
Semantic Web Services Provisioning
José María García, 31724461-D

josemgarcia@us.es

Supervised by Prof. Dr. David Ruiz Cortés
and Prof. Dr. Antonio Ruiz Cortés

Research Report submitted to the Department of Computer Languages
and Systems of the University of Sevilla in partial fulfillment

of the requirements for the degree of Ph.D. in Computer Engineering.

(Research Period)

Support: This work has been partially supported by the European
Commission (FEDER) and Spanish Government under CICYT project Web-
Factories (TIN2006-00472) and by the Andalusian Government under project
ISABEL (TIC-2533).

Contents

I Preface

1 Introduction . 3
1.1 Research context . 4

1.1.1 Web Services . 4
1.1.2 The Semantic Web . 8
1.1.3 Semantic Web Services . 12
1.1.4 QoS-Aware Provisioning . 14
1.1.5 User Preferences . 16

1.2 Hypothesis . 17
1.3 Report Structure . 18

II Related Work

2 Semantic Web Services . 21
2.1 WSMO . 22

2.1.1 Ontologies . 24
2.1.2 Web Service Descriptions . 26
2.1.3 Goals . 29
2.1.4 Mediators . 30
2.1.5 Provisioning Approaches . 32
2.1.6 Existing Tools . 32

2.2 OWL-S . 36
2.2.1 Service Profiles . 39

ii Contents

2.2.2 Modeling Services as Processes . 40
2.2.3 Accessing Services . 44
2.2.4 Provisioning Approaches . 46
2.2.5 Existing Tools . 46

2.3 METEOR-S . 49
2.3.1 Web Service Semantics . 50
2.3.2 Semantic Annotations for WSDL and XML Schema 54
2.3.3 Provisioning Approaches . 58
2.3.4 Existing Tools . 59

2.4 Other Frameworks . 62
2.4.1 Semantic Web Services Framework 62
2.4.2 Internet Reasoning Service . 65
2.4.3 INFRAWEBS . 69
2.4.4 Provisioning Approaches . 72
2.4.5 Existing Tools . 73

2.5 Analysis and Conclusions . 76
2.5.1 Discovery . 76
2.5.2 QoS Descriptions . 78
2.5.3 Selection . 78
2.5.4 Interoperation . 78
2.5.5 Composition . 79
2.5.6 Invocation . 79

3 Semantic Provisioning Approaches 81
3.1 Discovering Semantic Web Services . 82
3.2 QoS-Aware Selection . 84
3.3 User Preferences and QoS Ontologies . 87
3.4 Analysis and Conclusions . 89

3.4.1 QoS Properties Definition . 89
3.4.2 User Preferences Definition . 91
3.4.3 Discovery Techniques . 91
3.4.4 Selection Techniques . 92
3.4.5 Final Conclusions . 92

III Final Remarks

4 Conclusions and Future Work . 97

Contents iii

4.1 Conclusions . 98
4.2 Future Work . 98

IV Appendices

A Relevant Publications . 103

B Curriculum vitae . 135

C Bibliography . 141

iv Contents

List of Figures

1.1 Web Services architecture . 5
1.2 WSDL specification components . 6
1.3 An ontology from educational domain . 10
1.4 A layered approach to the Semantic Web . 11
1.5 The Semantic Web Services vision . 13
1.6 QOS-aware SWS provisioning activities . 15
1.7 User preferences categories . 16

2.1 WSMO core elements . 22
2.2 Components of a WSMO interface . 28
2.3 WSMO Studio concept editor . 34
2.4 The WSML Visualizer and WSML Reasoner . 36
2.5 OWL-S upper ontology for services . 37
2.6 Selected classes and properties of the service profile 39
2.7 Simplified Process ontology . 41
2.8 Relationship between OWL-S and WSDL . 45
2.9 OWL-S Editor wizard . 48
2.10 Associating semantics to WSDL elements . 51
2.11 MWSAF tool main screen . 60
2.12 Radiant Eclipse plug-in . 61
2.13 SWSL-RULES and SWSL-FOL layers . 65
2.14 IRS-III architecture . 68
2.15 Design and runtime architecture of INFRAWEBS 71
2.16 WebOnto application . 74
2.17 INFRAWEBS Designer . 75

vi List of Figures

List of Tables

2.1 Semantic Web Services initiatives . 77

3.1 Semantic provisioning proposals . 90

viii List of Tables

Acknowledgements

Now that this research report finally comes to an end, it is time to express
my gratitude to the people who have supported me along this path that I has
just started. First of all, I would like to thank my research advisors, David
and Antonio, who have taught me their vision about the amazing world of
research, each one his own way. Their help and support become one of the
pillars of this work. Thanks for believing in me, and for that phone call that
brought me back to University.

To all my colleagues here at the School, who have made so easy to get
used to this interesting change in my career: Manolo, Pablo F., Bena, Octavio,
Joaquín, Irene, and all the rest... but especially, to Carlos, Pablo T. and Sergio,
who make those after-lunch conversations one of the best moments of the day.
Ain’t no mountain high enough.

Finally, I would like to thank my family and friends for their kindly sup-
port and love, encouraging me to accomplish my dreams. And to that light
that appeared in my life when it was so necessary, supporting me in all those
difficult decisions, that has finally became the right choice. Thanks for all,
Puri.

x Acknowledgements

Abstract

Semantic Web Services constitute an important research area, where vari-
ous underlying frameworks, such as WSMO and OWL-S, define Semantic Web
ontologies to describe Web services, so they can be automatically discovered,
composed, and invoked. Service discovery has been traditionally interpreted
as a functional filter in current Semantic Web Services frameworks, frequently
performed by Description Logics reasoners. However, semantic provisioning
has to be performed taking Quality-of-Service (QOS) into account, defining
user preferences that enable QOS-aware Semantic Web Service selection.

Nowadays, the research focus is actually on QOS-aware processes, so cur-
rent proposals are developing the field by providing QOS support to semantic
provisioning, especially in selection processes. These processes lead to opti-
mization problems, where the best service among a set of services has to be
selected, so Description Logics cannot be used in this context. Furthermore,
user preferences has to be semantically defined so they can be used within
selection processes.

There are several proposals that extend Semantic Web Services frameworks
allowing QOS-aware semantic provisioning. However, proposed selection
techniques are very coupled with their proposed extensions, most of them
being implemented ad hoc . Thus, there is a semantic gap between functional
descriptions (usually using WSMO or OWL-S) and user preferences, which are
specific for each proposal, using different ontologies or even non-semantic de-
scriptions, and depending on its corresponding ad hoc selection technique.

In this report, we give an overview of most important Semantic Web Ser-
vices frameworks, showing a comparison between them. Then, a thorough
analysis of state-of-the art proposals on QOS-aware semantic provisioning and
user preferences descriptions is presented, discussing about their applicabil-
ity, advantages, and defects. Results from this analysis motivate our research
work, which has been already materialized in two early contributions.

xii Abstract

Resumen

Los servicios web semánticos constituyen un importante campo de inves-
tigación, en el cual distintos frameworks, como por ejemplo WSMO y OWL-S,
definen ontologías de la web semántica para describir servicios web, de for-
ma que estos puedan ser descubiertos, compuestos e invocados de manera
automática. El descubrimiento de servicios ha sido interpretado tradicional-
mente como un filtro funcional en los frameworks actuales de servicios web
semánticos, usando para ello razonadores de lógica descriptiva. Sin embargo,
las tareas de aprovisionamiento semántico deberían tener en cuenta la calidad
del servicio, definiendo para ello preferencias de usuario de manera que sea
posible realizar una selección de servicios web semánticos sensible a la cali-
dad.

Actualmente, el foco de la investigación está en procesos sensibles a la ca-
lidad, por lo que las propuestas actuales están trabajando en este campo intro-
duciendo el soporte adecuado a la calidad del servicio dentro del aprovisio-
namiento semántico, y principalmente en las tareas de selección. Estas tareas
desembocan en problemas de optimización, donde el mejor servicio de entre
un concjunto debe ser seleccionado, por lo que las lógicas descriptivas no pue-
den ser usadas en este contexto. Además, las preferencias de usuario deben ser
definidas semánticamente, de forma que puedan ser usadas en las tareas de
selección.

Existen bastantes propuestas que extienden los frameworks de servicios
web semánticos para habilitar el aprovisionamiento sensible a la calidad. Sin
embargo, las técnicas de selección propuestas están altamente acopladas con
dichas extensiones, donde la mayoría de ellas implementan algoritmos ad hoc .
Por tanto, existe un salto semántico entre las descripciones funcionales (nor-
malmente usando WSMO o OWL-S) y las preferencias de usuario, las cuales
son definidas específicamente por cada propuesta, usando ontologías distin-
tas o incluso descripciones no semánticas que dependen de la correspondiente
técnica de selección ad hoc .

xiv Resumen

En este informe, ofrecemos una introducción a los frameworks de servicios
web semánticos más importantes, mostrando una comparación entre ellos. Se-
guidamente, presentamos un análisis exhaustivo del estado del arte en aprovi-
sionamiento semántico sensible a la calidad y de las formas de describir prefe-
rencias de usuario, discutiendo sobre su aplicabilidad, ventajas e inconvenien-
tes. Los resultados de este análisis motivan nuestro trabajo de investigación,
el cual ya se ha materializado en algunas publicaciones iniciales.

Part I

Preface

Chapter 1

Introduction

S emantic Web Services (SWS) are becoming an important research area, present-
ing an extension to current Web Service technology aimed at performing pro-

cesses automatically. The present report is focused on discovery and selection of SWS,
discussing the state of the art on these processes, specially analyzing QOS-aware pro-
posals. Thus, different alternatives are analyzed within the present report, comparing
their approaches to QOS-aware provisioning and user preferences descriptions.

4 Chapter 1. Introduction

1.1 Research context

In order to introduce the context of the research done, this section briefly
overview the basics of the treated topic. Firstly, Web Services technologies are
described, showing how current Web Services can be discovered and invoked.
Secondly, the Semantic Web is presented as an alternative to give semantics to
current Web contents. The union between the Semantic Web and Web Services
technologies conforms the Semantic Web Services, which are also introduced.
Finally, the concept of QOS-aware provisioning is detailed, because it is the
key point of this research work.

1.1.1 Web Services

The term Web Services (WS) is widely used nowadays, but its meaning is
not always the same. There are several definitions of this term, some of them
being too abstract, and some being too coupled with certain protocols. One of
this definitions stated that a Web Service can be seen as an application acces-
sible to other applications over the Web. This definition is too open, because it
can include any URL, CGI scripts, or programs with an interface published on
the Web.

Another definition comes from the UDDI consortium, and it defines a WS as
a “a self-contained, modular business application that have open, Internet-oriented,
standards-based interfaces”. One important point of this more detailed defini-
tion is that it focuses on the open nature of WS, which means that a WS has
a published interface that can be invoked across the Internet. However, this
definition is not clear enough, not explaining what a self-contained, modular ap-
plication means.

An early definition published by the W3C Web Services Architecture Work-
ing Group define a WS as “a software application identified by a URI, whose in-
terfaces and binding are capable of being defined, described and discovered by XML
artifacts and supports direct interactions with other software applications using XML
based messages via Internet-based protocols”. This definition is quite accurate,
stressing that WS should be accessible (defined, described and discovered), and
support interactions with clients over XML-based protocols. However, the cur-
rent definition published by the W3C, which we are going to adopt in this
report, is the following:

A Web Service is a software system designed to support interoperable
machine-to-machine interaction over a network. It has an interface described

1.1. Research context 5

Internet / Intranet

Service Provider

WSDL
UDDI

Registry

WSDLWSDL

Service
Consumer

Web
Service

SOAP

1. Publishes Description

Describes
Service

3. Communicates with
XML Messages

2. Finds
Service

Figure 1.1: Web Services architecture.

in a machine-processable format (specifically WSDL). Other systems interact
with the Web service in a manner prescribed by its description using SOAP
messages, typically conveyed using HTTP with an XML serialization in con-
junction with other Web-related standards [15].

This definition, though it is coupled with some technologies that could
be changed without losing its meaning, presents some key points. They are
software systems aimed at supporting interoperable machine-to-machine interac-
tion, i.e. it discards Web pages as services. Additionally, being described in
a machine-processable format, WS can be managed autonomously by machines,
enabling the developing of Service Oriented Architectures.

Service Oriented Architecture (SOA) constitutes a new computing para-
digm that has been taking great interest from both the research community
and business people. Within this paradigm, Web Services are the key to a
web-based SOA. Essentially, WS are reusable, loosely coupled components
that provides a concrete functionality to a potential user. In order to access
to this functionality, they run over standard Internet protocols and languages,
such as WSDL, SOAP or UDDI, that allow a distributed operation, as seen in Fig.
§1.1 .

Within this SOA vision, standards specifications are very important. The
Web Services Description Language (WSDL [19]) is one of these core specifica-
tions, providing a model and a XML-based language for describing WS. This

6 Chapter 1. Introduction

WSDL specification

Abstract part

types

messages

operations

port types

Concrete part

bindings

services & ports

Figure 1.2: WSDL specification components.

standard allows to define the interaction mechanism with certain service in
detail. Thus, the definition of a WS in WSDL contains its interfaces, its bind-
ings, and its endpoints. Nevertheless, each WSDL file may contain more than
one WS definition. The main components of a WSDL definition are depicted in
Fig. §1.2 and explained in the following:

Interface It describes the different operations that can be performed by the WS.
It corresponds to an abstract definition of those operations by means of
their inputs and outputs, depicted as the abstract portion of Fig. §1.2 .
In fact, these inputs and outputs are referenced as messages, which have
to be defined separately using built-in XML Schema types or user-defined
ones.

Binding This component describes the access protocol to use in order to in-
teract with the WS defined. Basically it allows to define the concrete
grounding between interfaces (operations) and the chosen messaging
protocols. However, it does not point to the specific location of a WS,
so this remains independent from the network protocol used.

Endpoint This points to a specific physical address for the WS defined, in
opposition to the binding. By this property, the location of the service is
defined, so its invocation becomes possible.

1.1. Research context 7

By separating the abstract definition or interface of a service from its con-
crete bindings and endpoints, WSDL allows to be applied to not only Web
services, but services in general. Moreover, using both the abstract and con-
crete parts of a WSDL definition, compiler tools, such as Apache AXIS †1, auto-
matically generate proxies so that applications can use WS without bothering
about WS protocols and languages.

Usually, in the binding section of a WSDL, SOAP is used to establish the link
between the endpoint and the interface of a WS. SOAP†2 is a lightweight proto-
col that can be used to exchange structured information between two services
[39]. The messages exchanged are built upon XML, and the SOAP specification
covers the following:

• How to specify the information of the messages in XML, i.e. the message
layout and its content.

