
Escuela Técnica Superior de Ingenieŕıa
Departamento de Ingenieŕıa de Sistemas y Automática

Doctoral Thesis

Probabilistic data-driven
methods for forecasting,
identification and control

Alfonso Daniel Carnerero Panduro

Supervised by:
Daniel Rodŕıguez Ramı́rez
Teodoro Álamo Cantarero

Seville, September 2022

Contents
Acknowledgements i

Abstract iii

Notation, conventions and definitions v

1 Introduction 1

1.1 Motivation and objectives . 1

1.1.1 The problem of system identification 1

1.1.2 Quantifying the uncertainty 4

1.1.3 Model predictive control . 7

1.1.4 Objectives of this dissertation 11

1.2 Outline . 11

1.3 Publications . 13

I Probabilistic forecasting 15

2 Forecasting using dissimilarity functions 17

2.1 Proposed dissimilarity function . 18

2.1.1 Clarifying example . 22

2.2 Dissimilarity functions and regression 22

2.3 Application: forecasting stock prices using dissimilarity functions . 26

2.3.1 Results . 27

2.4 Conclusions . 31

3 Probabilistic prediction regions 33

3.1 Univariate case . 33

3.1.1 Empirical probability density function 34

3.1.2 Clarifying example: uniform distribution 38

3.1.3 Numerical example: Lorenz attractor 38

3.1.4 Numerical example: Dow Jones industrial average index . . 40

3.2 Multivariate case . 44

3.2.1 Implicit regions . 44

3.2.2 Clarifying example: multivariate uniform distribution . . . 46

3.2.3 Ellipsoidal prediction regions 46

3.2.4 Numerical results . 50

3.3 Conclusions . 52

II Kriging-based identification 53

4 State-space kriging for autonomous systems 55

4.1 Dynamic kriging . 55

4.2 Linear state-space kriging . 57

4.2.1 Initial condition . 59

4.2.2 Local-data approach . 59

4.3 Kernel-based state-space kriging 60

4.3.1 Initial condition . 63

4.4 Kalman filter for SSK . 63

4.5 Numerical examples . 65

4.5.1 Sunspot number . 65

4.5.2 Rössler attractor . 66

4.6 Conclusions . 68

5 State-space kriging for non-autonomous systems 69

5.1 Non-autonomous linear SSK . 69

5.1.1 Initial condition . 71

5.2 Non-autonomous kernel-based SSK 71

5.2.1 Initial condition . 72

5.3 Application to MPC . 73

5.3.1 Nominal stability analysis 75

5.3.2 Robust stability analysis . 76

5.4 Examples . 77

5.4.1 Continuously-stirred tank reactor 78

5.4.2 Temperature control lab . 79

5.5 Conclusions . 81

III Probabilistically-certified data center management 87

6 Bounds on the constraint violation level 89

6.1 Introduction . 89

6.2 Main results . 90

6.2.1 A first bound on constraint violation rate 91

6.2.2 A different bound . 92

6.3 Clarifying Example . 94

6.4 Conclusions . 97

7 Energy-efficient management of data centers 99

7.1 Introduction . 99

7.2 Data center description . 101

7.2.1 Tasks model . 102

7.2.2 Server model . 102

7.2.3 Thermal model . 104

7.2.4 Quality of service . 106

7.3 Management approach . 106

7.4 Particle based solvers for complex optimization problems 108

7.4.1 Scenario-based approach . 111

7.4.2 Parallel implementation . 113

7.5 Bounds on the constraint violation rate 114
7.6 Numerical results . 114

7.6.1 QoS violation rate . 116
7.6.2 Thermal constraint violation rate 117
7.6.3 Parallel computation improvement 118
7.6.4 Computation time analysis 119

7.7 Conclusions . 120

8 Conclusions and future work 121
8.1 Contributions . 121
8.2 Future work . 122

Bibliography 125

Acknowledgements

Me voy a tomar la libertad de escribir esta sección en castellano debido a que
algunas de las personas a las que va dirigida no tienen un conocimiento fluido de
la lengua de Shakespeare y, por tanto, todo este esfuerzo podŕıa resultar en vano.
Además que, despues de escribir numerosas páginas en riguroso inglés, no está de
más volver a las propias ráıces por un tiempo.

Han pasado aproximadamente 9 años desde que entré a estudiar en la escuela de
ingenieros y, hasta cierto punto, parece como si fuera ayer (lo cual es probable-
mente el tópico más usado de la historia). El cómo llegué aqúı me parece, en cierto
sentido, pura casualidad, pues durante mi más tierna infancia y adolescencia, mis
intereres laborales y profesionales variaron con frecuencia. En cualquier caso, creo
que debo gran parte de mi interés a la ingenieŕıa y al control a Antonio Nuevo y
a Juanma Escaño. Si no hubiera frecuentado aquel taller de automatización en el
Colegio Altair cuando me encontraba en Primaria, probablemente mi trayectoria
hubiera sido distinta.

Por otro lado, debo a mi hermano José Maŕıa mi interés por la carrera investi-
gadora, la cual él comenzó mucho antes que yo en otra facultad de esta misma
universidad. Por algún motivo, pensé que se trataba de un trabajo fascinante con
una calidad de vida bastante buena. En otro orden de cosas, mi padre resultó ser
un gran apoyo durante mis primeros pasos en la escuela, debido a las experien-
cias similares que hab́ıa sufrido durante su juventud. En cuanto a mis hermanas,
Ana y Guadalupe, les debo el no vestir como un pordiosero (lo cual no es poco).
Bueno, algo más habrá, pero eso es lo primero que se me ha venido a la mente.
Para mi madre, sólo se me ocurre decir que es única en todos los sentidos.

También me gustaŕıa agradecer especialmente a Sergio Lućıa por su acogida en
la Universidad Técnica de Dortmund durante mi estancia de doctorado. Fue una
de esas experiencias positivas en las que uno descubre que el resto del mundo no
es como Sevilla (quien tenga óıdos que oiga).

Por supuesto, y como no pod́ıa ser de otra manera, también agradezco la labor
que han tenido mis directores Dani y Teo en este trabajo y por la formación
recibida a lo largo de todo este tiempo. Aunque nuestros caminos se separen
temporalmente, espero que vuelvan a juntarse en un futuro cercano. También,
me gustaŕıa agradecer especialmente a Dani Limón por la oportunidad que me
brindó en su momento. Gracias a eso, pude empezar a trabajar en este grupo de
investigación. A su vez, me gustaŕıa agradecer a los compañeros de doctorado que
me ayudaron en mis comienzos, especialmente a Pablo y Pepe. De manera similar,
tengo también un hueco particular para mis compañeros de cafés y/o desayunos
Joaqúın y José Antonio.

Por otra parte, existen a su vez gran cantidad de personas que han contribuido

i

infinitesimalmente a convertirme en lo que soy a d́ıa de hoy y a las que, por tanto,
estoy muy agradecido. No quiero realizar una enumeración exhaustiva porque eso
resulta sumamente peligroso (la probabilidad de olvidar a alguien es bastante alta
y no es directamente proporcional a la importancia de la persona en cuestión).
Por tanto, si estás leyendo esta aburrida sección, puedes concluir sin temor a
equivocarte que eres una de esas personas.

Por último, y no por ello menos importante, me gustaŕıa dedicar esta tesis a mis
otros dos hermanos, Juanma y Alberto, los cuales no creo que tengan un interés
especial por esta dedicatoria. En cualquier caso, ah́ı queda dicho.

Alfonso Daniel Carnerero Panduro,
Sevilla, septiembre de 2022.

ii

Abstract

This dissertation presents contributions mainly in three different fields: system
identification, probabilistic forecasting and stochastic control.

Thanks to the concept of dissimilarity and by defining an appropriate dissimi-
larity function, it is shown that a family of predictors can be obtained. First, a
predictor to compute nominal forecastings of a time-series or a dynamical system
is presented. The effectiveness of the predictor is shown by means of a numerical
example, where daily predictions of a stock index are computed. The obtained
results turn out to be better than those obtained with popular machine learning
techniques like Neural Networks.

Similarly, the aforementioned dissimilarity function can be used to compute condi-
tioned probability distributions. By means of the obtained distributions, interval
predictions can be made by using the concept of quantiles. However, in order to
do that, it is necessary to integrate the distribution for all the possible values of
the output. As this numerical integration process is computationally expensive,
an alternate method bypassing the computation of the probability distribution is
also proposed. Not only is computationally cheaper but it also allows to compute
prediction regions, which are the multivariate version of the interval predictions.
Both methods present better results than other baseline approaches in a set of
examples, including a stock forecasting example and the prediction of the Lorenz
attractor.

Furthermore, new methods to obtain models of nonlinear systems by means of
input-output data are proposed. Two different model approaches are presented:
a local data approach and a kernel-based approach. A kalman filter can be added
to improve the quality of the predictions. It is shown that the forecasting perfor-
mance of the proposed models is better than other machine learning methods in
several examples, such as the forecasting of the sunspot number and the Rössler
attractor. Also, as these models are suitable for Model Predictive Control (MPC),
new MPC formulations are proposed. Thanks to the distinctive features of the
proposed models, the nonlinear MPC problem can be posed as a simple quadratic
programming problem. Finally, by means of a simulation example and a real
experiment, it is shown that the controller performs adequately.

On the other hand, in the field of stochastic control, several methods to bound
the constraint violation rate of any controller under the presence of bounded or
unbounded disturbances are presented. These can be used, for example, to tune
some hyperparameters of the controller. Some simulation examples are proposed
in order to show the functioning of the algorithms. One of these examples con-
siders the management of a data center. Here, an energy-efficient MPC-inspired

iii

policy is developed in order to reduce the electricity consumption while keeping
the quality of service at acceptable levels.

iv

Notation, conventions and definitions

Assuming that we have a column vector v ∈ Rn, the transpose of vector v is
denoted as v⊤. The subscript k in vk denotes the value of vector v at time
k. When the subscript is enclosed by parenthesis, i.e. v(i), it refers to the i-th
element of vector v. Also, ∥v∥ stands for the euclidean norm and ∥v∥A stands for
the euclidean norm weighted by a positive definite matrix A, that is,

√
v⊤Av.

A past sample of vector v is denoted as v̄. When multiple samples of v are
gathered, v̄i refers to the i-th sample of v. On the other hand, ṽ stands for a
prediction or estimation of v whereas v̂ refers to a corrected version of ṽ after
new information is available and some filtering is done (i.e. Kalman filtering).
Similarly, vi|k corresponds to the prediction of vk+i, e.g. ṽk+i. However, vi|k also
implies that the prediction is done at time instant k. Furthermore, v̆ stands for a
change of variables so that v̆ = v − vs where vs ∈ Rn is a constant vector.

Suppose that V is a continuous set with infinite cardinality, it is possible to approx-
imate this set with a discretized version of it denoted as V̌. Then, the members
of this discretized set V̌ will be denoted as v̌i.

1 and 0 stand for row vectors of appropriate dimensions whose elements are all
equal to one or zero respectively. When a unique subscript appears, i.e. 0n, it
refers to a squared matrix of n dimensions. When two subscripts are present, i.e.
0m×n, it refers to a non-square matrix of dimensions m × n. Also, the identity
matrix of order n is denoted as In.

v

vi

1

Chapter 1

Introduction

1.1 Motivation and objectives

In this chapter, the main motivations and objectives of this dissertation are pre-
sented. First, some existing problems are introduced by means of different liter-
ature reviews. Once all the problems to be treated in this thesis are presented,
the objectives of this dissertation are exposed, followed by the proposed solutions
and obtained results.

1.1.1 The problem of system identification

System identification refers to the science of building mathematical models of the
dynamical systems around us by means of input-output data [1]. These kinds
of problems are of great importance within the control community since these
models are used to design controllers that make the systems operate as we want
them to. For this reason, this has been a very important research topic since the
beginning of the control theory.

Depending on the previous knowledge of the system that we want to model, we
consider different model categories. A first principles model could be initially
considered. This is due to the fact that there are many situations where the
dynamics of the system to be modelled are widely known (some mechanical or
electrical systems, etc) [2]. Also, in the case of linear systems, a transfer function
mapping the input of the system to the output can be obtained by applying the
Laplace transform to the set of Ordinary Differential Equations (ODEs).

However, assuming that the set of equations governing the system are known is
quite unrealistic in the general case. Even if the structure of the model is known,
the parameters of the ODEs may be unknown in advance. Then, a series of ex-
periments should be carried out in order to obtain the values of these parameters.
This would correspond to the problem of parameter estimation or grey-box mod-
eling [3, 4, 5]. These parameters can be estimated, for example, using the least

2 Chapter 1. Introduction

squares method. We notice that this methodology can be used even if the first-
principles model is not linear as it suffices that the model is linear with respect
to the parameters. Thus, for example, consider the model of a water tank

A
dh

dt
= −a

√
h,

where h is the height of the tank, A is the cross-sectional area of the tank and a
is a constant related to the flow out of the tank. Note that, here, the parameters
appear linearly in the equations and, thus, the aforementioned method can be
applied. The real experimental data will probably contain noise, transforming
the estimation of these parameters into an uncertain problem. That is, the real
parameters cannot be exactly obtained, but a set of parameters that provides
small forecasting errors can be computed.

However, in most cases, the underlying dynamics of the system may be completely
unknown. In these cases, a black-box model approach would be more suitable.
Black-box models represent the external dynamic function of the system, i.e., the
relation of the present output with past values of the input and past values of the
output. These values can be grouped in a vector called the regressor,

rk =
[
y⊤k−1 y⊤k−2 . . . y⊤k−ny

u⊤k−1 u⊤k−2 . . . u⊤k−nu

]⊤
,

where yk and uk are the outputs and the inputs of the system at time instant
k respectively, ny is the number of past outputs and nu is the number of past
inputs. Now, for example, we could consider a Least-Squares Estimator [6] by
solving the problem

θ∗ = arg min
θ

N∑
i=1

(ȳi − ỹi(θ))⊤ (ȳi − ỹi(θ)) ,

where θ is a matrix of parameters, ȳi is a certain sample obtained from a training
set of cardinality N and ỹi(θ) = r̄⊤i θ is the prediction of ȳi given θ. This estimator
is known to provide good results in the linear case under simple identifiability
conditions [1]. When the dimension of the system is much larger than the number
of samples, Dynamic Mode Decomposition (DMD) techniques can be applied in
order to tackle the problems that arise from working with high dimensional data
[7, 8, 9].

These methods offer good results when identifying linear systems but, linear sys-
tems are only a small subclass of the systems that appear in control problems.
Nonlinear system identification arises as a much harder problem [10, 11]. This is
mainly due to the fact that there are countless different possible model structures
and, sometimes, it is not possible to find a perfect answer to the identification
problem. On the other hand, it is also a more interesting field because it allows
us to model more complex systems.

1.1. Motivation and objectives 3

First, for the sake of simplicity, we could assume that the system behaves as a
linear-time-varying (LTV) system, that is, the system is linear but its parameters
change over time. This kind of model, although simple, can lead to good results
[12, 13]. Related to this, we could consider the system as an interpolation of dif-
ferent linear models, taking into account some nonlinear rules. This method leads
to Takagi-Sugeno models based on fuzzy logic, which are known to be universal
approximators [14, 15].

Another option would be to rely on Hammerstein-Wiener models [16, 17]. These
models are compounded of a nonlinear block mapping the input, then a linear
transfer function and, finally, another nonlinear block that maps the signal into
the real output (see figure 1.1).

𝑢 𝑦

Figure 1.1: Hammerstein-Wiener models.

On the other hand, the nonlinearities of a system could be modeled as a Volterra
series [18, 19]. These models are similar to a Taylor series expansion. However,
a Taylor series expansion does not have any memory and thus dynamic systems
cannot be considered. In this sense, Volterra series are the generalization of the
Taylor series so that they can consider dynamic systems.

Furthermore, a kind of nonlinear autoregressive exogenous model (NARX) models
can be used [20, 21]. Here, the outputs of the model are computed by means of a
nonlinear function of the linear regressor, i.e. a wavelet network [22].

Also, Machine Learning (ML) and other data-driven techniques have been gain-
ing increasing attention within the control field lately. For example, Gaussian
Processes (GPs) [23, 24, 25] or Lipschitz Interpolation (LI) [26, 27] have been
used in system identification and control. Other well-known techniques are neu-
ral networks [28, 29] and, more recently, deep neural networks [30, 31]. They are
a popular tool in system identification because they are known for being able to
reproduce any nonlinear function. However, it is not easy to find the right type of
network, training algorithm or structure, leading to wrong results or overfitting
in many cases [32]. As an alternative, one could rely on Reservoir Computing
[33, 34] or Echo State Networks [35, 36] approaches which are easier to train.

4 Chapter 1. Introduction

Combinations of some of the aforementioned methods have been explored as well,
i.e. neuro-fuzzy methods [37, 38] combining Takagi-Sugeno models and Neural
Networks. Recently, another technique that is getting increasing attention is the
Koopman operator [39, 40], where the nonlinear dynamics of the system are con-
verted into linear dynamics in a infinite-dimensional state vector. Although the
system becomes infinite-dimensional, it is possible to approximate them by a suf-
ficiently large state-vector and apply methods from linear control theory.

All of these methods assume that the dynamics of the system are completely
unknown. However, it may exist situations where some partial knowledge of
the system can be used alongside some black-box model. This leads us to the
hybrid modeling framework [41, 42]. Here, the outputs are computed as the
sum of two terms, one corresponding to the known dynamics and another one
corresponding to the unknown dynamics. Note that this is very different to the
grey-box modeling approach mentioned before.

Figure 1.2: From first-principles models to black-box models.

1.1.2 Quantifying the uncertainty

However, sometimes we are interested not only in obtaining nominal predictions
of a certain system, but also a quantification of their uncertainty. That is, when
the considered system presents noisy measurements and/or additive disturbances,
it would be useful to characterize a region where the real output of the system
may be with a specified probability instead of only computing the expected value.

First, we focus on the univariate case, i.e. interval predictions. Given the regressor
rk, the objective is to compute an interval I(rk) = [y−k , y

+
k] such that we maximize

the probability that yk belongs to I(rk) while minimizing the interval width (y+k −
y−k). These two conflicting objectives can be reconciled if one minimizes the
interval width subject to the constraint that I(rk) contains yk with a pre-specified
probability.

Interval predictions play a relevant role in the control of uncertain systems. Zono-
topes and DC Programming are used to obtain interval state estimators in [43]
and [44] respectively. Interval observers for linear time-varying systems have been
proposed in [45] and [46]. Fault detection methods based on zonotopic bounds

1.1. Motivation and objectives 5

can be found in [47]. In [48], set theoretic approaches are also used in the context
of fault detection. Set membership methods [49, 50] can also be used to obtain
interval predictions. A mixed Bayesian/set-membership approach is proposed in
[51].

There exists different methods in the literature that address the problem of ob-
taining interval predictions. For example, if the vector of uncertainty is bounded
and the considered system satisfies some Lipschitz assumptions, one can resort to
bounded error methods [52] that guarantee that yk is always contained in I(rk).
See, for example, [53] and [27]. Other bounded error strategies have been pro-
posed in [54, 55, 56]. The statistical characterization of noise and disturbances
can be used to enhance the performance of interval estimation methods. See
[57, 58, 59] and references therein. Also, probabilistic validation methods can be
used to assess the performance of the interval predictors [60, 61, 62, 63].

An important concept is that of quantiles [64, 65]. Denote Fyk(a|rk) as the cumu-
lative distribution function of the associated output yk conditioned to the regressor
rk, that is,

Fyk(a|rk) = Prob{yk ≤ a | rk},

where a is a scalar. Given rk, we say that aτ is the conditioned τ -quantile if

Fyk(aτ |rk) = Prob{yk ≤ aτ | rk} = τ.

The estimation of the conditioned quantiles is relevant in multiple applications
(see [66] and [67]) and can be addressed using different methodologies. The most
classical approach relies on the assumption that yk and rk are jointly normal. That
is, the assumption that the (joint) probability density function of the (random)
variables y and r is a multivariable normal probability density function. Under
this assumption, the conditioned p.d.f. is a monovariable normal p.d.f. and
the quantiles can be obtained in a simple and direct way [68]. Unfortunately,
the methods based on normal distributions are very sensitive to the presence of
outlier contamination. Moreover, in many long-tailed distributions, the normal
assumption is not well suited to characterize confidence intervals and one has
to resort to non-Gaussian distributions. In these cases, generalizations of the
Chebyshev inequality can be used to obtain probabilistic bounds [69, 70].

The computation of the conditioned quantiles can be also addressed by means of
parametric regression techniques [65], [66]. Assuming that there exists θ for which
yk ≈ θ⊤rk, then parameter vector θ can be chosen as the one that minimizes a cost
function of the error θ⊤rk−yk. If one chooses a cost function that penalizes in an
asymmetric way positive and negative errors then a quantile regressor is obtained.
Given the training pairs (ȳi, r̄i), i = 1, . . . , N and τ ∈ (0, 1), the quantile regressor
is defined in terms of the following optimization problem

min
θ

N∑
i=1

(1− τ) max{0, θ⊤r̄i − ȳi}+ τ max{0, ȳi − θ⊤r̄i}.

6 Chapter 1. Introduction

This linear optimization problem penalizes the (training) errors ei = θ⊤r̄i− ȳi, i =
1, . . . , N in an asymmetric way. The positive errors are weighted with coefficient
(1− τ) and the negatives with coefficient τ . If τ ∈ (0, 1) is close to zero, then the
positive errors will be highly penalized (in comparison with the negative ones).
This means that every optimal solution θτ to the linear optimization problem will
tend to make most of the errors negative. This implies that θ⊤τ rk could be used as
a probabilistic lower bound for yk. In a similar way, a probabilistic upper bound
could be obtained taking τ ∈ (0, 1) close to 1. Under rather mild assumptions,
any minimizer θτ of the proposed optimization problem can be used to obtain
an estimation of the τ quantile. That is, θ⊤τ rk serves as an estimation of the τ
quantile associated with yk. See [65], [71] and [66] for further details.

One of the main limitations of quantile regression is that a large number of training
samples N is required if one desires to obtain probabilistic guarantees of the
method when τ is chosen close to the extremes of the interval (0, 1). This is due
to the fact that estimating the probability of rare events requires a large number of
samples. For example, the number of independent identically distributed samples
required to obtain the 1 − ϵ quantile of a monovariable random variable grows
with 1

ϵ (see [72], [61] and [62]).

Comparatively, computing multivariate prediction regions becomes a harder task.
The simplest way would be to obtain intervals considering each variable inde-
pendently and then construct box-shaped regions (see section 2.2.3 in [73]). The
main advantage of this method lies in its simplicity. However, the desired proba-
bility may not be attained or the size of the regions may be too large. Bootstrap
methods are used in [74, 75] to construct regions that contain a path of a random
variable with at least a certain probability. This means that the obtained regions
are actually intervals for a p−step prediction instead of a multivariate system. In
a similar manner, [76, 75] calculate prediction regions for Vector Auto Regression
(VAR) models in the field of econometrics. Following similar methodologies, [77]
provides intervals for an entire path of forecasts in Markov processes. The problem
of refining previously estimated prediction regions in order to attain a coverage
probability closer to the desired one is researched in [78] and [79]. However, all
these aforementioned techniques do not deal with multivariate output systems.
Instead, the computed regions corresponds to the prediction of the same variable
for different time steps.

In the field of multivariate output systems, the literature is rather scarce. For ex-
ample, in [80], prediction regions for a simple multivariate linear regression model
are obtained. On the other hand, [81] proposes a method to calculate prediction
regions of a system by computing the Jacobian of the Partial Least-Squares Re-
gression (PLS) parameters. Thus, by means of this local linearization, an ellipsoid-
shaped region can be obtained. Also, [82] manages to obtain ellipsoidal regions
for dynamical systems by means of an Inverse Regression (IR) scheme. This IR
scheme is more efficient and reliable than the classic regression approaches when

1.1. Motivation and objectives 7

high dimensional data is available. In [83], a data-driven framework to generate
and evaluate ellipsoidal prediction regions to characterize the uncertainty of a
time-series is proposed. This methodology is applied to the electricity prices as a
path forecasting problem. In the field of machine learning, Conformal Prediction
techniques [84] are used to obtain prediction regions for any method producing
a central prediction of the outputs. Similarly, it is proposed in [85] a framework
to obtain a stochastic model based on a deterministic model of a dynamic sys-
tem in the field of robotics. On the other hand, assuming that any finite set of
samples follows a multivariate normal distribution, Gaussian processes (GPs) [23]
can also be used. The main limitation of this approach is that it relies heavily on
the knowledge of the first two moments of the underlying multivariate probability
distribution.

1.1.3 Model predictive control

Once reached this point, it is important to recall that the purpose of finding a
good model of a dynamic system is because we want to induce a certain behaviour
to these systems, that is, we want to control them. In this dissertation, Model
Predictive Control (MPC) [86, 87] has been chosen as the control algorithm to be
used in the proposed control examples.

MPC corresponds to a set of computer control techniques sharing some common
ideas. Its development exploded at the end of the 1970s thanks to the works of
[88, 89], receiving attention from both academia and industry. In these works,
they used predictions obtained by means of finite impulse response models or
truncated step response models to obtain optimal control actions while minimizing
the tracking error of the output of the system. However, most of these algorithms
had an heuristic nature, they were not able to deal with disturbances and lacked
stability guarantees.

This first generation of predictive controllers was followed by the Generalized
Predictive Control (GPC) algorithm [90, 91] which comprised these previous con-
trollers based on input-output models. On the other hand, the state-space inter-
pretation of MPC [92, 93] appeared, and quickly became the standard formulation
in MPC. A good review of some properties of the MPC controllers, including sta-
bility can be found in [94].

The main ideas around MPC are:

• MPC is an optimal controller in the sense that the input is calculated such
that it minimizes a certain cost function, mainly penalizing the tracking
error with respect to the desired reference and the control effort. This error
can be computed thanks to a mathematical model of the system, which leads
us to the following point.

• As the name suggests, an accurate mathematical model describing the be-
haviour of the system is needed. It is possible to use whether input-output

8 Chapter 1. Introduction

models or state-space models. Because of the numerical nature of the con-
troller (i.e. an optimization problem is solved to compute the value of the
input instead of obtaining an explicit control law), discrete-time models are
usually used. Furthermore, as it is easier to guarantee the stability of the
controller using state-space models, these are also widely used.

• Another interesting point of the MPC controllers is their ability to tackle
constrained control problems easily. As the input is obtained by solving
an optimization problem, it is very natural to add constraints. These con-
straints may reflect limited capability in the actuators, some physical limits
of the system or even tackle security considerations.

• The last idea would be the receding horizon scheme. This means that even
though the value of the input is computed for many future time instants,
only the first one (that is, the one corresponding to the actual time instant)
is applied, discarding the rest. Then, at the next sampling step, a new whole
set of inputs is computed taking into account the new available information.
Note that, if we applied the whole set of values computed at the first time
instant, this would be open-loop control. Thus, the receding horizon scheme
provides feedback to the controller.

From these properties of the MPC controllers, it is easy to see the many advantages
that they present, i.e.

• The control problem is formulated in the time domain, in a flexible and
intuitive manner in contrast to other control formulations that need to be
designed in the frequency domain. Also, it is applicable to any system
without regard to its open-loop stability, delays, etc.

• In the most general case, it allows to consider linear and nonlinear, univariate
and multivariate systems alike using the same formulation of the controller.

• It presents delay compensation explicitly and measurable disturbances can
also be easily compensated.

• It is possible to take into account the knowledge of the evolution of the
reference in order to track the signal to the reference before it changes.

• It is possible to deal easily with constraints.

However, there are also some drawbacks

• A sufficiently precise model of the system to be controlled is needed. That
is, the performance of the controller depends heavily on the quality of the
model. An inappropriate model of the system can lead to undesired perfor-
mance of the controller in closed-loop operation.

• It is necessary to solve an optimization problem at every time instant k.
Even though nowadays the computational power of the computers have

1.1. Motivation and objectives 9

been increasing enormously, many nonlinear MPC (NMPC) or robust MPC
problems still remain intractable in practice due to the high computational
cost of the algorithms.

As it was discussed previously, it is very common that the dynamics of the process
to control are almost completely unknown, forcing us to rely on black-box models.
Anyway, in most of these cases, there exists an appropriate model structure in
the literature that is able to reflect the dynamics of the system and thus finding
a good model is not an impossible task.

On the other hand, with respect to the computational cost, there are several
ways to address these problems, like developing specific optimization algorithms
to solve MPC problems [95, 96] or resorting to sub-optimal MPC schemes [97, 98].
Another way would be to rely on explicit MPC implementations [99, 100]. Here,
an analytical solution of the MPC controller can be obtained if the optimization
problem can be casted as a certain class of quadratic programming (QP) prob-
lems [101, 102]. The obtained control law is piece-wise linear, that is, different
linear state feedback control policies are obtained for different polyhedral regions.
However, the number of regions grows up largely with respect to the number of
states, constraints, etc. becoming intractable for many MPC problems.

Besides the aforementioned classic MPC schemes, a huge number of MPC variants
have been researched over time, i.e. approaches which considers disturbances and
model mismatches. Actually, the classic deterministic MPC approach presents
some inherent robustness [103, 104], which can be studied by means of the Input-
to-State stability (ISS) [105] or robustly asymptotically stability [106] schemes.
However, it is not possible to guarantee that the constraints are fulfilled in a
robust manner. For that purpose, a description of the uncertainties is necessary.
This led to min-max MPC, where the worst-case values of the disturbances were
taken into account to compute the control actions [107, 108]. One step further
was to optimize feedback control laws instead of control actions to improve the
robustness of the controller [109]. The main drawback of this subclass of MPC
controllers is that their online computational time is incredibly high, sometimes
becoming intractable, especially when optimizing feedback control laws.

Since then, numerous robust MPC schemes have been proposed. The most impor-
tant one is probably the tube-based MPC [110, 111, 112]. Here, a nominal control
action is computed alongside a proportional policy. As the policy is assumed to be
a proportional gain, the optimization problem is not infinite dimensional and thus
it is generally tractable. Also, one could rely on constraint tightening schemes [27]
to fulfill the constraints under the presence of any kind of disturbance.

However, robust MPC is, in general, very conservative because it addresses al-
ways the worst case, that is, it is always considering the extreme values of the
disturbances. For that reason, stochastic MPC [113, 114] and scenario approaches
[115, 116] which considers the probability distribution of the disturbances have

10 Chapter 1. Introduction

attracted the attention of many researchers. These techniques allow us to develop
controllers that fulfill the constraints with a specified probability, i.e. relaxing the
worst case optimization of robust MPC. For example, in the scenario approach,
this can be done by taking a finite number of realizations of the disturbance dur-
ing the online computation of the control action. In this approach, however, the
number of scenarios to be generated increases with the dimension of the problem,
leading to unaffordable computational times in many cases.

As most of these approaches complicate the online optimization problem to be
solved online, one could wonder if it is possible to obtain a stochastic MPC con-
troller while keeping the online optimization problem as simple as the determinis-
tic MPC problem. This leads us to probabilistic validation approaches [117, 118]
where, by means of offline simulations of the closed-loop system, it is possible to
determine if the controller fulfills some probabilistic specifications. This means
that the computational burden is outside the control loop and thus the online
optimization problem can be solved easily. Also, it can be applied to any con-
troller, even if it is not an MPC controller. However, this method only provides a
“yes” or “no” answer without assessing numerically the performance of the con-
troller, which makes it hard to compare with other controllers. In some cases,
it could even lead to non feasible solutions if none of the controllers satisfies the
probabilistic constraint.

Other popular variants of the standard MPC controller are the following:

• Economic MPC [119, 120] allows to optimize different cost functions in order
to improve the profitability of a certain process. The stability results of
standard MPC are not, in general, applicable for economic MPC. However,
under some assumptions [121], it was proven that it is possible to find a
Lyapunov function of the closed-loop system in order to ensure stability.

• Distributed MPC [122, 123] considers a decentralized control system, reduc-
ing the computational burden of the individual optimization problems and
becoming more scalable and robust to failures, which may be helpful when
controlling large-scale systems. However, the performance may be worse
than the performance of the centralized controller.

• MPC for tracking [124, 125] tackles the problem of arbitrarily changing the
reference signal of the controller. This approach preserves stability and
guarantees that the system can be steered to any admissible equilibrium
point, no matter what the initial equilibrium point is, without losing the
recursive feasibility. This strategy also provides a larger domain of attraction
for a given prediction horizon and, in the case of unreachable references,
asymptotic convergence to the closest reachable reference is proven as well,
only at the expense of adding a few more decision variables.

