t) dt if 0 ≤ τ < T − h,

∫ T

τ
ψ(t) dt if T − h ≤ τ ≤ T,

in the case h ≤ T , and

Ψ(τ) =





∫ τ+h

0
ψ(t) dt if − h ≤ τ < T − h,

∫ T

0
ψ(t) dt if T − h ≤ τ < 0,

∫ T

τ
ψ(t) dt if 0 ≤ τ ≤ T,

in the case h > T . In both cases Ψ ∈ C0([0, T ];V ), and in particular Σ ∈ L2(0, T ;V ′).
Consequently, if vm converges weakly to zero in L2(−h, T ; V ), then g2(·, vm

· ) con-
verges weakly to zero in L2(−h, T ; V ′) and thus, g2 satisfies hypothesis (C).

Appendix

In this section we will prove a theorem on the existence of solutions for a finite-
dimensional problem. This result has been used in the proof of Theorem 2.1, and
is a variant of Theorem 3.2 Chapter 4 (p. 213) in Bensoussan et al. (1992). We
present the proof for the sake of completeness. However, it is worth mentioning
that a similar result is proved in Hale & Lunel (1995) in the case of continuous
initial datum, although this result cannot be applied to our situation.
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Theorem 3.1. Let u0 ∈ Rm, φ ∈ L2(−h, 0;Rm), k ∈ L2(0, T ;Rm), g : [0, T ] ×
C0([−h, 0];Rm) → Rm satisfying hypotheses (I)-(IV) with X = Y = Rm, and
f : [0, T ]×Rm → Rm a continuous function such that f(t, 0) = 0 and for all n > 0
there exists Ln > 0 such that

|f(t, u)− f(t, v)|Rm ≤ Ln|u− v|Rm , ∀ |u|Rm ≤ n, |v|Rm ≤ n, ∀ t ∈ [0, T ].

Then:
a) For each t∗ ∈ (0, T ] there exists at most one solution to the problem





To find u ∈ L2(−h, t∗;Rm) ∩ C0([0, t∗];Rm) such that
u(t) = φ(t), t ∈ (−h, 0),
u(t) = u0 +

∫ t

0
f(s, u(s)) ds +

∫ t

0
g(s, us) ds +

∫ t

0
k(s) ds ∀ t ∈ [0, t∗].

(3.1)

b) There exists t∗ ∈ (0, T ] such that there exists one (and only one) solution to the
problem (3.1).
c) Suppose that there exists a constant C > 0 such that if t∗ ∈ (0, T ] is such
that there is a solution u of (3.1), then maxt∈[0,t∗] |u(t)|Rm ≤ C. Then, under this
additional assumption, there exists a solution to problem (3) with t∗ = T .

Proof. a) If u and v are two solutions of (3.1) then, denoting w = u− v, we obtain
w = 0 in (−h, 0), and for all t ∈ [0, t∗]

|w(t)|Rm ≤ Ln

∫ t

0

|w(s)|Rm ds +
(

Cgt∗

∫ t

0

|w(s)|2Rm ds

)1/2

,

with n = max
(
maxt∈[0,t∗] |u(t)|Rm , maxt∈[0,t∗] |v(t)|Rm

)
.

Consequently,

|w(t)|2Rm ≤ (Ln + C1/2
g )2t∗

∫ t

0

|w(s)|2Rm ds, ∀ t ∈ [0, t∗],

and thus, w = 0 on [0, t∗].
b) Take any C > 0 such that |u0|Rm ≤ C. Denote

M = 1 + C + C1/2
g ‖φ‖L2(−h,0;Rm) + C(Cgh)1/2,

and fix t∗ ∈ (0, T ] such that

2t∗ ≤
(
1 + M(LM + C1/2

g ) + ‖k‖L2(0,T ;Rm)

)−2

,

and T
t∗

being an integer.
Let

X = {u ∈ L2(−h, t∗;Rm) ∩ C0([0, t∗];Rm); u = φ in (−h, 0), |u(t)|Rm ≤ M ∀ t ∈ [0, t∗]},

with the metric d(·, ·) given by

d(u, v) = max
t∈[0,t∗]

|u(t)− v(t)|Rm .
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It is evident that (X, d) is a complete metric space and X 6= ∅.
For each u ∈ X, denote

T u(t) =
{

φ(t), if t ∈ (−h, 0),
u0 +

∫ t

0
f(s, u(s)) ds +

∫ t

0
g(s, us) ds +

∫ t

0
k(s) ds, if t ∈ [0, t∗].