• Communication aspects, including the transport protocol to send mes-
sages, such as HTTP, SMTP, etc.

• Information about the sender and receiver entities, such as which parts
of the message they have to handle with.

• How to express SOAP messages in order to perform remote procedure
calls.

• Extension of the protocol to allow using other features upon SOAP, such
as routing, security, reliability, etc.

There are some alternatives and extensions to SOAP that can be also used
for the binding of WS, such as SOAP-MTOM, DCOM, REST or RMI. However,
SOAP is more widely used and simpler, because of the existing tool support
for integrated solutions with WSDL and SOAP.

Using WSDL to define the interaction between services and clients and
SOAP to actually interact with them, these clients may access to any WS they
know. However, in the SOA scenario presented in Fig. §1.1 , the client or ser-
vice consumer does not necessarily know which WS brings the functionality
required. Thus, a public repository of services is needed, where a service con-
sumer may search for some required functionality provided by one or more
different companies, i.e. service providers.

†1http://ws.apache.org/axis/
†2It stands for Simple Access Object Protocol, though in last version of the recommendation

is not explicitly defined so.

8 Chapter 1. Introduction

Universal Description, Discovery and Integration standard (UDDI) consti-
tutes an effort from different companies, within OASIS group, to define a pub-
lic or private services repository so the ideal SOA scenario from Fig. §1.1 can
be materialized [20]. This standard defines how a provider can describe the
services he offers, how a consumer can search for a service in an UDDI repos-
itory by means of certain information fields, and finally how to technically
access to the discovered service. Thus, the main characteristics of an UDDI
registry have to comprise are the following:

Description Service descriptions have to be extensible, and layered in differ-
ent abstraction levels, so the description system can be changed easily.

Discovery The UDDI system have to provide a flexible search mechanism, so
it is possible to search services and entities by means of any of the infor-
mation stored it the registry.

Integration Once discovered, the UDDI registry have to allow the seamless
integration between the service and the consumer system, so it is neces-
sary an infrastructure that provides the required information to invoke
the discovered service.

Using these three standards (WSDL, SOAP, and UDDI) a complete SOA sce-
nario can be implemented and used. However, current WS technology has
an important flaw: usage and integration of WS needs to be performed man-
ually. Discovery, composition, and invocation are supported by syntactical
information descriptions, so these processes can not take benefit of the Se-
mantic Web. What is more, current version of UDDI can not be directly used to
discover services using semantic information, because of its key-based search
engine. Thus, to perform discovery, composition and invocation processes,
among others, automatically, it is needed to define new standards that extend
current technology with semantics.

1.1.2 The Semantic Web

The current Web is aimed at providing information and services that are
directly consumed by human beings. Although most of the content is stored
in databases, the information is presented without the structural information
found in databases. From a machine point of view, it is very difficult to pro-
cess all this information, so the Web can not be automatically manipulated by
computers [7].

1.1. Research context 9

The Semantic Web [13] constitutes an extension to current Web, where in-
formation has associated semantics that can be processed and understood by
machines. Thus, using Semantic Web technologies, all this information can be
automatically processed, extracting knowledge to feed algorithms, to allow
autonomous interaction between computers, and to improve the cooperation
between people and computers.

Sometimes the Semantic Web is confused with the so-called Web 2.0. This
Web 2.0 is interpreted as an evolution of the old, data-driven Web to a social-
driven Web, which provides great enhancements on the way data and informa-
tion is offered to users, so they can truly interact with the data and with other
users. However, it still is a syntactic Web, because it does not deliver inter-
application integration and interoperation. Thus, the Semantic Web is another
different, but compatible trend, where a semantically-enabled Web allows the
interaction between computers.

Ontologies are the building block of the Semantic Web. An ontology is a
formal, explicit specification of a shared conceptualization [37]. Each part of this
definition, which is widely adopted in the bibliography, should be further ex-
plained:

• Being a formal specification, an ontology can be read and processed by a
machine that can handle with computational semantics.

• By means of a explicit specification, the vocabulary used within a certain
domain is explicitly defined, leaving no room for ambiguity.

• Its shared nature allows to homogenize the knowledge in a domain, so
the ontology constitutes the commonly accepted understanding.

• Finally, an ontology is a conceptualization of certain domain, providing a
conceptual model to define this domain, along with the rest of the bene-
fits of ontologies.

In general, an ontology describes certain domain formally. Specifically, it
is composed of a finite list of terms and relationships between them. These
terms denote concepts or classes of objects of certain importance from a con-
crete domain. Each term may have a set of properties that denote attributes
that describe a concept. Moreover, there can be relations between concepts or
properties that explicitly define their relationship. Additionally, an ontology
may contain a list of axioms that constraint and check for consistency and co-
herency the different concepts, properties and relations, by means of logical
expressions. For example, Fig. §1.3 shows an ontology from educational do-
main where all the previously cited components appear.

10 Chapter 1. Introduction

Person

Student Professor

Lecture

isA isA

holdsattends

name email

research
field

matr. nr.

lecture
nr.

topic

holds(Professor, Lecture) =>
Lecture.topic = Professor.researchField

Legend

Concept Property

relation axiom

Figure 1.3: An ontology from educational domain.

A noteworthy relation type that appears in Fig. §1.3 is the isA relation. This
relation states hierarchical relationships between terms. A hierarchy defines
which classes are subclasses of others. Thus, a class C is a subclass of another
class C’ if every object in C is also a member of C’. In Fig. §1.3 , both Student
and Professor classes are subclasses of Person, i.e. an object of Student (and
Professor) class is also an object of Person class.

The development of the Semantic Web has been being done using a lay-
ered approach, where each layer may be developed independently. The “layer
cake”, proposed by Tim Berners-Lee, is shown in Fig. §1.4 , where the main
layers of the Semantic Web architecture are described. In these layers, dif-
ferent Web standards, which are described below, are proposed in order to
homogenize and standardize the Semantic Web development.

The lower layer only indicates how the information is coded and how each
object is identified. Unicode codification is the chosen solution to represent in-
formation, while URIs are the identifiers to use. Thus, there are no differences
with the syntactic Web. The next layer is also taken from current Web technol-
ogy, using XML as the language to express semantic information. Furthermore,
the Semantic Web is also based on XML Schema and namespaces, that allow
to define the user vocabulary and structure of each document, in order to pro-
vide interoperability, validation and reuse of different XML documents.

The next layer (and following ones) are specific to the Semantic Web. RDF
(Resource Description Framework [57]) is a XML-based language for representing
semantic information about resources in the Web. Basically, it is a basic data

1.1. Research context 11

Unicode

Self-
desc.
doc.

URI

XML + namespaces + XML Schema

RDF + RDF Schema

Ontology vocabulary
Data

Logic

Proof

Trust

D
ig

ita
l S

ig
n

at
ur

e

Data

Rules

Figure 1.4: A layered approach to the Semantic Web.

model, where information are defined using triples associating a subject, a
property, and an object. Thus, a RDF triple states that certain subject has a
property which value is the object referenced. Moreover, subjects, properties
and objects can be restricted to certain classes or values using RDF Schema,
similarly to XML Schema. This includes constraints about which individuals
in some class can have certain properties associated.

Although RDF Schema allows to define basic ontologies and hierarchies,
there is a need for more powerful ontology languages that should be able to
represent more complex relationships between objects, and that can be used
to share knowledge between machines so they can process RDF semantic an-
notations. This language have to be defined in the ontology layer, and the most
common language used is OWL [61], which is a W3C Recommendation that
extends RDF Schema to fulfill the requirements of the ontology layer.

The logic layer includes the ability to process the semantic information from
previous layers in order to find logical deductions about that information. The
proof layer further add more powerful deductive process, so proofs can be
represented and validated, possibly using rule languages. Finally, the trust
layer, through the use of digital signatures and other knowledge sources, have
to assure that the information from the lower layers do not have contradictions
and can be trusted.

The last three layers, although less developed than the rest, are more fo-

12 Chapter 1. Introduction

cused on processing the semantic information than on representing it. How-
ever, they need a logic formalism to perform that processing. The most widely
used logic formalisms in the Semantic Web field are Description Logics (DLs)
[8]. DLs are a family of knowledge representation languages, that make use
of reasonable subsets of first order and predicate logics. This logics family are
mainly used to represent terminological knowledge in a structured way. DLs
are behind some subsets of OWL ontology language. Actually, OWL specifies
three variants, depending on the level of expressiveness and the underlying
logic formalism: OWL-LITE, OWL-DL and OWL-FULL, where the last one sacri-
fices decidability to provide more expressiveness.

The complete support for these last three layers enables inferring and an-
swering mechanisms over the semantic information. Thus, reasoners such as
RACER [40] and FaCT [45] are able to classify and perform consistency checks
in OWL ontologies, and other languages such as SWRL [44] or Prolog [16] allow
to infer and validate proofs. Additionally, there are query languages available
to answer questions and evidences extracted from ontologies, such as SPARQL
[72], which defines both a language for querying an RDF store and a protocol
to issue queries to a server. All these technologies are supported within tools
and platforms that ease their usage and integrate them, such as Protégé †3.

The Semantic Web are emerging as a powerful tool so that machines are
able to understand and process the great amount of information available on
the current Web. Thus, it is straightforward to apply these technologies to WS
so they can be processed automatically by computers.

1.1.3 Semantic Web Services

As stated before, current WS technologies do not allow the automation of
common processes such as discovery, execution and composition, which are
necessary to develop the service-oriented computing. Furthermore, Semantic
Web standards can be applied to markup information on the Web, adding
semantics so machines are able to process and understand that information.
In this scenario, a semantic markup of WS definitions naturally comes up as
the solution to perform automatic service discovery, execution, composition
and interoperation [62]. Thus, a Semantic Web Service (SWS) can be simply
defined as a Web Service whose description is in a language that has well-
defined semantics [83].

This vision of joining together both Web Services and Semantic Web tech-
nologies to develop SWS is usually shown as in Fig. §1.5 . We start from a

†3http://protege.stanford.edu/

1.1. Research context 13

Dynamic

Static

Syntactic Semantic

Web Services
UDDI, WSDL, SOAP, ...

WWW
URI, HTML, HTTP, ...

Semantic Web
RDF, RDF(S), OWL, ...

Semantic
Web Services

OWL-S, WSMO, ...

Figure 1.5: The Semantic Web Services vision.

static and syntactic World Wide Web, mainly focused on providing billions
of information pages, where users have to interact directly with the Web to
gather the required information. Because of the inherent characteristics of the
current Web, this information is difficult to find, extract and interpret by com-
puters, so the Semantic Web appears as a powerful solution, giving semantics
to this static information. On the other hand, to improve new forms of interac-
tion and to develop processes between computers connected to the Web, WS
technologies are used within this dynamic environment. SWS transform the
current Web from a static collection of information into a distributed device
of computation, using the Semantic Web as its foundation, so this information
becomes processable and interpretable by a computer [17].

A SWS framework should concentrate on three key aspects, in order to
enable such SWS vision. Firstly, it has to define exhaustive description frame-
works for semantically describing WS and related aspects. Secondly, it has to
support ontologies to describe WS, using them as its underlying data model,
so machines are able to interpret all that information. Finally, a complete SWS
framework has to define semantically driven technologies that support the
automation of WS usage processes.

The most important proposals concerning SWS frameworks are WSMO [30]
and OWL-S [58]. They support the previously presented aspects of a SWS
framework, and provide tools to actually put in practice the SWS vision. Fur-
thermore, there are other framework proposals that take other approaches,
such as METEOR-S project that aims at extending current Web standards [71],
and SWSF [9], wich is another W3C member submission to standardize SWS.

14 Chapter 1. Introduction

All these proposals are further discussed in Chapter §2 .

The usage scenarios of a SWS framework involves many different pro-
cesses, depending on the concrete needs of each scenario. Generally, the pro-
cesses that SWS frameworks automatize are the following:

Publication Make the description of a Web service available on the Web.

Discovery Detect suitable services for solving a given task.

Selection Choose the most appropriate services among the usable ones.

Composition Combine services to achieve a complex goal.

Meditation Solve data, protocol, and process mismatches among the ele-
ments that shall interoperate.

Execution Invoke services according to consumption interface and program-
matic conventions.

Additionally, to properly support execution, there are some extra processes
that have to be aware of, such as monitoring the execution, compensation in case
an unwanted effect appears, replacement of services that have to be substituted
by equivalent ones, and auditing that the service execution is occurring as ex-
pected.

1.1.4 QoS-Aware Provisioning

Once a service has been published, it is available from a repository, where
potential users fetch for desired services. These fetching involves two sepa-
rate processes (sketched in Fig. §1.6 , that are referenced together as service
provisioning, as well as service procurement [76]:

i. Discovery, where candidate services, which fulfills the user require-
ments, are obtained from a repository.

ii. Selection, where the most appropriate service is chosen from the previ-
ous set of candidate services, with regards to user preferences.

1.1. Research context 15

Discovery

Functional
request

SWS

Selection

Discovered
SWS

Ranked
SWS

Process
Results

Selected
SWS

QoS
preferences

Figure 1.6: QOS-aware SWS provisioning activities.

With respect to SWS discovery, McIlraith et al. define it as the process of
automatically locating WS that provide a particular service and that adhere to
requested properties [62]. This definition is very agnostic about the type of
properties that the requester can use. Additionally, it does not consider the
common scenario where discovery processes return not only one but a set of
candidate services. The most common scenario in discovery process results
in a search within the published services using functionality requirements to
obtain a set of compatible services. SWS discovery is usually performed by
DLs reasoners, because semantic definitions are commonly based on this logic
formalism.

The next step on SWS provisioning is to actually select the best service that
fulfills the user requirements. In opposition to discovery, selection processes
focus on quality of service (QOS) requirements, i.e. non-functional ones. Us-
ing this type of requirements, the set of discovered services are ranked so the
best service can be chosen [77]. Because QOS requirements serve to state an or-
der of preference, they are usually referenced as user preferences. Besides, user
preferences transform the selection process into an optimization problem, so
discovery techniques cannot be applied in this case.

In conclusion, SWS provisioning is performed using both functional and
QOS preferences, so it conforms a QOS-aware process. Specifically, the use of

16 Chapter 1. Introduction

Preferences

Who? What? How?

Client Provider Functional QoS Static Dynamic

Figure 1.7: User preferences categories.

QOS user preferences allows to perform a QOS-aware selection of SWS, that
constitutes the focus of our research work.

1.1.5 User Preferences

User preferences define the optimality criterion that is applied when se-
lecting a service among a set of candidates. These preferences usually refer
to QOS requirements from the client [10], but can be also defined by a service
provider, for instance. Preferences are transformed into optimization prob-
lems that are able to rank SWS.