1.2. Outline 11

1.1.4 Objectives of this dissertation

Many different research fields have been presented throughout this introductory
chapter: system identification, interval predictions, MPC, etc. This dissertation
is oriented towards developing new methods that may improve the performance
of the state-of-the-art methods in each one of the previously presented fields.
Summarizing, the objectives of this dissertation are:

1. Developing new forecasting schemes for time-series and nonlinear systems.
It is interesting to obtain not only the expected output but also a region
where the output can be found with a certain probability.

2. Proposing new data-driven black-box models to be used in MPC strategies.
As the proposed models may reflect better the behaviour of certain systems,
they might increase the performance of certain controllers.

3. Obtaining probabilistic bounds on the constraint violation level for any kind
of controller in a stochastic setting. These bounds could be used to tune the
hyper-parameters of a controller in a soft-constraint approach.

Taking into account these objectives, the following results were obtained:

1. Corresponding to the first objective, some predictors based on dissimilarity
functions are proposed. These include nominal predictions, interval predic-
tions and prediction regions. All these methods were tested against some
baseline techniques in many examples and showed a better performance.

2. For the second objective, it is shown that, by means of the aforementioned
dissimilarity function, it is possible to identify a model from the available
input-output data. Through different numerical examples, it can be seen
that the model performs better than other machine learning techniques.
The model has been used within a MPC for tracking framework to show the
effectiveness of the approach in control problems.

3. Finally, two different sharp bounds on the constraint violation rate were
obtained. These bounds were used in the context of data center energy
optimization to quantify the quality of service provided to the users, proving
its usefulness.

1.2 Outline

All the results of this dissertation converge to MPC at some point, that is, they
are useful to improve the performance of MPC controllers or they allow to develop
new MPC schemes that may attain better results than other state-of-the-art MPC
controllers. For the sake of simplicity, the contributions are divided into three
groups: novel algorithms for prediction and forecasting, new modeling methods

12 Chapter 1. Introduction

for controller design and, finally, randomized algorithms for stochastic control.
Having this idea in mind, the text was divided into three different parts.

Part I presents the developed predictors based on dissimilarity functions. These
proposed methodologies are related to the ones appearing in the context of Direct
Weight Optimization [57] and the Kriging method [126, 127]. First, the concept
of dissimilarity function is exposed, along with the proposed dissimilarity function
for this dissertation. From that, a nominal predictor can be easily obtained. Given
a regressor, a prediction is obtained as a combination of past outputs of the system
using some weights that are obtained by means of an optimization problem. After
that, a method to tackle the problem of uncertainty quantification is proposed.
Again, by means of the aforementioned dissimilarity functions, it is shown that
it is possible to obtain interval predictors for the univariate case and prediction
regions for the multivariate case.

Part I is divided into two chapters:

Chapter 2 works as an introduction to chapter 3, introducing the basics of dis-
similarity functions and proposing a first predictor to obtain the expected value of
a time-series. A numerical example of the forecasting of the Dow Jones Industrial
Average Index is shown to verify the good performance of the algorithm.

Chapter 3 presents the methodologies to quantify the uncertainty of the pre-
dictions. First, a method to obtain an empirical probability density function for
a univariate function is discussed. From this empirical probability distribution,
it is possible to compute quantiles of a desired probability, obtaining an interval
predictor. Later, the methodology is extended to tackle the multivariate case. As
obtaining the probability distribution of a multivariate random variable is gener-
ally intractable, an alternative method bypassing the probability density function
allows us to obtain prediction regions of such variables. Some numerical examples
are presented in order to show the improvements with respect to other baseline
techniques.

On the other hand, part II presents novel methodologies to obtain models of
nonlinear systems or time-series. Here, the methodologies proposed in part I are
extended in order to obtain a model of the system by feed backing the 1-step
ahead predictions and regularizing the optimization problem used to compute
such predictions. Two different models are proposed in this chapter: a linear
time varying (LTV) model obtained by weighting appropriately the local data
within the data set and a kernel-based version of the state-space kriging where
the non-linearity is modeled by means of a kernel function. The obtained models
can be used easily to make predictions or design MPC controllers. Forecasting
and Control examples are both provided to show the effectiveness of the proposed
approaches.

Part II is divided into two chapters:

1.3. Publications 13

Chapter 4 presents the state-space kriging approach, named after the kriging
method due to its similarities and also because the weights used to obtain the
predictions become the state of the new model. This chapter is focused on au-
tonomous systems and time-series. Thus, it presents methodologies to obtain a
model of the outputs from past data of the system that can be used to make
predictions. Numerical examples with comparisons are provided in order to show
the effectiveness of the proposed approaches.

Chapter 5 introduces the state-space kriging for non-autonomous systems. It is
shown that the input can be considered easily within the optimization problem
with very few changes. As the approach considered in this chapter can tackle the
problem of forecasting systems with manipulable inputs, the proposed approach
is suitable to design, for example, MPC controllers whose prediction model is a
state-space kriging model. The stability of the proposed controller is proven and a
numerical example and a real experiment are provided to verify the performance
of the controller.

Finally, part III presents novel bounds on the constraint violation rate that
can be used to quantify the performance of different controllers in a stochastic
setting in order to choose the most appropriate controller among them. These
controllers are not necessarily MPC controllers, that is, any controller can be
assessed by means of these techniques. Another advantage of these methods is
that the computational burden of the process is completely offline and thus the
online computation time of the controller does not change. The proposed methods
are finally validated in the context of the management of a data center.

Part III is divided into two chapters:

Chapter 6 presents the concepts needed to obtain the bounds on the empirical
constraint violation level based on the results by Chernoff in [128] and by Alamo
et al. in [61]. These results provides two different expressions that can be used to
measure the reliability of any controller.

Chapter 7 introduces the model of a data center (dealing with both the thermal
modeling and the task model for the computers) that will be used as a benchmark
for the previously developed bounds. In this chapter, not only the model of the
data center and the implied constraints are presented, but a management approach
based on MPC is also proposed. As the problem for this specific system is generally
hard to solve (integer optimization, non-convex model, etc.) the solution of the
problem is computed by means of a particle-based solver implemented in a Graphic
Processing Unit (GPU).

1.3 Publications

The results shown throughout this thesis have been published in several journals
and conference proceedings, although some of them are still under review.

14 Chapter 1. Introduction

The forecasting methods developed and the numerical examples presented in part
I can be found in:

• [129] G. Alfonso, A. D. Carnerero, D. R. Ramirez, and T. Alamo, “Stock
forecasting using local data,” IEEE Access, vol. 9, pp. 9334–9344, 2020.

• [130] A. D. Carnerero, D. R. Ramirez, and T. Alamo, “Probabilistic in-
terval predictor based on dissimilarity functions,” IEEE Transactions on
Automatic Control, 10.1109/TAC.2021.3136137, 2021.

• A. D. Carnerero, D. R. Ramirez, S. Lucia and T. Alamo, “Prediction regions
based on dissimilarity functions,” Submitted to ISA Transactions, 2022.

The proposed models and the MPC controllers developed in part II can be found
in:

• [131] A. D. Carnerero, D. R. Ramirez, and T. Alamo, “State-space Krig-
ing: A data-driven method to forecast nonlinear dynamical systems,” IEEE
Control Systems Letters, vol. 6, pp. 2258 – 2263, 2022.

• A. D. Carnerero, D. R. Ramirez and T. Alamo, “Kernel based State-Space
Kriging: Application to predictive control,” 2022 61th IEEE Conference on
Decision and Control (CDC).

• A. D. Carnerero, D. R. Ramirez, D. Limon and T. Alamo, “Kernel-based
State-Space Kriging for predictive control,” Submitted to IEEE/CAA Jour-
nal of Automatica Sinica, 2022.

On the other hand, the results concerning the randomized approaches and devel-
opment of model predictive controllers for energy-efficient management of data
centers facilities can be found in:

• [132] A. D. Carnerero, D. R. Ramirez, D. Limon and T. Alamo, “Parti-
cle based optimization for predictive energy efficient data center manage-
ment,” in 2020 59th IEEE Conference on Decision and Control (CDC), pp.
2660–2665, IEEE, 2020.

• [133] A. D. Carnerero, D. R. Ramirez, T. Alamo, and D. Limon, “Proba-
bilistically certified management of data centers using predictive control,”
IEEE Transactions on Automation Science and Engineering,
10.1109/TASE.2021.3093699, 2021.

Finally, another article related to this dissertation but not directly discussed here
is:

• [134] G. Alfonso, A. D. Carnerero, D. R. Ramirez, and T. Alamo, “Receding
horizon optimization of large trade orders,” IEEE Access, vol. 9, pp. 63865-
63875, 2021.

Part I

Probabilistic forecasting

17

Chapter 2

Forecasting using dissimilarity
functions

In this chapter, the notion of dissimilarity functions and their usage in forecasting
will be explored. As a result, a technique for forecasting any time series, with
or without underlying dynamics, will be presented. This technique takes into
account locality in data to better forecast processes with nonlinear behaviours.

Given a certain data set stored in a matrix D =
[
d̄1 d̄2 . . . d̄N

]
∈ Rn×N ,

where each d̄i ∈ Rn is a past sample and N is the number of samples, we are
interested in determining if a given vector d ∈ Rn can be considered to be similar
to the other vectors of the data set D. In a more precise way, we are looking for
a function

Jd(·, ·) : Rn × Rn×N → [0,∞]

that measures the dissimilarity between a given point d and the data set D.
Large values of Jd(d,D) represent a high degree of dissimilarity, while small values
correspond to a high degree of similarity (i.e., a small degree of dissimilarity).
Clearly, from a dissimilarity function Jd(d,D) one can obtain a similarity function
Js(d,D). For example, given σ > 0, Js(x,D) = e−σJd(d,D) is small when d is not
similar to the points in D and close to 1 when d is very similar to the elements of
D. Another possibility would be Js(d,D) = (1 + σJd(d,D))−1, where σ > 0.

There exists a wide class of operators that can serve as dissimilarity functions for
the particular case in which D is a singleton. For singleton D (i.e. D = d̄), one
popular choice is

Jd(d, d̄) = ∥d− d̄∥,

where ∥·∥ is a given norm. One could also use the minimum distance with respect
to each member in D. That is,

Jd(d,D) = min
i=1,...,N

∥d− d̄i∥. (2.1)

18 Chapter 2. Forecasting using dissimilarity functions

Another possibility could be to consider as a dissimilarity function the mean value
of the distances of d to each member of set D. See chapter 2 of [135] and chapter
2 of [136] for a review of similarity and dissimilarity functions applied in the field
of image registration and in the context of cluster analysis, respectively.

Although these approaches could be valid for some applications, more sophisti-
cated approaches are required in many situations. In this chapter, a convex opti-
mization problem is proposed to obtain a measure of the dissimilarity between a
point d and a data set D.

2.1 Proposed dissimilarity function

The dissimilarity function to be used throughout this dissertation is stated in the
following definition:

Definition 2.1. Given d ∈ Rn, a data set D ∈ Rn×N and the scalar γ ∈ [0, 1),
the dissimilarity function Jγ(d,D) is defined as

Jγ(d,D) = min
λ(1),...,λ(N)

(1− γ)

N∑
i=1

λ2(i) + γ

N∑
i=1

|λ(i)| (2.2a)

s.t. d =
N∑
i=1

λ(i)di (2.2b)

1 =
N∑
i=1

λ(i). (2.2c)

Remark 2.2. Note that non negative constant weights could be included into the
cost function. That is, one could consider the cost function

(1− γ)

N∑
i=1

ωiλ
2
(i) + γ

N∑
i=1

|λ(i)|,

where the scalars ωi, i = 1, . . . , N are used to weight different elements in D.
These weights could be computed, for example, using a distance function between
d and the singleton di (for example, ωi = ||d− di||).

This would be a way to incorporate local information into the analysis. Although
the results are stated for the particular case in which ωi = 1, i = 1, . . . , N , the
generalization to the general case is not difficult.

Remark 2.3. There also exists a slight variation of the aforementioned dissimi-
larity function where the cost function becomes

N∑
i=1

λ2(i) + γ
N∑
i=1

|λ(i)|.

2.1. Proposed dissimilarity function 19

Note that, here, γ ∈ [0,∞). This works as a change in the scale of γ, but the
dissimilarity function remains the same.

Remark 2.4. Note that optimization problem (2.2) could be non-feasible. In
order to rule out this possibility, it is assumed that the vectors that compose set
D span all the space.

Remark 2.5. Optimization problem (2.2) is similar to the one appearing in the
context of direct weight optimization and Kriging, where predictions of a certain
variable are obtained by means of the solution of an optimization problem [57],
[56], [137], [126], [138].

It is important to remark that the proposed dissimilarity measure is invariant
with respect to affine transformations. This is formally stated in the following
property.

Property 2.6. Consider dT,v and DT,v obtained from d and D through the fol-
lowing affine transformation.

dT,v = Td+ v

DT,v =
[
T d̄1 + v T d̄2 + v . . . T d̄N + v

]
,

where T is any non-singular matrix and v is any vector of adequate dimensions.
Then

Jγ(d,D) = Jγ(dT,v, DT,v).

Proof. First, it is shown that any feasible solution λ(i), i = 1, . . . , N to the
problem of computing Jγ(d,D) is also a feasible solution for the computation

of Jγ(dT,v, DT,v). Suppose that d =
∑N

i=1 λ(i)d̄i and
∑N

i=1 λ(i) = 1. Then

dT,v = Td+ v

= T

(
N∑
i=1

λ(i)d̄i

)
+

(
N∑
i=1

λ(i)

)
v

=
N∑
i=1

λ(i)(T d̄i + v).

It is clear that T d̄i + v, i = 1, . . . , N , are the elements of DT,v. Therefore λ(i),
i = 1, . . . , N , is also a feasible solution for the problem that defines Jγ(dT,v, DT,v).
From this, it is possible to infer that Jγ(dT,v, DT,v) ≤ Jγ(d,D). On the other
hand, since T is non-singular, a similar reasoning could be made to show that
any feasible solution for Jγ(dT,v, DT,v) is a feasible solution for Jγ(d,D). In this
way, it is also proven that Jγ(d,D) ≤ Jγ(dT,v, DT,v). Both inequalities prove the
claimed equality. ■

This invariance property is important because it guarantees that the analysis
based on the proposed dissimilarity function is not affected by the choice of the

20 Chapter 2. Forecasting using dissimilarity functions

coordinate system. However, many of the dissimilarity functions that can be
found in the literature are not invariant. For example, any dissimilarity function
based on the distance of d to the elements of D, such as that of equation (2.1),
will be dependent on the particular choice of the coordinate system.

The proposed optimization problem (2.2) is a strict convex optimization problem
subject to convex constraints. This means that it has a unique solution [139].
Note that the numerical resolution can be addressed using a dual formulation. In
the dual formulation for this particular optimization problem, the number of dual
decision variables is equal to the number of equality constraints (n+ 1) which is
in many situations much smaller than the number of primal variables (N). On
the other hand, the gradient of the objective function in the dual formulation
can be obtained in a direct way because once the dual variables are fixed, the
optimal values for the primal variables are obtained by solving N separable opti-
mization problems. The computations in this dissertation have been made using
an accelerated gradient method in the dual variables (see [140], [141] and [142]).

As it is formally stated in the following property, the optimization problem has
an explicit solution for the particular case γ = 0.

Property 2.7. J0(d,D) has the following explicit expression

J0(d,D) = N−1 + (d− dc)⊤(DD⊤ −Ndcd⊤c)−1(d− dc),

where dc = N−1D1⊤ and 1⊤ is a column vector with all its N components equal
to 1.

Proof. The optimization problem is solved using a dual formulation where µ ∈ Rn

denotes the multipliers associated with the equality constraint

d =

N∑
i=1

λ(i)di = Dλ,

and ν is the multiplier corresponding to the equality

1 =

N∑
i=1

λ(i) = 1λ.

the Lagrange function is

L(λ, µ, ν) = λ⊤λ+ µ⊤(Dλ− d) + ν(1λ− 1).

Denote λ∗, µ∗ and ν∗ the optimal values for the primal and dual variables. From
∂L(λ∗,µ∗,ν∗)

∂λ = 0, it is clear that the optimal vector λ∗ is given by

λ∗ = −1

2
(D⊤µ∗ + 1⊤ν∗). (2.3)

2.1. Proposed dissimilarity function 21

Since 1λ∗ = 1, D1⊤ = Ndc and 11⊤ = N , it is possible to premultiply both terms
of the last equality by 1 to obtain

1 = −1

2
(1D⊤µ∗ +Nν∗)

= −N
2

(d⊤c µ
∗ + ν∗).

Therefore,

ν∗ = − 2

N
− d⊤c µ∗.

Substituting the expression for ν∗ in (2.3) yields

λ∗ = −1

2

(
D⊤µ∗ − 1⊤(

2

N
+ d⊤c µ

∗)

)
=

1⊤

N
− 1

2
(D⊤ − 1⊤d⊤c)µ∗. (2.4)

Premultiplying by D, the following equation is obtained

Dλ∗ = dc −
1

2
(DD⊤ −Ndcd⊤c)µ∗. (2.5)

From the equality constraint Dλ∗ = d and (2.5), the value of µ∗ can be obtained
as

µ∗ = −2(DD⊤ −Ndcd⊤c)−1(d− dc).

Substituting µ∗ in equation (2.4), it is possible to compute λ∗ as

λ∗ =
1⊤

N
+ (D⊤ − 1⊤d⊤c)(DD⊤ −Ndcd⊤c)−1(d− dc).

Finally, taking into account that

1(D⊤ − 1⊤d⊤c) = (Nd⊤c −Nd⊤c) = 0,

the following expression is obtained

(D⊤ − 1⊤d⊤c)⊤(D⊤ − 1⊤d⊤c) = DD⊤ −Ndcd⊤c .

From last equality and the expression for λ∗, the value of J0(d,D) can be computed
as

J0(d,D) = (λ∗)⊤λ∗ = N−1 + (d− dc)⊤(DD⊤ −Ndcd⊤c)−1(d− dc). ■

The previous result shows that the dissimilarity function is a quadratic function
on the argument d for the particular case γ = 0. For the more general case
in which γ > 0, it is possible to infer from the Karush-Kuhn-Tucker (KKT)
optimality conditions [139] that the dissimilarity function Jγ(d,D) is a piecewise
convex quadratic function with respect to d.

22 Chapter 2. Forecasting using dissimilarity functions

2.1.1 Clarifying example

Figure 2.1 shows a cloud of points obtained from a certain probability distribution.
On the left, the original cloud of points is shown and, on the right, this cloud of
points is rotated an angle π/4.

Red markers correspond to the points in the data set D whereas blue markers
correspond to two given values of d, i.e.

d1 =

[
0.25

1

]
, d2 =

[
0.75

1

]
.

Note that these values correspond to the left figure, where they are not rotated.
Assuming that γ = 0, the obtained values of the dissimilarity for these vectors d1
and d2 are

J0(d1, D) = 0.0056, J0(d2, D) = 0.0191.

It is easy to see that the dissimilarity is smaller for d1 because the concentration
of data points is larger in that region, in contrast to d2 where the concentration
of red markers is small. This means that d1 is a more likely event than d2.

-0.5 0 0.5 1 1.5

-0.5

0

0.5

1

1.5

2

2.5

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Figure 2.1: Left: original cloud of points. Right: rotated cloud of points.

Also, note that, as it was proven in property 2.6, the value of the dissimilarity
function is invariant with respect to affine transformations.

2.2 Dissimilarity functions and regression

This section shows how dissimilarity functions can be used in the context of re-
gression. Denoting the regressor as z ∈ Rnz and the output as y ∈ Rny , it is
assumed that the following data sets Z and Y are available

Z =
[
z̄1 z̄2 . . . z̄N

]
, Y =

[
ȳ1 ȳ2 . . . ȳN

]
,

where ȳi ∈ Rny and z̄i ∈ Rnz ∀i = 1, ..., N are past samples of the outputs and
the regressor respectively.

2.2. Dissimilarity functions and regression 23

Fixing a certain z and computing Jγ

([
z
y

]
,

[
Z
Y

])
gives us the dissimilarity

of a certain output y conditioned to the value of the regressor z. Thus, the
dissimilarity function becomes

Jγ

([
z
y

]
,

[
Z
Y

])
= min

λ(1),...,λ(N)

(1− γ)
N∑
i=1

λ2(i) + γ
N∑
i=1

|λ(i)| (2.6a)

s.t. z =

N∑
i=1

λ(i)z̄i (2.6b)

y =

N∑
i=1

λ(i)ȳi (2.6c)

1 =
N∑
i=1

λ(i). (2.6d)

Given z, consider, from all the possible values of y, the one that minimizes the
dissimilarity function defined by the previous optimization problem

ỹ(z) = arg min
y
Jγ

([
z
y

]
,

[
Z
Y

])
. (2.7)

Note that minimizing the dissimilarity corresponds to maximizing the similarity.
Thus, ỹ(z) is the most likely value to happen given the regressor z and the data
sets Z and Y . This ỹ(z) could be used as a forecasting of the next output.

Now, instead of Jγ

([
z
y

]
,

[
Z
Y

])
, consider Jγ(z, Z), that is,

Jγ(z, Z) = min
λ(1),...,λ(N)

(1− γ)
N∑
i=1

λ2(i) + γ
N∑
i=1

|λ(i)| (2.8a)

s.t. z =

N∑
i=1

λ(i)z̄i (2.8b)

1 =

N∑
i=1

λ(i). (2.8c)

As the optimization problem in (2.8) is a less constrained version of that in (2.6),
the optimal value of the cost of the more constrained problem is always greater
or equal to the optimal value of the cost of the less constrained one, that is,

Jγ (z, Z) ≤ Jγ
([

z
y

]
,

[
Z
Y

])
.

24 Chapter 2. Forecasting using dissimilarity functions

Now, denote the vector of weights λ that minimizes the optimization problem in
(2.8) as λ∗. From this optimum vector of weights λ∗, ỹ(z) can be computed as

ỹ(z) = Y λ∗ =

N∑
i=1

λ∗(i)ȳi. (2.9)

Then, it is easy to see that

Jγ (z, Z) = Jγ

([
z

ỹ(z)

]
,

[
Z
Y

])

and thus ỹ(z), computed using the optimal weights from (2.8), is the one that
minimizes the dissimilarity function for a fixed z (see equation (2.7)). Note that
this forecasting is made by means of a linear combination of past outputs whose
weights are computed obtaining an affine envelope of the regressor z. As it is
explained in what follows, strictly positive values of γ encourage the components
of λ to be positive (which means that the central estimation is often obtained
from an interpolation of points).

It is easy to see that when every λ(i) ≥ 0, ∀i = 1, ..., N , then
∑N

i=1 |λ(i)| = 1.

However, when some of the components of λ are negative,
∑N

i=1 |λ(i)| > 1. In

other words, the cost term
∑N

i=1 |λ(i)| becomes larger when extrapolating points
(i.e. using negative values of λ(i)). This means that convex combinations of
λ(i) are encouraged and thus interpolation is preferred, which may improve the
predictions when nonlinear systems are taken into account. The optimal value
for γ ≥ 0 could be obtained in different ways. A reasonable choice could be,
for example, to choose the one that minimizes the error of the predictions with
respect to the real outputs in a validation set.

As it is stated in the following property, the estimation obtained for the particular
case γ = 0 matches the one given by the linear least squares method.

Property 2.8. Given z, the estimation

ỹ(z) = arg min
y

J0

([
z
y

]
,

[
Z
Y

])
,

matches the estimation obtained by linear least squares.

Proof. From equation (2.9), the optimal value for the estimation is ỹ(z) = ΣN
i=1λ

∗
(i)ȳi,

where for the particular case γ = 0, λ∗(i), i = 1, . . . , N , are the optimal values of

2.2. Dissimilarity functions and regression 25

the optimization problem

min
λ(1),...,λ(N)

N∑
i=1

λ2(i)

s.t. z =
N∑
i=1

λ(i)z̄i

1 =

N∑
i=1

λ(i).

Defining

R =

[
z̄1 z̄2 . . . z̄N
1 1 . . . 1

]
, r =

[
z
1

]
,

the equality constraints can be rewritten as

Rλ = r. (2.10)

From the KKT optimality conditions, the optimal solution is given by (see sub-
section 10.1.1 in [139]) [

IN R⊤

R 0(nz+1)

] [
λ∗

φ∗

]
=

[
0
r

]
,

where φ∗ corresponds to the optimal dual decision variables corresponding to the
equality constraint (2.10). The previous equation can be rewritten as

λ∗ = −R⊤φ∗

Rλ∗ = r.

From here, it is inferred that −RR⊤φ∗ = r, which implies φ∗ = −(RR⊤)−1r and
thus finally obtaining

λ∗ = R⊤(RR⊤)−1r.

Therefore,

ỹ(z) = Y ⊤λ∗ = Y ⊤R⊤(RR⊤)−1r = r⊤(RR⊤)−1RY.

This corresponds to the least squares estimation obtained when the considered

regressors are the vectors
[
z̄⊤i 1

]⊤
, i = 1, . . . , N (see [143], [64]). ■

Previous property shows that the proposed estimation method encompasses the
least squares method for the particular case γ = 0. A family of optimal estimators
is obtained if γ is considered a tuning parameter.

From now on, in order to make the manuscript more readable, the notation will
be simplified by removing Z and Y from the dissimilarity function (since they are
assumed to be fixed). That is, the notation becomes

Jγ

([
z
y

]
,

[
Z
Y

])
= Jγ (z, y) .

26 Chapter 2. Forecasting using dissimilarity functions

Moreover, the minimal value of the dissimilarity function given z will be denoted
as J∗

γ (z), that is
J∗
γ (z) = Jγ(z, ỹ(z)) = min

y
Jγ(z, y).

The following remark summarizes the process to use the dissimilarity functions in
the context of regression.

Remark 2.9. Given the regressor z, the dissimilarity function Jγ(·, ·) and the
data sets Z and Y , solve optimization problem in (2.8) to obtain λ∗. Once λ∗ has
been obtained, the forecasting ỹ(z) is computed by means of equation (2.9).

2.3 Application: forecasting stock prices using dissim-
ilarity functions

In this section, a numerical example is presented to show the effectiveness of the
proposed dissimilarity function as a predictor.

Consider the evolution of the price of a stock as a time series pk ∈ P, where k
is a time unit and P is the range of values that the stock price can take. The
state of this time series can be described as the value at time k of a series of
technical indicators. These technical indicators can be past values of the price,
stock price returns or more complex metrics in general. Thus, this group of
technical indicators will form the regressor zk. The objective is to be able to
predict up to l-steps (i.e. l-days) ahead the price of a stock, that is, to obtain
p̃k+l at time k. Thus, yk corresponds to

yk =
[
pk+1 pk+2 . . . pk+l

]⊤
.

As it was shown in the previous section, Z and Y are compounded of past samples
of z and y, denoted as z̄i and ȳi.

The approach considered in this example uses only a small subset of the database,
denoted as Ω(zk), to compute the predictions p̃k+l. This subset Ω(zk) is chosen
by finding the NΩ closest points to zk within the data set by means of a certain
distance measurement. Thus, Ω(zk) is compounded of NΩ pairs (z̄i, ȳi) of the full
data set.

Once the data to be included in Ω(zk) are selected, the optimization problem (2.8)
is solved with this reduced data set. Also, note that the forecasting of pk+l is also
made with this small portion of the complete data set. Algorithm 4 gives a formal
description of the proposed approach.

Remark 2.10. The distance can be any measure of how close are zk to z̄i. Eu-
clidean distance would be the most typical choice, but it is also possible to consider
other aspects like the time span between samples. In this way, recent data could

2.3. Application: forecasting stock prices using dissimilarity functions 27

Algorithm 1: l-step ahead stock forecasting using local data

Data: Z, Y , zk, NΩ and γ.
Result:

[
p̃k+1 p̃k+2 . . . p̃k+l

]
.

1 Compute the distance for each z̄i in the database to zk;
2 Create a list of the entries in the data base sorted according to the computed

distances. Denote z̄j and ȳj as the regressor z̄i and the output ȳi of the j-th
entry in this ordered list respectively;

3 Build Ω(zk) using the first NΩ entries of the ordered list, that is,

Ω(zk) ≜ {(z̄j , ȳj)} ∀j = 1, . . . , NΩ.

4 Solve the following optimization problem:

min
λ(1), ..., λ(NΩ)

(1− γ)

NΩ∑
j=1

λ2(j) + γ

NΩ∑
j=1

|λ(j)|

s.t.

NΩ∑
j=1

λ(j) = 1,

NΩ∑
j=1

λ(j)z̄j = zk.

and compute the forecasted prices as:

[
p̃k+1 p̃k+2 . . . p̃k+l

]⊤
= ỹk =

NΩ∑
j=1

λ(j)ȳj .

be prioritized when selecting the elements of Ω(zk). Other aspects like seasonality
could also be taken into account.

2.3.1 Results

The data set to be used in this example was obtained from the data provider
Bloomberg and it is composed of the daily closing prices of the Dow Jones Index
from 2005 to 2016. The data was divided into a training set (Z and Y) from 2005
to 2014 and a test set from 2015 to mid-2016. This period was chosen because
the market does not follow a certain trend (bullish or bearish) that would make
the forecasting trivial. In order to reduce the noise of the time series, the prices
are smoothed using a 5-day Exponential Moving Average (EMA) computed as:

pmEMA,k =

(
2

m+ 1

)
pk +

(
1− 2

m+ 1

)
pmEMA,k−1,

28 Chapter 2. Forecasting using dissimilarity functions

with pmEMA,0 = p0 and m = 5 in this case. Note that the smoothing applied here
is very light in comparison to the usual values of m used in short-term forecasting
(12 and 26 day EMA [144]). This preserves fast price fluctuations at the cost of
making the forecasting process harder.

The regressor zk is composed of the last ten days smoothed prices, as well as the
5-day and 10-day relative difference percentage of unsmoothed prices (RDP) [145]
i.e.

RDPm
k = 100

(
pk − pk−m

pk

)
,

being m equal to 5 and 10 respectively. Thus,

zk =
[
pk pk−1 . . . pk−9 RDP5

k RDP10
k

]⊤
.

The size of Ω(zk) is set to NΩ = 250 and γ = 0. The forecast and real prices can
be seen in figures 2.2 and 2.3. The results show that the forecasting is accurate
enough at first and it becomes worse as the prediction horizon increases, as it can
be expected.

In order to compare the results obtained with the proposed approach, the results
obtained with a persistence predictor and a Neural Network (NN) are shown.
This persistence predictor works as a martingale, that is, p̃k+l = pk whereas the
NN corresponds to a multi-layer perceptron with 20 neurons in the hidden layer
and trained following the Levenberg-Marquardt rule. The numerical results are
shown in table 2.1. In particular, the mean squared errors (MSE) of the proposed
approach and the aforementioned baselines are shown in table 2.1a. It can be
seen that the proposed approach achieves the lowest errors. However, note that
for long step ahead predictions, the persistence predictor achieves results as good
as the other techniques, a consequence from the long term random walk nature
of the financial market.

Table 2.1: Results of the Dow Jones forecasting example.

(a) Mean squared errors (MSE).

k Proposed MLP Persistence

1 3,294.8 3,577.0 5,296.4
2 12,433.2 14,190.8 16,867.4
3 26,659.0 30,829.6 31,975.0
4 45,475.9 50,794.9 49,072.4
5 66,859.6 77,017.5 66,943.4

(b) Standard deviation of the errors (σ).

Proposed MLP Persistence

57.4 59.9 72.8
111.5 119.3 130.0
163.1 175.6 178.9
212.9 224.9 221.6
257.8 276.0 258.8

On the other hand, table 2.1b shows the standard deviation of both the proposed
approach and the baselines. Again, the proposed approach attains the lowest
standard deviation in the errors, which means that the errors are not only smaller
in mean but also they are more concentrated.

2.3. Application: forecasting stock prices using dissimilarity functions 29

0 50 100 150 200 250 300

Day

1.55

1.6

1.65

1.7

1.75

1.8

1.85

C
lo

s
in

g
 P

ri
c
e

10
4

Forecast

Real

0 50 100 150 200 250 300

Day

1.55

1.6

1.65

1.7

1.75

1.8

1.85

C
lo

s
in

g
 P

ri
c
e

10
4

Forecast

Real

0 50 100 150 200 250 300

Day

1.55

1.6

1.65

1.7

1.75

1.8

1.85

C
lo

s
in

g
 P

ri
c
e

10
4

Forecast

Real

Figure 2.2: Forecasted and real prices (5-day EMA) for 1 to 3 days forecasting.

30 Chapter 2. Forecasting using dissimilarity functions

0 50 100 150 200 250 300

Day

1.55

1.6

1.65

1.7

1.75

1.8

1.85

C
lo

s
in

g
 P

ri
c
e

10
4

Forecast

Real

0 50 100 150 200 250 300

Day

1.55

1.6

1.65

1.7

1.75

1.8

1.85

C
lo

s
in

g
 P

ri
c
e

10
4

Forecast

Real

Figure 2.3: Forecasted and real prices (5-day EMA) for 4 and 5 days forecasting.