It is obvious that T u ∈ L2(−h, t∗;Rm)∩C0([0, t∗];Rm) and, by definition, T u(t) =
φ(t) if t ∈ (−h, 0). Moreover, if t ∈ [0, t∗],

|T u(t)|Rm ≤ |u0|Rm + LMMt∗ + (Cgt∗)1/2

(∫ t

−h

|u(s)|2Rm

)1/2

+ (t∗)1/2‖k‖L2(0,T ;Rm),

and consequently, thanks to the choice of t∗, |T u(t)|Rm ≤ M for all t ∈ [0, t∗]. Thus,
T is a mapping from X into X. Finally, it is not difficult to see that

√
2d(T u, T v) ≤

d(u, v) for all u, v ∈ X. Consequently, T has a fixed point in X.
c) If there exists a constant C > 0 such that if t∗ ∈ (0, T ] is such that there is

a solution u of (3.1), then maxt∈[0,t∗] |u(t)|Rm ≤ C, with this C fixed, take M and
t∗ as in b), that is,

M = 1 + C + C1/2
g ‖φ‖L2(−h,0;Rm) + C(Cgh)1/2,

and t∗ ∈ (0, T ] such that

2t∗ ≤
(
1 + M(LM + C1/2

g ) + ‖k‖L2(0,T ;Rm)

)−2

,

with T
t∗

being an integer.
We know that then, there exists one and only one function u ∈ L2(−h, t∗;Rm)∩

C0([0, t∗];Rm) such that
{

u(t) = φ(t), t ∈ (−h, 0),
u(t) = u0 +

∫ t

0
f(s, u(s)) ds +

∫ t

0
g(s, us) ds +

∫ t

0
k(s) ds, ∀ t ∈ [0, t∗].

If t∗ < T , then denote φ̃(s) = u(t∗ + s) for each s ∈ (−h, 0), and consider the
problem





v ∈ L2(−h, t∗;Rm) ∩ C0([0, t∗];Rm),
v(t) = φ̃(t), t ∈ (−h, 0),
v(t) = u(t∗) +

∫ t

0
f(s + t∗, v(s)) ds +

∫ t

0
g(s + t∗, vs) ds

+
∫ t

0
k(s + t∗) ds, ∀ t ∈ [0, t∗].

(3.2)

The problem (3.2) has the same structure than (3.1), with |u(t∗)|Rm ≤ C and

∫ 0

−h

|φ̃(s)|2Rm ds =
∫ t∗

t∗−h

|u(τ)|2Rm dτ ≤ C2h + ‖φ‖2L2(−h,0;Rm).

Moreover, if we denote

f̃(t, w) = f(t + t∗, w) ∀ t ∈ [0, t∗] ∀w ∈ Rm,
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and

g̃(t, ξ) = f(t + t∗, ξ) ∀ t ∈ [0, t∗] ∀ ξ ∈ C0([−h, 0];Rm),

then it is easy to see that f̃ and g̃ satify the hypotheses in the theorem, with T
substituted by t∗, and the same constants Ln, Cg and Lg.

For example, if u, v ∈ C0([−h, t∗];Rm) and t ∈ [0, t∗], then

∫ t

0
|g̃(s, us)− g̃(s, vs)|2Rm ds =

∫ t

0
|g(s + t∗, us)− g(s + t∗, vs)|2Rm ds

=
∫ t∗+t

t∗
|g(τ, uτ−t∗)− g(τ, vτ−t∗)|2Rm dτ.

If we denote

û(s) =
{

u(s− t∗) if s ∈ [t∗ − h, 2t∗],
0 if s ∈ [−h, t∗ − h),

v̂(s) =
{

v(s− t∗) if s ∈ [t∗ − h, 2t∗],
0 if s ∈ [−h, t∗ − h),

then û and v̂ are in L2(−h, 2t∗;Rm), and ∀ τ ∈ [t∗, t∗ + t], ∀ θ ∈ [−h, 0],

uτ−t∗(θ) = ûτ (θ), vτ−t∗(θ) = v̂τ (θ),

thus we obtain
∫ t

0
|g̃(s, us)− g̃(s, vs)|2Rm ds =

∫ t∗+t

t∗
|g(τ, ûτ )− g(τ, v̂τ )|2Rm dτ

≤ ∫ t∗+t

0
|g(τ, ûτ )− g(τ, v̂τ )|2Rm dτ

≤ Cg

∫ t∗+t

−h
|û(τ)− v̂(τ)|2Rm dτ

= Cg

∫ t∗+t

t∗−h
|û(τ)− v̂(τ)|2Rm dτ

= Cg

∫ t∗+t

t∗−h
|u(τ − t∗)− v(τ − t∗)|2Rm dτ,

and, consequently,

∫ t

0

|g̃(s, us)− g̃(s, vs)|2Rm ds ≤ Cg

∫ t

−h

|u(s)− v(s)|2Rm ds.

By the considerations above, we can ensure that there exists one and only one
solution to (3.2). Now, it is easy to see that the function

w(t) =
{

u(t) if t ∈ (−h, t∗],
v(t) if t ∈ (t∗, 2t∗],

with u the solution to (3.1) in (−h, t∗], and v the solution to (3.2), is solution of
(3.1) in the interval (−h, 2t∗]. If 2t∗ = T , we have finished, but if 2t∗ < T , we then
can use a similar construction to the preceding one, and obtain a solution to (3.1) in
the interval (−h, 3t∗]. After a finite number of steps, we can construct the solution
of (3.1) in the interval (−h, T ].
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