It is possible to define several types of user preferences attending different
categories, presented in Fig. §1.7 . A selection algorithm have not to handle
every type of preference, but at least QOS preferences have to be supported
in order to perform a QOS-aware selection. Moreover, preferences may fall
in more than one of the categories, depending on who define the preferences,
what area of the description is about, and how their values can be checked.
Each category is defined in the following:

Client preferences refer to the requirements of the client of the desired ser-
vice. Because this kind is the most commonly supported, it is frequently
referred just as user preferences.

Provider preferences state requirements from the service provider part, in
case it has constraints or preferences about its clients.

1.2. Hypothesis 17

Functional preferences restricts the functionality of the desired service. Usu-
ally these preferences are only used at the discovery stage.

QoS preferences define the preferred values of QOS parameters for a user.

Static preferences refer to parameters whose values can be predicted before
performing the QOS-aware provisioning process.

Dynamic preferences are defined on parameters whose values have to be
checked while performing the service provisioning.

Finally, there are different formats to define user preferences, depending
on the desired level of expressiveness, and usually coupled with the concrete
technique that performs the selection process. Thus, user preferences can be
described using one of the following representations [10]:

Enumeration All the possible parameter combinations are enumerated in the
preferred order.

Preference Relations A directed graph where each node represent a state or a
value and the edges indicate which states are preferred to a given node.

Worth Functions It operates on the representation of a QOS parameter, and
delivers as a result value the user preference regarding that parameter.

Mapping to Vectorspaces QOS parameter values is related with a point in a
vector space, and by means of user-defined metrics, the preference can
be stated as the distance between points in the space.

Preference Language It maps QOS parameter values or ranges to a qualita-
tive specification.

Additionally, when preferences are defined using more than one parame-
ter, it is necessary to establish relative weights between the preferences of each
parameter, to obtain the global preference. Thus, the concrete format to define
weights have to be defined too.

1.2 Hypothesis

Our research work takes current approaches on service provisioning as its
starting point. After a thoroughly review of the state-of-the-art on this topic,

18 Chapter 1. Introduction

focused on SWS, we found out that there are some extensions to current SWS
frameworks that enable the description of QOS preferences. Furthermore,
these extensions are being used in provisioning processes, specially in selec-
tion.

However, user preferences are strongly coupled with the selection tech-
nique used in each proposal, so there are not a common preferences ontology.
This causes functional preferences (already defined by SWS frameworks) and
QOS preferences are not connected, even the latter being described without
semantics.

Our hypothesis is precisely the previous statement: there is a semantic gap
between functional and QOS preferences that have to be solved, extending
current SWS ontologies with a QOS ontology that allows the user to define
both functional and QOS preferences at the same level. Furthermore, the ac-
tual selection technique has to be independent of the representation of QOS
preferences, so there is a need for a novel approach to SWS selection, and in
extension, to QOS-aware SWS provisioning. Our research work presented in
this report consists on an analysis of current approaches in order to motivate
a solution that prove our hypothesis.

1.3 Report Structure

The rest of this report is structured as follows. In Chapter §2 current SWS
frameworks are introduced, in addition to a brief comparison between them.
Then, in Chapter §3 a state-of-the-art study of QOS-aware provisioning of
SWS is presented, describing and comparing related work about discovery,
selection and user preferences. At the end of this Chapter, a global analysis of
the state-of-the-art is discussed, focusing on how different proposals approach
the QOS provisioning. Chapter §4 gives the conclusions of the research cur-
rently done, enumerating hints about future work. Finally, in Appendix §A
relevant contributions already published or submitted are enclosed, and in

Appendix §B the curriculum vitae of the author of this report is included.

Part II

Related Work

Chapter 2

Semantic Web Services

T he collusion of the Semantic Web technologies into the Web Services world
results in the Semantic Web Service technology. Essentially, what we get is the

ability to extend current Web services with semantic information about its operations.
In this section, the three main alternatives that exist nowadays in the Semantic Web
Services world are introduced. WSMO, OWL-S and METEOR-S are described in detail,
along with some other interesting frameworks that are also briefly introduced.

22 Chapter 2. Semantic Web Services

Figure 2.1: WSMO core elements.

2.1 WSMO

WSMO stands for Web Service Modeling Ontology, and it is an European ini-
tiative that try to develop SWS [75], as the American proposal OWL-S does
(cf. Sec. §2.2). The aim is put in providing a successful standard to describe
SWS. The starting point of the authors is the Web Service Modeling Frame-
work (WSMF) [31], that has been refined and extended, developing a formal
ontology (WSMO itself) and a specification language (Web Service Modeling
Language or WSML) [23]. In addition, there is a working subgroup develop-
ing a reference implementation, known as WSMX, which stands for Web Service
Execution Environment, providing an appropriate playground to test and use
Semantic Web Services.

The main elements for describing WS as it is enumerated in WSMF are:
(1) ontologies that provide the terminology used by the rest of the elements,
(2) goals that describe the requirements of the service client, (3) Web Services
descriptions that define various aspects related to a WS, and (4) mediators
whose aim is to achieve interoperability problems. WSMO provides means to
specify these core elements of SWS (Figure §2.1), extending and refining the
definitions given in [31]. These elements are more precisely defined below:

Ontologies Represent the most important element in WSMO, because they

2.1. WSMO 23

provide terminology for describing all other elements, from a specific
domain. An ontology is a set of formal definitions of concepts from cer-
tain domain (cf. Sec. §1.1.2). A WSMO ontology is defined by its non-
functional properties, mediators which are used to solve interoperability
problems between ontologies which are interconnected, and obviously
ontology items definitions, i.e. concepts, relations, axioms, functions and
instances.

Web services Connect applications with each other using standard Web-
based protocols to exchange data and/or generate new data. Web ser-
vices are platform independent and can be combined in order to provide
a complex functionality composed of other services that provide a spe-
cific and atomic piece of functionality. In WSMO, WS are described from
three different points of view: functionality, behavior and non-functional
properties, in order to allow automatic accomplishment of tasks like dis-
covery, invocation, composition and execution, among others. More pre-
cisely, a WSMO Web service is defined by the ontologies supporting its
terminology, the mediators it is using, its capability and its interfaces, in
addition to its non-functional properties. The capability of a WS refers to
its functionality defined in terms of pre and postconditions, assumptions
about the world state prior to the execution and the effects that execution
causes in the world. On the other hand, the interface of a WS provides
information about the behavior of the service, meaning its choreography
and orchestration. While a WS could have more than one interface, it has
one and only one capability.

Goals Specify aspects related to the requested functionality of a WS, from the
user’s point of view. In WSMO, goals is characterized by a set of non-
functional properties, the ontologies and mediators used, the requested
capability and the requested interface, if needed.

Mediators They are one of the key elements of WSMO. They try to over-
come structural, semantic or conceptual mismatches that appear be-
tween WSMO components, i.e. interoperability problems. Currently,
there are four existing types of mediators in the specification: ooMedi-
ators, which solve representation mismatches between a source ontology
and another target ontology; ggMediators, which connect related goals
possibly resolving mismatches; wgMediators, that link Web services to
goals and resolve mismatches; and wwMediators, which allow collabo-
ration between several WS. A mediator, whatever type it is, is defined
by source and target components, imported ontologies, non-functional
properties, and the mediation service doing the mapping, in form of a
goal, a Web service, or another wwMediator.

24 Chapter 2. Semantic Web Services

There is a common element used to describe the core elements in WSMO,
that is non-functional properties. In its last version, WSMO differentiates two
kinds of these properties. On the first hand there are annotations, that declare
general information about each element, like its creator, description, version,
etc. On the other hand there is proper non-functional, QOS properties, like
cost-related properties, performance, reliability or security, among others. The
latter can be applied to mediators, goals, Web services, capabilities and inter-
faces, while the former can also be applied to ontologies, apart from the said
elements.

The design of WSMO is organized around several principles taken from
Web applications, the Semantic Web and design principles for distributed,
service-oriented computing on the Web [30]. It could be said that the frame-
work is centered in two complementary design principles [31]:

Strict decoupling of the various resources, meaning that each resource is
specified independently from the others, without regard of possible in-
teractions with other resources.

Strong mediation enabling anybody to speak with anybody, regardless of
different terminologies or interaction styles. So the heterogeneities that
naturally arise in open environments are addressed by mediators, which
are a core element of WSMO.

The four core WSMO elements are described more detailed in the following
sections.

2.1.1 Ontologies

In WSMO, ontologies provide machine-readable semantics for the informa-
tion used by all actors implied in the Web service scenario, either providers
or requesters, allowing interoperability and information interchange among
components. These ontologies, as well as the rest of the core elements, are
defined in separate files using WSML, modularizing the definitions.

Firstly, a namespace declaration can appear at the beginning of each WSML
file. These declarations are declared similar to XML namespaces, so they com-
prise the default namespace and abbreviations for the rest of the namespaces
used. If there are shared namespaces between different WSML files, it is possi-
ble (and desirable) to use the same abbreviations among the files.

2.1. WSMO 25

Ontologies define a common vocabulary from a domain, so it can be used
by both providers and requesters to define all the necessary WSMO elements.
This vocabulary are composed of concepts and relationships between them,
among other elements to capture all the semantic properties of them, like ax-
ioms. In addition, WSMO allows the importing of other ontologies either di-
rectly or using mediators. In the first case it is supposed that the ontologies
do not have conflicts between them, but in the second case, the mediation
process resolves any conflicts through aligning, merging or transforming im-
ported ontologies. These mediators are discussed in Section §2.1.4 .

The building blocks of an ontology are concepts, relations, functions, in-
stances and axioms.

2.1.1.1 Concepts

Concepts are the basic elements of the agreed terminology for some prob-
lem domain. They are defined by their hierarchy and their attributes. Con-
cept hierarchy explicits is-a relations between a concept and its super-concepts
(possibly none), enabling concept subsumption.

Attributes are defined by their names and ranges. This range can be a
simple datatype or another concept. In fact, ranges define constraints on the
values that attributes can have in certain concept instance. Actually, these are
typing constraints on the values of the attribute.

The extension of a concept, i.e. the set of possible instances, can be defined
or restricted using one or more logical expression. These expressions may
specify necessary and/or sufficient conditions for instance membership in the
extension of the concept.

2.1.1.2 Relations

Relations describe interdepencies between several concepts and, conse-
quently, between instances of these concepts. Like concepts, it is possible to
define a set of relations being super-relations of a given relation. In this case,
the sub-relation inherits the constraints defined in its parents. Furthermore,
the set of tuples belonging to a relation (the extension of the relation) is a sub-
set of each of the extensions of the corresponding super-relations.

The extension of a relation is defined or constrained by logical expressions
using the corresponding concepts, specifically their attributes. In addition, pa-
rameters can be declared in an attribute fashion to be used in the definition of

26 Chapter 2. Semantic Web Services

the extension of a relation. The domain of these parameters can be a datatype
or a concept.

2.1.1.3 Functions

A function is a special type of relation that have an unary range and a n-ary
domain in the form of the set of parameters inherited from the relation. So a
function defines a special parameter range that is used in the logical expresion,
which states the functional dependency, as the return value.

2.1.1.4 Instances

Instances are concrete materializations of concepts and relations. They can
be defined either explicitly or by a link to an instance store. In the first case,
concrete values are specified for attributes or parameters. These values have to
be compatible with the corresponding type declared in the concept or relation
definition. Generally, instances defined explicitly are those that are shared
together with the ontology.

However, most instances exist outside the ontology, in instance stores. That
is the case of instances defined by the actual provider of a Web service, depen-
dent to its policy.

2.1.1.5 Axioms

An axiom is a logical expression that have to be comprised. Axioms help
to formalize domain specific knowledge. These logical expressions, which are
used in almost every element of the WSMO model, are defined formally in
the WSML specification [23], and their expressiveness depends of the concrete
WSML variant used to model the service.

2.1.2 Web Service Descriptions

A Web service is a computational entity which is able (by invocation) to
achieve users goal [75]. A service, in contrast, are the actual value provided
by this invocation. Thereby a Web service might provide several services.

2.1. WSMO 27

In WSMO, Web services are described by (1) their imported ontologies,
(2) their used mediators to achieve interoperability with conflicting ontolo-
gies and/or to deal with process and protocol mediation, (3) a listing of non-
functional properties defined by logical expressions, (4) a capability and (5)
interfaces. Apart from these, as every WSMO element, it has the possibility to
include meta-information via annotations.

2.1.2.1 Capability

A capability defines the Web service funtionality in terms of pre and post-
conditions, assumptions and effects. For each Web service described in WSMO
there is one and only one capability describing its functionality.

As other WSMO elements, capabilities import ontologies to be used in their
definition, either directly or via used mediators. These mediators can also
be used in this case to link a capability, therefore a Web service, with a goal,
using a wgMediator (cf. Sec. §2.1.4). Moreover, annotations and non-functional
properties can also be defined in capabilities.

The basic blocks which define a Web service functionality are expressed
through a set of axioms possibly using a set of shared variables declared
within the capability. These axioms can be defined in one of the following
elements:

Precondition specifying conditions about the information space before the
execution of the Web service.

Assumption which describes the state of the world before the execution of
the Web service.

Postcondition describing the information space of the Web service after its
execution.

Effect that describes the state of the world after the execution.

The shared variables can be used through all these elements, and they are
implicitly all-quantified. Thus, informally, the logical interpretation of a Web
service capability is: for any given values of the shared variables, the conjunc-
tion of the precondition and the assumption implies the conjunction of the
postcondition and the effect.

28 Chapter 2. Semantic Web Services

Figure 2.2: Components of a WSMO interface.

2.1.2.2 Interface

An interface describes how the functionality of the Web service is achieved,
that is, it describes behavioral aspects of the Web service. It contains two views
on the behavior of a Web service:

Choreography describes the communication pattern that allows to a client to
interact with the Web service.

Orchestration decomposes a capability in terms of functionality required
form other Web service providers, so the overall functionality is achieved
cooperating with them.

This two interface components are depicted in Figure §2.2 , and detailed in
the following.

Choreography The choreography specifies the behavior interface that a Web
service consumer has to support to actually consume the Web service. That
is, it states the information that a client needs to communicate with the Web
service. A choreography description consists on two elements: the state and
the guarded transitions. The former are represented by an ontology, while the
latter are if-then rules that specify transitions between states.

2.1. WSMO 29

The ontology modeling the state provides the terminology to express the
transition rules, and contains the set on instances that change their values from
one state to another. Thus, it is a changing ontology. In this scenario, a state is
a dynamic set of instances at a certain point in time.

On the other hand, guarded transitions are rules that are triggered when
the current state fulfills certain conditions. Thus, when the values of the at-
tributes of certain instances in the state ontology meet come criteria or there
are certain instances in the ontology in the current state, a transition to a new
state is performed, possibly changing the values of some attributes of the in-
stances, or even creating new instances in the state ontology.