2.4. Conclusions 31

2.4 Conclusions

This chapter presented the notion of dissimilarity along with the dissimilarity
function to be used in this dissertation. It was shown that the proposed dissim-
ilarity function has many advantageous properties and that it can be used easily
for regression or time-series forecasting. In order to obtain a prediction, it is only
needed to compute a convex optimization problem that can be easily solved.

A forecasting example of the closing price of the Dow Jones index was proposed
to compare the performance of the proposed predictor with a Neural Network and
a persistence predictor. The results showed that the predictions obtained with
the proposed approach are more accurate than those obtained by means of the
baselines.

In the next chapter, the case of uncertain predictions is tackled. By means of the
proposed dissimilarity function, methodologies to obtain interval predictions and
prediction regions are presented.

32 Chapter 2. Forecasting using dissimilarity functions

33

Chapter 3

Probabilistic prediction regions

This chapter presents new methodologies to compute prediction regions of dynam-
ical systems and time series. The univariate case corresponds to interval predic-
tions. Here, the dissimilarity functions presented in chapter 2 are used to estimate
the conditional probability density function of the outputs. This conditional prob-
ability density function is parameterized by means of two hyperparameters which
are chosen so that the length of the intervals is minimized while guaranteeing that
the empirical probability is fulfilled in a validation set. Also, the methodology is
applied to some forecasting problems.

The case of computing multivariate prediction regions is a harder task. To avoid
the integration of the multivariate conditional probability density function (which
would be intractable), the region is defined implicitly through the dissimilarity
function, resulting in a much lighter procedure in terms of computational bur-
den. Again, the hyperparameters in which the methodology relies are computed
to minimize the size of the regions while achieving the desired empirical proba-
bility in a validation set. Moreover, the approach does not make any assumption
on the data or the shape of the region. Finally, a method to obtain ellipsoidal
approximations of the regions and a numerical example are provided.

3.1 Univariate case

In the previous chapter, a function to measure the dissimilarity of a given vector
with respect to a certain data set was presented. There, it was also shown that
dissimilarity and similarity are complementary concepts. Actually, it turns out
that similarity is very close to the concept of probability. Thus, it is possible to
obtain a measure of the probability by using the proposed dissimilarity function
and transforming it into a similarity function.

34 Chapter 3. Probabilistic prediction regions

3.1.1 Empirical probability density function

Given z, the dissimilarity function Jγ(·, ·), the data sets Z and Y and the non
negative scalars c and γ, the empirical conditional p.d.f. could be defined as

ecpγ,c

(
z, y,

[
Z
Y

])
=

e−cJγ(z,y)∫
Y
e−cJγ(z,y̌)dy̌

, ∀y ∈ Y,

where Y is the set of possible values of y. As in chapter 2, the notation is simplified
by removing Z and Y from the probability density function, that is

ecpγ,c (z, y) = ecpγ,c

(
z, y,

[
Z
Y

])
.

The empirical conditional p.d.f. serves to model the probability of y given the
occurrence of z. Now, it is shown how to use this notion to compute, given z, an
interval estimation of y.

First, in order to simplify the numerical integration required to compute the
interval estimations, the set Y is approximated with a set Y̌ of finite cardinality,
that is,

Y̌ = {y̌1, . . . , y̌M},

where y̌j < y̌j+1, j = 1, . . . ,M − 1, and the extreme values of Y̌ are chosen to
guarantee that y belongs to [y̌1, y̌M] with high probability. A reasonable procedure
to construct set Y̌ is to define y̌1, . . . , y̌M as follows

y̌1 = min
i=1,...,N

ȳi

y̌M = max
i=1,...,N

ȳi

y̌j = y̌1 +

(
y̌M − y̌1
M − 1

)
(j − 1), j = 2, . . . ,M − 1,

where ȳi are past samples of y. It is easy to see that larger values of M provide
better approximations of Y at the expense of a larger computational burden.
Thus, given z, the discrete empirical conditional distribution is defined at each
point of Y̌ as

ecpγ,c (z, y) =
e−cJγ(z,y)

M∑
j=1

e−cJγ(z,y̌j)

. (3.1)

By construction,
M∑
j=1

ecpγ,c (z, y̌j) = 1.

3.1. Univariate case 35

This discrete empirical conditional p.d.f. defines a conditioned probability distri-
bution on Y̌ that will be denoted as ProbY̌|z. According to this discrete distribu-

tion, it is inferred that y̌ℓ (i.e. the ℓ-th element of Y̌) satisfies

ProbY̌|z {y ≤ y̌ℓ} =
ℓ∑

j=1

ecpγ,c (z, y̌j) , (3.2)

ProbY̌|z {y ≥ y̌ℓ} =

M∑
j=ℓ

ecpγ,c (z, y̌j) . (3.3)

Given z, γ ≥ 0, c ≥ 0 and τ ∈ (0, 1), the empirical upper conditioned τ -quantile,
denoted by y+τ , is defined as the smallest element of Y̌ that satisfies

ProbY̌|z {y ≤ y
+
τ } ≥ 1− τ.

In a similar way, the empirical lower conditional τ -quantile, denoted by y−τ , is
defined as the largest element of Y̌ that satisfies

ProbY̌|z {y ≥ y
−
τ } ≥ 1− τ.

Then, the interval prediction for y is [y−τ , y
+
τ]. According to the discrete distribu-

tion ProbY̌|z and the definition of y−τ and y+τ

ProbY̌|z{y ∈ [y−τ , y
+
τ]} ≥ 1− 2τ.

What precedes illustrates how to compute the interval prediction [y−τ , y
+
τ], for

a given z, τ and pair (γ, c). See Algorithm 2 for a detailed description of the
procedure.

Remark 3.1 (Conditioned median). Given the occurrence of z, a sensible esti-
mation for y is the conditioned median, which can be approximated by the center
of the interval [y−0.5, y

+
0.5].

The properties of the prediction intervals obtained using the procedure detailed
above rely on the specific choice for γ and c, since they determine the underlining
empirical distribution. Given τ ∈ (0, 1), it is detailed in what follows how to obtain
a pair (γ∗τ , c

∗
τ) such that sharp interval estimations are obtained while meeting

the probabilistic specifications (determined by τ). In order to circumvent the
difficulty to generate i.i.d. samples, we consider a discrete probability described
in a validation set

V = {(z̄1, ȳ1), (z̄2, ȳ2), . . . , (z̄NV , ȳNV)},

where NV is the number of samples in the validation set V and it is assumed to
represent the true probability distribution.

36 Chapter 3. Probabilistic prediction regions

Algorithm 2: Interval estimation [y−τ (z, γ, c), y+τ (z, γ, c)].

Data: z, τ ∈ (0, 1), γ ≥ 0, c ≥ 0, Z, Y , Y̌.
Result: y−τ , y+τ .

1 Obtain the dissimilarity function (see Definition 2.1) for each element of Y̌:

aj = Jγ (z, y̌j) , j = 1, . . . ,M.

2 Compute the conditioned probabilities (see equation 3.1):

pj = ecpγ,c (z, y̌j) = e−caj

M∑
ℓ=1

e−caℓ

, j = 1, . . . ,M.

3 Compute the indexes ℓ+τ and ℓ−τ corresponding to the lower and upper
conditioned τ -quantiles (see (3.2) and (3.3)):

ℓ+τ = smallest integer ℓ satisfying
ℓ∑

j=1
pj ≥ 1− τ,

ℓ−τ = largest integer ℓ satisfying
M∑
j=ℓ

pj ≥ 1− τ.

4 Make y−τ = y̌ℓ−τ and y+τ = y̌ℓ+τ .

Consider now the role of parameter c ≥ 0 in the discrete empirical conditioned
distribution given in equation (3.1). On the one hand, the choice c = 0 provides
a flat distribution in which each element of Y̌ has a conditioned probability equal
to 1

M . On the other hand, large values of c provide narrow distributions centered
around the point in Y̌ that minimizes, given z, the dissimilarity function Jγ(·, ·),
i.e. ỹ(z). Consequently, for a fixed value of γ, larger values of c reduce the size of
the obtained interval at the expense of increasing the fraction of outputs that are
not contained in the interval estimations. Therefore, given γ, the corresponding
value for c should be chosen as the largest value of c that guarantees in the
validation set that the obtained intervals contain the outputs with the desired
probability.

From the discussion above, it is clear that the parameter c corresponding to a
particular choice of γ > 0 (denoted cγ) is determined by τ . As it is detailed in
Algorithm 3, cγ is chosen as the largest value of c (up to a given accuracy ϵ > 0)
that guarantees in the validation set that the obtained confidence intervals contain
the outputs with the desired probability, that is, no smaller than 1− 2τ .

Parameter γ > 0 can be obtained by maximizing the likelihood ratio which, for a

3.1. Univariate case 37

Algorithm 3: Optimal value of c ≥ 0, for given γ ≥ 0 and τ ∈ (0, 1)

Data: τ ≥ 0, γ ≥ 0, cmax > 0 and ϵ > 0, Z, Y , Y̌ and the validation set V.
Result: cγ .

1 cmin = 0;
2 while cmax − cmin ≥ ϵ do
3 c = 1

2(cmax + cmin);
4 Compute, using Algorithm 2, the NV intervals

Ii = [y−τ (z̄i, γ, c), y
+
τ (z̄i, γ, c)], i = 1, . . . , NV .

5 Make n+viol equal to the number of violations of the upper constraints

ȳi ≤ y+τ (z̄i, γ, c), i = 1, . . . , NV ,

and n−viol equal to the number of violations of the lower constraints

ȳi ≥ y−τ (z̄i, γ, c), i = 1, . . . , NV .

6 if
max{n+viol, n

−
viol}

NV
< τ then

7 cmin = c;
8 else
9 cmax = c;

10 end if

11 end while
12 cγ = cmin;

38 Chapter 3. Probabilistic prediction regions

specific γ and corresponding cγ , is defined as

Lγ =

NV∑
i=1

log
(
ecpγ,c (z̄i, ȳi)

)
.

Thus, using Y̌ = {y̌1, . . . , y̌M}, the optimal value of γ is given by

γ∗τ ≈ arg max
γ∈Γ

NV∑
i=1

log

 e−cγJγ(z̄i,ȳi)

M∑
j=1

e−cγJγ(z̄i,y̌j)

 , (3.4)

where Γ is a set containing all the possible values considered for γ.

Remark 3.2. Other criteria can be used to compute γ∗τ . For example, γ∗τ could
be obtained by minimizing a cost function penalizing the average length of the in-
tervals and/or the average prediction error with respect to the conditioned median
introduced in Remark 3.1. However, explicitly minimizing the size of the intervals
may translate into an increased violation rate when the validation set has not a
sufficiently large number of samples, hence not being representative enough of the
real distribution of y.

3.1.2 Clarifying example: uniform distribution

A sample of 600 points in R is obtained from a uniform probability function with
support [0, 1]. One half of the available points is used as a training set and the
other half is used as a test set.

Figure 3.1 shows the empirical probability density functions estimated using dif-
ferent values of the parameters c and γ. In this case, c = 1.5 and γ = 5 is the pair
that achieves the best fit for the distribution proposed in this example.

3.1.3 Numerical example: Lorenz attractor

The Lorenz attractor is a system of ODEs known for having chaotic solutions
with certain values of the parameters of the system. The equations that define
the system are the following

do

dt
= σ(p− o)

dp

dt
= o(ρ− q)− p (3.5)

dq

dt
= op− βq ,

where σ, ρ and β are real scalar parameters. In this example, these parameters
take the values σ = 10, ρ = 28 and β = 8/3. Furthermore, in order to obtain the

3.1. Univariate case 39

-0.5 0 0.5 1 1.5

c=150, =0

0

0.5

1

1.5

-0.5 0 0.5 1 1.5

c=15, =0.4

0

0.5

1

1.5

-0.5 0 0.5 1 1.5

c=7.5, =1

0

0.5

1

1.5

-0.5 0 0.5 1 1.5

c=1.5, =5

0

0.5

1

1.5

Figure 3.1: Estimated probability distribution functions.

necessary data, the ODEs have been integrated numerically with a fixed time step
of Ts = 0.1s and initial conditions o0 = 1, p0 = 1 and q0 = 1. Here, it is considered
the task of forecasting the one-step ahead value of o, i.e., yk+1 = ok+1, using the
two previous values of o, that is, the regressor vector will be zk = [yk, yk−1]

⊤.
To start with, 2500 data points are considered, normalized in the [0, 1] range.
Different sizes for the data sets Z and Y are considered in this example (200,
350 and 500 points). The validation set V consists of 1000 data points and other
1000 data points are used as a test set, denoted by T . Here, we consider the
dissimilarity function of remark 2.3. The set Γ is taken from [0, 3] using a 0.1
sampling step. On the other hand, Y̌ is obtained from a grid of equally distant
points in the interval [−0.1893, 1.2298] sampled with a 1.4191× 10−4 step.

Two different techniques will be considered as benchmarks. The first one is quan-
tile regression [65], [66], a classical method for the estimation of conditioned quan-
tiles. The second one is the set-membership method described in [49, 50]. This
technique is a well-known method to generate interval bounds for a time series
(usually produced from a dynamical system). For the sake of comparison, to
guarantee that these bounds contain the output within a prescribed probability,
the parameters ϵ, γ of [49] are chosen so that the resulting empirical probability
of containing a sample within the validation set V is no smaller than 1− 2τ .

The numerical results of the proposed approach and the two benchmark techniques
are shown in table 3.1 for a [o5%, o95%] interval, that is, τ = 0.05, and in table
3.2 for [o10%, o90%] (τ = 0.1). The output of the test data should be contained
in the first interval with a probability of 0.9 (0.8 for the second interval). The
optimal value for γ has been chosen by maximizing the likelihood function Lγ (see
equation (3.4) and figure 3.3).

40 Chapter 3. Probabilistic prediction regions

Table 3.1: Results for the Lorenz Attractor, interval [o5%, o95%].

Proposed QR SM

N E. P. I. W. E. P. I. W. E. P. I. W.

200 0.9140 2.0578 0.8290 3.0965 0.8960 2.9378
350 0.8990 1.9352 0.8260 3.0550 0.9100 2.4773
500 0.9070 2.0223 0.8410 3.2450 0.9120 2.5671

Table 3.2: Results for the Lorenz Attractor, interval [o10%, o90%].

Proposed QR SM

N E. P. I. W. E. P. I. W. E. P. I. W.

200 0.8060 1.6053 0.7450 2.2776 0.8160 2.4248
350 0.8060 1.6164 0.7270 2.0607 0.7900 1.9797
500 0.8100 1.6195 0.7630 2.4371 0.8100 2.0021

The empirical probability in the case of the quantile regression clearly does not
meet the probabilistic specifications. In the case of the proposed approach and
the set-membership method, the observed fraction of outputs that fall into the
predicted intervals is much closer to the desired one. Note that, for all techniques,
the obtained empirical probability can be below the desired probability. This could
be solved relying on a probabilistic scaling scheme [63] or probabilistic validation
schemes [133], [117].

Regarding the interval width, the proposed approach clearly manages to obtain
the smallest intervals for each data set. For the [o5%, o95%] case, in comparison
to the set-membership method, the mean interval width is 24.35% smaller. Also,
it is 35.96% smaller with respect to the mean interval width obtained by means
of quantile regression. On the other hand, for the [o10%, o90%] case, the intervals
obtained with the proposed technique are 23.75% smaller than those obtained by
means of the set-membership method and 28.21% smaller than those obtained
using quantile regression techniques. Taking into account the empirical probabil-
ity values and the interval widths, it is possible to conclude that the proposed
approach obtains the best results.

Finally, in figure 3.2, a fraction of the test set T is shown along with the computed
intervals [o5%, o95%] of the proposed approach. Note that the intervals are wider
when there are trend changes in the output. Furthermore, figure 3.3 shows an
example of the value of the maximum likelihood ratio Lγ as a function of γ (in
this case for the data set of 200 points and interval [o5%, o95%]).

3.1.4 Numerical example: Dow Jones industrial average index

The example presented in the previous chapter will be used again to show the
effectiveness of the proposed approach for interval forecasting. The parameters of

3.1. Univariate case 41

Figure 3.2: Test set and computed intervals for Lorenz Attractor (interval [o5%, o95%]).

0 0.5 1 1.5 2 2.5 3

-6350

-6300

-6250

-6200

-6150

-6100

L

Figure 3.3: Maximum likelihood ratio as a function of γ.

the algorithms are NΩ = 250, M = 1000, y̌1 = 6684.3, y̌M = 19445, cmax = 15. As
in the previous example, the dissimilarity function used is the one corresponding
to remark 2.3. The set Γ is taken from [0, 5] using a 0.5 sampling step. The
regressor is compounded as in chapter 2. The 10-th and 90-th percentiles (i.e.
τ = 0.1) corresponds to the desired probability for the price intervals. Note that,
in order to compute the intervals with the proposed methodology, it is needed
to consider each l-step prediction independently, obtaining l different predictors,
each one for a certain l-step forecasting.

The results are shown in figures 3.4 and 3.5. There, the price intervals are pre-
sented as envelopes. Although these intervals are tight for l = 1, they become
larger as l increases. This is straightforward due to the fact that the uncertainty
increases as the prediction horizon does. Also, note that sometimes the real price
is not included within the computed price interval. This is congruent to the fact
that the probability of belonging to the interval is 80%.

42 Chapter 3. Probabilistic prediction regions

Figure 3.4: Price intervals for 1 to 3 days (5-day EMA).

3.1. Univariate case 43

Figure 3.5: Price intervals for 4 and 5 days (5-day EMA).

44 Chapter 3. Probabilistic prediction regions

As a baseline approach, a quantile regression approach is chosen to validate the
obtained results. In table 3.3 it is shown the empirical probabilities and interval
width of the proposed approach and the quantile regression scheme. Although
the proposed approach contains the real price with a higher probability than the
desired one, the quantile regression fails to obtain intervals meeting the specified
probability for any l.

Table 3.3: Empirical probability and average interval width.

Empirical probability Average interval width

k Proposed Q. regression Proposed Q. regression

1 0.8679 0.6006 162.4802 99.8091
2 0.8459 0.6101 315.7218 190.5443
3 0.8553 0.6321 477.8004 287.5774
4 0.8648 0.6761 638.8747 397.3780
5 0.8805 0.6950 813.5661 489.7816

3.2 Multivariate case

In this section, the problem of multidimensional systems or time-series is tackled,
providing prediction regions for the multidimensional output. As the scheme
proposed in the previous section for univariate outputs is based on a numerical
integration in a unidimensional space, the generalization to the multidimensional
setting is not trivial because of the well-known complexity of high-dimensional
numerical integration. In what follows, it is shown how to obtain prediction
regions in multidimensional spaces without resorting to numerical integration,
providing a fundamental advantage with respect to the previous results.

First, implicit regions computed by means of the dissimilarity function are pro-
posed. After that, an ellipsoidal approximation is proposed. Both approaches are
tested in a numerical example.

3.2.1 Implicit regions

In order to characterize the desired prediction region, two issues have to be tackled:
the choice of the region center and the computation of the region itself.

Choosing the center

In the previous chapter, ỹ(z) was denoted as the value of y that minimizes the
dissimilarity function given z (see (2.7)). As a consequence of this, ỹ(z) can be
considered as a good option to define the center of the region that will be obtained
as it is the most likely value for the output given z, Z and Y .

This optimal value can be obtained as ỹ(z) = Y λ∗ where λ∗ corresponds to the

3.2. Multivariate case 45

optimal solution of the strictly convex problem (2.8), that is

Jγ(z, Z) = min
λ(1),...,λ(N)

(1− γ)
N∑
i=1

λ2(i) + γ
N∑
i=1

|λ(i)|

s.t. z =

N∑
i=1

λ(i)z̄i

1 =
N∑
i=1

λ(i).

Computing the regions

In the previous section, it was shown that the dissimilarity function can be seen
as a sort of surrogate of the probability distribution of y given z. Thus, this
probability distribution peaks at ỹ(z) and decreases as the dissimilarity function
increases. For that reason, the proposed prediction regions are defined as those
points for which the dissimilarity function does not exceed more than a given
factor α with respect to the value corresponding to the central prediction ỹ(z),
that is, J∗

γ (z). This is formally stated in the following definition.

Definition 3.3 (Prediction region). For a given z, γ, data sets Z, Y and a tunable
parameter α > 1, the proposed prediction region is defined as the set

∆(z) =
{
y : Jγ(z, y) ≤ αJ∗

γ (z)
}
, (3.7)

that is, the points y that obtain a dissimilarity less or equal to αJ∗
γ (z).

Since the dissimilarity function is convex in y, the obtained implicit regions are
convex and can be used in different settings, e.g. in chance-constrained opti-
mization problems. For example, in many cases, it is not necessary to compute
a prediction region, but to verify if a certain point ȳ belongs to it. This is an
affordable task as it suffices to compute the dissimilarity Jγ(z, ȳ) and check that
(3.7) holds.

Tuning the hyperparameters α and γ

The value of γ ≥ 0 could be obtained in such a way that the prediction error
corresponding to the central prediction in a validation set is minimized. For a
given γ, smaller values of α make the regions smaller. Our objective is to obtain
the smallest possible region that guarantees that a point ȳj taken from a validation
set V is contained in the computed region ∆(zj) with a pre-specified probability
1 − τ . Again, as in the univariate case, it is assumed that the validation set V
represents the true probability distribution. Then, α is chosen so that it fulfills

ProbV(y ∈ ∆(z)) ≥ 1− τ,

46 Chapter 3. Probabilistic prediction regions

that is, guaranteeing that the fraction of points y in the validation set that fall
out of the corresponding prediction region does not exceed τ . Thus, the number
of points ỹj falling out should be no larger than rτ = ⌈τNV⌉. Denote

ᾱ(j) =
Jγ(z̄j , ȳj)

J∗
γ (z̄j)

, j = 1, . . . , NV .

Then, the value of α satisfying the probabilistic specification in the set V is the
one corresponding to the rτ largest value of ᾱ(j). If i.i.d. samples are available,
one can resort to the concept of probabilistic scaling to choose the value of rτ (see
[61, 63, 146]).

3.2.2 Clarifying example: multivariate uniform distribution

To illustrate the role of γ, consider the easier case of a multivariate uniform dis-
tribution. As the example considered here is not a dynamic system, conditioned
distributions are not taken into account. A number of samples N = 500 are ex-
tracted from a uniform distribution in R2 and gathered into a data set Y . This
uniform distribution is generated considering that both dimensions are indepen-
dent one with respect the other, with values ranging from 0 to 1. Then, the
obtained distribution is rotated π

6 rad in order to misalign the previously com-
puted distribution. The desired prediction region is

∆ =
{
y : Jγ (y, Y) ≤ αJ∗

γ

}
.

Here, a finite family of two possible values of γ, denoted as Γ = {0, 0.8} is con-
sidered. As it was stated in the previous sections, γ = 0 corresponds to the
least-squares solution and thus an ellipsoid will be obtained. However, more ap-
propriate shapes can be obtained with different values of γ. Also, note that the
empirical expectation turns out to be the center of the region.

In this example, a value of τ = 0.05 is considered, that is, the probability of the
samples falling within the region should be 95%. The results are shown in figure
3.6. The blue crosses correspond to the points falling inside the region whereas the
red crosses correspond to the points falling outside. It is easy to see that γ = 0.8
captures better the shape of the proposed probability distribution, leading to a
tighter region.

3.2.3 Ellipsoidal prediction regions

Note that due to the term γ
∑N

i=1 |λ(i)| appearing in the definition of the dissim-
ilarity function, the prediction regions cannot be easily computed. Instead, in
order to check if a point y belongs to a prediction region, a convex optimization
problem must be solved. In this section, by means of a quadratic upper bound
on the dissimilarity function, it is possible to compute ellipsoidal regions that
can be computed in an explicit way. The idea is to upper bound the absolute

3.2. Multivariate case 47

(a) γ = 0 region. (b) γ = 0.8 region.

Figure 3.6: Prediction regions for different values of γ.

values |λ(i)| with scalar quadratic functions. This transforms the functional into
a quadratic one and thus the optimization problem can be solved explicitly since
the minimization of a convex quadratic function subject to linear constraints has
an explicit solution. The following lemma makes possible to upper bound the
absolute values.

Lemma 3.4 (Quadratic upper bound of |λ(i)|). Given a scalar λc(i) and ν > 0,

|λ(i)| ≤
|λc(i)|+ ν

2

(|λ(i)|
|λc(i)|+ ν

)2

+ 1

 , ∀λ(i) ∈ R . (3.8)

Proof. See Appendix B in [147].

In this case, λc(i) is chosen as the λ∗(i) used to obtain the central prediction ỹ(z)

(see equation (2.9)). Note that the upper bound provided by lemma 3.4 is tight
when λ(i) = λc(i) = λ∗(i) and ν → 0. Thus, ν is chosen as a small constant.

Applying equation (3.8) to the optimization problem in (2.6), it is clear that
Jγ(z, y) ≤ Qγ(z, y), where

Qγ(z, y) = min
λ(1),...,λ(N)

1

2
λ⊤Hγλ+ cγ (3.9a)

s.t.

[
Z
1

]
λ =

[
z
1

]
(3.9b)

Y λ = y, (3.9c)

Hγ is a diagonal matrix with entries

Hγ|(i,i) = 2(1− γ)ω(i) +
γ

|λc(i)|+ ν
, i = 1, . . . , N

48 Chapter 3. Probabilistic prediction regions

and cγ = γ
N∑
i=1

|λc
(i)

|+ν

2 . The following lemma characterizes the new dissimilarity

function Qγ(·).

Lemma 3.5. Assume that Hγ > 0 and that the matrix
[
Z⊤ Y ⊤ 1⊤

]⊤
is full

rank. Denote

Qγ(z, y) = min
λ(1),...,λ(N)

1

2
λ⊤Hγλ+ cγ

s.t.

[
Z
1

]
λ =

[
z
1

]
Y λ = y,

y∗ = arg min
y

Qγ(z, y),

Q∗
γ(z) = Qγ(z, y∗).

Then,

y∗ = Γ⊤
1,2Γ

−1
1,1

[
z
1

]
, Q∗

γ(z) =
1

2

[
z
1

]⊤
Γ−1
1,1

[
z
1

]
+ cγ

Qγ(z, y) = Q∗
γ(z) +

1

2
(y − y∗)⊤Φ2,2(y − y∗).

where

Γ1,1 =

[
Z
1

]
H−1

γ

[
Z
1

]⊤
, Γ1,2 =

[
Z
1

]
H−1

γ Y ⊤,

Γ2,2 = Y H−1
γ Y ⊤, Φ2,2 =

(
Γ2,2 − Γ⊤

1,2Γ
−1
1,1Γ1,2

)−1
.

Proof. First, note that the optimization problem that defines Q(z, y) is always

feasible because of the full rank assumption on
[
Z⊤ Y ⊤ 1⊤

]⊤
. Moreover,

because of the definite positiveness of Hγ , the problem is feasible and the optimal
value for λ is unique. For notational convenience, the following definitions are
made

A1 =

[
Z
1

]
, A2 = Y, A =

[
A1

A2

]
, b =

[
z
1

]
.

Consider now a related optimization problem in which the equality constraint

3.2. Multivariate case 49

A2λ = y is removed:

Q∗
γ(z) = min

λ(1),...,λ(N)

1

2
λ⊤Hγλ+ cγ

s.t A1λ = b.

Then, it is clear that Q∗
γ(z) ≤ Qγ(z, y) for every y. The optimal vector λ∗ corre-

sponding to the optimization problem that defines Q∗
γ(z) can be directly obtained

from the the KKT conditions (see subsection 10.1.1 in [139]):

λ∗ = H−1
γ A⊤

1 (A1H
−1
γ A⊤

1)−1b.

This leads to

Q∗
γ(z) =

1

2
(λ∗)⊤Hγλ

∗ + cγ =
1

2
b⊤(A1H

−1
γ A⊤

1)−1b+ cγ =
1

2
b⊤Γ−1

1,1b+ cγ .

Denote now

y∗ = A2λ
∗ = A2H

−1
γ A⊤

1 (A1H
−1
γ A⊤

1)−1 = Γ⊤
1,2Γ

−1
1,1b.

From A1λ
∗ = b, it is easy to see that λ∗ is also a feasible solution for the opti-

mization problem corresponding to Qγ(z, y∗) = Qγ(z,A2λ
∗). Thus,

Qγ(z, y∗) = Q∗
γ(z).

This, together with inequality Q∗
γ(z) ≤ Qγ(z, y), ∀y, provide the first two claims

of the lemma.

Denote λ∗y as the optimal value for λ in the optimization problem that provides
Qγ(z, y). Using again the KKT conditions, the value of λ∗y can be computed as

λ∗y = H−1
γ A⊤(AH−1

γ A⊤)−1

[
b
y

]
.

Thus,

Qγ(z, y) =
1

2
λ∗

⊤
y Hγλ

∗
y + cγ =

1

2

[
b
y

]⊤
(AH−1

γ A⊤)−1

[
b
y

]
+ cγ

=
1

2

[
b
y

]⊤ [
Γ1,1 Γ1,2

Γ⊤
1,2 Γ2,2

]−1 [
b
y

]
+ cγ .

Now, making [
Γ1,1 Γ1,2

Γ2,1 Γ2,2

]−1

=

[
Φ1,1 Φ1,2

Φ⊤
1,2 Φ2,2

]
,

it is clear that

Qγ(z, y) =
1

2

[
b
y

]⊤ [
Φ1,1 Φ1,2

Φ⊤
1,2 Φ2,2

] [
b
y

]
+ cγ .

50 Chapter 3. Probabilistic prediction regions

It is well known that every quadratic function q(y) with hessian Φq can be rewriten
as q(y) = q(y∗) + 1

2(y − y∗)⊤Φq(y − y∗). Thus,

Qγ(z, y) = Q∗
γ(z) +

1

2
(y − y∗)⊤Φ2,2(y − y∗).

The matrix Φ2,2 can be obtained from the inverse of the partitioned matrix Γ
using Schur complements (see e.g. Subsection 4.3.4 in [148]), that is

Φ2,2 =
(

Γ2,2 − Γ⊤
1,2Γ

−1
1,1Γ1,2

)−1
.

This completes the proof. ■

By means of the new dissimilarity function Qγ(z, y), the following ellipsoidal re-
gions are defined

Eγ,α(z) =
{
y : Qγ(z, y) ≤ αQ∗

γ(z)
}

=
{
y : (y − y∗)⊤Φ2,2(y − y∗) ≤ 2(α− 1)Q∗

γ(z)
}
,

where the values for y∗,Φ2,2 and Q∗
γ(z) are given in Lemma 3.5.

Note that, given γ ≥ 0, the optimal value for α could be obtained by means of
a validation set {(z̄j , ȳj)}NV

j=1 as in the case of implicit regions. In this case, the
scalars ᾱ(j) are defined as

ᾱ(j) =
Qγ(z̄j , ȳj)

Q∗
γ(z̄j)

, j = 1, . . . , NV .

3.2.4 Numerical results

As an example, the application of the developed methodology is proposed to
compute probabilistic prediction regions for the predictions of the outputs of a
multivariable system. In this example, the forecasting technique is based on a
Neural Network (NN) that it is trained to learn the dynamics of an autonomous
uncertain nonlinear system. In this case, the NN is comprised of 2 hidden layers
of 10 neurons each one. Furthermore, the inputs of the NN are the last 5 outputs
of the system. The outputs of the last layer are used as the regressor z. The
system to be forecasted using the NN is the non-linear model of a towing kite
presented in [149]. This system has three states, which corresponds to the angles
of the kite, θ, ϕ and φ, a control input u and two uncertain parameters. The set
of ODEs governing the system are

θ̇ =
va
LT

(
cosφ− tan θ

E

)
,

ϕ̇ = − va
LT sin θ

sinφ,

φ̇ =
va
LT

u+ ϕ̇ cos θ,

3.2. Multivariate case 51

where

va = v0E cos θ,

E = E0 − 0.028u.

From this system of equations, the parameter LT (length of the tether) is consid-
ered to be known whereas v0 (wind speed) and E0 (base glide ratio) are considered
to be uncertain parameters. Note that these uncertainties affect the states θ, ϕ
and φ trough the effect of the wind (va) and the glide ratio (E). Only the states
θ and ϕ are considered as measurable outputs. These outputs have an additive
correlated gaussian noise so that

N ∼ (µ,Σ) : µ =

[
0
0

]
, Σ =

[
0.01 −0.0085
−0.0085 0.01

]
.