Orchestration The orchestration defines how a WSMO Web service makes
use of other WSMO Web services or goals in order to achieve its capability.
As in choreography, an orchestration description has a state ontology and a
series of guarded transitions specifying transition between states. In extension
of the choreography, in an orchestration can also appear transition rules that
have as their postconditions the invocation of certain mediator, linking the
orchestration with the choreography of the desired Web service. This linking
may be done directly using a wwMediator, if the wanted Web service is known,
or via a goal when the Web service is not known (using a wgMediator).

2.1.3 Goals

A goal specifies objectives that a client want to be fulfilled by the execution
of a Web service, i.e. goals are descriptions of the functionality a user need
from a Web service. The existence of goals ensures the decoupling between
requests and Web services. So, the requester defines a goal to be resolved and
the Web Service Discovery search for suitable Web services that solve the goal
automatically.

In order to describe a goal in WSMO, we can define its non-functional prop-
erties, annotations, imported ontologies and used mediators, as usual, besides
of requested capability and requested interface. In this case, the used me-
diators allow reusing of ontologies: merging, aligning and transforming im-
ported ontologies if necessary, but also it is possible to reuse one or several
already defined goals to define other goals using goal-to-goal mediators (gg-
Mediator). In the latter case, the relation between a goal and another goal im-
ported via such a mediator is one of refinement.

The main element of a goal is the requested capability, which specifies the
functionality required from a Web service. This is declared in the same way as

30 Chapter 2. Semantic Web Services

a Web service capability (cf. Sec. §2.1.2.1). In addition, the user may specify
the desired way of interacting with the Web service by declaring the requested
interface, in the same way.

2.1.4 Mediators

Heterogeneity is an inherent characteristic of open and distributed envi-
ronments like the Internet. This fact hampers interoperability and make dif-
ficult an actual automatization of Web service tasks. Semantic Web services
provides unambiguous semantics to information and resources, but interoper-
ability problems still arise. Mediation is concerned with handling these prob-
lems resolving mismatches and providing interoperability, using a component
named mediator [63].

Mediators are one of the key elements of the WSMO ontology, addressing
interoperability. They link heterogeneous components, resolving incompati-
bilities at different levels:

• Data level, mainly addressing the problem of ontology integration.

• Protocol level, mediating between heterogeneous communication proto-
cols between different Web services.

• Process level, linking heterogeneous business processes, that is, aligning
the different WSMO interfaces descriptions for information interchange
and cooperation between Web services.

WSMO mediators are defined by means of their non-functional properties,
annotations, imported ontologies, source component, target component and
mediation service, where source and target components can be a mediator,
a Web service, an ontology or a goal, and the mediation service points to a
goal that declarative describes the mapping or to a Web service that actually
implements the mapping. The current WSMO specification defines four types
of mediator, depending the type of top-level element it links and denotated by
its initials: ooMediators, ggMediators, wgMediators and wwMediators.

2.1.4.1 OOMediators

OOMediators allow any WSMO element to import an ontology by solving
all the terminology mismatches that can appear during the process. Ontol-
ogy mediation may be done in various steps, so a ooMediator could mediate
between an ontology and another ooMediator.

2.1. WSMO 31

These mediators allows to reuse ontologies from different domains, even
described in different ontological languages. They are concerned with data
level mediation, and may be used inside the rest of the types of mediators to
do said data mediation.

2.1.4.2 GGMediators

GGMediators can link goals between them, possibly in more than one step
linking ggMediators, like in the ooMediators case. This is useful to explicit re-
finement relations between goals, so it is possible to define sub-goal hierar-
chies.

The concrete mediation technique is not well defined in WSMO specifica-
tion yet, so it is only used to link a goal with its sub-goals. Also, in the data
level, it is possible to use ooMediators within a ggMediator.

2.1.4.3 WGMediators

In order to link Web services to goals, wgMediators can be used. They re-
solve possibly occurring mismatches between goals and Web services, sup-
porting Web service discovery. These mediators are concerned with data me-
diation, using ooMediators if necessary, and process mediation for communica-
tion, resolving mismatches between the Choreography interface definitions of
source and target components.

WGMediators can be defined to address two different problems: (1) to link a
goal to a Web service via its choreography interface, so the Web service should
fulfill the linked goal, or (2) to link a Web service to a goal via its orchestration
interface, so the Web service needs the corresponding goal to be resolved in
order to fulfill its functionality.

2.1.4.4 WWMediators

WWMediators link two Web services in order to enable interoperability be-
tween heterogeneous Web services. These mediators can be used by an orches-
trator in order to aggregate different Web services defined in an orchestration,
resolving mismatches between them. As in the others, data mediation are
achieved by using ooMediators within these mediators, which are concerned
with process mediation for communication and for coordination.

32 Chapter 2. Semantic Web Services

2.1.5 Provisioning Approaches

In this section, some studied approaches on discovering and selection
within WSMO framework are discussed. In Sec. §3 , these semantic provi-
sioning approaches are further discussed and analyzed, among others based
on the presented frameworks.

First of all, Keller et al. discuss the different approaches on WSMO discovery
in [48]. They show three methods to perform discovery tasks in WSMO, based
on terminologies, controlled vocabularies, or ontology-based rich descrip-
tions. However, selection tasks are not properly defined within the frame-
work, mainly because they have to be performed using other methodologies.

Wang et al. provide an extension to WSMO ontology to handle QOS param-
eters [87]. They define a QOS selection model and an algorithm based on a
quality matrix that contains values of QOS parameters. The selection model
are defined both from the perspectives of users and service providers. The
discovery process is left to the underlying WSMO implementation, basically
filtering services in terms of functionality (capabilities).

An approach that merges discovery and selection algorithms execution is
presented by Vu et al. [86]. They show a QOS-aware discovery framework that
takes QOS values of WS based on user feedback and perform the discovery
process, ranking the services in terms of QOS compliance. Additionally, they
sketch a scalable architecture, similar to WSMX, that can be deployed in a peer-
to-peer network.

Finally, WSMO-MX is a hybrid matchmaker that uses several matching
filters to perform the discovery process [47]. It extends WSML with Logic Pro-
gramming features and recursively filter the set of services using different ap-
proaches. Selection is performed by the recursive computing of matching de-
gree while the discovery process is being executed.

2.1.6 Existing Tools

There are plenty of tools available that work with WSMO. In this section we
introduce some of them, giving their main characteristics and if they are cur-
rently actively developed. This way we pretend to known the actual support
of this technology in the community.

2.1. WSMO 33

2.1.6.1 WSMO Studio

WSMO Studio [26] is a Semantic Web Services editor compliant with WSMO.
It is implemented as a set of Eclipse plug-ins that can be further extended by
third parties. It is a successor of SWWS Studio, another WSMO compliant Se-
mantic Web Service editor currently discontinued.

Indeed it is an application full of features, integrating other tools like
wsmo4j, WSML reasoner and more from third parties, via plug-ins. It is available
under LGPL license, so it can be used in commercial projects without license
incompatibilities. Also it is a very active project, partly funded by several Eu-
ropean research projects, being its last version released on 20th March 2007.

WSMO Studio main features include the following:

i. A visual editor for WSMO ontologies, web services, goals and mediators.

ii. A WSMO centric choreographies designer.

iii. An editor for adding semantic annotations to WSDL documents, SAWSDL
compliant (cf. Sec. §2.3.2 .

iv. Import and export from WSML, a subset of OWL-DL, RDF and a XML
representation of WSML.

v. An integrated WSML validator and a reasoner in order to check consis-
tency of ontologies.

vi. A front-end to repositories of ontologies, services and goals, including a
repository implementation and adapters to third party ones.

vii. A front-end to service discovery components, including an implementa-
tion of a QOS based discovery component.

viii. A WSML editor with syntax coloring.

ix. A graphical axiom editor by a third party.

Figure §2.3 shows a screenshot of one of the components of WSMO Stu-
dio: the visual concept editor. WSMO Studio is available from http://www.
wsmostudio.org/.

34 Chapter 2. Semantic Web Services

Figure 2.3: WSMO Studio concept editor.

2.1.6.2 wsmo4j

wsmo4j is an API and a reference implementation for building Semantic
Web Services based on WSMO [25], written in Java programming language. It
consists on a set classes representing all the concepts defined in WSMO, with
methods to use them, in addition to grounding classes and a choreography
API. wsmo4j is used by most of the rest of the tools that use WSMO and are
written in Java. One of them is a simple WSML Validator that checks if an
ontology is compliant with certain variant of WSML.

wsmo4j Web site is located at http://wsmo4j.sourceforge.net/, while WSML
Validator is published as both Web service and Web site in http://tools.deri.
org/wsml/validator/v1.2/.

2.1.6.3 WSML Reasoners

The WSML2Reasoner framework is a modular architecture that includes
functionalities to validate, normalize and transform WSML ontologies to the

2.1. WSMO 35

appropriate syntax of a set of reasoning engines. It is written in Java, and
depends on wsmo4j.

At http://tools.deri.org/wsml2reasoner/index.html there are different re-
leases available, depending on which reasoning engine is needed. The trans-
lations currently implemented translate from WSML-Flight to KAON2 engine,
WSML-Rule to MINS and WSML-DL to Pellet.

2.1.6.4 Web Service Execution Environment (WSMX)

WSMX (Web Service Modeling eXecution environment) [42] is a reference
implementation of WSMO, and is a subproject of the WSMO initiative itself. It is
an execution environment for business application integration using enhanced
Web services. WSMX internally uses WSML.

The main objective behind WSMX project is to allow dynamic discovery,
composition and invocation of Semantic Web Services. In addition, WSMX
supports interaction with classical, non-WSMO Web services, so it ensures a
seamless interaction with existing Web services. Furthermore, it can be used
by both service providers and requesters, so it provides a complex architecture
to support all these operations.

That architecture allows to register Semantic Web Services and to execute
registered ones. To do so, it consists of several components that work together
depending on the concrete task to be performed. WSMX has a compiler compo-
nent to validate WSML documents, a repository of services, mathmakers and
selectors to discover Semantic Web Services, a choreographer to execute them,
etc.

WSMX is freely available as an open source project and can be downloaded
completely or in a component basis from http://www.wsmx.org/ under GNU
Public License.

2.1.6.5 The Web Service Modeling Toolkit (WSMT)

Formerly an editor component of WSMX, the Web Service Modeling Toolkit
(WSMT) is a collection of tools for Semantic Web Services intended for use
with WSMO, WSML and WSMX [49]. It is now available from SourceForge at http:
//sourceforge.net/projects/wsmt. Its aim is at ease the creation and deployment
of tools to handle Semantic Web Services

This set of tools includes WSML editors with syntax highlighting and rea-
soners, a WSMX manager and a data mediation mapping tool, in addition to

36 Chapter 2. Semantic Web Services

Figure 2.4: The WSML Visualizer and WSML Reasoner.

a graphical visualizer of WSML documents, shown in Figure §2.4 . All this
tools are implemented using the Eclipse plug-in architecture, so it is easier to
develop an Eclipse application like WSMO Studio.

2.1.6.6 Ontology Management Working Group Tools

Finally, a set of tools for manipulating WSMO ontologies have been devel-
oped by the Ontology Management Working Group from DERI. Its main result
is the DOME tool, that consists in an ontology editor.

The DERI Ontology Management Environment (DOME) is also done us-
ing the Eclipse plug-in architecture, and consists in tools supporting editing,
browsing, versioning, evolution, mapping and merging ontologies. All this
tasks are done using a graphical interface, so the user does not have to write
ontologies manually.

2.2 OWL-S

The second main alternative in SWS is supported by the DARPA Agent
Markup Language program of the American Army. OWL-S is a joint initia-

2.2. OWL-S 37

Figure 2.5: OWL-S upper ontology for services.

tive of companies and institutions like BBN Technologies, Carnegie Mellon
University, Nokia, Stanford University, SRI International and Yale University,
among others, and its aim is to develop an ontology to semantically annotate
WS. The project objective is to model the WS concept, its operations and its
process model defining concepts and establishing relations between them in
order to allow automatic reasoning using an inference engine, enabling auto-
matic discovery, invocation, composition and monitoring of WS.

As opposed to WSMO, OWL-S uses a standard language to define ontolo-
gies, i.e. OWL, so it can benefit from the wide range of tools developed for
this language, e.g. editors, reasoners and verifiers. Current published version
of the proposal is the 1.1, although it is constantly improved and version 1.2
is been developed at the moment. Previously, OWL-S were released with the
name of DAML-S, and were built upon DAML+OIL (a predecessor of OWL).

The OWL-S upper ontology is shown in Figure §2.5 , taken from [58]. As it
can be seen, the concept where we start from is the service. Services in OWL-
S are “Web sites that do not merely provide static information but allow one
to effect some action or change in the world, such as the sale of a product or
the control of a physical device" [58]. This is a wide definition, so a simple
Web site to book flights could be a service in that context. However, the main
target of OWL-S is to enable automatic discovery, invocation, composition and
monitoring of WS, as we have said before.

38 Chapter 2. Semantic Web Services

In order to completely describe a service, three different ontologies are
used: ServiceProfile, ServiceModel and ServiceGrounding. Each one answers a
question about the service (Figure §2.5).

Firstly, ServiceProfile answers to the question “what the service does?".
Here we define information about the provider entity of the service, the re-
quired information for the execution of the service, and the output it provides.
Furthermore, we can define QOS characteristics about the service provider.

Secondly, ServiceModel answers to the question “how the service works?".
In this ontology we define the business protocol so the client could interact
with the WS correctly. Moreover, processes taking part in the execution of the
service, their preconditions and effects are described in this ontology. With the
service model, the client may be able to understand the provider operations,
so it can (1) conclude that the service fits their needs, (2) allow proper interac-
tion with the service, (3) enable the coordination of several processes, and (4)
allow the monitoring of the service execution. Finally, ServiceGrounding tells
the answer of the question “how to access the service?". In this ontology the
abstract entities defined in the ServiceModel were mapped to specific commu-
nication mechanisms. Particularly, OWL-S provides a grounding to WSDL, but
there is no limitation in defining others.

To sum up, the ServiceProfile is used at a discovery and selection stage. The
ServiceModel tells the client the steps it has to follow in order to execute the
service correctly, and the information it has to provide. Finally, the Service-
Grounding is used to invoke the service, generally using SOAP and WSDL.