As the system is considered to be autonomous, it is assumed that the control input
u is computed following a certain stabilizing control policy whose exact nature is
irrelevant for this paper. Thus, it is assumed that some stable past trajectories of
the system for different values of the base glide ratio E0 and the wind speed v0 are
available. These are used to build the data sets Z, Y . The sample time is chosen
as Ts = 0.15s. Two different data sets are considered in this example, one with
N = 250 samples and another one with N = 500 samples. Also, a validation set
V compounded of NV = 500 samples to compute the optimal values of γ and α is
considered. On the other hand, there is also a test set T comprised of NT = 1000
samples to compare the obtained results with other baseline strategies. The finite
family of γ is compounded of the values Γ = [0, 0.2, 0.4, 0.6, 0.8].

Three baseline strategies are considered for the sake of comparison. First, a
quantile regression (QR) approach. This technique is well established for the single
output case. In order to obtain regions, a probabilistic interval of probability τ
is obtained for each output independently and then combined to form a box-
shaped region. However, combining two intervals of probability τ does not turn
out to be a prediction region of probability τ . Actually, a lower probability will
be attained. To tackle this problem, a back-off parameter will be calculated so
that the computed boxes fulfill the empirical probability in the validation set V.
The second one is based on GPs. Here, the matlab function “fitgrp” is used to
obtain a model for each output independently. This function automatically finds
an appropriate Kernel function for the input-output data and optimizes the values
of the hyperparameters. Then, using “predict”, it is possible to obtain intervals
of a specified probability τ . Same as before, it is needed to compute a back-off
parameter in the validation set V to achieve the desired empirical probability.
Finally, an implementation of the prediction regions based on Inverse Regression
(IR) of [82] is considered.

The results for τ = 0.1 and τ = 0.2 are shown in Table 3.4. It can be seen how
the implicit regions of the proposed approach and the approximation ellipsoids

52 Chapter 3. Probabilistic prediction regions

Table 3.4: Area of the regions and empirical probabilities (E.P.) obtained for the pro-
posed methodology, the approximation with ellipsoidal regions, Gaussian processes (GPs),
quantile regression (QR) and inverse regression (IR) .

Proposed Approximation GPs QR IR
N Area E.P. Area E.P. Area E.P. Area E.P. Area E.P.

τ = 0.1
250 0.1695 0.9200 0.1885 0.9170 0.2235 0.9250 0.5839 0.9120 0.4331 0.9031
500 0.1551 0.9260 0.1656 0.9170 0.2092 0.9240 0.2645 0.8960 0.4101 0.9043

τ = 0.2
250 0.1119 0.8070 0.1176 0.8070 0.1518 0.8450 0.2341 0.8550 0.2466 0.7446
500 0.1053 0.8150 0.1142 0.8260 0.1403 0.8310 0.1590 0.8080 0.2335 0.7454

outperform the baselines considered for both values of τ and different data set
sizes. That is, the proposed approach obtains regions of considerably smaller
area while still fulfilling the specified probability given by τ (i.e. E.P. ≥ 1 − τ).
This means that the proposed approach provides regions of smaller uncertainty
in comparison to the baselines considered.

3.3 Conclusions

This chapter presented methods to obtain interval predictions and prediction re-
gions, which can be considered as an extension of the previous chapter where only
the expected value of the output of a time-series or a dynamic system was ob-
tained. First, a method based on obtaining an empirical conditioned probability
density function was proposed. However, this method turned out to be compu-
tationally expensive due to the fact that it required the numerical integration of
this probability density function for every time instant. Two numerical examples
were proposed: the forecasting of the closing price of the Dow Jones, which was
presented in the previous chapter, and the prediction of the Lorenz attractor,
which is a dynamic system known for its chaotic behaviour. Some comparisons
are made with respect to some baseline techniques such as quantile regression and
set-membership methods. In both examples, the proposed approach obtained
better results.

In the second half of the chapter, it was proposed a method that not only allows
us to obtain prediction regions of multivariate systems or time-series but also
reduces considerable the computational burden. This is due to the fact that the
second method no longer needs the integration of the empirical conditioned density
function. Also, a method to obtain ellipsoidal approximations of such regions was
proposed. Finally, a prediction example of a kite system was proposed. Other
approaches including GPs, IR, etc. were considered as baselines. It was shown
that the proposed approach and the approximated ellipsoidal regions achieved the
smallest size while fulfilling the desired probabilistic specifications.

Part II

Kriging-based identification

55

Chapter 4

State-space kriging for
autonomous systems

In part I, some methods to make predictions of time-series or dynamical systems
based on dissimilarity functions were proposed. These included l-steps ahead
forecastings, interval predictions, predictions regions, etc.

From now on, the objective will be to obtain a dynamic model of a system given
some past data of its outputs and inputs. In the case of autonomous systems
only past outputs will be considered, whereas for non-autonomous systems past
inputs will be considered as well. The state-space of this new model will be
compounded of the vector of weights λ appearing in the dissimilarity function
presented in part I. Two different strategies are proposed, a linear time variant
approach based on the weighting of the local data within the dissimilarity function
and a kernel-based approach where the dissimilarity function is slightly modified
to accommodate the kernel trick. Finally, some numerical examples are presented
to show the effectiveness of the proposed approaches.

4.1 Dynamic kriging

Consider an autonomous discrete nonlinear system

xk+1 = h(xk) (4.1a)

yk = g(xk), (4.1b)

where k is the time instant, xk ∈ Rnx is the state of the system, yk ∈ Rny is the
output of the system, whereas h(·) and g(·) are unknown nonlinear functions such
that h(·) : Rnx → Rnx and g(·) : Rnx → Rny .

The objective of this section is to obtain a model of the outputs of (4.1). It
is assumed that the only available data are the measurable outputs. The re-
gressor zk is defined as a time delay embedding vector zk ∈ Rnz containing the

56 Chapter 4. State-space kriging for autonomous systems

np past outputs of the system. That is, zk = [y⊤k , y
⊤
k−1, ..., y

⊤
k−np+1]

⊤ ∈ Rnz ,

where nz = npny. Also, note that z+k is denoted as the successor of zk, i.e.
z+k = [y⊤k+1, y

⊤
k , ..., y

⊤
k−np+2]

⊤ ∈ Rnz .

From now on, assume that some historical data of the plant is stored in a database
in the form of matrices:

D =
[
z̄1 z̄2 . . . z̄N

]
,

D+ =
[
z̄+1 z̄+2 . . . z̄+N

]
,

where N > nz is the number of data points, z̄ refers to a sample of z and matrix
D+ is the successor of D. The indexes of the columns of D and D+ do not refer
to the sample time, but to the position in the matrix. Therefore, z̄i+1 is not
necessarily the successor sample of z̄i. At sample time k, an estimation of the
successor of zk, denoted as z̃k+1, can be obtained by a linear combination of the
columns of matrix D+ using the vector of optimal weights λ∗k ∈ RN obtained from
an optimization problem similar to those shown in section 2, i.e.

z̃k+1 = D+λ∗k.

Considering definition 2.1 and assuming that γ = 0, the optimization problem
from which λ∗k is obtained can be posed as

λ∗k = arg min
λk

λ⊤kH1λk (4.2a)

s.t.

[
D
1

]
λk =

[
zk
1

]
, (4.2b)

where H1 ∈ RN×N is a positive definite weighting matrix and 1 a row vector
with all its components equal to 1. Forcing the components of λk to sum one is
equivalent to including a bias term in the estimation process. The simplest choice
is to make H1 equal to the identity matrix IN (see remark 2.2). This optimization
problem can be rewritten as

λ∗k = arg min
λk

λ⊤kH1λk (4.3a)

s.t. Cλk = b , (4.3b)

with

C =

[
D
1

]
, b =

[
zk
1

]
.

In order to guarantee that any point in Rnz+1 can be expressed as a linear com-
bination of the columns of C, it is assumed that matrix C is full row rank. This
equality constrained quadratic problem has an analytic solution that can be ob-
tained computing the Lagrangian and its derivative:

L(λk, ν) = λ⊤kH1λk + ν⊤ (Cλk − b)

4.2. Linear state-space kriging 57

d

dλ
L(λk, ν) = 2H1λk + C⊤ν ,

where ν is the dual variable associated with the equality constraint. From the
Karush-Kuhn-Tucker (KKT) conditions:

2H1λ
∗
k + C⊤ν∗ = 0 , (4.4)

which leads to

λ∗k =
−H−1

1 C⊤ν∗

2
.

Pre-multiplying this equality by C, and taking into account that Cλ∗k = b, the
following is obtained

ν∗ = −2
(
CH−1

1 C⊤
)−1

b,

which applied to equation (4.4) yields

λ∗k = H−1
1 C⊤

(
CH−1

1 C⊤
)−1

[
zk
1

]
.

In order to predict zk+d, with d > 1, one could use this approach in a recursive
way. That is, the i-th ahead prediction z̃k+i could be used to compute

λ∗k+i = H−1
1 C⊤

(
CH−1

1 C⊤
)−1

[
z̃k+i

1

]
,

and thus obtaining z̃k+i+1 = D+λ∗k+i. In the next section, it is proposed a modi-
fication of this naive recursive method. The novel methodology relies on a time-
varying state-space modelling of the optimal weighting vector parameter λ∗k.

4.2 Linear state-space kriging

Suppose that the prediction z̃k+1 of zk+1 is obtained from z̃k+1 = D+λ∗k, where
the sum of the components of λ∗k is assumed to be equal to one. In order to
model how the dynamics of the optimal vector of weights λ∗k+1 depends on λ∗k,
a regularization term is added to optimization problem (4.2) that penalizes the
difference between λ∗k+1 and λ∗k. In this way, vector λ∗k+1 not only fulfills the
required equality constraints, but also does not depart excessively from λ∗k. This
will reduce the sensitivity to noise of the identified dynamics. Thus, given z̃k+1,
λ∗k+1 is obtained from

λ∗k+1 = arg min
λk+1

(λk+1 − λ∗k)⊤H2(λk+1 − λ∗k) + λ⊤k+1H1λk+1

s.t.

[
D
1

]
λk+1 =

[
z̃k+1

1

]
,

58 Chapter 4. State-space kriging for autonomous systems

where H2 ∈ RN×N is chosen as the identity matrix multiplied by a certain scalar
that could be selected by cross-validation [1, §16.5]. Because of the assumptions
on λ∗k, the previous optimization problem can be rewritten as

λ∗k+1 = arg min
λk+1

(λk+1 − λ∗k)⊤H2(λk+1 − λ∗k) + λ⊤k+1H1λk+1

s.t.

[
D
1

]
λk+1 =

[
D+

1

]
λ∗k .

Thus, the problem becomes

λ∗k+1 = arg min
λk+1

(λk+1 − λ∗k)⊤H2(λk+1 − λ∗k) + λ⊤k+1H1λk+1 (4.5a)

s.t. Cλk+1 = C+λ∗k, (4.5b)

with

C =

[
D
1

]
, C+ =

[
D+

1

]
.

Note that λ∗k+1 is determined only by λ∗k and matrices C and C+. Optimization
problem (4.5) can be rewritten as

λ∗k+1 = arg min
λk+1

1

2
λ⊤k+1Hλk+1 + f⊤λk+1

s.t. Cλk+1 = b ,

with H = 2(H1 +H2), f = −2H2λ
∗
k and b = C+λ∗k. Also, note that the constant

term λ∗k
⊤H2λ

∗
k is removed because it does not affect the solution λ∗k+1. The

Lagrangian of this problem is given by

L(λk+1, ν) =
1

2
λ⊤k+1Hλk+1 + f⊤λk+1 + ν⊤(Cλk+1 − b) ,

where ν is the dual variable associated with the equality constraint. The derivative
of the Lagrangian is

d

dλk+1
L(λk+1, ν) = Hλk+1 + f + C⊤ν .

In the optimum, the derivative fulfills the KKT conditions [139, §10.1.1]. That is,

Hλ∗k+1 + f + C⊤ν∗ = 0 ,

and thus
λ∗k+1 = −H−1f −H−1C⊤ν∗ . (4.7)

Pre-multiplying both sides of last equality by C yields

b = Cλ∗k+1 = −CH−1f − CH−1C⊤ν∗ ,

4.2. Linear state-space kriging 59

and thus ν∗ = (CH−1C⊤)−1(−CH−1f−b). Substituting this into equation (4.7),
the following expression for λ∗k+1 is obtained

λ∗k+1 = H−1C⊤
(
CH−1C⊤

)−1 (
CH−1f + b

)
−H−1f.

Taking into account that f = −2H2λ
∗
k and b = C+λ∗k, the state-space equation of

λ∗k can be written as

λ∗k+1 = Aλ∗k ,

with

A = 2H−1H2 +H−1C⊤(CH−1C⊤)−1(C+ − 2CH−1H2).

Note that this means that λk follows linear dynamics. Thus, a new model for the
outputs of system (4.1) has been obtained using historical data of these outputs.
This new autonomous system allows us to compute the next values of λ and z.
Note that, as only the first term of zk is needed (i.e. the term corresponding to
yk), the model can be posed as

λ∗k+1 =Aλ∗k

yk =Y λ∗k,

where Y denotes a matrix compounded of only the first rows of D, that is, Y is
a matrix containing the samples ȳi.

4.2.1 Initial condition

The initial vector of optimal weights λ∗0 is computed by means of the optimization
problem in (4.2) substituting k by 0, that is

λ∗0 = arg min
λ0

λ⊤0 H1λ0

s.t.

[
D
1

]
λ0 =

[
z0
1

]
.

4.2.2 Local-data approach

Note that the previous model is linear and time-invariant as the matrix A is
constant. However, it is possible to weight the points in the data set with respect
to z, which would encourage the use of local data and thus provide better results
when identifying nonlinear systems.

This can be done by choosing H1 appropriately. In remark 2.2, it was shown that
it is possible to consider a vector ω within the dissimilarity function to weight
different elements in the data set. Here, the squared Euclidean distance is chosen
to measure the dissimilarity of a certain z to each point of the data set. That is,

60 Chapter 4. State-space kriging for autonomous systems

ω(z) =

 (z − z̄1)⊤(z − z̄1)
...

(z − z̄N)⊤(z − z̄N)

 , (4.8)

and thus
H1 = diag(ω(z)) ,

where diag(·) denotes a diagonal matrix RN ×RN whose non-zero entries are the
components of the input vector. Note that, because of this change, this vector
ω(z) needs to be computed at each time instant k, leading to a different matrix
A for every k, and thus leading to LTV dynamics for λ, that is

λ∗k+1 = Akλ
∗
k

yk = Y λ∗k.

4.3 Kernel-based state-space kriging

Kernels functions are widely used in the machine learning field. For example, Sup-
port Vector Machines (SVM) are supervised learning models that classify linearly
separable data. That is, given a cloud of data points (each point belonging to
a certain class), the problem of classification is defined as finding an hyperplane
that divide the data into two sets. However, when considering nonlinear relations
within the data, it is not possible to obtain an hyperplane that separates the data.
In order to be able to classify this kind of data, it is needed to project this data
into a high-dimensional space where it may become linearly separable.

Thanks to the so-called kernel trick (see chapter 3 in [150]), it is possible to operate
in a high-dimensional feature space without computing the coordinates of such
space. Instead, it is only needed to compute the inner product of the images of
all pairs of the data samples, which bypasses the computation of the coordinates
of the feature space that may be cumbersome or even impossible.

Thus, instead of using local data as it was presented in the previous section, one
could resort to the use of kernels in order to model the nonlinear dynamics of
the system. Also, the use of kernels will allow us to compute the matrices of the
system only once, unlike the local data approach where the matrices needed to be
recomputed at each sample time.

In order to include the kernels, the optimization problem is modified, becoming

λ∗k+1 = arg min
λk+1

(λk+1 − λ∗k)⊤H2(λk+1 − λ∗k) + λ⊤k+1H1λk+1

+

∥∥∥∥∥
N∑
i=1

φz̄iλk+1,(i) −
N∑
i=1

φz̄+i
λ∗k,(i)

∥∥∥∥∥
2

Σ−1
φ

s.t. 1λk+1 = 1 ,

4.3. Kernel-based state-space kriging 61

where φ(·) : Rnz → H refers to a nonlinear operator that maps Rnz into a prob-
ably high dimensional space H, φz̄i and φz̄+i

denote φ(z̄i) and φ(z̄+i) respectively

and Σφ is a positive definite matrix of appropriate dimensions. In what follows,
it is shown that we do not need a precise knowledge of φ(·) to compute λk+1 as
it suffices to compute, for a given pair a ∈ Rnz and b ∈ Rnz , the product

⟨φa, φb⟩ = φaΣ−1
φ φb .

Note that the previous linear hard constraint on zk has been changed to a penalty
term on a high dimensional space by means of the kernel trick as it is no longer a
linear constraint. Assuming that some data sets of the evaluation of φ(·) over the
time delay embeddings of D and D+ are available (which due to the kernel trick
are not really necessary), it would be possible to denote them as

φz̄ =
[
φz̄1 φz̄2 . . . φz̄N

]
, φz̄+ =

[
φz̄+1

φz̄+2
. . . φz̄+N

]
.

Thus, the previous problem could be written in matrix form as

λ∗k+1 = arg min
λk+1

(λk+1 − λ∗k)⊤H2(λk+1 − λ∗k) + λ⊤k+1H1λk+1

+ ∥φz̄λk+1 − φz̄+λ
∗
k∥2Σ−1

φ

s.t. 1λk+1 = 1 .

Now, operating with the term ∥φz̄λk+1 − φz̄+λ
∗
k∥2Σ−1

φ
, the following expression is

obtained

∥φz̄λk+1 − φz̄+λ
∗
k∥2Σ−1

φ
=λ⊤k+1

(
φ⊤
z̄ Σ−1

φ φz̄

)
λk+1 − 2λ⊤k+1

(
φ⊤
z̄ Σ−1

φ φz̄+

)
λ∗k

+ λ∗k
⊤
(
φ⊤
z̄+Σ−1

φ φz̄+

)
λ∗k .

Again, the constant term λ∗k
⊤ (φ⊤

z̄+Σ−1
φ φz̄+

)
λ∗k is discarded because it does not

affect the values of λ∗k+1, leading to the following optimization problem

λ∗k+1 = arg min
λk+1

1

2
λ⊤k+1Hλk+1 + f⊤λk+1 (4.12a)

s.t. 1λk+1 = 1 . (4.12b)

with H = 2(H1 +H2) + 2φ⊤
z̄ Σ−1

φ φz̄, f = −2(H2 + φ⊤
z̄ Σ−1

φ φz̄+)λ∗k.

Note that the kernel related terms can be computed because only cross products
appear in the aforementioned equations. These terms would be computed as

φ⊤
z̄ Σ−1

φ φz̄ =

⟨φz̄1 , φz̄1⟩ ⟨φz̄1 , φz̄2⟩ . . . ⟨φz̄1 , φz̄N ⟩
⟨φz̄2 , φz̄1⟩ ⟨φz̄2 , φz̄2⟩ . . . ⟨φz̄2 , φz̄N ⟩

...
...

...
⟨φz̄N , φz̄1⟩ ⟨φz̄N , φz̄2⟩ . . . ⟨φz̄N , φz̄N ⟩

 ,

62 Chapter 4. State-space kriging for autonomous systems

φ⊤
z̄ Σ−1

φ φz̄+ =

⟨φz̄1 , φz̄+1

⟩ ⟨φz̄1 , φz̄+2
⟩ . . . ⟨φz̄1 , φz̄+N

⟩
⟨φz̄2 , φz̄+1

⟩ ⟨φz̄2 , φz̄+2
⟩ . . . ⟨φz̄2 , φz̄+N

⟩
...

...
...

⟨φz̄N , φz̄+1
⟩ ⟨φz̄N , φz̄+2

⟩ . . . ⟨φz̄N , φz̄+N
⟩

 ,
where ⟨φz̄i , φz̄j ⟩ is the result of applying a certain kernel function with samples z̄i
and z̄j as inputs. By means of the KKT conditions, the solution of the optimiza-
tion problem (4.12) is obtained;

λ∗k+1 = Aλ∗k + c,

with

A = 2H−1(IN − 1⊤(1H−11⊤)−11H−1)(H2 + φ⊤
z̄ Σ−1

φ φz̄+),

c = H−11⊤(1H−11⊤)−1 .

As the output equation does not change, the complete model of the system is

λ∗k+1 = Aλ∗k + c

yk = Y λ∗k .

Remark 4.1. Note that this system is only affine in the feature space. Assuming
that the kernel functions are not linear, the model is nonlinear in the data space.

Remark 4.2. There are lots of possible kernel functions that can be used with the
proposed methodology. In the following, some examples of kernel functions are
shown.

• Linear kernel:

⟨φa, φb⟩ = a⊤b .

• Polynomial kernel:

⟨φa, φb⟩ = (n+ a⊤b)p, where n ∈ R and p ∈ Z .

• Radial basis kernel:

⟨φa, φb⟩ = e
−||a−b||

2σ2 , where σ > 0 .

• Sigmoidal kernel:

⟨φa, φb⟩ = tanh(n1a
⊤b+ n2), where n1 ∈ R and n2 ∈ R .

4.4. Kalman filter for SSK 63

4.3.1 Initial condition

As in the previous cases, an initial value λ∗0 is needed. Here, it is obtained from
the following optimization problem

λ∗0 = arg min
λ0

λ⊤0 H1λ0 + ∥φz0 − φz̄λ0∥2Σ−1
φ

s.t. 1⊤λ = 1.

Operating with ∥φz0 − φz̄λ0∥2Σ−1
φ

, we obtain

λ∗0 = arg min
λ0

1

2
λ⊤0 Hλ0 + f⊤λ0

s.t. 1⊤λ0 = 1,

where

H = 2H1 + 2φ⊤
z̄ Σ−1

φ φz̄, f = −2φ⊤
z̄ Σ−1

φ φz0 ,

φ⊤
z̄ Σ−1

φ φz0 =

⟨φz̄1 , φz0⟩
⟨φz̄2 , φz0⟩

...
⟨φz̄N , φz0⟩

 .

4.4 Kalman filter for SSK

To reduce the effect of noisy measurements in the data sets D and D+ as well as
disturbances and modelling mismatches, a kalman filter [151] is considered. Under
the assumption that zk+1 = D+λ∗k and 1λ∗k = 1, a nominal LTV state-space model
was derived in the previous sections:

λ∗k+1 = Akλ
∗
k + c

yk = Y λ∗k.

Note that, here, the kernel-based approach is used without loss of generality. In
order to address the existence of noise, disturbances and modelling mismatches,
this model is augmented with disturbances, modelling errors (wk) and measure-
ment noise (vk), that is,

λ∗k+1 =Aλ∗k + c+ wk

yk =Y λ∗k + vk .

As it is necessary to enforce the equality constraint 1λ∗k = 1, the output vector is
extended as

y′k =

[
Y
1

]
λ∗k +

[
vk
0

]
. (4.13)

64 Chapter 4. State-space kriging for autonomous systems

Defining G =

[
Y
1

]
and v′k =

[
vk
0

]
, the following extended system is obtained

λ∗k+1 = Aλ∗k + c+ wk

y′k = Gλ∗k + v′k .

Due to noise, λ∗k is also noisy and, thus, it may be helpful to use an optimal
prediction of its value obtained with a kalman filter. The prediction of λ∗k will

be denoted as λ̃∗k whereas the corrected prediction will be denoted as λ̂∗k. It
is assumed that wk and vk are uncorrelated white noise signals with bounded
covariance matrices ςω and ςv so that

E(wkw
⊤
k) ≤ ςw, E(vkv

⊤
k) ≤ ςv,

where E(·) denotes the mathematical expectation. From the bound on the covari-
ance of vk, it is easy to obtain a bound of v′k:

E(v′kv
′
k
⊤

) ≤ E

([
vkv

⊤
k 0

0 0

])
=

[
ςv 0
0 0

]
= ς ′v .

The bound of the covariance of the estimation error λ∗k − λ̃∗k is denoted as σ̃k:

E
(

(λ∗k − λ̃∗k)(λ∗k − λ̃∗k)⊤
)
≤ σ̃k.

Then, given an estimation λ̃∗k, a corrected version λ̂∗k is obtained from

λ̂∗k = λ̃∗k + Sk

([
yk
1

]
−Gλ̃∗k

)
,

where Sk is the optimal gain, calculated as

Sk = σ̃kG
⊤
(
Gσ̃kG

⊤ + ς ′v

)−1
.

Note that the corrected vector λ̂∗k fulfills the constraint 1 = 1λ̂∗k because the last
component of the extended output (that is, 1λ∗k) is artificial and thus there is no
measurement noise (see (4.13)).

Applying the equations of the kalman filter, the matrix σ̃k+1 is computed as

σ̃k+1 = Aσ̂kA
⊤ + ςw ,

where σ̂k = σ̃k − SkGσ̃k. Finally, λ̃∗k+1 is computed as

λ̃∗k+1 = Aλ̂∗k + c . (4.14)

The matrices σ̃0, ςw, ςv are set as diagonal matrices that are considered tuning
parameters.

4.5. Numerical examples 65

4.5 Numerical examples

In this section, two examples are provided to show the effectiveness of the pro-
posed strategy. Four baselines based on Gaussian Processes (GPs) [23], Nonlinear
ARX models (NARX) [20], Reservoir computing (RC) [33] and Dynamic Mode
Decomposition (DMD) [7] are provided to compare the results obtained with our
proposed approaches.

4.5.1 Sunspot number

Forecasting the sunspot number is considered quite difficult as the time series
is nonstationary and because the nature of its dynamics is unknown. Monthly
observations of the historical evolution of the number of sunspots since 1749 will
be used in this example. The data sets are compounded of the first 2500 samples
with a time-delay embedding zk = [yk, . . . , yk−39]

⊤. The next 150 samples will
be used as a test set. The observations are assumed to be noise-free and thus
the approach without kalman filter is used. The predictions will be made from
time instant k = 0 exclusively. That is, the predictions will be k-step ahead,
with k = 1, . . . , 150. Note that the forecasting horizon is quite long (it comprises
more than a solar cycle), making the forecasting task even harder. Here, NARX
and GPs are computed using Matlab functions (“nlarx” and “fitrgp”) and the
RC implementation considers a reservoir size of 300, a leakage rate of 0.9 and a
spectral radius of 0.4. Both the Kernel-based State-Space Kriging (K-SSK) and
Local-Data State-Space Kriging (LD-SSK) are tested in this example. K-SSK
uses a radial basis kernel

⟨φz̄i , φz̄j ⟩ = e
−||z̄i−z̄j ||

2σ2 ,

with σ = 0.4. The value of the matrices H1 and H2 are H1 = 3.5·10−12 IN, H2 =
0.14 IN and the data sets D and D+ are normalized in the [0, 1] range. On the
other hand, the LD-SSK approach only has one tunable parameter whose value
is H2 = 0.053 IN.

Figure 4.1 and table 4.1 show the forecasting results. Note that only the proposed
approaches are shown in the figure for the sake of clarity. It can be seen that the
proposed approaches perform better than the aforementioned baselines, obtaining
smaller errors and standard deviations in general.

LD-SSK K-SSK GP NARX DMD RC

MSE 754.15 701.72 999.77 991.11 5795.6 6048.1

Std 24.671 25.843 35.147 26.490 72.897 62.552

Table 4.1: MSE for the Sunspot Number example.

66 Chapter 4. State-space kriging for autonomous systems

0 50 100 150

Month

0

20

40

60

80

100

120

140

160

180

200

S
u
n
s
p
o
t
N

u
m

b
e
r

K-SSK

LD-SSK

Real

Figure 4.1: Forecasting the Sunspot Number 150 steps ahead.

4.5.2 Rössler attractor

Consider now the system described by the following set of differential equations

ȯ = −p− l
ṗ = o+ ap

l̇ = b+ l(o− c) ,

also known as the Rössler attractor. The set of parameters considered in this
example is a = 0.2, b = 0.2 and c = 5.7 which are known to correspond to
a chaotic behaviour. In order to obtain samples of the continuous system, the
system of ODEs is integrated numerically with a fixed sample time of 0.1 seconds
during a total simulation time of 20 seconds starting from random initial points in
the space, making a total of 1000 samples in the matrices D and D+ (comprising
5 trajectories of 200 samples each one). The time-delay embedding considered
here is zk = [ok, pk, lk]⊤.

The purpose of this example is to show the effectiveness of the proposed strate-
gies to model nonlinearity with measurement noise. For that reason, it will be
considered that the measurements obtained from the Rössler attractor are noisy.
This noise will follow a normal distribution with zero mean and unit variance
N ∼ (0, 1) and is completely uncorrelated (that is, the noise of each state is also
uncorrelated to that of the other states). As in the previous example, both pro-
posed approaches are tested here. The LD-SSK scheme which incorporates the
kalman filter is used here with parameters H2 = 9.79 IN, ςw = 1.01 · 10−5 IN and
σ̃0 = 6.51 · 10−6 IN. Also, the variance of vk is assumed to be known.

4.5. Numerical examples 67

On the other hand, K-SSK uses a kernel such that

⟨φz̄i , φz̄j ⟩ =

 e
−||z̄i−z̄j ||

2σ2 + E(v2k) if i = j ,

e
−||z̄i−z̄j ||

2σ2 else,

where σ = 0.119. The value of the matricesH1 andH2 areH1 = 1.25·10−5 IN, H2 =
2.24 · 10−5 IN whereas the parameters of the kalman filter are ςw = 1.23 · 10−7 IN
and σ̃0 = 4.09 · 10−6 IN

Note that the forecasting is done 1-step ahead, in contrast to the k-steps ahead
predictions of the previous example, in order to be able to apply the methodology
of the kalman filter. Thus, at each time instant k the value of the output is
sampled and the forecasting at k − 1 is corrected with this new measurement.
After that, the prediction for k + 1 is done with all the information available at
k (which includes the corrected measurements). 100 trajectories of 15 seconds
obtained from random initial conditions are considered. On the other hand, GPs
are computed using a radial basis kernel with a regularization term equal to the
true variance of the process. The RC implementation considers a reservoir size of
50, a leakage rate of 0.2 and a spectral radius of 0.3. Finally, a kalman filtering
layer is coupled to the linear system obtained with the DMD in this section (K-
DMD), where the variance of the noise is also assumed to be known.

The results are shown in figure 4.2, and table 4.2. Figure 4.2 shows the real evolu-
tion of the state along with the noisy measurements and the prediction obtained
with the K-SSK approach for a representative trajectory. Table 4.2 summarizes
the numerical results of the experiment. It can be seen that the K-SSK strategy
achieves the best results both in MSE and standard deviations.

On the other hand, computational times of the different baselines for the Rössler
atractor are provided in table 4.3. Although the proposed approaches seem to be
the most costly methods, it remains in the order of 60 and 30 milliseconds, what
can be considered fast enough for time series/dynamic systems forecasting. Also,
it should be noted that most of the computation time is due to the kalman filter
step. The computation times would drop to 12.477 ms for the LD-SSK and 0.2434
ms for the K-SSK without the kalman filter.

LD-SSK K-SSK GP NARX K-DMD RC

MSE 0.2504 0.2138 0.6423 0.6337 0.2734 0.3385

Std 0.5002 0.4622 0.8013 0.7960 0.5229 0.5816

Table 4.2: MSE for the noisy Rössler attractor.

68 Chapter 4. State-space kriging for autonomous systems

0 5 10 15

-5

0

5

o
K-SSK

Real

Measured Output

0 5 10 15
-5

0

5

p

0 5 10 15

Time (s)

-5

0

5

l

Figure 4.2: Forecasting the noisy Rössler attractor with kalman filtering.

LD-SSK K-SSK GP NARX K-DMD RC

62.909 37.5912 2.591 14.872 0.036 0.868

Table 4.3: Average online computational time in milliseconds (Rössler attractor).

4.6 Conclusions

This chapter presented the state-space kriging method for autonomous systems.
The proposed technique allowed us to obtain a model of the system by means of
past data of the process. This could be done by manipulating appropriately the
dissimilarity function presented in part I and by obtaining the explicit solution
of the resulting optimization problems. Also, it was shown that a kalman filter
can be used to improve the performance of the proposed models. Finally, two
numerical examples were proposed in order to show the effectiveness of the SSK
approaches. Both the LD-SSK and the K-SSK attained better performance than
other existing machine learning models.

In the next chapter, the proposed methodology will be extended to tackle non-
autonomous system, which will allow us to develop MPC controllers as well.

69

Chapter 5

State-space kriging for
non-autonomous systems

The previous chapter introduced the concept of state-space kriging for autonomo-
us systems and, by means of numerical results, it was shown that the performance
is, if not better, comparable to many other forecasting methods. However, in order
to be able to use the proposed approaches in a control scheme, it is needed to
introduce the input term in the SSK formulation.

In this chapter, both methodologies presented before will be extended to tackle
non-autonomous systems. It is also shown that the kernel-based SSK is more
suitable for control due to the fact that the system matrices are computed only
once, unlike the local data approach.

5.1 Non-autonomous linear SSK

Consider a non-autonomous discrete nonlinear system

xk+1 = h(xk, uk) (5.1a)

yk = g(xk), (5.1b)

where k is the time instant, xk ∈ Rnx is the state of the system, uk ∈ Rnu is the
input of the system, yk ∈ Rny is the output of the system and h(·) and g(·) are
unknown nonlinear functions such that h(·) : Rnx×nu → Rnx and g(·) : Rnx → Rny .
Unlike in chapter 4, it is assumed that the vector of weights λ∗k fulfill the following
constraints:

zk = D+λ∗k,

1 = 1λ∗k.

70 Chapter 5. State-space kriging for non-autonomous systems

Furthermore, it is imposed that λ∗k+1 must be able to compute zk and uk as an
affine combination of D and U . Thus, it must satisfy the constraints D

1
U

λ∗k+1 =

 zk
1
uk

 .
where U =

[
ū1 ū2 . . . ūN

]
∈ Rnu×N is the data set of control actions, i.e. ūi

are past samples of the input u. This set of constraints is similar to the constraints
presented in the previous chapter but aimed to obtain the successor of λ∗k+1, as
a function of λ∗k and uk, that is, to consider non-autonomous systems. Thus, the
proposed optimization problem leading to the state equation is

λ∗k+1 = arg min
λk+1

(λk+1 − λ∗k)⊤H2(λk+1 − λ∗k) + λ⊤k+1H1λk+1 (5.3a)

s.t. Cλk+1 = C+λ∗k +

[
0(nz+1)×nu

Inu

]
uk, (5.3b)

where 0(nz+1)×nu
is a matrix of zeros compounded of nz + 1 rows and nu columns

C =
[
D⊤ 1⊤ U⊤]⊤

and C+ =
[
D+⊤

1⊤ 0⊤
]⊤
. Note that uk is the

current value of the system input, not to be confused with ū, which are past
values of uk stored in the data base U .

This problem can be written in canonical form as

λ∗k+1 = arg min
λk+1

1

2
λ⊤k+1Hλk+1 + f⊤λk+1

s.t. Cλk+1 = b ,

with H = 2(H1 + H2), f = −2H2λ
∗
k and b = C+λ∗k +

[
0nu×(nz+1) Inu

]⊤
uk.

Note that the constant term is discarded because it does not affect the value of
λ∗k+1. By means of the KKT conditions, this problem has the solution

λ∗k+1 = −H−1f +H−1C⊤
(
CH−1C⊤

)−1 (
CH−1f + b

)
.

Substituting f and b, the following state-space equation is obtained

λ∗k+1 = Aλ∗k +Buk,

yk = Y +λ∗k .

where Y + denotes a matrix compounded of only the first ny rows of D+ and

A = (2H−1H2 +H−1C⊤(CH−1C⊤)−1
(
C+ − 2CH−1H2

)
),

B = H−1C⊤(CH−1C)−1
[
0nu×(nz+1) Inu

]⊤
.

As the expression of the dynamics of λ has been obtained, the output y can be
easily obtained for any time instant k assuming that the inputs are given.

5.2. Non-autonomous kernel-based SSK 71

5.1.1 Initial condition

It still remains to show how to obtain the initial value λ∗0. For that purpose,
consider the following optimization problem

λ∗0 = arg min
λ0

λ⊤0 H1λ0

s.t.

[
D+

1

]
λ0 =

[
z0
1

]
.

where z0 is the initial value of the time delay embedding.

5.2 Non-autonomous kernel-based SSK

Taking into account kernel functions, the optimization problem in (5.3) becomes
the following

λ∗k+1 = arg min
λk+1

(λk+1 − λ∗k)⊤H2(λk+1 − λ∗k) + λ⊤k+1H1λk+1

+ ∥φz̄λk+1 − φz̄+λ
∗
k∥2Σ−1

φ
(5.6a)

s.t.

[
U
1

]
λk+1 =

[
uk
1

]
. (5.6b)

As in the previous chapter, the hard constraint becomes a penalty term in a high
dimensional space due to the kernel trick [150]. Now, operating with the term
∥φz̄λk+1 − φz̄+λ

∗
k∥2Σ−1

φ
, the following expression is obtained

∥φz̄λk+1 − φz̄+λ
∗
k∥2Σ−1

φ
=λ⊤k+1φ

⊤
z̄ Σ−1

φ φz̄λk+1 − 2λ⊤k+1φ
⊤
z̄ Σ−1

φ φz̄+λ
∗
k

+ λ∗k
⊤φ⊤

z̄+Σ−1
φ φz̄+λ

∗
k ,

Discarding the constant term λ∗k
⊤φ⊤

z̄+Σ−1
φ φz̄+λ

∗
k, we obtain the following opti-

mization problem

λ∗k+1 = arg min
λk+1

1

2
λ⊤k+1Hλk+1 + f⊤λk+1

s.t. Tλk+1 =

[
0⊤

1

]
+

[
Inu
0

]
uk .

with H = 2(H1 +H2) + 2φ⊤
z̄ Σ−1

φ φz̄, f = −2(H2 + φ⊤
z̄ Σ−1

φ φz̄+)λ∗k , T =

[
U
1

]
.

Note that the kernel related terms can be computed because only cross products
appear in the aforementioned equations. These terms would be computed as

φ⊤
z̄ Σ−1

φ φz̄ =

⟨φz̄1 , φz̄1⟩ ⟨φz̄1 , φz̄2⟩ . . . ⟨φz̄1 , φz̄N ⟩
⟨φz̄2 , φz̄1⟩ ⟨φz̄2 , φz̄2⟩ . . . ⟨φz̄2 , φz̄N ⟩

...
...

...
⟨φz̄N , φz̄1⟩ ⟨φz̄N , φz̄2⟩ . . . ⟨φz̄N , φz̄N ⟩

 ,

72 Chapter 5. State-space kriging for non-autonomous systems

φ⊤
z̄ Σ−1

φ φz̄+ =

⟨φz̄1 , φz̄+1

⟩ ⟨φz̄1 , φz̄+2
⟩ . . . ⟨φz̄1 , φz̄+N

⟩
⟨φz̄2 , φz̄+1

⟩ ⟨φz̄2 , φz̄+2
⟩ . . . ⟨φz̄2 , φz̄+N

⟩
...

...
...

⟨φz̄N , φz̄+1
⟩ ⟨φz̄N , φz̄+2

⟩ . . . ⟨φz̄N , φz̄+N
⟩

 .
Applying the KKT conditions, the solution of the optimization problem (5.6) is
obtained;

λ∗k+1 = Aλ∗k +Buk + c (5.8a)

yk = Y +λ∗k , (5.8b)

with

A = 2H−1(IN − T⊤(TH−1T⊤)−1TH−1)(H2 + φ⊤
z̄ Σ−1

φ φz̄+),

B = H−1T⊤(TH−1T⊤)−1

[
Inu
0

]
,

c = H−1T⊤(TH−1T⊤)−1

[
0⊤

1

]
.

Remark 5.1. Note that adding the input to the optimization problem is compatible
with both the Local-data approach and the kernel-based approach, leading to a
family of different predictors. However, in the local-data approach, it is needed
to compute the matrices A and B at each time instant k, becoming cumbersome
when considering MPC control problems. For that reason, in the following, it is
only considered the kernel-based SSK.

Remark 5.2. Note that the kalman filter for the non-autonomous SSK is equiv-
alent to the one proposed in the previous chapter. In this case, equation (4.14)
becomes

λ̃∗k+1 = Aλ̂∗k +Buk + c . (5.9)

5.2.1 Initial condition

As in the non-autonomous linear SSK, an initial value λ∗0 is needed. This initial
condition can be obtained from the following optimization problem

λ∗0 = arg min
λ0

λ⊤0 H1λ0 + ∥φz0 − φz̄+λ0∥2Σ−1
φ

s.t. 1⊤λ = 1 .

Operating with ∥φz0 − φz̄+λ0∥2Σ−1
φ

, we obtain

λ∗0 = arg min
λ0

1

2
λ⊤0 Hλ0 + f⊤λ0

s.t. 1⊤λ0 = 1 ,

5.3. Application to MPC 73

with
H = 2H1 + 2φ⊤

z̄+Σ−1
φ φz̄+ , f = −2φ⊤

z̄+Σ−1
φ φz0 ,

φ⊤
z̄+Σ−1

φ φz̄+ =

⟨φz̄+1

, φz̄+1
⟩ ⟨φz̄+1

, φz̄+2
⟩ . . . ⟨φz̄+1

, φz̄+N
⟩

⟨φz̄+2
, φz̄+1

⟩ ⟨φz̄+2
, φz̄+2

⟩ . . . ⟨φz̄+2
, φz̄+N

⟩
...

...
...

⟨φz̄+N
, φz̄+1

⟩ ⟨φz̄+N
, φz̄+2

⟩ . . . ⟨φz̄+N
, φz̄+N

⟩

 ,

φ⊤
z̄+Σ−1

φ φz0 =

⟨φz̄+1

, φz0⟩
⟨φz̄+2

, φz0⟩
...

⟨φz̄+N
, φz0⟩

 .

5.3 Application to MPC

Assuming that we have an arbitrary nonlinear system in a discrete time setting
like the system in equation (5.1), then, the objective of an MPC controller is to
steer the state x to an equilibrium point (xs, us) that it is called the reference of
the controller. The control actions applied to the system to achieve this objective
uk are computed by means of an optimization problem.

The obtained optimal inputs depend on both the actual state of the plant and
the optimization criteria. This step cost function is designed to penalize the
deviation of the state and the inputs to the reference at each time instant k for
a certain prediction horizon Np. In order to ensure stability for the controller, a
terminal cost function is usually added to the previously defined step cost function.

Denoting V (·) as the total cost function, u as the sequence of inputs {ui}
k+Np−1
i=k ,

x as the sequence of predicted states {xi|k}
Np

i=0, xi|k as the prediction of xk+i made
at instant k and considering that the system may have constraints in the inputs
and in the states so that x ∈ X and u ∈ U , the optimal control inputs u∗ are
obtained by solving the following optimization problem

u∗ = arg min
x,u

V (x,u) (5.11a)

s.t. system model (5.11b)

xi|k ∈ X ∀i = 0, . . . , Np (5.11c)

uk+i ∈ U ∀i = 0, . . . , Np − 1. (5.11d)

From this sequence of optimal inputs u∗, only the first component will be applied
to the system, discarding the rest as it is usual in MPC due to the receding horizon
strategy.

In this section, a tracking MPC controller [124, 125] that uses the K-SSK model is
presented in this section. The main difference of the tracking MPC with respect to

74 Chapter 5. State-space kriging for non-autonomous systems

traditional MPC is that the reference to be tracked is considered as an additional
decision variable in the optimization problem, that is, it becomes an artificial
reference. In order to enforce that the artificial reference converges to the target
reference, an additional cost is added to the MPC cost function, penalising the
deviation between them. Among the many advantages of this formulation, the fact
that the recursive feasibility is guaranteed for any change of the desired reference
and a significantly larger domain of attraction for short prediction horizons are
probably the most important ones.

The cost function in the proposed controller is compounded of three ingredients:

• A step cost function ls(·, ·) to penalize tracking error. Tracking error with
respect to a certain reference is tackled by means of a change of variables
y̆ = ỹ − ys, ŭ = u − us where ỹ is a prediction of y, ys is the artificial
output reference and us is the artificial input reference. Here, a quadratic
cost is considered. This cost penalizes the distance to the artificial input
and output reference by means of some weighting matrices of appropriate
dimensions Q and R (i.e. Q ∈ Rny×ny and R ∈ Rnu×nu), i.e.

ls(y̆, ŭ) = y̆⊤Qy̆ + ŭ⊤Rŭ.

• An offset function penalizing the difference between the artificial output ys
and the target desired reference,

lo(ys, r) = (ys − r)⊤O (ys − r) .

Under some mild conditions [124], it is proven that the artificial reference
converges to the true reference as time goes by.

• A weighted terminal cost function. This function measures the closeness of
the terminal state λ∗Np|k to the artificial steady state λ∗s. Weighting appro-
priately the terminal cost allows us to omit the terminal equality constraint
[125], simplifying the design of the controller.

lt(λ
∗
Np|k, λ

∗
s) = γ

(
λ∗Np|k − λ

∗
s

)⊤
P
(
λ∗Np|k − λ

∗
s

)
,

where γ ≥ 1.

Denoting y ∈ RnyNp and u ∈ Rnu(Np+1) as

y = [y⊤0|k, . . . , y
⊤
Np−1|k]⊤, [u⊤k , . . . , u

⊤
k+Np−1, u

⊤
s]⊤,

it is possible to define a total cost function VNp(y,u, r, λ∗k) as the sum of the
aforementioned three functions for a finite prediction horizon Np

VNp(y,u, r, λ∗k) =

Np−1∑
i=0

ls(y̆i|k, ŭk+i) + lo(ys(us), r) + lt(λ
∗
Np|k(λ∗k,u), λ∗s(us)).

5.3. Application to MPC 75

Thus, an MPC control problem with inequality constraints in the outputs and
box constraints in the inputs is presented here

u∗ = arg min
y,u,λNp|k

VNp(y,u, r, λ∗k) (5.12a)

s.t. λ∗i+1|k = Aλ∗i|k +Buk+i + c ∀i = 0, . . . , Np − 1 (5.12b)

yi|k = Y +λ∗i|k ∀i = 0, . . . , Np (5.12c)

λ∗s = Aλ∗s +Bus + c (5.12d)

ψ yi|k ≤ δ ∀i = 0, . . . , Np (5.12e)

umin ≤ uk+i ≤ umax, ∀i = 0, . . . , Np − 1 (5.12f)

which is a parametric quadratic optimization problem whose parameters are r
and λ∗k. Appendix A shows how to pose this problem in canonical form.

From this optimization problem, a sequence of optimal control actions u is ob-
tained. However, due to the receding horizon scheme characteristic of any MPC
controller, only the first component is applied to the system, computing a whole
new sequence at next time instant.

5.3.1 Nominal stability analysis

For the nominal stability analysis, it is assumed that there are no mismatches
between the dynamics of the real system and the obtained prediction model.
Furthermore, the state vector λ∗k is assumed to be known. This implies that the
kalman filter is not necessary, and thus it is not taken into account. First, note
that the proposed model is not strictly linear with respect to the weights λk.
However, taking into account that

λ∗k+1 = Aλ∗k +Buk + c

λ∗s = Aλ∗s +Bus + c,

and subtracting the equations, it is clear that

(λ∗k+1 − λ∗s) = A(λ∗k − λ∗s) +B(uk − us).

Making

λ̆∗k = λ∗k − λ∗s, ŭk = uk − us,

it is easy to see that the dynamics of λ̆∗k are linear, that is

λ̆∗k+1 = Aλ̆∗k +Bŭk.

Now, some additional assumptions are made in order to prove the nominal stability
of the controller:

76 Chapter 5. State-space kriging for non-autonomous systems

Assumption 5.3. The system described in (5.8) is observable and the pair (A,B)
is stabilizable.

Assumption 5.4. Q, R and O are positive definite matrices.

Assumption 5.5. It exists a stabilizing matrix K so that the matrix (A+BK)
is Hurwitz.

Assumption 5.6. It exists a matrix P so that the Lyapunov equation

(A+BK)⊤P (A+BK)− P = −(Q+K⊤RK) (5.13)

is fulfilled.

Assumption 5.7. It exists at least one feasible equilibrium point satisfying the
constraints of the controller.

The previous assumptions makes possible to establish the following closed-loop
stability lemma.

Lemma 5.8 (Closed-loop stability). The system (5.8) controlled with the pro-
posed MPC controller (5.12) converges asymptotically to the desired reference. In
the case where the desired reference is unreachable, the system converges to the
feasible reference which minimizes the offset cost while maintaining the asymptotic
stability.

Proof. Assuming that the assumptions are satisfied, the proof follows from [124]
and [125]. In [124], it is proven the asymptotic stability of the tracking controller
for linear systems using a terminal cost term and a terminal constraint. Then, in
[125], it is proven that the stability can be maintained even if there is no terminal
constraint. In that case, increasing the weighting of the terminal cost makes the
domain of attraction to grow. ■

5.3.2 Robust stability analysis

In this section, it is considered that modeling errors may appear, due to the
fact that the model of the system is not perfect. For this purpose, the Robustly
asymptotically stability (RAS) notion showcased in [106] is chosen. Denote e as
measurement errors and d as additive disturbances. Also, denote e and d as
sequences of Np elements of e and d. Then, the definition of RAS is the following.

5.4. Examples 77

Definition 5.9. The origin of the closed loop nonlinear system xk+1 =
h(xk, κ(xk)) is considered to be RAS in the interior of a set F with respect to
both measurement errors and additive disturbances if it is possible to find a KL
function β [152] and for each ϵ > 0 and compact set C ⊂ F there exists δ > 0
such that

1. max(d) ≤ δ, max(e) ≤ δ.
2. Any admissible trajectory is bounded by β(|x|, k) + ϵ.

Lemma 5.10 (Robust asymptotically stability). The system (5.8) joined together
with the kalman filter observer and controlled with the proposed MPC controller
(5.12) is RAS with respect to measurement noise and additive disturbances.

Proof. Proposition 8 in [106] establishes some sufficient conditions to guarantee
RAS. Actually, it is only needed to prove the continuity of the Lyapunov func-
tion. Here, in the proposed controller, taking into account that the prediction
model is linear, then, the parametric quadratic optimization problem is convex
and the aforementioned condition holds. Thus, the system is RAS with respect
to measurement noise and additive disturbances. ■

5.4 Examples

This section presents two application examples of the proposed controller. First,
the application to a simulated single-input single-output system, a continuously
stirred tank reactor, is presented, followed by the application to a laboratory
temperature control equipment. This is a multivariable system with two inputs
and two outputs. Some considerations are taken into account for both examples
in order to guarantee that the assumptions are fulfilled:

1. The models obtained for both systems are open-loop stables, i.e. all the
eigenvalues in A are less than the unity. Thus, their modes are stable and
hence the system is stabilizable (assumption 5.3).

2. Matrices Q, R and O are chosen as the identity matrix of appropriate di-
mensions times some positive constant, thus they are positive definite (as-
sumption 5.4).

3. K and P are computed using the Matlab “dlqr” function. This returns a
stabilizing gain K and the matrix P that satisfies the Lyapunov equation
(5.13) (assumptions 5.5 and 5.6).

4. Taking into account the previous statements and that the following examples
only consider box constraints in the inputs, it is easy to see that assumption
5.7 is also fulfilled.

78 Chapter 5. State-space kriging for non-autonomous systems

5.4.1 Continuously-stirred tank reactor

First, an MPC controller for a Continuously-Stirred Tank Reactor (CSTR) [153] is
designed. The dynamics of the system are given by the following set of differential
equations

dCA(t)

dt
=
q0
VT

(CAf − CA(t))− k0e
−E

RT (t)CA(t),

dT (t)

dt
=
q0
VT

(Tf − T (t)) +
(−∆Hr)k0
ρdCp

e
−E

RT (t)CA(t) +
UA

VTρdCp
(Tc(t)− T (t)),

whose parameters are shown in table 5.1. The system has a unique input Tc
(temperature of the cooling jacket) whereas the output is CA, the concentration
of the reactant. The regressor is compounded of the last two values of the output
z⊤k = [yk, yk−1]. The sampling time is ts = 0.5 min. The data sets D, D+ and U
are obtained from a simulation experiment where random amplitude step input
signals were applied to the system. A total of N = 500 samples are considered.
Also, it is assumed that the measurements are noisy, having an additive Gaussian
noise vk whose variance is 2.5 ·10−5. The controller considers input constraints as

umin ≤ uk ≤ umax, ∀k = 1, ..., Np,

where umin = 341.5K, umax = 365.5K and Np = 10. The weighting parameters
Q, R, O, H1, H2 and γ are

Q = 500, R = 0.02, O = 5000, H1 = 0.002 IN, H2 = 0.007 IN, γ = 10.

On the other hand, the chosen radial basis kernel is

⟨φz̄i , φz̄j ⟩ = e
−||z̄i−z̄j ||

2σ2 ,

with σ = 7.6741. The output and input data is scaled as

y =
CA − Cmin

A

Cmax
A − Cmin

A

, u = Tc − 353.5 K .

For the kalman filtering, the following parameters are considered

ςw = 5 · 10−6 IN, ςv = 2.5 · 10−5, σ̃0 = 0.1 IN.

The results are shown in figure 5.1. The blue line correspond to the reference both
in the input and the output whereas the red line corresponds to the real output
and the inputs applied to the system. It is clear that the controller steers the
system to the desired references. However, due to the noisy measurements and
the discrepancies of the model with respect to the real system, it is possible to see
some offset. This is something to be expected and several strategies could be used
to solve this, e.g. using an appropriate disturbance model [154] or augmenting
the state [155] (see [156] for a tutorial on the subject).

5.4. Examples 79

0 50 100 150 200 250
0.2

0.4

0.6

0.8

C
A

0 50 100 150 200 250

Time (min)

340

350

360

370

T
c

Figure 5.1: Top figure: output of the system. Bottom figure: input applied to the system.

5.4.2 Temperature control lab

The temperature control lab is an application of feedback control compounded
of an Arduino and a shield with two heaters and two temperature sensors. The
heaters correspond to the inputs whereas the temperatures are the outputs of the
system. The heater power output can be adjusted so that a certain temperature
reference is attained. The thermal energy within the system is transferred by
conduction, convection, and radiation. Also, heat is transferred away from the
device to the surroundings [157]. Thus, the dynamics of the system are nonlinear.

Figure 5.2: Temperature Control Lab.

The data sets D, D+ and U are comprised of past trajectories of the real system.
These are obtained from an experiment where random step signals were applied
to the system as it can be seen in figure 5.3. There are a total of N = 500

80 Chapter 5. State-space kriging for non-autonomous systems

Parameter Meaning Value Units

q0 Input flow of the reactive 10 l min−1

VT Liquid volume in the tank 150 l

k0 Frecuency constant 6× 1010 min−1

E/R Arrhenius constant 9750 K

−∆Hr Enthalpy of the reaction 10000 J mol−1

UA Heat transfer coefficient 70000 J min−1K−1

ρd Density 1100 g l−1

Cp Specific heat 0.3 J g−1K−1

CAf CA in the input flow 1 mol l−1

Tf Temperature (input flow) 370 K

Table 5.1: Parameters of the CSTR model

of data points. The regressor is compounded of the last values of the output
z⊤k = [T1,k, T2,k] where T1 and T2 correspond to the aforementioned output tem-
peratures. The sampling time is set to ts = 0.5 min. Same as before, input
constraints are considered as

umin ≤ uk ≤ umax, ∀k = 1, ..., Np

where umin = 0, umax = 100 and Np = 10. The weighting parameters Q, R, O,
H1, H2 and γ are

Q = 10 Iny , R = 1 Inu , O = 1000 Iny , H1 = 0.005 IN, H2 = 0.008 IN, γ = 1.

Again, a radial basis kernel is used with σ = 0.413 and the output and input data
is scaled, making the data to range from 0 to 1. The parameters of the kalman
Filter are the following

ςw = 10−6 IN, ςv = Iny , σ̃0 = 0.05 IN.

The results are shown in figure 5.4. The red line corresponds to the temperature
of the first heater T1 and the value of the first input u1, the blue line to the
temperature of the second heater T2 and the second input u2, the black-dashed
line is the reference for T1 and u1 and the green-dashed line is the reference for T2
and u2. The MPC controller activates at t = 5 min. As in the previous example,
the controller is able to steer the outputs of the system to the desired references.
Also, there is some minor offset, which is more evident in the control actions
plots, where it is evident that their values at equilibrium (ys, us) do not match
with those expected from the dataset (dotted plot). This is due to the unknown
ambient temperature that may vary a lot from one day to another or even within
the same day. The experiment of figure 5.4 and the dataset were obtained in
different days, thus, the equilibrium points are not exactly congruent.

5.5. Conclusions 81

0 20 40 60 80 100 120 140 160 180 200
50

60

70

80

90

100

T
e
m

p
e
ra

tu
re

 (
ºC

)

0 20 40 60 80 100 120 140 160 180 200

Time (min)

0

50

100

H
e
a
ti
n
g
 (

%
)

Figure 5.3: Experimental data obtained: Top figure: output of the system. Bottom figure:
input applied to the system.

5.5 Conclusions

In this chapter, the state-space kriging method for non-autonomous systems was
presented. It was shown that the input term could be taken into account by choos-
ing appropriately the constraints within the dissimilarity function. As the new
proposed models could handle external inputs, they became suitable for control.
An MPC controller where the prediction model is a K-SSK model was proposed.
Several properties like nominal stability and robust stability were proved. Finally,
both a simulation example and a real experiment were conducted in order to show
the effectiveness of the proposed controller.

Appendix A

As shown in the following, problem (5.12) can be posed as a canonical quadratic
programming problem. For that purpose, using the previous definition of the
system shown in (5.8), it is clear that, given a certain λ∗k, λ∗j|k can be obtained by
iterating λ∗k repeatedly forward

λ∗j|k = Ajλ∗k +

j−1∑
i=0

Aj−1−iBuk+i +

j−1∑
i=0

Aj−1−ic .

82 Chapter 5. State-space kriging for non-autonomous systems

0 10 20 30 40 50 60 70 80
40

60

80

100

120

T
e
m

p
e
ra

tu
re

 (
ºC

)

0 10 20 30 40 50 60 70 80

Time (min)

0

50

100

H
e
a
ti
n
g
 (

%
)

Figure 5.4: Top figure: outputs of the system. Bottom figure: inputs applied to the
system.

As yk = Y +λ∗k, then

ỹj|k = Y +Ajλ∗k +

j−1∑
i=0

Y +Aj−1−iBuk+i +

j−1∑
i=0

Y +Aj−1−ic . (5.15)

Equation (5.15) can be written in matrix form as

y = n + Mu ,

where

n =

Y +λ∗0

Y +Aλ∗0 + c
...

Y +ANp−1λ∗0 +
∑Np−2

i=0 Y +ANp−2−ic

 ,

M =

0 0 0 · · · 0 0
Y +B 0 0 · · · 0 0
Y +AB Y +B 0 · · · 0 0
Y +A2B Y +AB 0 · · · 0 0

...
...

. . .
...

...
Y +ANp−2B Y +ANp−3B · · · Y +B 0 0

.

5.5. Conclusions 83

Then, the constraints (5.12e) and (5.12f) can be posed as

ΨMu ≤ ∆−Ψn

where

Ψ =

 ψ 0 0

0
. . . 0

0 0 ψ

 , ∆ =

 δ
...
δ

 ,
and

u ≤ u ≤ u,

where

u =

 umin
...

umin

 , u =

 umax
...

umax

 .
On the other hand, as it was previously stated, (λ∗s, us) is an equilibrium pair and
thus they satisfy

λ∗s = Aλ∗s +Bus + c.

Also, they can be obtained as

λ∗s = (IN −A)−1 (Bus + c) ,

ys = Y + (IN −A)−1 (Bus + c) ,

which can be written as

λ∗s = Wu + v,

ys = Y +Wu + Y +v,

where

W =
[

0 0 . . . 0 (IN −A)−1B
]
,

v = (IN −A)−1 c.

Also, it is convenient to define

ys =

 ys
...
ys

 = WY u + vY ,

where

WY + =

 Y +W
...

Y +W

 , vY =

 Y +v
...

Y +v

 .

84 Chapter 5. State-space kriging for non-autonomous systems

Once reached this point, it is possible to write the output tracking error term in
matrix form. Now, making

L =

 Inu 0 0 −Inu
...

. . .
...

...
0 0 Inu −Inu

 , Q =

 Q 0 0

0
. . . 0

0 0 Q

 , R =

 R 0 0

0
. . . 0

0 0 R

 ,
we obtain

Np−1∑
i=0

ls(y̆i|k, ŭk+i) = (y− ys)
⊤Q (y− ys) + u⊤L⊤RLu

= (Mu + n−WY u + vY)⊤Q (Mu + n−WY u + vY) + u⊤L⊤RLu.

Also, lo(ys, r) can be written as

lo(ys, r) =
(
Y +Wu + Y +v − r

)⊤
O
(
Y +Wu + Y +v − r

)
.

It only remains to obtain a matrix expression for lt(λ
∗
Np|k, λ

∗
s). As it was already

shown how to obtain λ∗s, it is only needed to show how to obtain λ∗Np|k. Using

equation (5.15), it is clear that

λ∗Np|k = Gu + h,

where
G =

[
ANp−1B ANp−2B · · · B 0

]
,

h = ANp−1λ∗k +

Np−1∑
i=0

ANp−1−ic,

and thus

lt(λ
∗
Np|k, λ

∗
s) = γ (Gu + h−Wu− v)⊤ P (Gu + h−Wu− v) .

It is easy to see that the optimization problem in (5.12) becomes

min
u

1

2
u⊤Hu + f⊤u + cnt

s.t. ΨMu ≤ ∆−Ψn

u ≤ u ≤ u.

where

H = 2((M−WY)⊤Q(M−WY) + L⊤RL +W⊤Y +⊤
OY +W

+ γ((G−W)⊤P (G−W))),

f⊤ = 2(n− vY)⊤Q(M−WY) + 2(Y +v − r)⊤OY +W + 2γ(h− v)⊤P (G−W),

cnt = (n− vY)⊤Q(n− vY) + (Y +v − r)⊤O(Y +v − r) + γ(h− v)⊤P (h− v).

5.5. Conclusions 85

Thus, the control action is computed as

u∗ = arg min
u

1

2
u⊤Hu + f⊤u

s.t. ΨMu ≤ ∆−Ψn

u ≤ u ≤ u,

where only the first component of the minimizer sequence u∗ is applied following
a receding horizon scheme as usual in any predictive controller.

86 Chapter 5. State-space kriging for non-autonomous systems

Part III

Probabilistically-certified data
center management

89

Chapter 6

Bounds on the constraint
violation level

6.1 Introduction

Bounds on the constraint violation levels are useful in constrained control prob-
lems as they provide a measure on how likely are the constraints to be violated
in practice. Being MPC the most popular control technique using constraints, it
will be chosen for the example in this chapter.

Consider a nonlinear system which is also affected by noises and disturbances,
that is

xk+1 = h(xk, uk, wk)

yk = g(xk, vk),

where k is the time instant, xk ∈ Rnx is the state of the system, uk ∈ Rnu is the
input of the system, yk ∈ Rny is the output of the system, wk are disturbances in
the state, vk is measurement noise and h(·) and g(·) are nonlinear functions such
that h(·) : Rnx×nu → Rnx and g(·) : Rnx → Rny .

In this case, the control action computed using a deterministic MPC law may not
be optimal for every possible realization of wk and vk. Also, it is not possible to
guarantee that the constraints will be satisfied. For that reason, it may be needed
to resort to robust MPC schemes, which are known to be overly conservative in
most of the cases as it was showcased in the introduction. Another possibility
would be to rely on strategies based on randomized settings such as stochastic
MPC or chance-constrained MPC, which may reduce this conservatism. However,
this may become an intractable problem sometimes.

Instead, in this chapter, two methodologies to bound the constraint violation rate
of a finite family of controllers by means of offline simulations of the closed-loop

90 Chapter 6. Bounds on the constraint violation level

system are presented. This finite family of controllers can be compounded of any
controller, not necessarily MPC controllers. The obtained bounds will allow us
to compare the proposed controllers in order to obtain the best one according to
a pre-specified criterion that could weight performance and constraint violation.
Also, it does not increase the computation burden of the control problem online.

6.2 Main results

Assume that a certain controller is parameterized by means of a decision vector
θ ∈ Θ, where Θ is a set compounded of all the possible values that the vector
θ can take. The disturbance w follows a certain probability distribution whose
sample space is W. No assumptions are made with respect to the size or shape
of W. From this, a function q : Θ ×W → {0, 1} is defined. This will be helpful
to formulate the problems of this section in a general setting. Thus, the function
q(·) is as follows

q(θ, w) =

{
0 if θ fulfills some design specifications for w

1 otherwise.

This specification could be, for example, the satisfaction of a certain constraint
subject to the realization w. Then, given θ, the probability of violation of the
aforementioned constraint for any w ∈ W can be written as

ψ = Prob {q(θ, w) = 1 | θ} .

As it is almost impossible to compute or measure this quantity exactly, we rely on
the empirical mean to approximate this value. Consider wi as the i-th realization
of the disturbance w, and assuming a number of N samples, then

ψ =
1

N

N∑
i=1

q(θ, wi),

where denotes the empirical mean. Thus, ψ would be the empirical mean of
ψ for any given experiment. Note that as ψ is also a random variable, any set
of experiments, that is, N different realizations of q(θ, wi) lead to different values
for ψ.