Using the Service class, the three different descriptions enumerated before
are brought together. For each published service by a provider we get an in-
stance of the Service class consisting in three properties: (1) presents, whose
domain is the ServiceProfile class; (2) describedBy, whose domain is the Service-
Model class; and (3) supports, whose domain is the ServiceGrounding class. In
this way, a service is characterized by instances of these three classes. There
are two cardinality constraints for the former relationships: a service can be
described by at most one service model, and a grounding must be associated
with one and only one service. There is no specification about the cardinality
for the presents and describedBy properties, so it is possible to define services
without a corresponding model or profile. Unfortunately, in that case, services
cannot be invoked or discovered by the client, respectively.

In the next subsections the three enumerated ontologies to describe SWS
in OWL-S are analyzed in detail, in addition to the usage of each one.

2.2. OWL-S 39

Figure 2.6: Selected classes and properties of the service profile.

2.2.1 Service Profiles

The service profile serves the purpose of giving a high level description of
functionality and non-functional characteristics of a given service. It is aimed
to enable discovery and selection of Web services, normally querying a service
directory like UDDI. Although the integration of a service profile in UDDI is
not explicitly defined in the OWL-S specification, there are some proposals in
that way [59].

The ServiceProfile base class (Figure §2.6 , taken from [58]) allows to de-
fine three different aspects related to the service: (1) information to a human
reader, like contact data or service description; (2) service functionality; and
(3) categorization and additional parameters about the service.

The name of the service being offered is specified via serviceName property.
In addition, it is possible to include a short description within the textDescrip-
tion property. Finally, the contactInformation property can be used to provide
information about the supporters of the service. The range of the last property
is unspecified in OWL-S, so it is allowed to use some other ontology to spec-
ify this contact information, such as FOAF or VCard. This three properties are
more suitable for a human reader than for an automatic processing.

Functionality description is presented through transformations that the
service execution apply to input parameters and to the world. On the first
hand, hasInput and hasOutput properties are used to specify the necessary in-
put for the service execution, and the output obtained from that execution.

40 Chapter 2. Semantic Web Services

These two properties are ranged as subclasses of the Parameter class from the
Process ontology (cf. Sec. §2.2.2). On the other hand, hasPrecondition and has-
Result properties set the service preconditions for a successful execution, and
how this affects the world. There is no way to specify inputs, outputs, pre-
conditions and results in the ServiceProfile ontology, but these properties range
over corresponding classes from the ServiceModel one. This is done because,
in general, service inputs, outputs, preconditions and results are a subset of
the model ones, so the profile should only point to these instances. However,
if they are disjoint with the model ones, it is possible to create new ones using
the ServiceModel classes and refer to them.

Finally, the Profile class also provides properties related to non-functional
and QOS characteristics. There are two different mechanisms to do the former.
On the first hand, we can specify the service category inside a given taxonomy
of categories. In this case, we use the serviceCategory property, whose range is
the ServiceCategory class. On the other hand, we can set any additional param-
eter, like QOS or geographical constraints, using the serviceParameter prop-
erty, which ranges over the ServiceParameter class. Parameters are defined as
instances of this class, which consists of two properties: (1) serviceParameter-
Name, to identify the name of the actual parameter; and (2) sParameter, which
points to the value of the parameter within some OWL ontology.

To sum up, the service profile contains characteristics about the service in
order to allow automatic discovery and selection. The service model speci-
fies the necessary interaction between client and provider in order to execute
the service. Obviously, there is a relation between them, so inputs, outputs,
preconditions and results described in the profile have to be indicated in the
model, too. However, OWL-S specification does not explicitly dictate that both
descriptions must be consistent. Because of this, it is possible to have a pro-
file describing a service to book flights connected to a model describing an
interaction of a book selling agent, for example. In this case, the interaction
between client and provider will break at some point. So it is convenient that
both descriptions would be consistent in order to successfully execute the ser-
vice. That does not imply that the profile has to describe the whole model.
That could be the case of a provider not wanting to publicly publish all the
functionality of a service.

2.2.2 Modeling Services as Processes

The service model description serves three purposes. Firstly, it gives in-
formation to a client about how to correctly interact with a service. Secondly,
it gives a better knowledge about a service to distinguish if it accomplish a

2.2. OWL-S 41

Figure 2.7: Simplified Process ontology.

client’s needs. Finally, it allows coordination tasks between other services,
because the client knows the results of each step in the interaction.

Figure §2.7 , taken from [58], shows the basic scheme of how to define the
OWL-S service model. To do so, OWL-S define the Process class, subclass of
ServiceModel, which is the used to model the process.

2.2.2.1 Processes

The main class in this ontology is Process. A process has inputs, precondi-
tions, outputs and results, among other properties. Additionally, the last two
can have conditions associated to them, i.e. certain circumstances may appear
in a process execution, generating an output or some results, and other cir-
cumstances may generate different outputs and results. To define them, we
use the hasInput, hasOutput, hasPrecondition and hasResult properties, whose
domains are instances of Input, Output, Condition (an expression, in fact) and
Result classes, respectively.

42 Chapter 2. Semantic Web Services

Inputs and Outputs Process inputs and outputs are equivalent to inputs and
outputs in a function defined in any programming language. For each process,
we indicate its inputs and outputs as instances of Input and Output classes.
These are subclasses of Parameter, so each instance has a parameterType prop-
erty to indicate the parameter type.

Preconditions and Results Process execution may involve changes in the
current state of the world. An example could be to do a charge in a client’s
credit card. These state changes are described using preconditions and re-
sults. On the one hand, Preconditions are circumstances that have to be met in
order to correctly execute the process. On the other hand, results are a coupled
output and effect, that may occur depending on the fulfillment of certain con-
ditions. The difference between an output and an effect, belonging to a result,
is that the latter express conditions that become true if the result conditions
are true, while the former describe information to be returned by the process
if the said conditions are met.

Expressing Conditions and Effects We need to express conditions defining
the process model in several places: results, effects, loops or conditional sen-
tences, and process preconditions. These conditions are logic formulas eval-
uating true or false. The problem is that there is no standard way to describe
these conditions in OWL. Although there are some proposals in this aspect,
like KIF or SWRL, none of them have been included in OWL standard yet. So,
the solution adopted in OWL-S is to give freedom about the language used to
specify conditions, transferring the problem to the specific implementations
of OWL-S reasoners.

2.2.2.2 Types of Processes

There are three different kinds of processes in OWL-S, as seen in Figure
§2.7 : (1) atomic processes, (2) simple processes and (3) composite processes.
Atomic processes are supposed to run in a single step and not to have any
subprocesses. Furthermore, they can be invoked directly and for each atomic
process there is a grounding defined in order to allow a successful invocation.
In general, an atomic process corresponds to a operation defined in WSDL of a
web service.

Simple processes cannot be invoked, so they do not have any associated
grounding. Conceptually, they have also single-step executions, like atomic

2.2. OWL-S 43

ones. Therefore, the actual objective of simple processes is to provide an ab-
stract mechanism to simply represent a composite process. They are linked
through the expandsTo property. It is also related with an atomic process via
realizedBy property.

Finally, composite processes are those which can be separated in severals
processes. These processes may also be composite processes. Each composite
process is compound (composedBy property) of an instance from ControlCon-
struct class. OWL-S specification defines a minimal set of control constructs
which can be extended in order to describe a wide range of Web services.
Noteworthy that these constructs do not compound a behavior a service will
do, but a behavior the client can perform by sending and receiving messages.
Furthermore, each control construct is compound (components property) of
other control constructs or processes (named process components). Follow-
ing are the list of control constructs defined by OWL-S:

Sequence represents a list of control constructs (or processes) that have to be
done in order.

Split is compound of a bag of process that are executed concurrently. There
is no established synchronization.

Split+Join is like the later but it is possible to define partial synchronizations
between processes.

Any-Order allows the processes defined in a bag to execute unordered, and
not concurrently.

Choice calls for the execution of a single control construct from a given bag
of control constructs.

If-Then-Else has the semantics of “test ifCondition; if it is true do then, if it is
false do else". ifCondition, then and else are properties of the construct.

Repeat-While is the classical loop presents in programming languages. This
construct test if whileCondition property is evaluated to true. In this case,
it executes the process pointed by whileProcess property. In other case, it
exits.

Repeat-Until is like the previous but with semantics of until. Due to the sim-
ilarity, this and the previous one are defined as subclasses of Iterate ab-
stract class.

44 Chapter 2. Semantic Web Services

2.2.2.3 Parameter Bindings

Finally, it is possible to link parameters of the processes from one step to
another, binding their values through the execution of the process. Thus, the
input of one process component may be obtained as one of the outputs of a
preceding step. This is done using Binding elements, which can explicit re-
lationships between parameters, among some other classes and attributes, as
the ValueOf class which have two parameters, theVar and fromProcess, that in-
dicate the value that an instance of the said class take from a concrete process.

2.2.3 Accessing Services

In the last subsection we have defined the service model abstractly. We
have said that atomic processes are executed in a single step and can be in-
voked. However, the client cannot invoke that processes because he or she
does not know how to. That is, the client need to know how to access the ser-
vice. That information is given by the ServiceGrounding, mapping the abstract
semantic representation of the messages from the ServiceModel to the syntactic
form of these messages during the actual information interchange.

At the moment there is only one grounding defined between the service
model and the WSDL specification. However there is no limitation in the
grounding being linked to Web service invocations. It is possible to develop
a ServiceGrounding ontology to support invocations through DCOM or CORBA,
for example.

Figure §2.8 , taken from [58], shows the relationship between a OWL-S
atomic process and a WSDL operation, and between their parameters. In fact,
these relationships are the ones that have to be modeled in the ServiceGround-
ing. Specifically, it is necessary to map an atomic process with one or more
WSDL operations, the input and output of an atomic process with a WSDL
message, and input and output types with WSDL abstract types. In the last
two cases, we can use XSLT transformations to show how to derive each WSDL
input from one or more OWL-S inputs, and how to get OWL-S outputs from
some parts of a WSDL output message.

The way to do the mapping is as follows. We have to add the next exten-
sions to the WSDL document:

i. We have to add the owl-s-parameter attribute in some places in the WSDL
message definition in order to specify the corresponding instance of In-
put or Output OWL-S classes.

2.2. OWL-S 45

Figure 2.8: Relationship between OWL-S and WSDL.

ii. When the message part uses an OWL type, we have to set the encod-
ingStyle attribute inside the binding WSDL element to a value like http:
//www.w3.org/2002/07/owl to indicate that message parts will be serial-
ized as OWL instances.

iii. For each WSDL operation element, we have to add the owl-s-process at-
tribute indicating the atomic process name which corresponds to the op-
eration.

Finally, we have to describe the grounding as an instance from the Ws-
dlGrounding class, which extends ServiceGrounding, and have a parameter
named hasAtomicProcessGrounding which ranges over instances from the Ws-
dlAtomicProcessGrounding class. Each of these instances presents the mapping
between an atomic process and its corresponding WSDL operation and its pa-
rameters. The actual form of the mapping is out of this report scope, and there
are tools that do it automatically from a WSDL file.

46 Chapter 2. Semantic Web Services

2.2.4 Provisioning Approaches

Several provisioning proposals are based on OWL-S or its precursor DAML-
S. In this section, some of them are introduced to show different alternatives
to perform discovery and selection within this framework. Further discussion
of these and more proposals can be found in Sec. §3 .

In the context of DAML-S, Sycara et al. show how semantic information
allows automatic discovery, invocation and composition of Web Services [83].
They provide an early integration of semantic information in a UDDI registry,
and propose a matchmaking architecture. The matching engine matches the
user requirements with “sufficiently similar” provided services. Selection can
be performed by scoring the matching degree between the requirements and
the services discovered.

An extension to DAML-S to include QOS profiles is proposed in [89] by
Zhou et al. This proposal only allows order conditions between QOS param-
eters, so it performs discovery and selection using DLs. The QOS ontology is
simple and can be easily linked to the DAML-S service profile. Additionally, its
selection algorithm uses matching degrees to rank the resulting set of services.

Dobson et al. presents QoSOnt in [27], which is another ontology that ex-
tends OWL-S to describe QOS attributes and metrics. Although they do not
explicitly explain how to perform discovery and selection and their proposal
suffers from OWL limitations, their proposal adds QOS support to OWL-S so
that QOS-aware provisioning mechanisms can be defined upon QoSOnt.

Another DAML-based proposal is also presented in [82], where Bilgin and
Singh provide a DAML-based query language, instead of just extending OWL-
S. Using this Semantic Web Services Query and Manipulation Language, they
advertise QOS attributes and perform the selection. They propose the use of
UDDI registries, which have to be extended to support this discovery process,
though selection process is not flexible.

2.2.5 Existing Tools

The OWL-S community has also developed several tools that bring to prac-
tice the specification. That amount of available tools is a good signal about
the impact that OWL-S has in the research and industrial community. In the
following we introduce some of them that we have found interesting.

2.2. OWL-S 47

2.2.5.1 OWL-S Protégé-based Editor

The OWL-S Protégé-based Editor is an open-source project that is imple-
mented as a plug-in for the knowledge base editor Protégé Ontology Editor.
It allows the user to create and maintain OWL-S service descriptions with a
user-friendly interaction organized around the conceptual structure of OWL-S.

Its main features includes graphical editing of control constructs, visualiza-
tion of documents as a graph, consistency and links checks between elements
of the OWL-S description, and WSDL support in order to generate a basic OWL-
S description based on a WSDL document.

The OWL-S Editor is available at http://owlseditor.semwebcentral.org.

2.2.5.2 OWL-S Matcher (OWLSM)

OWLSM is a matcher for elements of OWL-S descriptions [46]. The algo-
rithm implemented in this matcher considers elements of the service profile.
Ranking a criterion, OWLSM can select a service among a large set of results,
so after the matchmaking, the matching services are ordered after a criterion
supporting an automatic decision of the best service possible.

OWL-S Matcher is implemented in Java, and it allows to select two
OWL-S descriptions for requester and provider, executing the algorithm on
them. It is licensed under LGPL and it is available at http://owlsm.projects.
semwebcentral.org/.

2.2.5.3 Semantic Web Author

Semantic Web Author is a validating parser, editor and Web development
environment of multiple markup languages (XML, RDF and OWL). It is a Win-
dows application programed in C#, so it requires MS .NET Framework. It is
available at http://www.web-iq.com/SemanticWebAuthor/SWA.zip.

2.2.5.4 OWL-S Editor

OWL-S Editor [78] is an application intended for users without experi-
ence that want to create OWL-S descriptions in a short time. The tool fea-
tures consists in: (1) a creator of OWL-S descriptions, using a wizard that

48 Chapter 2. Semantic Web Services

Figure 2.9: OWL-S Editor wizard.

accepts an input WSDL file and extracts information to create a basic OWL-
S description (cf. Fig. §2.9), or from a template; (2) a validator that checks
the validity of the ontologies; and (3) a visualizer that shows the descriptions
and service compositions in a graphical, UML-like manner. More informa-
tion can be found at http://staff.um.edu.mt/cabe2/supervising/undergraduate/
owlseditFYP/OwlSEdit.html.