The objective of this chapter is to obtain tight bounds for this empirical violation
rate.

Definition 6.1. Failure. Assuming that

E(ψ) > ρ+ ∆ρ,

where E(·) is the expectation operator, ρ ∈ [0, 1] and ∆ρ > 0. A failure is
considered to happen when an empirical violation rate of the controller ψ fulfills

ψ ≤ ρ.

6.2. Main results 91

That is, a failure happens when the empirical violation rate leads to misleading
results, i.e., when given a empirical violation rate ψ ≤ ρ, the real violation rate ψ
increases a quantity larger than ∆ρ. The following theorems prove that, with a
properly chosen ∆ρ, failures occur with a probability lower than a small confident
parameter δ. This definition of failure is slightly different than the one presented,
for example, in [158]. Then, the following theorems summarize the results of this
chapter.

6.2.1 A first bound on constraint violation rate

Theorem 6.2 (Bound on the empirical constraint violation level). Assuming that

E (ψ) > ρ+ ∆ρ ,

with ρ ∈ [0, 1] and ∆ρ satisfying

∆ρ ≥ 1

N
log

1

δ
+ 2

√
ρ

N
log

1

δ
. (6.1)

Then,

Prob
{
ψ ≤ ρ

}
< δ ,

which implies that the real constraint violation level is bounded by ρ + ∆ρ with
probability greater than 1− δ.

Proof. The objective is to upper bound Prob
{
ψ ≤ ρ

}
under the assumption that

E (ψ) > ρ + ∆ρ. Since the number of empirical violations grows with E (ψ), it
is clear that this probability is lower bounded by the probability when E (ψ) =
ρ+ ∆ρ. That is,

Prob
{
ψ ≤ ρ |E (ψ) > ρ+ ∆ρ

}
< Prob

{
ψ ≤ ρ |E (ψ) = ρ+ ∆ρ

}
.

Once reached this point, it is easy to notice that the probability of a certain con-
straint to be violated can be interpreted as a Bernoulli random variable. There-
fore, the probability of having less than a certain number of violations for some
number of trials can be expressed as the binomial tail.

On the other hand, consider a random variable X following a binomial random
distribution B ∼ (N, p) where N is the number of trials and p is the probability of
success. Then, given a constant x, it is obtained from Chernoff’s bound [128, 159]
that, if x ≤ p, then

Prob

{
X

N
≤ x |E

(
X

N

)
= p

}
≤ e−Nφ(ρ,ρ+∆ρ),

where

φ(x, p) = x log
x

p
+ (1− x) log

1− x
1− p

.

92 Chapter 6. Bounds on the constraint violation level

The convergence rate provided by this bound is known to be tight from Cramér’s
theorem of large deviations when N → ∞ ([160], chapter 23 in [161]). It is easy
to see that the above Chernoff’s bound can be applied to our problem making
X
N = ψ and ∆ρ > 0, obtaining

Prob
{
ψ ≤ ρ |E (ψ) = ρ+ ∆ρ

}
≤ e−Nφ(ρ,ρ+∆ρ) .

Thus, this upper-bound can be designed to be lower than the confidence parameter
δ by imposing

e−Nφ(ρ,ρ+∆ρ) ≤ δ .

Taking logarithms in both sides and rearranging the terms

φ(ρ, ρ+ ∆ρ) ≥ 1

N
log

1

δ
. (6.2)

As ∆ρ is embedded within the function φ(ρ, ρ + ∆ρ), the bound presented by
Okamoto (Lemma 2 in [159]) is applied to obtain a closed expression for ∆ρ,

φ(ρ, ρ+ ∆ρ) ≥
(√

ρ+ ∆ρ−√ρ
)2
.

Thus, the following sufficient condition for equation (6.2) is obtained(√
ρ+ ∆ρ−√ρ

)2
≥ 1

N
log

1

δ
.

For ∆ρ ≥ 0, this is equivalent to

√
ρ+ ∆ρ ≥ √ρ+

√
1

N
log

1

δ
,

and thus

ρ+ ∆ρ ≥

(
√
ρ+

√
1

N
log

1

δ

)2

.

This is easily rewritten as

∆ρ ≥ 1

N
log

1

δ
+ 2

√
ρ

N
log

1

δ
.

This completes the proof. ■

6.2.2 A different bound

A different bound will be given in the following. This new bound is not guaranteed
to be tighter than the previous one but it can yield better results in some cases.

6.2. Main results 93

Theorem 6.3. Suppose that

E (ψ) > ρ+ ∆ρ ,

with ρ ∈ [0, 1] and

∆ρ ≥
log 1

δ + ⌊ρN⌋log a

N
(
1− 1

a

) − ρ, ∀a ≥ 1 . (6.3)

Then,

Prob
{
ψ ≤ ρ

}
< δ ,

As in theorem (6.2), this implies that the real constraint violation level is bounded
by ρ+ ∆ρ with probability greater than 1− δ.

Proof. Assuming that E (ψ) > ρ+ ∆ρ , one could write this probability as

Prob
{
ψ ≤ ρ |E (ψ) > ρ+ ∆ρ

}
.

Again, as the number of empirical violations grows with E (ψ), it is clear that this
probability is lower bounded by the probability when E (ψ) = ρ+ ∆ρ, i.e.

Prob
{
ψ ≤ ρ |E (ψ) > ρ+ ∆ρ

}
< Prob

{
ψ ≤ ρ |E (ψ) = ρ+ ∆ρ

}
.

Similarly, as in theorem 6.1, it is easy to notice that this probability can be seen as
a Bernoulli random variable and thus the probability of having less than a certain
number of violations for some number of trials can be expressed as the binomial
tail

B(N, η,m) =

m∑
y=0

(
N

y

)
ηy(1− η)N−y ,

where B(N, η,m) represents the mass probability function of the Binomial dis-
tribution. From the definition of ψ, it is easy to see that ⌊ψN⌋ = ψN whereas
⌊ρN⌋ ≤ ρN . Then,

Prob
{
ψ ≤ ρ |E (ψ) = ρ+ ∆ρ

}
= Prob

{
⌊ψN⌋ ≤ ⌊ρN⌋ |E (ψ) = ρ+ ∆ρ

}
.

Now, it is possible to find the equivalence between this probability and the bino-
mial tail as

Prob
{
⌊ψN⌋ ≤ ⌊ρN⌋ |E (ψ) = ρ+ ∆ρ

}
= B(N, ρ+ ∆ρ, ⌊ρN⌋) . (6.4)

Lemma 1 in [61] shows that the binomial tail can be bounded by the following
expression

B(N, η,m) ≤ am
(η
a

+ 1− η
)N

, ∀a ≥ 1 .

94 Chapter 6. Bounds on the constraint violation level

Then, B(N, η,m) can be guaranteed to be lower or equal than a certain δ if:

am
(η
a

+ 1− η
)N
≤ δ .

It is also shown in [61] that the value of a is very close to the optimal if it is chosen
as

a = 1 +
log(1δ)

⌊ρN⌋
+

√
2

log(1δ)

⌊ρN⌋
. (6.5)

The previous inequality can be rewritten as(
1− η

(
1− 1

a

))N

≤ δ

am
.

Taking logarithms in both sides

N log

(
1− η

(
1− 1

a

))
≤ log δ −mlog a . (6.6)

Now, the following logarithm inequality can be applied

log (1− x) ≤ −x , ∀x ∈ [0, 1) ,

where x =
(
1− 1

a

)
η in this case. Then, a sufficient condition to fulfill equation

(6.6) is the following

−N
(

1− 1

a

)
η ≤ log δ −mlog a ,

and thus

η ≥
log 1

δ +mlog a

N
(
1− 1

a

) .

Applying η = ρ+ ∆ρ, m = ⌊ρN⌋

∆ρ ≥
log 1

δ + ⌊ρN⌋log a

N
(
1− 1

a

) − ρ .

This completes the proof. ■

6.3 Clarifying Example

Consider a discrete time linear system

xk+1 = Axk +Buk + wk

6.3. Clarifying Example 95

where

A =

[
0.9 0.4
−0.4 0.85

]
, B =

[
−0.1
−0.3

]
,

and wk is a uniformly distributed random variable so that w ∈ [−0.05, 0.05].

Also, consider a naive MPC controller

u∗ = arg min
u

VN (xNp|k) +

Np−1∑
i=0

l(xi|k, uk+i) (6.7a)

s.t. xi+1|k = Axi|k +Buk+i (6.7b)[
1 0

]
xi|k ≥ −0.05 + γ ∀i = 1, . . . , Np (6.7c)

− 2 ≤ uk+i ≤ 2 ∀i = 0, . . . , Np (6.7d)

where γ ≥ 0 is a back-off parameter. The stage cost is chosen as

l(x, u) = x⊤Qx+ u⊤Ru,

with

Q =

[
1 0
0 1

]
, R = 0.1,

and the terminal cost is chosen as

VN (xNp|k) = x⊤Np|kPxNp|k,

with

P =

[
3.6681 0.5318
0.5318 1.6995

]
,

which is obtained by solving the Lyapunov equation.

The objective is to characterize the probability of violating the constraint (6.7c)
by using the proposed bounds. The possible lose of recursive feasibility due to a
constraint violation is out of the scope of this example. However, note that the
constraint is relaxed for i = 0 in order to prevent this.

A number of 100 experiments were carried out, each one with a duration of 50
time steps. The initial conditions are random points ranging from x0,(1) ∈ [0, 2]
and x0,(2) ∈ [0, 2]. The mean closed-loop total cost is computed at the end of the
experiments, denoted as J . The results are shown in tables 6.1 and 6.2 and figure
6.1.

Table 6.1 and figure 6.1 presents the results only for the first 10 experiments
(thus N = 500, and ρ will be computed over these 500 samples). The red line
corresponds to γ = 0, the blue line corresponds to γ = 0.025, the green line
corresponds to γ = 0.05 and the black line corresponds to the constraint (6.7c).
It can be seen how as the back-off parameter γ increases, the resulting trajectories

96 Chapter 6. Bounds on the constraint violation level

are pushed to the right side, reducing the probability of violating the constraint
but also increasing the cost. In the table, it is shown the obtained values of the
bounds for theorems 6.2 and 6.3. The bounds obtained by means of the theorem
6.3 are generally sharper than the ones obtained by using theorem 6.2, being worse
only for the value of γ = 0.05, that is, when ρ is very close to zero.

-0.5 0 0.5 1 1.5 2 2.5

x
1

-1.5

-1

-0.5

0

0.5

1

1.5

2

x
2

Figure 6.1: 10 trajectories for different back-offs parameters.

ρ ρ+ ∆ρ (2.2) ρ+ ∆ρ (2.3) J

γ = 0 0.1200 0.2628 0.2210 0.0055

γ = 0.025 0.0700 0.1856 0.1520 0.0066

γ = 0.05 0.0000 0.0276 0.0307 0.0109

Table 6.1: Bounds on the probabilistic constraint with δ = 10−6 and N = 500.

Finally, table 6.2 shows the results for the 100 experiments (N = 5000). As
making more experiments increases the number of samples N , the bounds become
much smaller as it is expected.

ρ ρ+ ∆ρ (2.2) ρ+ ∆ρ (2.3) J

γ = 0 0.0968 0.1323 0.1218 0.0058

γ = 0.025 0.0568 0.0846 0.0764 0.0073

γ = 0.05 0.0000 0.0028 0.0031 0.0109

Table 6.2: Bounds on the probabilistic constraint with δ = 10−6 and N = 5000.

6.4. Conclusions 97

6.4 Conclusions

In this chapter, two different sharp bounds on the constraint violation of a certain
constraint to be used with any controller were proposed. It was shown that we
do not need to make any assumption about the probability distribution as long
as we can obtain independent identically distributed samples, which is a standard
assumption in the field. Also, by means of a simple MPC example, it was shown
how the proposed algorithms can be used in a real setting.

In the following chapter, the proposed bounds will be used to quantify the Quality
of Service (QoS) of an energy-efficient management approach in a data center.
This could help the user to choose the hyperparameters of the controllers so that
they fulfill the QoS constraint with a certain probability while minimizing the
power consumption as much as possible.

98 Chapter 6. Bounds on the constraint violation level

99

Chapter 7

Energy-efficient management of
data centers

7.1 Introduction

Data centers are facilities composed by a large amount of servers and the asso-
ciated support infrastructure. The variety of tasks that can be carried out by
these infrastructures, such as batch and interactive computation, web portals, etc
[162] have led to a sustained growing of the number of active data centers in the
last decades [163]. Some studies predict that data centers within the U.S. will
consume around 3000 TWh electricity by 2030 [164]. In addition to the economic
burden derived from the electricity prices (which is particularly high nowadays),
this extremely high power consumption also leads to serious concerns due to envi-
ronmental issues [165]. Thus, improvements in the energy efficiency of data center
management are critical for a sustainable society.

The energy consumption of a data center can be broadly associated to Information
Technology (IT) equipment (i.e. servers) and infrastructure facilities, mainly the
cooling equipment [166, 167]. The total amount of energy consumed will depend
on both the design and the efficiency of the policies used to manage these facili-
ties. An integrated data center management must consider not only the thermal
constraints of the IoT equipments and the total energy consumption but also keep
the performance near the required levels at all times. Thus, the way in which both
the IT and cooling equipments are used to operate the data center will have a
great impact on the overall energy consumption.

Many works in the literature are focused on developing cooling policies to minimize
the energy consumption within data centers using only linear thermal models
[168, 169, 170]. In spite of being simple first order linear models, interesting
improvements were reported. However, better solutions could be attained with
a unified data center management. In this field, works are rather scarce. For

100 Chapter 7. Energy-efficient management of data centers

example, the paper [162] proposes a control architecture where both thermal and
tasks management are taken into account. The data center is posed as a linear
first-order continuous system in its thermal component and in the computational
part. Task arrival rates are considered deterministic, thus tasks arrive at fixed
intervals. A Quality of Service (QoS) constraint is used to establish stability limits
to the system. On the other hand, in [171], several control policies assuming that
the maximum temperature of the servers are soft constraints are proposed. Other
techniques available are based on workload distribution with some thermal aware
criteria [172, 173]. Also, a solution to the problem under the assumption that the
re-circulation of hot air is at constant temperature can be found in [174].

Model Predictive Control [86] has also been applied to this problem. In [175], a
scheduling methodology based on MPC and electricity prices is proposed in order
to reduce the economic impact. On the other hand, [176] unifies the management
with the cooling scheme, assuming implicitly that servers have no limits to be
overclocked, which is rather unrealistic. Due to the complexity of the problem, in
[177] it is provided an approximation algorithm focused on providing fast evalua-
tions of the complex constraints that have to be taken into account. However, the
models appearing in the literature, under different assumptions, usually evade the
fact that the system is actually a queue model, simplifying drastically the problem
at the expense of a less realistic modeling.

This chapter proposes an MPC framework for the optimization of cold aisle data
centers. The optimization objective is to guarantee a certain QoS to the users and
keep a suitable temperature of the servers while consuming the least amount of
energy possible. The data center is modelled as a queue system where the arriving
tasks can be computed by multiple servers at the same time. Although it moves
away from the usual M/M/c queue and makes the treatment more complicated, it
allows more generality within the model, where it is possible to take into account
some specific kind of data centers like render farms [178]. Unlike other works
available in the literature, the full queue model is used to predict the evolution
of the system through the horizon, thus achieving a more realistic modeling. In
order to tackle random arrival rates and workloads, two different strategies are
proposed. First, it is considered that the arrival rates and workloads are determin-
istic, that is, it is assumed that they take always the value of the expectation of
their respective random variables. On the other hand, a scenario-based approach
where a certain number of realizations of the disturbances are drawn is proposed
(see chapter 1). The QoS is managed by imposing a hard constraint on the num-
ber of powered servers in the optimization problem, thus guaranteeing that tasks
are executed within the pre-specified time limits. Although there exist very opti-
mized mixed-integer solvers nowadays such as Gurobi [179], they are not suitable
for the related optimization problem. For that reason, particle algorithms were
chosen to deal with the optimization problem [180]. These algorithms are highly
parallelizable and can obtain important speed ups with a parallel implementation
[181].

7.2. Data center description 101

Finally, the bounds obtained in chapter 6 will be used to quantify the constraint
violation rate of the proposed approaches. This makes possible to obtain a differ-
ent characterization of the constraint violation rate for any proposed controller,
which could be helpful to tune some parameters of the controllers like the con-
trol horizon or the number of scenarios to be considered within the optimization
problem.

7.2 Data center description

Data centers are compounded of thermally-isolated units in which server racks
are allocated typically following a Cold Aisle (CA) structure as it can be seen in
figure 7.1. Here, the air flow is separated into two different flows, being the first a
cold one which reaches every server that it is blown from below the floor by means
of suitable built-in fans. For this purpose, a Computer Room Air Conditioning
(CRAC) unit is responsible of generating this cold flow. Then, the cold air travels
through the servers and getting heated throughout this process and, finally, this
hot air returns to the CRAC unit through the ceiling.

C
R
A
C

C
R
A
C

Ceiling

R
A
C
K

R
A
C
K

R
A
C
K

CA
Unit R

A
C
K

R
A
C
K

R
A
C
K

Floor

Hot air

Cold air

Figure 7.1: Scheme of a cold aisle data center structure.

The CRAC unit is essential within the data center system because the server
temperatures should be kept below certain security levels in order to ensure the
servers reliability. As almost all power consumed by servers is dissipated as heat,
CRAC operation is very costly because of the high number of servers that typical
data center has [166]. Thus, any measure aimed to achieve an efficient manage-
ment of the data center will have a great impact not only in operating costs and
environmental impact, but also in the QoS provided to the clients. In the next
sections, a discretized model of the data center dynamics with an integration time
step of ts is presented. The discrete time unit will be denoted as k.

102 Chapter 7. Energy-efficient management of data centers

7.2.1 Tasks model

In this section, the queue model of the data center operation is presented [171].
It is assumed that the data center has M available servers and m, the number of
booted servers, it is considered as an input of the system. In this way, the number
of servers working in a certain time instant can be tuned according to the needs
of the users (workload) and taking into account efficiency and QoS constraints.

For the whole data center, there is a queue where the tasks wait until they can
be processed. That is, until there is an available server. As it is accepted in the
literature [171, 176], the time between arrivals is assumed to follow an exponential
distribution with mean ka and a probability density function

f(k) =
1

ka
e−

k
ka . (7.1)

Also, let Lk be the request rate at instant k. That is, the number of tasks arriving
to the data center at instant k. Because the time between arrivals was previously
assumed to follow an exponential distribution, Lk can be modeled as a Poisson
random variable with mean 1

ka
and probability mass function

g(n) =
1

n!

(
1

ka

)n

e−
1
ka . (7.2)

The number of tasks arriving in the interval [k, k− ku] is denoted as Lku,k for an
interval of length ku > 0 , ku ∈ Z. Also, the probability mass function is

gku(n) =
1

n!

(
ku
ka

)n

e−
ku
ka , (7.3)

with mean ku
ka

.

As it holds in practice, it is considered that tasks have a different workload. Then,
for a certain task, the computational time required to complete it in a single server
is assumed to follow an exponential distribution like (7.1) with mean 1

µ . Thus,
Wk corresponds to the average workload of the Lk tasks that arrived at instant
k. Similarly, Wku,k corresponds to the average workload of the Lku,k tasks that
arrived between k and k−ku. Also, the parameters ka and µ define the minimum
number of servers that should be turned on within the data center so that the
queue does not grow infinitely. Then, M must satisfy the condition

M ≥ 1

ka µ
. (7.4)

7.2.2 Server model

For a certain server i, the state xk,(i) at instant k is considered to be compounded
of:

7.2. Data center description 103

1. The number of tasks currently running in the data center (αk).

2. The number of tasks in the queue (βk).

3. The temperature of the cold air (Tc,k).

4. The temperature of the server (Tk,(i)).

5. The time instant in which the server i is turned on (si).

Obtaining the state of the whole data center is easy as it suffices to include the
remaining Tk,(i) and s(i). Therefore, x⊤k is obtained as

x⊤k =
[
αk, βk, Tc,k, Tk,(1) . . . Tk,(M), s(1) . . . s(M)

]
.

On the other hand, servers switch between four possible working conditions:

• Off. The server does not draw any power.

• Booting. This working condition appears due to the fixed delay kon that it
takes to turn on a server from off to working or idle. While in this transition
time, the server draws power at the same rate as the idle condition.

• Working. The server is “on” and it is processing a certain task. For sim-
plicity reasons, it is assumed that the power is drawn at a constant rate. In
practice, this is equivalent to assume that the CPU frequency is constant.

• Idle. The server is “on” but it is not processing any tasks, drawing less
power than in the working state. However, the server is consuming energy
for doing nothing.

As usual in the literature and for simplicity reasons, the transition from “on” to
“off” is assumed to be instantaneous. Also, the transition from working to idle
and vice-versa is considered negligible. Note that because of the transition time
kon and the power drawn throughout the booting process, it may be advantageous
to keep a certain number of servers in idle state in the case when they are expected
to be needed in a near future. Furthermore, the transition from “off” to “on” is
always considered to be immediately available (although it takes a kon time to be
completed), but the reverse, that is, from “on” to “off”, is done in a deferred way,
because the server must finish the remaining tasks.

Taken into account the previous working conditions, let uk,(i) be an input that
indicates if the server i is switched on (uk,(i) = 1) or off (uk,(i) = 0) at a certain
time instant k. Then, the power consumption of a server i is defined by the
following conditions

pk,(i)(xk,(i), uk,(i)) =

0 if off (uk,(i) = 0)

a2 if booting (uk,(i) = 1, αk ≥ 0, k − si < kon)

a2 if idle (uk,(i) = 1, αk = 0, k − si ≥ kon)

a1 + a2 if working (uk,(i) = 1, αk > 0, k − si ≥ kon)

104 Chapter 7. Energy-efficient management of data centers

where a1 is the marginal consumption and a2 the minimum consumption.

The management approach presented in this thesis does not deal with the task
scheduling of the data center [182]. For that reason, it is assumed that the dis-
tribution of the tasks among the servers follows some known rules. It is also
assumed that a task can be split among multiple servers (up to M). However, a
single server can work only for the completion of a single task. Because of the pre-
vious assumption, the data center will not work as a M/M/c queue in which each
task is scheduled to be executed in a single server, complicating the mathematical
modelling. However, it will result in a more general data center model.

These server assignment policies imply the existence of a pool of running tasks
whose length is equal to the number of servers in “on” condition (i.e., “working”
or “idle”). Once a task is ready to be processed, that is, it is at the front of the
queue and the pool has at least one empty slot, it is assigned to at least one server
and it never leaves the pool until its completion. Thus, the remaining workload
of each task is strictly decreasing.

Denoting mk as the number of servers turned on at instant k (i.e. working or
idle), the processing of a task is done in the following way. Assume that only a
certain task is within a pool of mk servers (αk = 1). The workload of the task is
the number of “work packages” that need to be processed to complete the task.
At instant k, mk servers are assigned to this task (because it is the only task
in the pool). Thus, every server will compute a “work package” resulting in mk

“work packages” executed. If there are no “work packages” left for the instant
k + 1, the task is completed and ejected from the pool. If the pool is full at a
certain instant k (i.e. αk = mk), the assignation is trivial because every task can
only be assigned one server. For the case where 1 < αk < mk, the tasks will be
assigned to one server and the task with largest remaining time will be assigned
to mk −αk servers. This makes sense because it is easy to see that it will achieve
better QoS.

7.2.3 Thermal model

The thermal model of the servers is derived from the thermal balance equations

Kt

dT(i)(t)

dt
= cp qa(t)(Tc(t)− T(i)(t)) + p(i)(t) , (7.5)

where Tc and qa are the temperature and flow of the cold air provided by the
CRAC unit, Kt the server thermal capacity, T(i) and p(i) are the temperature and
power consumption of server i respectively and cp the air heat capacity. Con-
sidering a discretization scheme with an integration step ts, equation (7.5) turns
into

Tk+1,(i) = Tk,(i) +
ts
Kt

(
cp qa,k

(
Tc,k − Tk,(i)

)
+ pk,(i)

)
. (7.6)

7.2. Data center description 105

A hard constraint is used to guarantee the server reliability, keeping the temper-
atures under certain safety levels. That is

T(i) ≤ 80◦C ∀i ∈M .

From the variables affecting T(i) in (7.6), the flow qa,k is assumed to be constant
and only p(i) and Tc can be considered manipulable, the first one through the
state of the server and the second one is assumed to be regulated by a set point
Tr. That is, Tc follows Tr with a first order closed loop dynamics with a time
constant τ and unity gain

τ
dTc(t)

dt
= Tr(t)− Tc(t) . (7.7)

Similarly, equation (7.7) turns into

Tc,k+1 = Tc,k +
ts
τ

(Tr,k − Tc,k) . (7.8)

On the other hand, hard constraints in the input Tr are considered

15◦C ≤ Tr ≤ 25◦C .

Also, the coefficient of perfomance (CoP) of the CRAC unit will change depend-
ing on the cold air temperature (Tc). The CoP represents how expensive is the
cooling process of the air flow until a certain temperature. Usually, more power
consumption is required to reach lower temperatures. As the CoP increases, the
cost will decrease. It can be calculated from the following equation

CoP(Tc,k) = 0.0068T 2
c,k + 0.0008Tc,k + 0.458 , (7.9)

which is widely adopted in the literature [173]. Thus, let
M∑
i=1

pk,(i)(xk,(i), uk,(i)) be

the server power consumption at time instant k. The power consumption at the
CRAC unit can be computed as

M∑
i=1

pk,(i)(xk,(i), uk,(i))

CoP(Tc,k)
.

Thus, the total power consumption corresponds to the power drawn by the servers
added to the CRAC power consumption, leading to

M∑
i=1

(
1 +

1

CoP(Tc,k)

)
pk,(i)(xk,(i), uk,(i)) .

106 Chapter 7. Energy-efficient management of data centers

7.2.4 Quality of service

The QoS of a task is defined as the time required to finish it since its arrival until
its completion. It includes both the waiting time within queue and the execution
time once it is in the pool. Guaranteeing that this time will be lower than an
agreed one is a necessary operating condition.

In the case where the tasks are assigned to just one server, like in an M/M/c
queue (or Erlang-C model [183]), the mean service time follows the expression

tc,k =
1

mk
Wk
− Lk

. (7.10)

This measurement could be used in practice with estimations of Wk and Lk,
denoted as W̃k and L̃k respectively. However, in the proposed approach, as a
certain task can be executed concurrently in many servers, the aforementioned
measure is used to provide an upper bound and thus, in this case, it can only be
lower or equal

tsv,k ≤
1

mk

W̃k
− L̃k

,

where W̃k is the estimated value of Wk at instant k for the next L̃k requests and
L̃k is the estimation of Lk at instant k. It is considered that the QoS is satisfied
at instant k if the mean service time is not larger than a specified value D. In
other words, the QoS constraint is satisfied if

1
mk

W̃k
− L̃k

≤ D,

which implies that

mk ≥ W̃k

(
1

D
+ L̃k

)
.

The term on the right represents the minimum number of servers to fulfill the
QoS constraint with a certain L̃, W̃ and D. This can be written as

mD,k = W̃k

(
1

D
+ L̃k

)
.

7.3 Management approach

In this chapter, an optimal management policy inspired on predictive control
strategies is proposed. This controller decides the number of servers that should
be on or off and the set point temperature of the CRAC unit. The optimization
objective used to decide the optimal values of the inputs will be the minimization
of the energy consumption and the control effort of the inputs (i.e. server switching
and temperature reference changes), subject to thermal and QoS constraints.

7.3. Management approach 107

First of all, it is assumed that the dynamics of the queue, task arrivals, etc. run
much faster than the process of switching on a server (i.e. kon ≫ 1). Having
such a large delay in the control actions, the control decisions have to be made
in a superior time scale and separate them over time. This leads us to a scheme
where the predictive controller is not executed at every instant k but it is executed
at every instant kmts where km is the number of instants between the controller
execution. Thus, the sample time of the controller is kmts. In order to avoid
switching off a server that is still booting (that is, never reached the “on” state
and did nothing but consuming power), a sample time larger than the switching
on time is chosen, i.e. km ≥ kon.

Based on the model, the expected evolution of the data center can be estimated
and then, it is possible to associate a predicted cost to a sequence of candidate
future control inputs. For clarity purposes, denote ℓj = k+jkm. This will work as
the time scale of the MPC controller. In this chapter, the following predicted cost
function to measure the expected performance of the data center will be used:

V (ℓ0,x,u,Tr) =

Np∑
j=0

M∑
i=0

(
1 +

1

CoP(Tc,ℓj)

)
pℓj ,(i)(xℓj ,(i), uℓj ,(i))

+ κu

Nc∑
j=0

|∆uℓj |+ κTr

Nc∑
j=0

|∆Tr,ℓj | , (7.11)

where Np and Nc are the prediction and control horizons, x is the sequence of
xℓj over the prediction horizon, u and Tr are the sequences of “on”-“off” control
actions of all servers and temperature set points through the control horizon
respectively, ∆uℓj is the total number of commutations to either “on” or “off”
at instant ℓj , ∆Tr,ℓj is the increment in Tr,ℓj , κu is a term weighting ∆uℓj and
κTr is a term weighting ∆Tr,ℓj . Also, the control actions further from the control
horizon are considered to remain constant.

In order to derive the proposed controller, it is necessary to determine a prediction
model such that for a given state at time ℓj , xℓj and for given control actions
uℓj and Tr,ℓj (that will remain constant throughout the sampling time km), the
state of the data center predicted at the next sampling time x̃ℓj+1

is calculated

depending on the estimation of the number of tasks and their workload L̃km,ℓj+1

and W̃km,ℓj+1
. This prediction model can be posed as:

x̃ℓj+1
= h(xℓj , uℓj , Tr,ℓj , L̃km,ℓj+1

, W̃km,ℓj+1) ,

being h(·) the function that compute the following state given the previous one,
the inputs and the realisations of Lkm and Wkm . Note that the function h(·)
must compute all events happening thorough the interval km for every instant k
in order to be able to return the state at the following sample time. In practice,
this function is evaluated by means of an open-loop simulation of the complete
queue model of the data center.

108 Chapter 7. Energy-efficient management of data centers

The optimal predicted number of servers and set point temperatures for the CRAC
will be then computed as the solution of the optimization problem

min
mℓj

,Tr,ℓj

V (ℓ0,x,u,Tr) (7.12a)

s.t. x̃ℓj+1
= h(xℓj , uℓj , Tr,ℓj , L̃km,ℓj+1

, W̃km,ℓj+1
) (7.12b)

mℓj ∈ [1, M] ∀j ∈ [0, Nc] (7.12c)

uℓj = switch(mℓj) ∀j ∈ [0, Nc] (7.12d)

15◦C ≤ Tr,ℓj ≤ 25◦C ∀j ∈ [0, Nc] (7.12e)

Tℓj ,(i) ≤ 80◦C ∀i ∈M ∀j ∈ [1, Np] (7.12f)

mℓj ≥ mD,ℓj ∀j ∈ [1, Np] , (7.12g)

where switch(·) represents the policy to select which servers are to be switched on.
Here, a simple scheme is proposed for such policy. That is, for a given number of
servers, the first mk will be switched on.

As it is customary in predictive controllers, the solution of (7.12) is applied in a
receding horizon manner, meaning that only the first control actions and temper-
ature set points are actually applied (i.e., uℓ0,(i) and Tr,ℓ0) while the remaining
decision variables (uℓ1,(i), . . . , uℓNc−1,(i) and Tr,ℓ1 , . . . , Tr,ℓNc−1

) computed at time k
are discarded. The optimization of (7.12) is then repeated at each sampling time
so that the decision variables to be applied are computed using the real state of
the data center at that sampling time.

It should be noted that in this optimization problem some of the variables are
integer (number of servers on) whereas other are real valued (the set-point temper-
atures). This, together with the complexity of the data center model motivates
the use of specialized optimization algorithms to solve (7.12), such as a parti-
cle based optimization technique [180, 181] that will be exposed in the following
section.

7.4 Particle based solvers for complex optimization
problems

In these techniques of iterative nature, a set of possible candidate solutions (called
particles) are evaluated at each iteration and used to generate a new candidate
solution set that may be closer to the solution of the optimization problem. Here,
the evaluation of each particle will be done by means of simulations that will be
used to assess the performance of each candidate solution. The main ingredients
of the proposed technique are:

• Particles are candidate solutions of the optimization problem. That is, a
sequence of control actions over the control horizon. At higher problem

7.4. Particle based solvers for complex optimization problems 109

complexity (i.e., more servers and longer control horizons), more particles
are needed in order to obtain a solution close to the optimal one [184].