2.2.5.5 Semantic Web Service Composer

Semantic Web Service Composer is a semantic composition and matching
engine that helps service requesters to find and compose suitable Web ser-
vices. If a single service can not perform the requested functionality, the tool
attempt to find a composition of services, using AI planning algorithms, that
meet the requirements.

This tool is developed by IBM and can be found as a part of IBM’s Emerg-
ing Technologies Toolkit at http://alphaworks.ibm.com/tech/ettk along with
other tools grouped in Semantic Tools for Web Services, that is a set of Eclipse
plug-ins.

2.3. METEOR-S 49

2.2.5.6 ASSAM Web Service Annotator

ASSAM stands for Automated Semantic Service Annotation with Machine
learning, and it is an application that helps the user to effectively annotate
Web services described with WSDL [43]. These annotations can be exported in
OWL-S.

This tool provides a graphical interface to annotate the WSDL file, but the
actually important feature of it is the machine learning assisted annotation.
Thus, after a training period, ASSAM can make recommendations on how
to annotate types in WSDL. It is available at http://moguntia.ucd.ie/projects/
annotator.

2.3 METEOR-S

The third framework in which we concentrate our report is the proposed
by METEOR-S. METEOR-S is a project lead by the group LSDIS from the Univer-
sity of Georgia. The main target of this project is to extend current standards
in WS adding semantic concepts [80]. Their work includes annotation and
semi-automatic publication of WS using a proposed extension of WSDL [71],
semantic discovery of WS extending UDDI [85], and orchestration and com-
position of WS described with a semantically-annotated version of BPEL4WS
[81].

As a matter of fact, their proposals of extending WSDL with semantic con-
cepts have been chosen as a starting point to add semantics in the next version
of WSDL. These proposals have materialized in two different frameworks or
languages: SAWSDL [29] and WSDL-S [5]. In fact, WSDL-S is the base proposal
for the work of the Semantic Annotation for WSDL Working Group of the W3C,
which has recently published as a W3C Recommendation its Semantic Anno-
tations for WSDL and XML Schema specification (SAWSDL).

Finally, they have done some work related to QOS in a WS composition
scenario [79]. In this work, they model QOS properties of WS, specially time,
cost and reliability, in order to evaluate the real QOS of a Web process com-
posed of such WS.

In the following two sections we detail firstly the proposed extension of
WSDL, developed by METEOR-S, adding semantics to it (the so called WSDL-
S), and secondly we describe the ongoing proposal SAWSDL to semantically
annotate WSDL and XML Schema, which is the current proposed W3C standard.

50 Chapter 2. Semantic Web Services

2.3.1 Web Service Semantics

One of the first results of the METEOR-S project, that serves as a foundation
to the more evolved SAWSDL proposal, is WSDL-S [5]. The approach intro-
duced in [80] presents an upgrade to current Web service standards, specially
to Web service descriptions. WSDL-S extends WSDL with semantics, employ-
ing concepts analogous to those in OWL-S, but it is not limited to one specific
semantics representation language. The advantages of this approach to add
semantics to WSDL are: (1) the use of a wide used, well-known language to
describe both semantic and operational level details of Web services, and (2)
the ability to reuse external semantic domain models described in any ontol-
ogy representation language, so Web service developers can annotate their
WSDL files with their choice of modeling language.

When designing WSDL-S, its authors follow a set of design principles that
they encourage to be taken in consideration when designing any framework
for Semantic Web services.

• Build on existing Web Services standards: Companies are already using cur-
rent Web service standards, so any approach to adding semantics to Web
services should use those standards.

• The mechanism for annotating Web services with semantics should support
user’s choice of the semantic representation language: It should be possible
to use any ontology modeling language to annotate Web services, such
as OWL-S or WSML. This gives flexibility to Web service developers to
select a language that fits their actual needs.

• The mechanism for annotating Web services with semantics should allow the
association of multiple annotations written in different semantic representation
languages: Related with the previous one, elements may be simultane-
ously annotated with multiple semantic representation language, so Web
services could be discovered using multiple discovering engines using
different languages.

• Support semantic annotation of Web Services whose data types are described
in XML schema: Due to the wide-spread use of XML Schema to define
business documents, semantic annotation of inputs and outputs defined
using XML schemas has to be supported.

• Provide support for rich mapping mechanisms between WS schema types and
ontologies: The possibility to annotate schemas is as important as pro-
viding a way to map their complex types to ontological concepts. This
mapping can be described using any schema mapping languages, such
as OWL, RDF, XSLT, etc.

2.3. METEOR-S 51

Figure 2.10: Associating semantics to WSDL elements.

In the following extending elements are defined and its usage is described
in detail.

2.3.1.1 Extending WSDL

Figure §2.10 shows how semantic annotations from an external domain
model are associated with various elements of a WSDL document, including
inputs, outputs, operations and additions from WSDL-S approach. The do-
main model may be composed by one or more ontologies. These semantic
annotations are added to WSDL documents extending the standard.

This proposal has been developed using WSDL 2.0. Conceptually, WSDL
2.0 represents service descriptions using the following constructs: interface,
operation, message, binding, service and endpoint. The first three constructs
deal with the abstract definition of a service, while the remaining deal with
service implementation. WSDL-S focus on semantically annotating the abstract
definition of a service, but it could be useful to semantically annotate service
implementations.

WSDL-S provide URI reference mechanisms via extensibility elements intro-
duced in interface, operation and message constructs, so they point to seman-
tic representations defined in an external domain model. These extensibility
elements are described below:

52 Chapter 2. Semantic Web Services

modelReference is an extension attribute to specify the association between
a WSDL entity and a concept of the semantic model used. It can be ap-
plied to complex type, element, operation and the extension elements
(precondition and effect).

schemaMapping is also an extension attribute which is added to XML Schema
elements and complex types in order to handle structural differences be-
tween the semantic model concepts and the schema elements of a Web
service that the former are related to.

precondition is one of the new elements added by WSDL-S, which are a child
element of the operation element. It defines a set of assertions that must
be met before a Web service operation can be invoked. The detailed rep-
resentation of preconditions depends on the semantic domain represen-
tation model.

effect is also an added child element of the operation element, and it defines
the result of invoking an operation. As in preconditions, its representa-
tion depends on the semantic domain model used.

category is an extension attribute of the interface element, consisting of ser-
vice categorization information, that could be used when publishing the
service in a registry such as UDDI [85].

2.3.1.2 Annotating Elements

WSDL-S proposes that operations should be annotated by a concept in a
semantic model providing a high level description of them. Thus, a modelRef-
erence attribute is added to operation element in WSDL, pointing at the said
semantic concept. Although inputs, outputs, preconditions and effects are of-
ten used to capture the semantics of a given operation, using a simple semantic
annotation to describe the behavior of that operation could be useful during
discovery, providing a first cut indication whether the service matches a given
request.

In addition, WSDL-S provides means to annotate XML Schema types using
the modelReference attribute also. That is applied to semantically annotate in-
puts and outputs of operations described in WSDL. Specifically, to annotate
inputs and outputs defined with simple types, the said attribute is used to
point to the corresponding semantic concept. That is possible by the use of the
extensibility of an element tag of XML Schema, so the said attribute is added
to the definition of the element from the simple type.

2.3. METEOR-S 53

2.3.1.3 Annotating Complex Types

Complex types can also be annotated in multiple ways. WSDL-S proposes
two alternatives: (1) bottom level annotation, which consists in annotating
leaf elements a complex type; or (2) top level annotation, that consists int an-
notating at complex type level. These two alternatives are complementary and
the user could use any of them when semantically describing Web services in
WSDL-S.

Bottom level annotation When elements of a complex type correspond in
a one-to-one way with concepts in a domain model, a simple method is pro-
vided to annotate that type. As described above, this is supported by adding a
modelReference attribute to the relevant schema element definition, that points
to the said concept via URI.

Top level annotation When the associations between the schema elements
and the concepts in the domain model are one-to-many or many-to-one, bot-
tom level annotation is impossible. In this case, it is necessary to explicit the
mapping between a complex type and the corresponding concept in the do-
main model. A complex type can have a semantic annotation using a model-
Reference attribute that points to a high level concept in an ontology. However,
to annotate any elements contained within a complex type, a schemaMapping
attribute in the complex type could be used. That attribute points to a defini-
tion of the mapping in a given language, such as XSLT, which WSDL-S does not
restrict.

2.3.1.4 Added Elements

Before in this Section we introduced that WSDL-S adds two new elements
to WSDL specification, in order to complete the semantic annotation of an op-
eration. Both preconditions and effects points to concepts defined in semantic
domain model that provides assertions that must be met prior to Web service
execution, or define the results of the invocation , respectively.

Both preconditions and effects are specified as child elements of the opera-
tion element of WSDL. Each operation can have at most one precondition and
one effect, in order to keep the specification simple. The attributes of these
elements are the same:

• name, specifying a unique identifier within the WSDL document.

54 Chapter 2. Semantic Web Services

• modelReference, which specifies the URI of the part of a semantic model
that describes the precondition or the effect.

• expression corresponds to a logical expression defining the precondition
or the effect. The format of the expression is defined by the semantic
representation language used to express the semantic model.

The modelReference and expression attributes are mutually exclusive.

2.3.1.5 Service Categorization

WSDL-S main purpose is to enable automatic discovery of Web services.
This is possible when there are means to publish, catalog and annotate ser-
vices with semantics. The annotation mechanisms proposed have been de-
scribed above. But it is possible to add categorization information to services,
so they can be published using UDDI for example, in order to aid the discovery
process.

The service category is modeled using the extensibility elements on a WSDL
interface. WSDL-S provides a category element which contains the following
attributes:

• categoryName specifies the name of the category within a given taxonomy
of categories.

• taxonomyURI, which points to the taxonomy definition, generally where
it can be obtained.

• taxonomyValue, that is the value associated with a category in the taxon-
omy.

• taxonomyCode, which defines the code associated with a category in the
taxonomy.

2.3.2 Semantic Annotations for WSDL and XML Schema

Semantic Annotations for WSDL and XML Schema (SAWSDL) defines how to
semantically annotate various parts of a WSDL document, such as input and
output message structures, operations and interfaces. These annotations of
WSDL structures and XML Schema types allow automatic discovery, compo-
sition and invocation of annotated services. In order to accomplish semantic

2.3. METEOR-S 55

annotation, SAWSDL defines extension attributes that can be applied to WSDL
and XML Schema elements.

As in WSDL-S, semantic annotations are references from an element within
a WSDL or XML Schema document to a concept in an externally defined ontol-
ogy or to a mapping into an ontological schema. SAWSDL specifies some an-
notation mechanisms, that are independent of the actual ontology expression
language, so do the mapping language used. Thus, there are no restrictions
on the choose of a semantic domain specification language.

SAWSDL has been recently published as a Recommendation of the W3C,
so it is foreseeable that it may be widely used to semantically annotate WSDL
documents, with the possibility of being an integrated part of future WSDL
specifications. Meanwhile, SAWSDL supports WSDL 2.0, in addition to WSDL
1.1 and RDF.

In the following we present the different mechanisms provided by SAWSDL
to annotate WSDL and XML Schema documents.

2.3.2.1 Annotation Mechanism

SAWSDL specification defines two semantic annotation constructs that are
applied to WSDL and XML Schema as explained in the sections below. This
specification concentrates on annotating the abstract definition of a service,
that is Type Definition, Interface, Interface Operation and Interface Fault com-
ponents of WSDL 2.0. Annotating these elements enable dynamic discovery,
composition and invocation.

The semantic constructs specified in SAWSDL are the following extension
attributes:

• The association between a WSDL or XML schema element and a concept
in some semantic domain model defined externally is specified by the
modelReference attribute. It can be used to annotate WSDL interfaces, op-
erations and faults, as well as XML Schema complex and simple type
definitions, and element and attribute declarations.

• When an explicit mapping is needed, two extension attributes, named
liftingSchemaMapping and loweringSchemaMapping, can be used to anno-
tate XML Schema element declarations, complex type definitions and
simple type definitions. These mappings can be used during service in-
vocation.

56 Chapter 2. Semantic Web Services

WSDL elements can be annotated with multiple model references and mul-
tiple schema mappings. If an element has more than one model reference, all
of them apply, although no logical relations can be explicitly defined between
them. But an element referencing multiple schema mappings indicate map-
ping alternatives.

Model Reference Although a model reference may be associated to any
WSDL element, SAWSDL only defines its meaning for wsdl:interface, wsdl:ope-
ration, wsdl:fault, xs:element, xs:complexType, xs:simpleType and xs:attribute. The
modelReference attribute can take a list of URIs that references concepts in a se-
mantic domain model, providing semantic information associated to a WSDL
or XML Schema element. As previously said, SAWSDL specification remains
agnostic to the concrete semantic representation language of those concepts,
and it does not specifies how the document processor resolve a model refer-
ence to a document containing the concept definition.

Schema Mapping SAWSDL uses schema mapping to resolve mismatches in
the data structure of inputs and outputs. That feature is used after discovering
(where model references are used), relating data instances defined in some
XML Schema document with some semantic data defined in a semantic model.
Such mappings are useful when the structure of the instance data can not be
trivially related to the corresponding semantic model. Again, the mapping
language to use is not constrained. The usage of loweringSchemaMapping and
liftingSchemaMapping attributes is described in the following.

2.3.2.2 Annotating WSDL Documents

The main WSDL 2.0 components that can be annotated using a model ref-
erence property (set by modelReference attribute) are interfaces, interface oper-
ations and faults. The value of that property is a set of URIs taken from the
attribute value. Using a modelReference attribute on a WSDL interface provides
a semantic description or a classification of that interface, while on an opera-
tion or a fault provides semantic information about that operation.

Annotating interfaces with modelReference attribute may be useful to spec-
ify behavioral aspects, categorize the interface or associate other semantic def-
initions, all defined in an external semantic model. As usual, SAWSDL does
not constraint the form of those semantic definitions, even in the categoriza-
tion case. Furthermore, if an interface element extends one or more interface
elements, the model reference of the extended interfaces are also applied to

2.3. METEOR-S 57

the new interface, so an interface can be categorized using the categorization
of the interfaces it extends.

The annotation of operation elements is done by a reference to a concept
in a semantic domain model providing a high level description of the corre-
sponding operation, specifying its behavioral aspects or including other se-
mantic definitions. That high level description is useful during service dis-
covery, because of it provides a simple annotation that reduce the number of
services that match with a given request, without checking inputs and outputs
of those services. That check may be done later, using the concrete annotations
on input and output elements. Moreover, operations can also be annotated
with category references, but they are separate from other categorization done
in other elements (e.g. interfaces).