• Weights. Particles have associated a weight that represents how good is
a particle compared with the others. In this work, the weight is based
on the performance cost of each particle computed by means of a computer
simulation of the data center model. These simulations predict the evolution
of the data center along the prediction horizon if the decision variables are
those of the particles. Once the simulations for all particles are completed
(this can be done in parallel), a scaling of the performance costs of the
particles is made. Let Vmax and Vmin be the maximum and minimum costs
attained on the set of particles under evaluation. If a given particle z ≜
(m,Tr) has a performance cost V(z), then the weight of the particle z will
be

σ(z) = 1−
V(z) − Vmin

Vmax − Vmin
, (7.13)

meaning that particles with higher costs will have lower weights and vice
versa. This is very important for the resampling phase.

• Feasibility checking. Those particles that do not satisfy the constraints in
(7.12) will be assigned a zero weight so that they cannot be selected in the
resampling stage.

• Resampling is the step where a new generation of particles is created based
on the performance (weights) at the previous iteration. This is done by
means of the Kitagawa resampling algorithm with stratified scheme [185].
The aim of this method is to form groups of particles with good performance
in different areas of the feasible set of solutions. In this way, the risk of
getting stuck at a local minimum is reduced because the algorithm considers
all particles and not only the best one. Particles with higher weights are
more likely to be resampled at next iteration (i.e., selected to be included
in the next particle set).

• Perturbation. This process is inherently connected to the previous one. Once
particles are resampled, it is necessary to ”move” them along the local search
space in order to discover new feasible solutions with potentially lower costs.
In this work, the perturbation is made by adding a Gaussian white noise.
Figure 7.2 shows the main ideas of the resampling and perturbation steps
in a 2 degree of freedom minimization example. At first, there exists a set
of random-generated particles. As the iterations continue, particles move
towards better possible solutions according to the costs obtained previously.
In our case, the optimization variables are integer, thus this process ends
rounding to the nearest integer.

• Reseeding. The initial set of particles should be generated in a random
manner. However, for the subsequent sample times, the reseeding can be

110 Chapter 7. Energy-efficient management of data centers

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

u
1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

u
2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

u
1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

u
2

Figure 7.2: Optimization example with two real decision variables.

done by exploiting the receding horizon nature of the predictive controller.
Then consider the solution of (7.12) for a given sampling time k

m∗
ℓ0 =

m∗

ℓ0 | k
m∗

ℓ1 | k
...

m∗
ℓNc−1 | k

 , T∗
r,ℓ0 =

T ∗
r,ℓ0 | k
T ∗
r,ℓ1 | k

...
T ∗
r,ℓNc−1 | k

 .
Thus, a particle generated as the shifted version of the solution for ℓ0

mℓ1 =

m∗

ℓ1 | k
...

m∗
ℓNc−1 | k

m∗
ℓNc−1 | k

 , Tr,ℓ1 =

T ∗
r,ℓ1 | k

...
T ∗
r,ℓNc−1 | k
T ∗
r,ℓNc−1 | k

 .
would be a good candidate solution for (7.12) in ℓ1 although it may not be
optimal. Note that the last control action is repeated. Thus, the reseeding
scheme is based on including in the initial particle set some shifted versions
of the best particles (those with greater weight) of the final set obtained in
the previous sampling time. These reseed particles will not be perturbed
so that they can not be lost in the resampling process. Furthermore, in
the resampling step, the reseed particles will lead to more particles close to
them, and those may attain a higher weight. Note that the fact that a set of
reseed particles is used instead of just one reduces the probability of getting
stuck in a local minima.

The first particle algorithm is shown in Algorithm 4. In this case, it is assumed
that tasks arrive uniformly every ka time units (that is, the mean time of the
exponential distribution (7.1)). Also, the workload of these incoming tasks is
assumed to be the expected value of the corresponding exponential probability
distribution, that is, 1

µ . From this, it is possible to obtain the values of L̃km and

W̃km needed in line 3, which will be used to evaluate the constraints.

7.4. Particle based solvers for complex optimization problems 111

Algorithm 4: Particle based optimization (Pbo).

Data: χ (Number of particles), Np , Nc (Prediction and Control Horizon
respectively), V (·) (Cost Function), χt (Number of particles to
reseed).

Result: Proposed control sequence m,Tr.
1 Reseed χt particles that showed best performance at previous time step;
2 Generate randomly new control actions for χ− χt particles;

3 Estimate L̃km and W̃km ;
4 repeat
5 Predict the system evolution for each particle along the prediction

horizon;
6 Verify the feasibility of each particle and set weight zero for the

unfeasible ones;
7 Calculate cost and weight for each particle;
8 Resampling process considering all particles;
9 Perturbation of particles excluding the χt reseed particles;

10 until a stop condition is fulfilled ;
11 Choose as result the particle with greatest weight;

The stop condition can be just a fixed number of iterations or a more elaborated
scheme such as a small improving rate of the cost of the best particle at each
iteration.

7.4.1 Scenario-based approach

It is clear that the previous proposed approach may have many constraint viola-
tions due to the fact that it is only taking into account the expected value of the
considered distributions. That is, the true realizations of these random variables
can take values very far away from the expectation, thus considering only the
mean values of the probability distributions will not be a realistic setting. For
this reason, another scheme for the estimation of Lkm and Wkm is proposed here
at the expense of a heavier computation burden.

As the probability distribution of Lkm and Wkm are assumed to be known, it
is possible to draw random sequences of those variables. These will be called
scenarios. These scenarios represent hypothetical realizations of the variables in
the future and will be considered in the computation of the optimal number of
servers and temperature set points. Algorithm 5 shows how to consider scenarios.

The main change from Algorithm 4 is the addition of a “for” loop over all the
scenarios. As the first step in each iteration of this “for” loop, each scenario is
drawn according to the probability distributions of Lkm and Wkm . Once this has
been done, the evolution of the system is predicted like in algorithm 4. The same

112 Chapter 7. Energy-efficient management of data centers

goes for the feasibility verification of the particles.

Algorithm 5: Scenario PbO (S-Pbo).

Data: χ (Number of particles), Np , Nc (Prediction and Control Horizon
respectively), V (·) (Cost Function), χt (Number of particles to
reseed), S (Number of scenarios).

Result: Proposed control sequence m,Tr.
1 Reseed χt particles that showed best performance at previous time step;
2 Generate randomly new control actions for χ− χt particles;
3 Set the weights to an initial value 1

χ ;

4 repeat
5 for every scenario do
6 Extract a sequence of arrivals and workloads from the distributions;

7 Estimate L̃km and W̃km ;
8 Predict the system evolution for each particle along the prediction

horizon;
9 Verify the feasibility of each particle and set weight zero for the

unfeasible ones;
10 Calculate cost and update weight for each particle;

11 end for
12 Scale particle weights;
13 Resampling process considering all particles;
14 Perturbation of particles excluding the χt reseed particles;
15 Reset the values of the weights to 1

χ ;

16 until a stop condition is fulfilled ;
17 Choose as result the particle with greatest weight;

There are also several changes about the computation and meaning of costs and
weights. In algorithm 4, the weight was assigned directly once the cost was cal-
culated applying equation (7.13). This could be done because there was only one
scenario (the expected values of the random variables). Now, it is necessary that
weights show the performance of each particle for all scenarios. For that reason,
the weight of each particle is given an initial value of 1

χ and it is updated at each
iteration of the “for” loop with the information obtained from the scenario con-
sidered at that iteration. The particle with the best cost will maintain its weight
meanwhile the rest will decrease theirs according to how good their performance
were. This is done by means of the following equation:

σ(z) ← σ(z)

(
1−

V(z) − Vmin

Vmax − Vmin

)
. (7.14)

The weights are now updated as the product of the old weight and the new one
computed from the cost in a specific scenario. At the end of the “for” loop, it is
required by the Kitagawa resampling that the sum of the weights must be equal

7.4. Particle based solvers for complex optimization problems 113

to one. This is required due to the fact that the weights represent a discrete
probability density function. For that reason, the weights are scaled in line 12.
This is done using the following equation:

σ(z) ←
σ(z)∑χ
z=1 σ(z)

.

Also, it is important to reset the values at line 15 due to the new weight updating
from equation (7.14).

Taking into account different realisations of the random variables will turn out
to be a more conservative solution of the initially proposed algorithm because of
step 9. It means that for a certain sequence of arrivals and workloads, particles
which do not fulfill the conditions on maximum temperature and QoS will not be
resampled at next iteration. In algorithm 4, this condition was checked only once
for the sequence obtained from the mean values of the distributions. However,
in algorithm 5, it is necessary to fulfill this condition in every scenario (which is
more restrictive).

7.4.2 Parallel implementation

In order to lighten the computational burden of the proposed algorithms, they
are implemented in a parallel manner when it is possible. For this purpose, a
Graphics Processor Unit (GPU) is used. The use of GPUs to accelerate general
purpose computations has been growing since the initial release of CUDA in 2007.
CUDA stands for Compute Unified Device Architecture and it is the main pro-
gramming platform for general purpose programming in GPUs [186]. There are
also other alternatives like OpenCL, but CUDA is still more popular due to its
better performance [187].

The main advantage of the GPU computing is the decrease of the computation
time [188] provided that the tasks considered fit in the CUDA programming model
which is based on a Single Instruction Multiple Thread (SIMT) scheme [189].

Because of its nature, the proposed particle algorithms are highly parallelizable
in some of their steps such as the prediction of the system evolution, feasibility
verification, cost calculation and weight updating. Others can not be completely
parallelizable (i.e. the resampling process) due to the nature of the Kitagawa
resampling [185]. The reason of this is that the computation of the cumulative
probability density function requires that a certain thread z knows the value of
the thread z − 1 to do its job. Thus, this resampling must be done in a pure
sequential manner.

For simplicity reasons, the simulations presented in this section have been coded
in CUDA C kernels called from Matlab scripts. Although not the most efficient
way of using GPU computing with CUDA, it allows an easy integration with
Matlab CPU code.

114 Chapter 7. Energy-efficient management of data centers

7.5 Bounds on the constraint violation rate

Once reached to this point, it is easy to see that the algorithms proposed in this
chapter have some design parameters that have to be chosen, i.e. the control
horizon (Nc) and the number of scenarios (S). Depending on these parameters, a
different controller will be obtained. In this section, the results of chapter 6 are
used to compute the constraint violation level for a given controller in order to be
able to compare their performance.

For the sake of simplicity, only the QoS constraint will be considered in the fol-
lowing although in the numerical results both constraints are considered.

Using theorem 6.2 or 6.3, the bounding scheme will be carried out using the
following steps for each controller i to be validated:

1. Determine a number of closed loop simulations (H). Note that higher H
implies a higher number of completed tasks (N) and thus lower ∆ρ. In
practice, H should be chosen as the highest affordable value.

2. Run H closed loop simulations with different values of the parameters in
the probability distributions in the data center model to reflect different
operating conditions.

3. Denote NH as the number of tasks executed during the H simulations and
sH as the number of QoS violations in the NH . Then compute ρ as

ρ =
sH
NH

.

4. Once done that, ∆ρ can be calculated for each controller with equation (6.1)
or (6.3) (depending on the chosen bound) for the specified confidence 1− δ.

5. Choose the best controller according to the desired criteria. For example,
minimum constraint violation performance, trade-off between constraint sat-
isfaction level and operating costs, etc.

7.6 Numerical results

The proposed management schemes and the probabilistic validation method will
be illustrated by means of examples. The improvements from the parallel imple-
mentation will be also shown.

Four controllers with different parameters will be compared by means of simula-
tions. These simulations have a fixed time step of 2500 time units. A number of
H = 100 simulations were enough to have a large number of tasks to obtain the
desired bounds. In each one of these simulations, to reflect different operating
conditions, the variables L and W were given different expected values taking

7.6. Numerical results 115

into account the maximum workload and number of tasks that a data center of
M = 25 servers can handle with respect to equation (7.4).

On the other hand, the integration step is ts = 1s, the sampling time of the
controller km = 100 time units (i.e. 100s) and the prediction horizon is set to
Np = 10 sampling times (i.e. 1000 time units). Also, the maximum temperature
and QoS are set to 80◦C and 50 time units respectively. On the other hand, the
time constant of the CRAC unit is τ = 180 time units. The values of the power
consumption are a1 = 180W and a2 = 120W . Other thermal parameters like
the server thermal capacity and the product of the air heat capacity times the
air flow are Kt = 160 J

K and cp qa = 5 W
K . The weighting factors in (19) are

κu = 200 and κTr = 100. Finally, table 7.1 shows the parameters of the four
controllers considered and the line pattern for every controller in the following
figures.

C1 S-Pbo,Nc = 1, S = 25 Solid line Orange

C2 S-Pbo,Nc = 5, S = 25 Dotted line Blue

C3 Pbo,Nc = 1 Dashed-dotted line Purple

C4 Pbo,Nc = 5 Dashed line Yellow

Table 7.1: Controllers considered and line patterns. Pbo refers to algorithm 4 whereas
S-Pbo refers to algorithm. 5

Figure 7.3 shows the mean queue length, number of “on” servers and number of
idle servers. It can be seen how the controller without scenarios and longest con-
trol horizon Nc (C4) has the largest mean queue length in the experiments. This
implies longer waiting times and thus the elapsed time to be expected for a certain
task with this controller will be higher. Taking into account multiple scenarios,
as in C2, results in a lower queue length. This comes from the fact that consid-
ering multiple scenarios yields a more robust and conservative management. The
other controllers (C1 and C3) shows the effect of working with minimal control
horizons. In that case, the controller is forced to satisfy the constraints along a
large prediction horizon with few degrees of freedom, resulting in a more conser-
vative management. In the case of C1, it keeps the queue length very small at
the cost of a greater power consumption. On the other hand, C3 for C4 have very
similar performance. That is, without taking into account scenarios, the opera-
tion of the controllers is practically not affected by the control horizon. A more
conservative management also implies a higher number of “on” servers, as shown
in the middle subplot, and also more idle servers (bottom subplot) when the real
operating conditions are less demanding than the predicted ones. Having more
servers “on” but idle makes sense in order to be able to deal with the unknown
upcoming tasks, due to the delay time kon needed to get the servers active from
the “off” condition.

Figure 7.4 shows the mean values of the terms of the cost function (7.11) for each

116 Chapter 7. Energy-efficient management of data centers

0 500 1000 1500 2000 2500
0

0.5

1

1.5

0 500 1000 1500 2000 2500
4

6

8

10

0 500 1000 1500 2000 2500

Time (s)

0

2

4

6

Figure 7.3: From top to bottom, Mean Queue Length, Mean Number of On Servers and
Mean Number of Idle Servers

controller. The top subplot shows the power consumption term in Watts (W). As
it can be guessed, the controllers with larger number of active servers will have
greater power consumption, due to the consumption of the servers themselves
but also for the greater consumption of the CRAC unit (which following (7.9) is
assumed proportional to that of the servers).

The lower subplots are referred to the control efforts of the control actions. Here,
it can be seen that the controllers with Nc = 5 tend to change more their control
actions which leads to greater control efforts, but also facilitates a more tuned
application of the control action that results in lower overall costs as seen in Figure
7.5. In this figure, the instantaneous total cost for each controller is shown. As
expected, the more conservative controllers are the most expensive ones in terms
of performance cost.

7.6.1 QoS violation rate

Once all simulations are carried out, the bounds can be computed for each one
of the four controllers. Table 7.2 shows the results for the QoS constraint. The
final result is shown in the ρ + ∆ρ columns which are the upper bounds (with
confidence 1− δ) of the probability of not meeting the agreed service time D for
the theorems 2.2 and 2.3 respectively. Lower numbers imply better probabilistic

7.6. Numerical results 117

0 500 1000 1500 2000 2500
1500

2000

2500

3000

3500

0 500 1000 1500 2000 2500
0

500

1000

0 500 1000 1500 2000 2500

Time (s)

0

200

400

Figure 7.4: From top to bottom: Mean Power Consumption, Mean Control Effort for
booting servers and Mean Control Effort for changing the CRAC temperature reference

guarantees, which as expected corresponds to the more conservative controllers
(C1 and C2).

ρ ρ+ ∆ρ(2.2) ρ+ ∆ρ(2.3) N

C1 S-Pbo, Nc = 1 0.0032 0.0050 0.0045 65960

C2 S-Pbo, Nc = 5 0.0040 0.0060 0.0054 65926

C3 Pbo, Nc = 1 0.0278 0.0328 0.0314 65708

C4 Pbo, Nc = 5 0.0337 0.0392 0.0376 65678

Table 7.2: Violation rate of the proposed controllers for the QoS constraints with δ = 10−6

7.6.2 Thermal constraint violation rate

Bounds have also been obtained for the temperature constraint, with table 7.3
summarizing the results. In this case, N stands as the number of total time
instants for all the simulations H (which were all of the same length), and the
upper bound is on the probability of reaching a temperature higher than 80◦C.
Again the more conservative a controller has the better probabilistic guarantees,
but at the expense of a higher cost.

118 Chapter 7. Energy-efficient management of data centers

0 500 1000 1500 2000 2500

Time (s)

1800

2000

2200

2400

2600

2800

3000

3200

3400

3600

Figure 7.5: Instantaneous total cost

ρ ρ+ ∆ρ(2.2) ρ+ ∆ρ(2.3) N

C1 S-Pbo, Nc = 1 0.0000 0.0055 0.0058 2500

C2 S-Pbo, Nc = 5 0.0000 0.0055 0.0058 2500

C3 Pbo, Nc = 1 0.0001 0.0071 0.0067 2500

C4 Pbo, Nc = 5 0.0000 0.0055 0.0058 2500

Table 7.3: Violation rate of the proposed controllers for the maximum temperature con-
straint with δ = 10−6

7.6.3 Parallel computation improvement

In order to prove the speed-ups obtained with a parallel implementation, the
algorithms have been implemented in the CPU and also in a CUDA capable
GPU. The CPU version is coded completely in Matlab while the GPU version
uses Matlab code for the serial operations and C code for the CUDA kernels.
Table 7.4 shows the execution time of the controllers for an increasing number of
particles. Cells with a hyphen mean that the time exceeded the sampling time.
Finally, figure 7.6 shows the relative speed-up for different numbers of particles.

S-Pbo GPU S-Pbo CPU Pbo GPU Pbo CPU

10 17.0931 23.4282 0.6974 1.0001

100 17.8046 - 0.7230 9.4192

1000 30.2881 - 1.2267 93.6546

10000 91.4658 - 3.7208 -

Table 7.4: Mean computation time of the controllers in seconds.

7.6. Numerical results 119

0 100 200 300 400 500 600 700 800 900 1000

Number of Particles ()

0

10

20

30

40

50

60

70

80

E
x
e

c
u

ti
o

n
 s

p
e

e
d

-u
p

Figure 7.6: Speed-up obtained with the GPU computing for the controller execution.

As it can be expected, at a higher number of particles, the execution time within
the CPU grows strongly whereas the computation time within the GPU yields
almost constant in comparison, which leads to the increasing slope shown in figure
7.6. It also should be noted that once reached a number of particles greater than
1000, the execution times of the CPU become unmanageable and the simulations
are extremely costly.

7.6.4 Computation time analysis

Also, an analysis of the computation time of the algorithm with respect to different
number of servers has been done in order to study its behavior for the problem
of large data centers. The results are shown in figure 7.7. A polynomial of order
n = 2 is also added to the figures, confirming a quadratic complexity.

0 50 100 150 200 250 300

Number of Servers

0

50

100

150

200

250

C
o
m

p
u
ta

ti
o
n
 T

im
e
 (

s
)

Real

Fitting

25 30 35 40 45 50 55 60

Number of Servers

20

40

60

80

100

120

140

160

180

200

C
o
m

p
u
ta

ti
o
n
 T

im
e
 (

s
)

Real

Fitting

Figure 7.7: Computation times of the algorithms for an increasing number of servers.
Left: Algorithm without scenarios. Right: Algorithm with scenarios

Thus, the algorithm is feasible from a computational point of view and it can be

120 Chapter 7. Energy-efficient management of data centers

used with larger data centers. Nevertheless, for higher numbers of servers, besides
adding more computational power, one could consider multiple controllers each
one for each cold aisle or consider that the control actions handle clusters of servers
instead of individual ones.

7.7 Conclusions

This chapter presented a complex model of a data center and proposed a methodol-
ogy to deal with the problem of minimizing the power consumption of the facilities
while maintaining the quality of service at acceptable levels. The proposed MPC-
inspired controller simulates the whole data center model in order to compute
the optimal inputs to be applied to the system. For this reason, a particle-based
algorithm was used to solve the optimization problem at each time instant k.
The bounds proposed in chapter 6 were used to tune the hyperparameters of the
controllers.

121

Chapter 8

Conclusions and future work

This chapter briefly summarizes the contributions of this dissertation and presents
some future lines of work in each field.

8.1 Contributions

As it was stated in the introduction, the contributions of this thesis are related
to three different fields: system identification, probabilistic forecasting and model
predictive control. In what follows, the contributions of each chapter are stated:

• Chapter 2 presented the notion of dissimilarity and the dissimilarity function
to be used throughout this dissertation. It was shown that the proposed
dissimilarity function has many advantageous properties. Also, by means of
some forecasting examples, it was shown that the dissimilarity function can
be used as a predictor, obtaining better results than those obtained with a
neural network in the field of stock forecasting.

• In chapter 3, the case of uncertainty predictions was tackled. Instead of
providing just the expected value of the forecasting, a prediction region is
obtained. First, a method oriented to obtain interval predictions of a univari-
ate system or time series was proposed. This method was computationally
expensive because it required the integration of the empirical conditioned
probability density function for every time instant. In any case, the nu-
merical examples showed that the performance was better in comparison to
set-membership and quantile regression methods.

Then, a method to bypass the numerical integration of the empirical con-
ditioned probability density function was proposed. Besides this great ad-
vantage, which reduces considerably the execution time of the algorithm,
multivariate prediction regions could be obtained. Also, it was shown that
ellipsoidal approximations of such regions can be easily obtained. Finally,

122 Chapter 8. Conclusions and future work

by means of a numerical example, it was shown that the proposed approach
and the ellipsoidal approximations are smaller than those regions obtained
with quantile regression, gaussian processes or inverse regression methods
while fulfilling the probabilistic specifications.

• Chapter 4 presented the state-space kriging method for autonomous sys-
tems. By using this technique, a model of the system can be obtained using
only historical data of the process. Two different variations are proposed,
one obtained by weighting the locality within the dissimilarity function and
another one where the nonlinearity is modeled by means of kernel func-
tions. Also, it was shown that the kalman filter can be used to improve the
quality of the predictions. Finally, two numerical forecasting examples were
presented, where it was shown that the proposed approaches obtain better
results than other machine learning techniques.

• On the other hand, chapter 5 presented the state-space kriging method
for non-autonomous systems. Thanks to the modifications made to the
constraints in the dissimilarity function, it is possible to include the effect
of an external input. As the models obtained in this chapter are suitable for
MPC, a MPC formulation using the K-SSK model was proposed. Finally, a
simulation example and a real experiment were conducted in order to show
the good performance of the controller.

• In chapter 6, by means of the Chernoff’s bound [128, 159] and the results by
Alamo et al. in [61], two different sharp bounds of the constraint violation
rate of a certain controller were obtained. No assumptions on the probability
distributions of the disturbances were made in order to prove the obtained
results. It is only required to obtain i.i.d. samples, which is a standard
assumption in the field. Finally, a simple MPC example was proposed to
show how the proposed bounds should be computed.

• Chapter 7 showcased a more complicated example where the proposed bounds
can be used. The chosen system was a data center. This kind of facilities
have an extremely large electrical consumption due to both IT equipment
and infrastructure facilities. To tackle this problem, an energy-efficient man-
agement approach was proposed. Here, the bounds proposed in chapter 6
were used to tune the parameters of the controller.

8.2 Future work

The future lines of work for each one of the parts of this dissertation can be found
in the following:

• As the obtained interval predictions and prediction regions of part I per-
formed good enough in a forecasting example, it would be interesting to
apply these uncertain predictions in a control scheme, i.e. developing new

8.2. Future work 123

stochastic MPC controllers whose prediction model is given by the predic-
tors obtained in chapter 3.

The most approachable way would be to synthesize a controller for a uni-
dimensional system where the proposed interval predictor is used to obtain
uncertain predictions of the system. These predictions would be used within
the optimization problem to ensure the constraint satisfaction in a chance-
constrained manner.

• The proposed MPC formulation in part II presented nominal stability and
robust asymptotic stability, but lacked robust constraint satisfaction. For
this reason, it would be interesting to improve the controller formulation
to tackle this case. Also, the integration of a real time optimizer and the
consideration of economic objectives in the controller is another pending
task.

On the other hand, the proposed SSK models hardly accept new data be-
cause this would mean that the state of the system is constantly increasing.
It is necessary to find a good method that would allow the user to introduce
new data to the SSK model without increasing the complexity.

• When some of the proposed bounds in part III are used, it is possible to lose
the recursive feasibility of the MPC controller unless the controller formu-
lation is relaxed somehow. For that reason, a solution to this phenomenon
should be proposed after a careful analysis of its origin.

On the other hand, the i.i.d. assumption, although usual in the literature,
is hard to be fulfilled because samples drawn from a dynamical system are
inherently correlated. It would be interesting to develop methods which
allow us to obtain samples that are as i.i.d. as possible.

124 Chapter 8. Conclusions and future work

Bibliography

[1] L. Ljung, System identification: Theory for the user. Pearson Education,
1998.

[2] K. Ogata, Modern control engineering, vol. 5. Prentice hall Upper Saddle
River, NJ, 2010.

[3] P. Young, “Parameter estimation for continuous-time models—a survey,”
Automatica, vol. 17, no. 1, pp. 23–39, 1981.

[4] N. R. Kristensen, H. Madsen, and S. B. Jørgensen, “Parameter estimation
in stochastic grey-box models,” Automatica, vol. 40, no. 2, pp. 225–237,
2004.

[5] F. Ding, G. Liu, and X. P. Liu, “Parameter estimation with scarce measure-
ments,” Automatica, vol. 47, no. 8, pp. 1646–1655, 2011.

[6] P. Geladi and B. R. Kowalski, “Partial least-squares regression: a tutorial,”
Analytica chimica acta, vol. 185, pp. 1–17, 1986.

[7] P. J. Schmid, “Dynamic mode decomposition of numerical and experimental
data,” Journal of fluid mechanics, vol. 656, pp. 5–28, 2010.

[8] J. N. Kutz, S. L. Brunton, B. W. Brunton, and J. L. Proctor, Dynamic mode
decomposition: data-driven modeling of complex systems. SIAM, 2016.

[9] J. L. Proctor, S. L. Brunton, and J. N. Kutz, “Dynamic mode decomposition
with control,” SIAM Journal on Applied Dynamical Systems, vol. 15, no. 1,
pp. 142–161, 2016.

[10] J. Schoukens and L. Ljung, “Nonlinear system identification: A user-
oriented road map,” IEEE Control Systems Magazine, vol. 39, no. 6, pp. 28–
99, 2019.

[11] O. Nelles, “Nonlinear dynamic system identification,” in Nonlinear System
Identification, pp. 547–577, Springer, 2001.

[12] K. Liu, “Identification of linear time-varying systems,” Journal of Sound
and Vibration, vol. 206, no. 4, pp. 487–505, 1997.

125

126 Bibliography

[13] P. L. Dos Santos, T. P. A. Perdicoulis, C. Novara, J. A. Ramos, and D. E.
Rivera, Linear parameter-varying system identification: New developments
and trends, vol. 14. World Scientific, 2011.

[14] T. Takagi and M. Sugeno, “Fuzzy identification of systems and its applica-
tions to modeling and control,” IEEE transactions on systems, man, and
cybernetics, no. 1, pp. 116–132, 1985.

[15] K. Zeng, N.-Y. Zhang, and W.-L. Xu, “A comparative study on sufficient
conditions for Takagi-Sugeno fuzzy systems as universal approximators,”
IEEE Transactions on fuzzy systems, vol. 8, no. 6, pp. 773–780, 2000.

[16] E.-W. Bai, “A blind approach to the Hammerstein-Wiener model identifi-
cation,” Automatica, vol. 38, no. 6, pp. 967–979, 2002.

[17] A. Wills, T. B. Schön, L. Ljung, and B. Ninness, “Identification of
Hammerstein-Wiener models,” Automatica, vol. 49, no. 1, pp. 70–81, 2013.

[18] J. K. Gruber, D. R. Ramirez, T. Alamo, and C. Bordons, “Nonlinear min-
max model predictive control based on volterra models. Application to a
pilot plant,” in 2009 European Control Conference (ECC), pp. 1112–1117,
IEEE, 2009.

[19] J. Gruber, D. R. Ramirez, D. Limon, and T. Alamo, “Computationally effi-
cient nonlinear min–max model predictive control based on Volterra series
models—Application to a pilot plant,” Journal of Process Control, vol. 23,
no. 4, pp. 543–560, 2013.

[20] S. Chen and S. A. Billings, “Representations of non-linear systems: the
NARMAX model,” International journal of control, vol. 49, no. 3, pp. 1013–
1032, 1989.

[21] S. A. Billings, Nonlinear system identification: NARMAX methods in the
time, frequency, and spatio-temporal domains. John Wiley & Sons, 2013.

[22] Q. Zhang and A. Benveniste, “Wavelet networks,” IEEE transactions on
Neural Networks, vol. 3, no. 6, pp. 889–898, 1992.

[23] C. E. Rasmussen and C. K. I. Williams, Gaussian processes for machine
learning. MIT Press, 2006.

[24] S. Eleftheriadis, T. Nicholson, M. Deisenroth, and J. Hensman, “Identifica-
tion of Gaussian process state space models,” Advances in neural informa-
tion processing systems, vol. 30, 2017.

[25] J. Umlauft, A. Lederer, and S. Hirche, “Learning stable Gaussian pro-
cess state space models,” in 2017 American Control Conference (ACC),
pp. 1499–1504, IEEE, 2017.

Bibliography 127

[26] J.-P. Calliess, “Lipschitz optimisation for Lipschitz interpolation,” in 2017
American Control Conference (ACC), pp. 3141–3146, IEEE, 2017.

[27] J. M. Manzano, D. Limon, D. Muñoz de la Peña, and J.-P. Calliess, “Ro-
bust learning-based MPC for nonlinear constrained systems,” Automatica,
vol. 117, p. 108948, 2020.

[28] J. M. Zamarreño and P. Vega, “State space neural network. Properties and
application,” Neural networks, vol. 11, no. 6, pp. 1099–1112, 1998.

[29] I. Rivals and L. Personnaz, “Black-box modeling with state-space neural
networks,” in Neural Adaptive Control Technology, pp. 237–264, World Sci-
entific, 1996.

[30] B. Lim and S. Zohren, “Time-series forecasting with deep learning: a sur-
vey,” Philosophical Transactions of the Royal Society A, vol. 379, no. 2194,
p. 20200209, 2021.

[31] S. H. Rudy, J. N. Kutz, and S. L. Brunton, “Deep learning of dynamics
and signal-noise decomposition with time-stepping constraints,” Journal of
Computational Physics, vol. 396, pp. 483–506, 2019.

[32] S. Lawrence and C. L. Giles, “Overfitting and neural networks: conjugate
gradient and backpropagation,” in Proceedings of the IEEE-INNS-ENNS
International Joint Conference on Neural Networks., vol. 1, pp. 114–119,
IEEE, 2000.

[33] J. Pathak, B. Hunt, M. Girvan, Z. Lu, and E. Ott, “Model-free prediction
of large spatiotemporally chaotic systems from data: A reservoir computing
approach,” Physical review letters, vol. 120, no. 2, p. 024102, 2018.

[34] K. Nakajima and I. Fischer, Reservoir computing. Springer, 2021.

[35] D. Li, M. Han, and J. Wang, “Chaotic time series prediction based on a
novel robust echo state network,” IEEE Transactions on Neural Networks
and Learning Systems, vol. 23, no. 5, pp. 787–799, 2012.

[36] D. Goswami, A. Wolek, and D. A. Paley, “Data-driven estimation using
an echo-state neural network equipped with an ensemble Kalman filter,” in
2021 American Control Conference (ACC), pp. 2549–2554, IEEE, 2021.

[37] R. Babuška and H. Verbruggen, “Neuro-fuzzy methods for nonlinear system
identification,” Annual reviews in control, vol. 27, no. 1, pp. 73–85, 2003.

[38] J.-S. Jang and C.-T. Sun, “Neuro-fuzzy modeling and control,” Proceedings
of the IEEE, vol. 83, no. 3, pp. 378–406, 1995.

[39] A. Mauroy, Y. Susuki, and I. Mezić, Koopman operator in systems and
control. Springer, 2020.