In addition, it is possible to annotate fault elements, with the same meaning
that in operations. That is, the annotation provides a high level description of
the corresponding fault. The fault message is not described by that annotation,
being annotated as in an output message.

2.3.2.3 Annotating XML Schema Documents

In this case, both available constructs can be applied when annotating XML
Schema documents, i.e. model references and schema mappings. On the one
hand, a model reference allows to link any XML structure defined to its corre-
sponding semantic model, so this information can be used in discovery pro-
cesses. On the other hand, schema mappings can be applied after discovery
stages, so structural mismatches between the semantic model and service in-
puts and outputs can be overcame.

The modelReference attribute can be included on simple type definitions,
so any element or attribute whose type has this attribute is described by the
referenced concept from the corresponding semantic model. Additionally, el-
ements and attribute declarations can be also annotated by using a model ref-
erence. Particularly, model references on an element declaration are also de-
scribed by its type definition model reference, if present, such as an annotated
complex type.

Concerning complex types, they can be annotated using two approaches:
(1) bottom level annotation, where the model references are included at mem-
ber element or attribute level; or (2) top level annotation, where the complex
type container is annotated with corresponding model references. As in the
previous cases, modelReference attribute is the placeholder to semantically an-
notate complex types at any level. These two approaches can coexist in the
same complex types, each one being treated independently.

58 Chapter 2. Semantic Web Services

Another form of annotating XML Schema documents are performed by lift-
ingSchemaMapping and loweringSchemaMapping attributes. These attributes al-
low to associate types (complex and simple) and elements with a mapping to
an ontology. Lifting and lowering information can be both specified in a single
type or element, but it is usually specified only one. Also, within each attribute
multiple schema mappings URI can be specified, each one being interpreted as
alternatives.

Differences between both mappings are the following. On the one hand,
a mapping referenced by liftingSchemaMapping attribute defines how an XML
instance document conforming to the element or type defined in a schema is
transformed to data that conforms to some semantic model. Thus, the input
of the transformation process is that XML element on whose declaration the
mapping is located, while its output is the corresponding semantic data. On
the other hand, a mapping referenced by loweringSchemaMapping attribute de-
fines how data in a semantic model is transformed to XML instance data, as
opposite of a lifting mapping. In this case, the input is some semantic data
and the output of the process is the XML element on whose declaration the
mapping is located.

2.3.3 Provisioning Approaches

The METEOR-S project seeks to address the entire life-cycle of SWS, includ-
ing not only semantic specifications as the analyzed before, but discovery, se-
lection and composition. Concerning the provisioning, there are some note-
worthy results within that project, which are introduced here and further dis-
cussed in Sec. §3 . Furthermore, proposals based on WSMO and OWL-S frame-
works can be also applied to METEOR-S annotation mechanisms, because these
annotations can be defined using WSMO or OWL-S.

Sivashanmugam et al. present extensions to current Web standards, such
as WSDL and UDDI, that are aimed at improving discovery and composition
[80]. They propose a three phase discovery and selection algorithm that uses
templates of ontological concepts to state service requirements. Firstly, WS are
matched based on the functionality provided. Then, the result set is ranked
using semantic similarity between inputs and outputs of the selected opera-
tions and the one from the template. Finally, the ranking is performed using
preconditions and effects.

Concerning UDDI extensions and discovery, a peer-to-peer approach to
them are presented by Verma et al. [85]. They propose a scalable infrastruc-
ture of UDDI registries where the discovery process are also performed using

2.3. METEOR-S 59

templates. However, this approach only performs a simple categorization and
it do not explicitly rank the services, though they can be ranked by semantic
similarity as in [80].

Finally, Oldham et al. show a selection mechanism applied to Service Level
Agreements [67]. Although agreement making is not contemplated in our def-
inition of service provisioning, this work presents a matching algorithm that
can be applied to discovery processes using SAWSDL. Moreover, their selection
algorithm compute a scoring for each possible agreement, where some QOS
properties are preferred among others.

2.3.4 Existing Tools

METEOR-S project has released some tools supporting its work in Seman-
tic Web Services with actual implementations of its results. Although there
are fewer tools than in the other discussed frameworks (cf. Sec. §2.1.6 and
§2.2.5), it is worth to study their approach, due to the usage of proposed W3C
standards.

The first three tools described below can be downloaded from the METEOR-
S Web site, sited in http://lsdis.cs.uga.edu/projects/meteor-s/.

2.3.4.1 MWSAF

MWSAF stands for METEOR-S Web Service Annotation Framework [71].
It constitutes one of the very first proposals to semantically annotate Web
services developed in METEOR-S. MWSAF is a framework that semi-
automatically annotate WSDL documents with relevant ontologies.

As it is shown in Figure §2.11 , the main feature of the tool is to do map-
pings between a Web service described in WSDL with DAML-S or RDF ontolo-
gies. To do so, MWSAF architecture is composed of the following components:

i. An ontology-store that stores the ontologies, as its name suggests. The
ontologies are categorized in domains, and the system allows to add new
ontologies.

ii. The translator library that contains algorithms to translate ontologies and
WSDL descriptions to SchemaGraph representations [71], that are used to
feed the matching algorithm.

60 Chapter 2. Semantic Web Services

Figure 2.11: MWSAF tool main screen.

iii. The matcher library, that provides matching algorithms to find the most
suitable domain ontology from the ontology-store to annotate the Web
service.

The tool suggests mappings from WSDL descriptions to ontologies stored
in the ontology-store, and additionally allows the user to add extra mappings
manually.

2.3.4.2 Radiant

Radiant [35] is an Eclipse plug-in that provides a user interface to annotate
existing WSDL documents into WSDL-S or SAWSDL via an OWL ontology. Its
features also include an ontology viewer and a method to publish Web ser-
vices in UDDI registries. A screenshot is shown in Figure §2.12 .

Radiant is frequently used together with Lumina, described in the follow-
ing. That way, the user annotate Web services using the former, that can pub-
lish to an UDDI register doing a mapping between the description and the
registry fields, and then that user can discover those services with the latter.

2.3. METEOR-S 61

Figure 2.12: Radiant Eclipse plug-in.

2.3.4.3 Lumina

Lumina is a component of the METEOR-S project that deals with all the
aspects of Semantic Web Services lifecycle, specially semantic discovery [54].
This project uses the WSDL-S/SAWSDL approach to provide discovering Web
services with ontological concepts. It supplies a consistent mapping structure
between WSDL-S/SAWSDL and UDDI, so the user can discover specific opera-
tions by annotating ontological concepts to the operation functional concepts,
inputs and outputs. It is also possible to discover Web services using the
more traditional UDDI discovery based on Business Entity, Business Service
and TModel.

Basically Lumina acts as an extended UDDI registry so it becomes a fa-
cade to several UDDI implementations, providing three different ways to dis-
cover Web services: (1) general UDDI discovery, which do a traditional registry
search but unifying the different implementations of UDDI; (2) WSDL-S discov-
ery, that uses semantically annotated documents that Lumina maps to UDDI
so the user can do searches based upon ontological concepts; and (3) WSDL
discovery, similar to the former but the user has to describe his search with
concrete operations, inputs and outputs.

62 Chapter 2. Semantic Web Services

2.3.4.4 SAWSDL4J

SAWSDL4J is an extension of the WSDL4J API that implements the
SAWSDL specification. This library, written in Java, provides an object model
for SAWSDL documents, so they can be easily supported in third parties appli-
cations. Essentially, SAWSDL4J modifies WSDL4J refactoring some interfaces
by the inclusion of methods to handle semantic annotations (model references
and lifting and lowering mappings).

More information on http://knoesis.wright.edu/opensource/sawsdl4j.

2.3.4.5 WSMO Studio and Semantic Tools for Web Services

Although both tools are discussed in Section §2.1.6.1 and Section §2.2.5.5
, respectively, they provide support to semantic annotation of WSDL docu-
ments in a SAWSDL-compliant way, so it is worth to name them here. Those
tools have plenty of features and are a good choice to compare the different
frameworks discussed in this report.

2.4 Other Frameworks

Although the former are the most developed proposals in the field of SWS,
having been submitted to the W3C Semantic Web Services Interest Group,
there are some other frameworks that are worth to point. We do not get
into details of these proposals, but explain briefly their contribution and main
objectives. Additionally, proposals on provisioning and developed tools for
these frameworks are grouped together in Sec. §2.4.4 and Sec. §2.4.5 , respec-
tively.

2.4.1 Semantic Web Services Framework

The Semantic Web Services Framework (SWSF) [9] is a SWS approach pro-
posed within the Semantic Web Services Initiative†1. This proposal is divided
in two complementary components: (1) the Semantic Web Services Ontology
(SWSO), which is an ontology and conceptual model by which SWS can be

†1http://www.swsi.org/

2.4. Other Frameworks 63

described; and (2)the Semantic Web Services Language (SWSL), by which con-
cepts and descriptions related directly with SWS can be specified, though its
features are not service-specific.

Initially, SWSF research effort was aimed at overcoming the faults and fur-
ther needs of other frameworks, such as OWL-S and WSMO. Particularly, SWSF
took a parallel but complementary approach of WSMO, focusing on a first-
order process ontology that enables automated simulation, verification and
composition. Although SWSF approach is currently discontinued, it is worth
to discuss because it constitutes an alternative to further extend WSMO.

In the following, the two enumerated components are described, along
with its two different SWSO variants, FLOWS and ROWS.

2.4.1.1 Semantic Web Services Ontology

SWSO provides a conceptual model that allows to semantically describe
WS. This conceptualization is formalized in two variants of SWSL, that can be
used depending on the expressiveness required. On the one hand, the First-
Order Ontology for Web Services (FLOWS) is an ontology for SWS based on
First-Order Logic, so it is described using the variant SWSL-FOL. On the other
hand, the Rule Ontology for Web Services (ROWS) is based on Logic Program-
ming, and is represented with the SWSL-RULES variant of SWSL. ROWS ontol-
ogy can be easily derived from FLOWS constructs, because both represents the
same conceptual model. Thus, the rest of this section presents FLOWS in more
detail.

FLOWS is divided in three major components: Service Descriptors, Process
Model, and Grounding, similar to OWL-S. In fact, OWL-S was a big influence
in FLOWS development [22], extending and improving its flaws, using, for in-
stance, a richer behavioral process model based on Process Specification Lan-
guage (PSL) [38]. Thus, FLOWS provides more interoperability and is based on
Web standards by which are given semantics. Additionally, FLOWS has more
expressiveness than OWL-S, because the former relies on First-Order logic,
while the latter is based on OWL-DL. In the following FLOWS major compo-
nents are introduced.

Service Descriptors They provide basic descriptive information about the
service (as ServiceProfile in OWL-S). This information may include QOS prop-
erties, meta-information and descriptions, that are useful in service provision-
ing processes. The initially proposed list contains properties such as service
name, author, version, service description, reliability, cost, etc. Nevertheless,

64 Chapter 2. Semantic Web Services

this list can be further extended to contemplate domain specific properties, for
instance.

Process Model In FLOWS, the process model describes the behavior of the
service. The available constructs come from the ontology of PSL concepts,
adding the notion of atomic processes from OWL-S, and the infrastructure for
specifying data flows. The core concepts of the process model ontology are (1)
the Service concept (a set of service descriptors and an activity that specifies
the process model using PSL sub-activities), (2) Atomic Process (a PSL activity
defined by inputs, outputs, preconditions and effects), (3) Message (including
its type and body), and (4) Channel (an object that holds messages to send and
to receive).

Grounding While the rest of the elements provide an abstract definition of
the service, its grounding constitutes the link to the concrete details of that
service, such as message formats, transport protocols, and network addresses.
SWSF supports grounding SWSO service description and concepts to WSDL con-
structs, defining the mechanism of the mapping.

2.4.1.2 Semantic Web Services Language

SWSL is a formal language to semantically describe WS concepts and de-
scriptions. There are two available variants of the language, namely SWSL-
FOL, based on First-Order logic, and SWSL-RULES, based on Logic Program-
ming formalism. Like WSML and OWL-S, both languages rely on XML names-
paces, the usage of URIs, and are integrated with XML built-in types. Both
languages use a layered approach, integrating different extensions and for-
malism, so some layer may not be used in certain tasks that do not require
such a level of expressiveness.

SWSL-RULES is a logic programming language, that includes different fea-
tures depending on the layers used, such as Courteous logic, HiLog and F-
Logic. Its characteristics allow to use SWSL-RULES as both specification and
implementation language, directly supporting tasks such as discovery, con-
tracting, policy specification, and so on. The core of the language consists of
the pure Horn subset of SWSL-RULES. From that starting point, extra layers
can be added to extend expressiveness, like monotonic and non-monotonic
reasoning, reification, equality, and other layers enumerated before.

SWSL-FOL is a first-order logic which also features HiLog and F-Logic sup-
port. Some of the extension layers from SWSL-RULES can also be applied to

2.4. Other Frameworks 65

Figure 2.13: SWSL-RULES and SWSL-FOL layers.

extend SWSL-FOL, with the restriction of the language having monotonic se-
mantics. Fig. §2.13 depicts the different layers of both languages, and their
relationship, with the broader lines being the core of each language [9].

2.4.2 Internet Reasoning Service

The Internet Reasoning Service (IRS) project†2 aims at supporting the auto-
mated construction of semantically enhanced systems over the Internet [18].
This project has released three versions of its framework. IRS-I [21] sup-
ports the creation of knowledge intensive systems structured according to the
UPML framework [68]. IRS-II [64] is similar to WSMF [31], supporting ser-
vice discovery from a set of demands. It uses descriptions of the reasoning
processes called Problem Solving Methods (PSM) from the UPML framework,
enhanced with WS technology.

IRS-III [18] updates IRS-II, using the WSMO ontology to model SWS, and
providing an architecture to discovery, composition and execution of SWS.
This framework and implemented platform acts as a semantic broker, by me-
diating between clients and service providers. IRS-III is based on WSMO design
principles, but there are more principles which have influenced the framework
presented below.

2.4.2.1 Design Principles

The following design principles are the foundations of IRS-III framework,
whose selection, composition, mediation and invocation processes are based

†2http://kmi.open.ac.uk/projects/irs/

66 Chapter 2. Semantic Web Services

on ontological knowledge.

• Capability driven invocation. Client applications invoke services simply by
providing the desired capability to IRS-III, in terms of WSMO goals. Thus,
IRS-III selects the appropriate service, or service composition, invoking
it as a response to the client specified goal.

• Ease of use. IRS-III design ease the creation of SWS-based applications,
hiding the complexity of components to the client.