128 Bibliography

[40] P. Bevanda, S. Sosnowski, and S. Hirche, “Koopman operator dynamical
models: Learning, analysis and control,” Annual Reviews in Control, vol. 52,
pp. 197–212, 2021.

[41] G. Mogk, T. Mrziglod, and A. Schuppert, “Application of hybrid mod-
els in chemical industry,” in Computer aided chemical engineering, vol. 10,
pp. 931–936, Elsevier, 2002.

[42] J. Sansana, M. N. Joswiak, I. Castillo, Z. Wang, R. Rendall, L. H. Chi-
ang, and M. S. Reis, “Recent trends on hybrid modeling for industry 4.0,”
Computers & Chemical Engineering, vol. 151, p. 107365, 2021.

[43] T. Alamo, J. M. Bravo, and E. F. Camacho, “Guaranteed state estimation
by zonotopes,” Automatica, vol. 41, no. 6, pp. 1035–1043, 2005.

[44] T. Alamo, J. M. Bravo, M. Redondo, and E. Camacho, “A set-membership
state estimation algorithm based on DC programming,” Automatica, vol. 44-
1, pp. 216–224, 2008.

[45] R. Thabet, T. Räıssi, C. Combastel, D. Efimov, and A. Zolghadri, “An
effective method to interval observer design for time-varying systems,” Au-
tomatica, vol. 50, no. 10, pp. 2677 – 2684, 2014.

[46] S. Chebotarev, D. Efimov, T. Räıssi, and A. Zolghadri, “Interval observers
for continuous-time LPV systems with l1/l2 performance,” Automatica,
vol. 58, pp. 82 – 89, 2015.

[47] S. Raka and C. Combastel, “Fault detection based on robust adaptive
thresholds: A dynamic interval approach,” Annual Reviews in Control,
vol. 37, no. 1, pp. 119 – 128, 2013.

[48] F. Xu, V. Puig, C. Ocampo-Martinez, F. Stoican, and S. Olaru, “Actuator-
fault detection and isolation based on set-theoretic approaches,” Journal of
Process Control, vol. 24, no. 6, pp. 947 – 956, 2014.

[49] M. Milanese and C. Novara, “Set membership identification of nonlinear
systems,” Automatica, vol. 40, no. 6, pp. 957–975, 2004.

[50] M. Milanese and C. Novara, “Unified set membership theory for identifi-
cation, prediction and filtering of nonlinear systems,” Automatica, vol. 47,
no. 10, pp. 2141–2151, 2011.

[51] R. Fernandez-Canti, J. Blesa, S. Tornil-Sin, and V. Puig, “Fault detection
and isolation for a wind turbine benchmark using a mixed bayesian/set-
membership approach,” Annual Reviews in Control, vol. 40, pp. 59 – 69,
2015.

[52] M. Milanese, J. Norton, H. Piet-Lahanier, and E. Walter, Bounding Ap-
proaches to System Identification. Plenum Press, New York, 1996.

Bibliography 129

[53] M. Milanese and C. Novara, “Set membership prediction of nonlinear time
series,” IEEE Transactions on Automatic Control, vol. 50, no. 11, pp. 1655–
1669, 2005.

[54] E. Bai, Y. Ye, and R. Tempo, “Bounded error parameter estimation: A se-
quential analytic center approach,” IEEE Transactions on Automatic con-
trol, vol. 44, no. 6, pp. 1107–1117, 1999.

[55] L. Jaulin, “Interval constraint propagation with application to bounded-
error estimation,” Automatica, vol. 36, pp. 1547–1552, 2000.

[56] J. M. Bravo, T. Alamo, M. Vasallo, and M. Gegundez, “A general frame-
work for predictors based on bounding techniques and local approximation,”
IEEE Transactions on Automatic Control, vol. 62, no. 7, pp. 3430–3435,
2017.

[57] J. Roll, A. Nazin, and L. Ljung, “Nonlinear system identification via direct
weight optimization,” Automatica, vol. 41, no. 3, pp. 475–490, 2005.

[58] J. M. Bravo, T. Alamo, M. Gegundez, and D. Marin, “Combined stochas-
tic and deterministic interval predictor for time-varying systems,” in 23th
Mediterranean Conference on Control and Automation (MED), pp. 833–839,
IEEE, 2015.

[59] C. Combastel, “Zonotopes and kalman observers: Gain optimality under dis-
tinct uncertainty paradigms and robust convergence,” Automatica, vol. 55,
pp. 265 – 273, 2015.

[60] B. Efron and R. Tibshirani, “Bootstrap methods for standard errors, confi-
dence intervals, and other measures of statistical accuracy,” Statistical sci-
ence, pp. 54–75, 1986.

[61] T. Alamo, R. Tempo, A. Luque, and D. R. Ramirez, “Randomized methods
for design of uncertain systems: Sample complexity and sequential algo-
rithms,” Automatica, vol. 52, pp. 160–172, 2015.

[62] T. Alamo, J. Manzano, and E. Camacho, “Robust design through probabilis-
tic maximization,” in Uncertainty in Complex Networked Systems, pp. 247–
274, Springer, 2018.

[63] V. Mirasierra, M. Mammarella, F. Dabbene, and T. Alamo, “Prediction
error quantification through probabilistic scaling,” IEEE Control Systems
Letters, vol. 6, pp. 1118–1123, 2022.

[64] K. Murphy, Machine Learning: A Probabilistic Perspective. The MIT Press,
2012.

[65] R. Koenker and G. Bassett, “Regression quantiles,” Econometrica: journal
of the Econometric Society, pp. 33–50, 1978.

130 Bibliography

[66] C. Davino, M. Furno, and D. Vistocco, Quantile Regresssion. Theory and
Applications. Wiley, 2014.

[67] G. Bassett and H. Chen, “Portfolio style: Return-based attribution us-
ing quantile regression,” in Economic Applications of Quantile Regression,
pp. 293–305, Springer, 2002.

[68] A. Papoulis and S. Pillai, Probability, Random Variables and Stochastic
Processes. Mc Graw Hill, 2002.

[69] J. Navarro, “A very simple proof of the multivariate Chebyshev’s inequal-
ity,” Communications in Statistics-Theory and Methods, vol. 45, no. 12,
pp. 3458–3463, 2016.

[70] B. Stellato, B. Van Parys, and P. J. Goulart, “Multivariate Chebyshev in-
equality with estimated mean and variance,” The American Statistician,
vol. 71, no. 2, pp. 123–127, 2017.

[71] S. Portnoy and R. Koenker, “The Gaussian hare and the Laplacian tortoise:
computability of squared-error versus absolute-error estimators,” Statistical
Science, vol. 12, no. 4, pp. 279–300, 1997.

[72] R. Tempo, E. Bai, and F. Dabbene, “Probabilistic robustness analysis: ex-
plicit bounds for the minimum number of samples,” Systems & Control
Letters, vol. 30, pp. 237–242, 1997.

[73] H. Lütkepohl, Introduction to multiple time series analysis. Berlin, Springer,
1991.

[74] M. Wolf and D. Wunderli, “Bootstrap joint prediction regions,” Journal of
Time Series Analysis, vol. 36, no. 3, pp. 352–376, 2015.

[75] J. H. Kim, “Bias-corrected bootstrap prediction regions for vector autore-
gression,” Journal of Forecasting, vol. 23, no. 2, pp. 141–154, 2004.

[76] J. H. Kim, “Asymptotic and bootstrap prediction regions for vector autore-
gression,” International Journal of Forecasting, vol. 15, no. 4, pp. 393–403,
1999.

[77] P. Vidoni, “Improved multivariate prediction regions for Markov process
models,” Statistical Methods & Applications, vol. 26, no. 1, pp. 1–18, 2017.

[78] G. Fonseca, F. Giummole, and P. Vidoni, “A note about calibrated predic-
tion regions and distributions,” Journal of Statistical Planning and Infer-
ence, vol. 142, no. 9, pp. 2726–2734, 2012.

[79] C. Lagazio and P. Vidoni, “Calibrated prediction regions for Gaussian ran-
dom fields,” Environmetrics, vol. 29, no. 3, p. e2495, 2018.

[80] D. J. Olive, “Applications of hyperellipsoidal prediction regions,” Statistical
Papers, vol. 59, no. 3, pp. 913–931, 2018.

Bibliography 131

[81] W. Lin, Y. Zhuang, S. Zhang, and E. Martin, “On estimation of multi-
variate prediction regions in partial least squares regression,” Journal of
Chemometrics, vol. 27, no. 9, pp. 243–250, 2013.

[82] E. Devijver and E. Perthame, “Prediction regions through Inverse Regres-
sion.,” Journal of Machine Learning Research, vol. 21, pp. 1–24, 2020.

[83] F. Golestaneh, P. Pinson, R. Azizipanah-Abarghooee, and H. B. Gooi, “El-
lipsoidal prediction regions for multivariate uncertainty characterization,”
IEEE Transactions on Power Systems, vol. 33, no. 4, pp. 4519–4530, 2018.

[84] G. Shafer and V. Vovk, “A tutorial on conformal prediction.,” Journal of
Machine Learning Research, vol. 9, no. 3, 2008.

[85] K. Karydis, I. Poulakakis, J. Sun, and H. G. Tanner, “Probabilistically valid
stochastic extensions of deterministic models for systems with uncertainty,”
The International Journal of Robotics Research, vol. 34, no. 10, pp. 1278–
1295, 2015.

[86] E. F. Camacho and C. Bordons Alba, Model predictive control. Springer
London, second ed., 2007.

[87] J. B. Rawlings, D. Q. Mayne, and M. Diehl, Model predictive control: theory,
computation, and design. Nob Hill Publishing Madison, WI, second ed.,
2017.

[88] J. Richalet, A. Rault, J. Testud, and J. Papon, “Model predictive heuristic
control: Applications to industrial processes,” Automatica, vol. 14, no. 5,
pp. 413–428, 1978.

[89] C. R. Cutler, Dynamic matrix control: an optimal multivariable control
algorithm with constraints. University of Houston, 1983.

[90] D. W. Clarke, C. Mohtadi, and P. S. Tuffs, “Generalized predictive con-
trol—part i. the basic algorithm,” Automatica, vol. 23, no. 2, pp. 137–148,
1987.

[91] D. W. Clarke, C. Mohtadi, and P. S. Tuffs, “Generalized predictive con-
trol—part ii extensions and interpretations,” Automatica, vol. 23, no. 2,
pp. 149–160, 1987.

[92] J. H. Lee, M. Morari, and C. E. Garcia, “State-space interpretation of model
predictive control,” Automatica, vol. 30, no. 4, pp. 707–717, 1994.

[93] K. R. Muske and J. B. Rawlings, “Model predictive control with linear
models,” AIChE Journal, vol. 39, no. 2, pp. 262–287, 1993.

[94] D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. O. Scokaert, “Constrained
model predictive control: Stability and optimality,” Automatica, vol. 36,
no. 6, pp. 789–814, 2000.

132 Bibliography

[95] P. Krupa, I. Alvarado, D. Limon, and T. Alamo, “Implementation of model
predictive control for tracking in embedded systems using a sparse extended
ADMM algorithm,” IEEE Transactions on Control Systems Technology,
2021.

[96] P. Krupa, D. Limon, and T. Alamo, “SPCIES: Suite of Predictive Con-
trollers for Industrial Embedded Systems,” 2020.

[97] P. O. Scokaert, D. Q. Mayne, and J. B. Rawlings, “Suboptimal model predic-
tive control (feasibility implies stability),” IEEE Transactions on Automatic
Control, vol. 44, no. 3, pp. 648–654, 1999.

[98] G. Pannocchia, J. B. Rawlings, and S. J. Wright, “Conditions under which
suboptimal nonlinear MPC is inherently robust,” Systems & Control Letters,
vol. 60, no. 9, pp. 747–755, 2011.

[99] M. M. Seron, J. A. De Dona, and G. C. Goodwin, “Global analytical model
predictive control with input constraints,” in Proceedings of the 39th IEEE
Conference on Decision and Control (Cat. No. 00CH37187), vol. 1, pp. 154–
159, IEEE, 2000.

[100] A. Bemporad, M. Morari, V. Dua, and E. N. Pistikopoulos, “The explicit
linear quadratic regulator for constrained systems,” Automatica, vol. 38,
no. 1, pp. 3–20, 2002.

[101] D. R. Ramirez and E. F. Camacho, “Piecewise affinity of min–max MPC
with bounded additive uncertainties and a quadratic criterion,” Automatica,
vol. 42, no. 2, pp. 295–302, 2006.

[102] D. Muñoz de la Peña, D. R. Ramı́rez, E. F. Camacho, and T. Alamo, “Ex-
plicit solution of min–max MPC with additive uncertainties and quadratic
criterion,” Systems & control letters, vol. 55, no. 4, pp. 266–274, 2006.

[103] E. Zafiriou, “On the closed-loop stability of constrained QDMC,” in 1991
American Control Conference, pp. 2367–2372, IEEE, 1991.

[104] J. A. Primbs and V. Nevistic, “A framework for robustness analysis of con-
strained finite receding horizon control,” IEEE Transactions on Automatic
Control, vol. 45, no. 10, pp. 1828–1838, 2000.

[105] D. Limon, T. Alamo, D. M. Raimondo, D. Muñoz de la Peña, J. M. Bravo,
A. Ferramosca, and E. F. Camacho, “Input-to-state stability: a unifying
framework for robust model predictive control,” in Nonlinear model predic-
tive control, pp. 1–26, Springer, 2009.

[106] G. Grimm, M. J. Messina, S. E. Tuna, and A. R. Teel, “Examples when non-
linear model predictive control is nonrobust,” Automatica, vol. 40, no. 10,
pp. 1729–1738, 2004.

Bibliography 133

[107] P. J. Campo and M. Morari, “Robust model predictive control,” in 1987
American control conference, pp. 1021–1026, IEEE, 1987.

[108] D. R. Ramirez, T. Alamo, E. F. Camacho, and D. Muñoz de la Peña, “Min-
max MPC based on a computationally efficient upper bound of the worst
case cost,” Journal of Process Control, vol. 16, no. 5, pp. 511–519, 2006.

[109] P. O. Scokaert and D. Q. Mayne, “Min-max feedback model predictive con-
trol for constrained linear systems,” IEEE Transactions on Automatic con-
trol, vol. 43, no. 8, pp. 1136–1142, 1998.

[110] D. Q. Mayne, E. C. Kerrigan, E. Van Wyk, and P. Falugi, “Tube-based
robust nonlinear model predictive control,” International journal of robust
and nonlinear control, vol. 21, no. 11, pp. 1341–1353, 2011.

[111] D. Limon, I. Alvarado, T. Alamo, and E. F. Camacho, “Robust tube-based
MPC for tracking of constrained linear systems with additive disturbances,”
Journal of Process Control, vol. 20, no. 3, pp. 248–260, 2010.

[112] R. Gonzalez, M. Fiacchini, T. Alamo, J. L. Guzman, and F. Rodŕıguez,
“Online robust tube-based MPC for time-varying systems: A practical ap-
proach,” International Journal of Control, vol. 84, no. 6, pp. 1157–1170,
2011.

[113] D. Chatterjee, P. Hokayem, and J. Lygeros, “Stochastic receding horizon
control with bounded control inputs: A vector space approach,” IEEE
Transactions on Automatic Control, vol. 56, no. 11, pp. 2704–2710, 2011.

[114] D. Chatterjee and J. Lygeros, “On stability and performance of stochastic
predictive control techniques,” IEEE Transactions on Automatic Control,
vol. 60, no. 2, pp. 509–514, 2014.

[115] G. C. Calafiore and M. C. Campi, “The scenario approach to robust control
design,” IEEE Transactions on automatic control, vol. 51, no. 5, pp. 742–
753, 2006.

[116] M. C. Campi, S. Garatti, and M. Prandini, “Scenario optimization for
MPC,” in Handbook of Model Predictive Control, pp. 445–463, Springer,
2019.

[117] B. Karg, T. Alamo, and S. Lucia, “Probabilistic performance validation
of deep learning-based robust nmpc controllers,” International Journal of
Robust and Nonlinear Control, vol. 31, no. 18, pp. 8855–8876, 2021.

[118] M. Alamir, “On probabilistic certification of combined cancer therapies
using strongly uncertain models,” Journal of theoretical biology, vol. 384,
pp. 59–69, 2015.

134 Bibliography

[119] R. Amrit, J. B. Rawlings, and D. Angeli, “Economic optimization using
model predictive control with a terminal cost,” Annual Reviews in Control,
vol. 35, no. 2, pp. 178–186, 2011.

[120] A. Ferramosca, J. B. Rawlings, D. Limon, and E. F. Camacho, “Economic
MPC for a changing economic criterion,” in 49th IEEE Conference on De-
cision and Control (CDC), pp. 6131–6136, IEEE, 2010.

[121] M. Diehl, R. Amrit, and J. B. Rawlings, “A Lyapunov function for eco-
nomic optimizing model predictive control,” IEEE Transactions on Auto-
matic Control, vol. 56, no. 3, pp. 703–707, 2010.

[122] P. D. Christofides, R. Scattolini, D. Muñoz de la Peña, and J. Liu, “Dis-
tributed model predictive control: A tutorial review and future research
directions,” Computers & Chemical Engineering, vol. 51, pp. 21–41, 2013.

[123] J. M. Maestre, R. R. Negenborn, et al., Distributed model predictive control
made easy, vol. 69. Springer, 2014.

[124] D. Limon, I. Alvarado, T. Alamo, and E. F. Camacho, “MPC for tracking
piecewise constant references for constrained linear systems,” Automatica,
vol. 44, no. 9, pp. 2382–2387, 2008.

[125] D. Limon, A. Ferramosca, I. Alvarado, and T. Alamo, “Nonlinear MPC
for tracking piece-wise constant reference signals,” IEEE Transactions on
Automatic Control, vol. 63, no. 11, pp. 3735–3750, 2018.

[126] N. Cressie, “Kriging nonstationary data,” Journal of the American Statis-
tical Association, vol. 81, no. 395, pp. 625–634, 1986.

[127] J. P. Kleijnen, “Kriging metamodeling in simulation: A review,” European
journal of operational research, vol. 192, no. 3, pp. 707–716, 2009.

[128] H. Chernoff, “A measure of asymptotic efficiency for tests of a hypothesis
based on the sum of observations,” The Annals of Mathematical Statistics,
vol. 23, no. 4, pp. 493–507, 1952.

[129] G. Alfonso, A. D. Carnerero, D. R. Ramirez, and T. Alamo, “Stock fore-
casting using local data,” IEEE Access, vol. 9, pp. 9334–9344, 2020.

[130] A. D. Carnerero, D. R. Ramirez, and T. Alamo, “Probabilistic interval pre-
dictor based on dissimilarity functions,” IEEE Transactions on Automatic
Control, 10.1109/TAC.2021.3136137, 2021.

[131] A. D. Carnerero, D. R. Ramirez, and T. Alamo, “State-space kriging: A
data-driven method to forecast nonlinear dynamical systems,” IEEE Control
Systems Letters, vol. 6, pp. 2258 – 2263, 2022.

[132] A. D. Carnerero, D. R. Ramirez, D. Limon, and T. Alamo, “Particle based
optimization for predictive energy efficient data center management,” in

Bibliography 135

2020 59th IEEE Conference on Decision and Control (CDC), pp. 2660–
2665, IEEE, 2020.

[133] A. D. Carnerero, D. R. Ramirez, T. Alamo, and D. Limon, “Probabilisti-
cally certified management of data centers using predictive control,” IEEE
Transactions on Automation Science and Engineering, 2021.

[134] G. Alfonso, A. D. Carnerero, D. R. Ramirez, and T. Alamo, “Receding
horizon optimization of large trade orders,” IEEE Access, vol. 9, pp. 63865–
63875, 2021.

[135] A. Goshtasby, Image Registration. Principles, Tools and Methods. Springer,
2012.

[136] S. T. Wierzchoń and M. K lopotek, Modern algorithms of cluster analysis.
Springer, 2018.

[137] J. R. Salvador, D. R. Ramirez, T. Alamo, and D. Muñoz de la Peña, “Offset
free data driven control: application to a process control trainer,” IET
Control Theory & Applications, vol. 13, no. 18, pp. 3096–3106, 2019.

[138] J. R. Salvador, D. Muñoz de la Peña, T. Alamo, and A. Bemporad,
“Data-based predictive control via direct weight optimization,” IFAC-
PapersOnLine, vol. 51, no. 20, pp. 356–361, 2018.

[139] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University
Press, 2004.

[140] A. Beck, First-order methods in optimization. SIAM, 2017.

[141] A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding algo-
rithm for linear inverse problems,” SIAM J. Imaging Sciences, vol. 2, no. 1,
pp. 183–202, 2009.

[142] Y. Nesterov, Lectures on convex optimization, vol. 137. Springer, 2018.

[143] L. Ljung, System Identification. Prentice Hall, Upper Saddle River, NJ,
1999.

[144] V. P. Upadhyay, S. Panwar, R. Merugu, and R. Panchariya, “Forecasting
stock market movements using various kernel functions in support vector
machine,” in Proceedings of the International Conference on Advances in
Information Communication Technology —& Computing, AICTC ’16, (New
York, NY, USA), Association for Computing Machinery, 2016.

[145] M. Thomason, “The practitioner methods and tool,” Journal of Computa-
tional Intelligence in Finance, vol. 7, no. 3, pp. 36–45, 1999.

[146] M. Mammarella, V. Mirasierra, M. Lorenzen, T. Alamo, and F. Dabbene,
“Chance-constrained sets approximation: A probabilistic scaling approach,”
Automatica, vol. 137, p. 110108, 2022.

136 Bibliography

[147] T. Alamo, A. Cepeda, and D. Limon, “Improved computation of ellipsoidal
invariant sets for saturated control systems,” in Proceedings of the 44th
IEEE Conference on Decision and Control, pp. 6216–6221, IEEE, 2005.

[148] K. P. Murphy, Machine learning: a probabilistic perspective. MIT press,
2012.

[149] M. Erhard and H. Strauch, “Control of towing kites for seagoing vessels,”
IEEE Transactions on Control Systems Technology, vol. 21, no. 5, pp. 1629–
1640, 2012.

[150] N. Cristianini and J. Shawe-Taylor, An introduction to support vector ma-
chines and other kernel-based learning methods. Cambridge university press,
2000.

[151] R. E. Kalman, “A New Approach to Linear Filtering and Prediction Prob-
lems,” Journal of Basic Engineering, vol. 82, no. 1, pp. 35–45, 1960.

[152] H. K. Khalil, Nonlinear control, vol. 406. Pearson New York, 2015.

[153] D. E. Seborg, T. F. Edgar, D. A. Mellichamp, and F. J. Doyle, Process
dynamics and control. John Wiley & Sons, 2016.

[154] G. Pannocchia and J. B. Rawlings, “Disturbance models for offset-free
model-predictive control,” AIChE journal, vol. 49, no. 2, pp. 426–437, 2003.

[155] U. Maeder, F. Borrelli, and M. Morari, “Linear offset-free Model Predictive
Control,” Automatica, vol. 45, no. 10, pp. 2214–2222, 2009.

[156] G. Pannocchia, “Offset-free tracking MPC: A tutorial review and compari-
son of different formulations,” in 2015 European Control Conference (ECC),
pp. 527–532, 2015.

[157] P. M. Oliveira and J. D. Hedengren, “An APMonitor temperature lab PID
control experiment for undergraduate students,” in 2019 24th IEEE In-
ternational Conference on Emerging Technologies and Factory Automation
(ETFA), pp. 790–797, IEEE, 2019.

[158] T. Alamo, R. Tempo, and E. F. Camacho, “Randomized strategies for prob-
abilistic solutions of uncertain feasibility and optimization problems,” IEEE
Transactions on Automatic Control, vol. 54, no. 11, pp. 2545–2559, 2009.

[159] M. Okamoto, “Some inequalities relating to the partial sum of binomial
probabilities,” Annals of the institute of Statistical Mathematics, vol. 10,
no. 1, pp. 29–35, 1959.

[160] H. Cramér, “Les sommes et les fonctions de variables aléatoires,” Actu-
alités Scientifiques et Induestrielles. Conférences Internationales de Sci-
ences. Paris Hermann, vol. 3, 1938.

Bibliography 137

[161] A. Klenke, Probability theory: a comprehensive course. Springer Science &
Business Media, 2013.

[162] L. Parolini, B. Sinopoli, B. H. Krogh, and Z. Wang, “A cyber–physical
systems approach to data center modeling and control for energy efficiency,”
Proceedings of the IEEE, vol. 100, no. 1, pp. 254–268, 2011.

[163] J. Scaramella, “Worldwide server power and cooling expense 2006-2010 fore-
cast,” Market analysis, IDC Inc, 2006.

[164] A. S. Andrae and T. Edler, “On global electricity usage of communication
technology: trends to 2030,” Challenges, vol. 6, no. 1, pp. 117–157, 2015.

[165] P. X. Gao, A. R. Curtis, B. Wong, and S. Keshav, “It’s not easy being
green,” in Proceedings of the ACM SIGCOMM 2012 conference on Appli-
cations, technologies, architectures, and protocols for computer communica-
tion, pp. 211–222, 2012.

[166] M. Dayarathna, Y. Wen, and R. Fan, “Data center energy consumption
modeling: A survey,” IEEE Communications Surveys & Tutorials, vol. 18,
no. 1, pp. 732–794, 2015.

[167] W. Van Heddeghem, S. Lambert, B. Lannoo, D. Colle, M. Pickavet, and
P. Demeester, “Trends in worldwide ICT electricity consumption from 2007
to 2012,” Computer Communications, vol. 50, pp. 64–76, 2014.

[168] N. Lazic, C. Boutilier, T. Lu, E. Wong, B. Roy, M. Ryu, and G. Imwalle,
“Data center cooling using model-predictive control,” in Advances in Neural
Information Processing Systems, pp. 3814–3823, 2018.

[169] H. Endo, S. Suzuki, H. Kodama, T. Hatanaka, H. Fukuda, and M. Fujita,
“Development of predictive control system using just-in-time modeling and
enthalpy-aware control in air conditioners for large-scale data center,” in
2018 18th International Conference on Control, Automation and Systems
(ICCAS), pp. 1278–1283, IEEE, 2018.

[170] M. Ogawa, H. Fukuda, H. Kodama, H. Endo, T. Sugimoto, T. Kasajima,
and M. Kondo, “Development of a cooling control system for data centers
utilizing indirect fresh air based on model predictive control,” in 2015 7th
International Congress on Ultra Modern Telecommunications and Control
Systems and Workshops (ICUMT), pp. 132–137, IEEE, 2015.

[171] L. Fu, J. Wan, J. Yang, D. Cao, and G. Zhang, “Dynamic thermal and
it resource management strategies for data center energy minimization,”
Journal of Cloud Computing, vol. 6, no. 1, p. 25, 2017.

[172] C. Bash and G. Forman, “Cool job allocation: Measuring the power savings
of placing jobs at cooling-efficient locations in the data center.,” in USENIX
Annual Technical Conference, vol. 138, pp. 140–149, 2007.

138 Bibliography

[173] J. D. Moore, J. S. Chase, P. Ranganathan, and R. K. Sharma, “Making
scheduling cool: Temperature-aware workload placement in data centers.,”
in USENIX annual technical conference, pp. 61–75, 2005.

[174] S. Li, H. Le, N. Pham, J. Heo, and T. Abdelzaher, “Joint optimization
of computing and cooling energy: Analytic model and a machine room
case study,” in 2012 IEEE 32nd International Conference on Distributed
Computing Systems, pp. 396–405, 2012.

[175] L. Parolini, B. Sinopoli, and B. H. Krogh, “Model predictive control of data
centers in the smart grid scenario,” IFAC Proceedings Volumes, vol. 44,
no. 1, pp. 10505–10510, 2011.

[176] M. Ogura, J. Wan, and S. Kasahara, “Model predictive control for energy-
efficient operations of data centers with cold aisle containments,” IFAC-
PapersOnLine, vol. 51, no. 20, pp. 209–214, 2018.

[177] Q. Fang, J. Wang, and Q. Gong, “QoS-driven power management of data
centers via model predictive control,” IEEE Transactions on Automation
Science and Engineering, vol. 13, no. 4, pp. 1557–1566, 2016.

[178] J. Yao, Z. Pan, and H. Zhang, “A distributed render farm system for ani-
mation production,” in Entertainment Computing – ICEC 2009 (S. Natkin
and J. Dupire, eds.), pp. 264–269, Springer Berlin Heidelberg, 2009.

[179] B. Bixby, “The Gurobi optimizer,” Transp. Research Part B, vol. 41, no. 2,
pp. 159–178, 2007.

[180] A. L. Visintini, W. Glover, J. Lygeros, and J. Maciejowski, “Monte Carlo
optimization for conflict resolution in air traffic control,” IEEE Transactions
on Intelligent Transportation Systems, vol. 7, no. 4, pp. 470–482, 2006.

[181] N. Kantas, J. Maciejowski, and A. Lecchini-Visintini, “Sequential Monte
Carlo for model predictive control,” in Nonlinear model predictive control,
pp. 263–273, Springer, 2009.

[182] G. Andreadis, L. Versluis, F. Mastenbroek, and A. Iosup, “A reference ar-
chitecture for datacenter scheduling: design, validation, and experiments,”
in Proceedings of the International Conference for High Performance Com-
puting, Networking, Storage, and Analysis, p. 37, 2018.

[183] E. Chromy, T. Misuth, and M. Kavacky, “Erlang c formula and its use in
the call centers,” Advances in Electrical and Electronic Engineering, vol. 9,
no. 1, pp. 7–13, 2011.

[184] J. P. De Villiers, S. Godsill, and S. Singh, “Particle predictive control,”
Journal of Statistical Planning and Inference, vol. 141, no. 5, pp. 1753–
1763, 2011.

Bibliography 139

[185] G. Kitagawa, “Monte Carlo filter and smoother for non-Gaussian nonlin-
ear state space models,” Journal of computational and graphical statistics,
vol. 5, no. 1, pp. 1–25, 1996.

[186] J. Sanders and E. Kandrot, CUDA by example: an introduction to general-
purpose GPU programming, portable documents. Addison-Wesley Profes-
sional, 2010.

[187] K. Karimi, N. G. Dickson, and F. Hamze, “A performance comparison of
CUDA and OpenCL,” arXiv preprint arXiv:1005.2581, 2010.

[188] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, and K. Skadron, “A
performance study of general-purpose applications on graphics processors
using CUDA,” Journal of parallel and distributed computing, vol. 68, no. 10,
pp. 1370–1380, 2008.

[189] P. Bialas and A. Strzelecki, “Benchmarking the cost of thread divergence
in CUDA,” in International Conference on Parallel Processing and Applied
Mathematics, pp. 570–579, Springer, 2015.

	Contents
	Acknowledgements
	Abstract
	Notation, conventions and definitions
	Introduction
	Motivation and objectives
	The problem of system identification
	Quantifying the uncertainty
	Model predictive control
	Objectives of this dissertation

	Outline
	Publications

	I Probabilistic forecasting
	Forecasting using dissimilarity functions
	Proposed dissimilarity function
	Clarifying example

	Dissimilarity functions and regression
	Application: forecasting stock prices using dissimilarity functions
	Results

	Conclusions

	Probabilistic prediction regions
	Univariate case
	Empirical probability density function
	Clarifying example: uniform distribution
	Numerical example: Lorenz attractor
	Numerical example: Dow Jones industrial average index

	Multivariate case
	Implicit regions
	Clarifying example: multivariate uniform distribution
	Ellipsoidal prediction regions
	Numerical results

	Conclusions

	II Kriging-based identification
	State-space kriging for autonomous systems
	Dynamic kriging
	Linear state-space kriging
	Initial condition
	Local-data approach

	Kernel-based state-space kriging
	Initial condition

	Kalman filter for SSK
	Numerical examples
	Sunspot number
	Rössler attractor

	Conclusions

	State-space kriging for non-autonomous systems
	Non-autonomous linear SSK
	Initial condition

	Non-autonomous kernel-based SSK
	Initial condition

	Application to MPC
	Nominal stability analysis
	Robust stability analysis

	Examples
	Continuously-stirred tank reactor
	Temperature control lab

	Conclusions

	III Probabilistically-certified data center management
	Bounds on the constraint violation level
	Introduction
	Main results
	A first bound on constraint violation rate
	A different bound

	Clarifying Example
	Conclusions

	Energy-efficient management of data centers
	Introduction
	Data center description
	Tasks model
	Server model
	Thermal model
	Quality of service

	Management approach
	Particle based solvers for complex optimization problems
	Scenario-based approach
	Parallel implementation

	Bounds on the constraint violation rate
	Numerical results
	QoS violation rate
	Thermal constraint violation rate
	Parallel computation improvement
	Computation time analysis

	Conclusions

	Conclusions and future work
	Contributions
	Future work

	Bibliography