• One-click publishing. In order to support existing systems to be made
available through IRS-III, it allows a “one-click” publishing mechanism
of standalone code written in Java or Lisp, in addition to publishing
through WSDL descriptions.

• Decoupling with service implementation. The design of the framework is
not coupled with the underlying service implementation platform, al-
though IRS-III assumes that standard WS technologies, as SOAP, are been
used.

• Ubiquitous reasoning. Reasoning is an essential mechanism of all SWS
related activities. IRS-III allows to invoke reasoning queries over WSMO
conceptual model or over domain ontologies, in addition to WS status,
so that the reasoning system is able to make a WS call to obtain its current
status which is needed within the current reasoning query.

• Open. IRS-III is based on Java, so it is accessible through standard APIs.
Additionally, several components of the semantic broker are SWS repre-
sented within IRS-III, so users can replace them with their own services.

• Inspectability. SWS descriptions are accessible in a human readable
form using graphical representations and understandable ontology lan-
guages.

2.4.2.2 Architecture

From the previous design principles, IRS-III architecture has been devel-
oped so that ontology-based descriptions are linked with the different compo-
nents. Figure §2.14 shows this architecture, which is composed by three main
components that communicate each other using SOAP protocols: the IRS-III
Server, the IRS-III Publisher, and the IRS-III Client.

2.4. Other Frameworks 67

The kernel of the server contains the WSMO library, that stores the corre-
sponding WSMO definitions using the OCML representation language [65]. Fol-
lowing the inspectability design principle, all the relevant information about
services are stored within the library, such as WSMO goals, Web services, me-
diators and even domain ontologies. Goals, Web services and mediators are
stored as knowledge models, with a mediation-centric approach, so the appli-
cations usually consists in mediation models that import relevant goals and
Web services.

Within WSMO, a Web service is associated with an interface which contains
an orchestration and a choreography. Orchestration specifies the control and
dataflow of a Web service which invokes other Web services (a composite Web
service). Choreography specifies how to communicate with a Web service.
The choreography component communicates with an invocation module able
to generate the required messages in SOAP format.

The mediation handler is able to interpret WSMO mediator descriptions,
including data mediation rules, invoking mediation services, and connecting
multiple mediators together. This component also supports the brokering ac-
tivities of IRS-III, such as selection, composition and invocation based on capa-
bilities. Furthermore, the mediation handler, as well as the choreography and
orchestration interpreters are themselves SWS, following the openness prin-
ciple discussed above. At the bottom of these components, an HTTP server
written in Lisp and extended with a SOAP handler is used by IRS-III Server.

The IRS-III Publisher has the role of associating a WS with its correspond-
ing WSMO description. Thus, service providers attach the semantic description
to their deployed services, along with handlers to invoke services in a specific
platform (using WSDL, Lisp code, Java code, or Web applications). Addition-
ally, IRS-III collects all the information necessary to call the service, such as
host, port and paths.

Finally, the IRS-III Client supports the capability-driven invocation of WS
by providing a goal-centric invocation mechanism. Thus, the client simply
asks for a goal to be solved and the IRS-III broker locates an appropriate Web
service semantic description, invoking the underlying deployed WS.

2.4.2.3 Service Ontology

The IRS-III ontology has originally been based on the UPML framework
[68], but it has been extended to incorporate the WSMO conceptual model.
Specifically, the main incorporated aspects are: non-functional properties,
goal-related information, Web service functional capabilities, choreography,

68 Chapter 2. Semantic Web Services

Figure 2.14: IRS-III architecture.

grounding, orchestration and mediators. These aspects appear in IRS-III on-
tology with some differences in order to support capability-driven invocation.

To achieve these capabilities (or goals), Web services are required to have
input and output roles. These roles information includes their names, SOAP
bindings, and their semantic types. These types are imported form the domain
ontology. Moreover, goals are linked to Web services via WG mediators (cf.
§2.1.4).If a mediator associated with a capability has a goal as a source, then
the associated Web service is considered to solve that goal. Additionally, Web
services which are linked to goals inherit the goal’s input and output roles.
This means that input role definitions within a Web service are used to either
add extra input roles or to change an input role type.

When a goal is invoked, the broker creates a set of possible Web services
using the WG mediators. A specific web service is then selected using an
applicability function within the assumption expression attribute from the WS
capability. In WSMO the mediation service attribute of a mediator may point to
a goal that declaratively describes the mapping. Goals in a mediation service
context play a slightly different role in IRS-III. Rather than describing a map-
ping, goals are considered to have associated Web services and are therefore
simply invoked.

Finally, the choreography of a WS must be described from the client’s point
of view. Thus, IRS-III can interpret the choreography to communicate with
the deployed service. In contrast, WSMO choreography describes all of the
possible interactions that a WS can have.

2.4. Other Frameworks 69

2.4.3 INFRAWEBS

The INFRAWEBS†3 research project is focused on developing a Semantic
Service Engineering Framework enabling creation, maintenance and execu-
tion of WSMO-based SWS, and on supporting semantic Web service applica-
tions within their life-cycle [3]. Thus, this ICT European project provides a
framework committed to WSMO specification with the following characteris-
tics:

• It hides the complexity of identifying different types of users of SWS
technologies.

• It clarifies the different phases of SWS processes.

• It develops a set of tools oriented to the identified types of users and
intended to support the different described phases.

Comprising these characteristics, INFRAWEBS is a SOA-based framework
composed of coupled INFRAWEBS Semantic Web Units (SWU). Each unit pro-
vides tools and components for analyzing, designing and maintaining WSMO-
based SWS and applications within the whole life-cycle. Potential users of this
framework have been identified and classified as: (1) SWS provider, who pub-
lishes SWS; (2) SWS broker or aggregator, who creates and publishes services
composed of existing SWS; (3) SWS application provider, who is an organiza-
tion that design its own application based on SWS; and a (4) WS application
consumer, who transparently uses the framework for finding and executing
SWS that satisfies its request (a WSMO goal).

Using these categorization of users, the INFRAWEBS framework identifies
several tasks that have to be supported and conforms the SWS life-cycle. Defi-
nitions for each identified stage in INFRAWEBS framework are the following:

SWS Creation Combines the creation of semantic descriptions of WS, along
with needed ontologies and goals. These descriptions are stored and can
be published for common usage.

SWS Composition Providers or aggregators can combine several services to
provide new services. These composed services are also represented and
stored as semantic descriptions for further usage.

SWS Discovery It is a process where user requests (WSMO goals) are matched
to service functionality (WSMO capabilities).

†3http://www.infrawebs.eu

70 Chapter 2. Semantic Web Services

SWS Selection Choosing which of the discovered services has to be executed
can be performed in a pro-active manner, or automatically, by human
users or other services.

SWS Execution This stage deals with the actual service, providing the neces-
sary input from the user and obtaining the result after invocation.

SWS Monitoring Information about executed services is gathered in this
stage so that it can be used for further service selection.

2.4.3.1 INFRAWEBS Architecture

Figure §2.15 shows the internal architecture of the INFRAWEBS frame-
work, where some components are only used in either runtime or design time
(surrounded by a corresponding box). These components responsabilities are
briefly described in the following:

SWS-D Semantic Web Service Designer, responsible for the creation of WSMO-
based semantic descriptions of WS capabilities and goals.

SWS-C Semantic Web Service Composer, responsible for the static composi-
tion of existing WSMO-based SWS.

DSWS-R Distributed Semantic Web Service Repository, responsible for the
persistent storage of WSMO-based descriptions and their publication
within the framework. In the runtime phase, it is used to retrieve the
necessary semantic descriptions.

SIR Semantic Information Router, responsible for registration and annotation
of Web services (their WSDL definitions), which are then used in the pro-
cess of SWS design.

OM Organizational Memory, responsible for indexing and case-based re-
trieval of WSMO-based descriptions. In runtime, it is used in the first
step of the discovery process to retrieve an initial set of SWS matching
the current goal, based on ontological keywords similarity.

SAM Service Access Middleware, responsible for guiding the user applica-
tions through the steps of SWS usage, including discovery, selection and
execution.

SWS-E Semantic Web Service Executor, responsible for executing SWS.

2.4. Other Frameworks 71

DesignRuntime

<<broker>>

QoSBroker

<<executor>>

SWS-E

IQoSMonitor

<<repository>>

DSWS-R
SWS-C

<<KO Repository>>

OM

<<CMS aggregator>>

SIR

SWS-D
<<agent>>

SAM

OMInterface

externalInterface

internalInterface

DSWS-R API

SIR2OM

<<SPARQL>>

<<SPARQL>>

SWSD2SIR

Figure 2.15: Design and runtime architecture of INFRAWEBS.

QoS-Broker Quality of Service Broker, responsible for collecting monitored
data and calculating the metric values of the SWS being executed.

The described architecture offers a novel, complete approach to solving
problems that occurs in the process of creating SWS applications. This ar-
chitecture supports the interaction scenarios with every potential user type
enumerated above that wants to perform one of tasks previously identified.

2.4.3.2 Integrated INFRAWEBS Framework

The Integrated INFRAWEBS Framework (IIF) is the underlying infrastruc-
ture for communication and integration of all the INFRAWEBS components,
and as a facade to these components in the form of services. It is implemented
as an extensible Enterprise Service Bus (ESB) middleware. The IIF is deployed
in a peer-to-peer network, possibly integrating components of different tech-
nologies within each peer. Thus, any application able to interact with Java
APIs or WS can interoperate with INFRAWEBS components.

72 Chapter 2. Semantic Web Services

IIF allows each peer to deploy the whole stack of INFRAWEBS components
or only a part of them, in a transparent manner for the user. The use of the
underlying ESB middleware provides the IIF with the necessary extensibility
to be a Semantic ESB, providing components to create, maintain and execute
WSMO-based SWS, so it can be considered as a semantic SOA.

2.4.4 Provisioning Approaches

Several proposals extend the frameworks presented throughout Sec. §2.4
in order to present semantic provisioning approaches. However, there are

no relevant proposals that describe provisioning scenarios using SWSF. In the
following, some proposals based on IRS-III and INFRAWEBS are discussed.

Using IRS-III framework, Galizia et al. [32] propose a selection methodol-
ogy based on a trust ontology. They enhance the capability-driven selection
of IRS-III by introducing trust-based selection criteria. This criteria possibly
includes QOS policies, as well as reputation ratings and third-party evaluated
trust. The selection is made using a classifier.

Hakimpour et al. [41] present a structured approach to SWS composition
in IRS-III. Each service component of the global composition is automatically
discovered using the capability-driven approach from IRS-III and a composi-
tion tree, where the global goal is decomposed in several sub-goals, one for
each component. However, selection is performed manually by the user, that
has to choose the desired combination of discovered services.

A process support applied to a concrete domain using automatic selection
of SWS is showed in [24]. In this work, Dietze et al. applies IRS-III brokering
server to the domain of e-Learning. Thus, they provide a domain ontology
that can be linked with IRS-III ontology, in order to perform automatic dis-
covery and selection based on desired capabilities of e-Learning service. Al-
though this proposal dynamically selects the proper service, it do not describe
the actual selection mechanism.

Concerning INFRAWEBS composition scenario, Agre and Marinova pro-
posed a discovery process that is aware of the compatibility between the ser-
vices participating in the composition, i.e. their proposal is able to find a
proper orchestration of services [1]. In order to find that orchestration, com-
posite goal templates, which specify some integrity constraints restricting pos-
sible compositions, are used. Again, the selection process is done manually by
the user.

Finally, Kovács et al. presents the discovery engine implemented for IN-
FRAWEBS in [50]. This engine performs the discovery in two phases. Firstly,

2.4. Other Frameworks 73

a classical keyword filtering are done to filter the candidates. Then, logical
matching is performed between goals and services so that the matched ser-
vices solves the desired goal. Finally, the list of matching services are en-
hanced with QOS data based on past executions, so that can be used for service
selection.

2.4.5 Existing Tools

In order to support the frameworks presented in Sec. §2.4 , there are some
tools and implemented software libraries. However, in the case of SWSF, there
are no available software that provides a successful usage scenario. Further-
more, as IRS and INFRAWEBS rely on WSMO ontology, several WSMO-based
applications can be used within these frameworks, and some tools discussed
here can be also used in WSMO-based applications.

2.4.5.1 WebOnto

WebOnto is a Java applet that communicates with a server which allows
users to browse and edit ontologies and knowledge models over the Web [28].
It uses OCML to represent ontologies and to provide a direct manipulation in-
terface, displaying ontological expressions using a rich medium. WebOnto
is an easy-to-use application, though it has facilities for scaling up to large
ontologies. Finally, WebOnto was designed to complement the ontology dis-
cussion tool Tadzebao.

Figure §2.16 shows a screenshot of the application. It can be accessed from
http://kmi.open.ac.uk/projects/webonto/, and it is useful as an ontology editor
for IRS-III.

2.4.5.2 IRS-III Browser

IRS-III Browser is a Java application that serves as a graphical client to a
IRS-III server. This server has to be provided, and currently its implementa-
tion is not publicly available. Using the Java client, a user may find or cre-
ate goals, mediators, ontologies and service descriptions, link goals to WS
using mediators, publish services within the IRS-III framework instance and
invoke such services using goals. This application can be downloaded at
http://kmi.open.ac.uk/projects/irs/.

74 Chapter 2. Semantic Web Services

Figure 2.16: WebOnto application.

Additionally, a plug-in for WSMO Studio (cf. Sec. §2.1.6.1) includes the
IRS-III Browser functionality into WSMO Studio. This plug-in is included in
the complete version of WSMO Studio.

2.4.5.3 INFRAWEBS Axiom Editor

The INFRAWEBS Axiom Editor is an ontology-driven user-friendly tool
for graphical construction of complex logical expressions (called axioms)
based on available set of ontologies [2]. It is aimed at constructing and editing
WSMO-based SWS capabilities. The graphical models created are internally
stored as WSML axioms, and can be used within a WSMO service description.

This Axiom Editor is also included in WSMO Studio as IRS-III Browser.
Moreover, it is uses as a graphical editor within INFRAWEBS Designer tool,
described below.

2.4. Other Frameworks 75

Figure 2.17: INFRAWEBS Designer.

2.4.5.4 INFRAWEBS Designer

Instead of an editor only for capabilities within WSMO service descriptions,
INFRAWEBS Designer is a complete tool to graphically create WSML-based
descriptions of SWS according to WSMO framework [4]. Thus, end users can
use this tool to convert provided services into WSMO-based semantic services.
Figure §2.17 shows a screenshot of the tool, that is built upon Eclipse rich-
client platform.

This tool can be reached at http://www.iit.bas.bg/InfrawebsDesigner/.

2.4.5.5 INFRAWEBS Components

Finally, the INFRAWEBS project has made available the source code of
several components from its framework, and from IIF. Altogether with the
INFRAWEBS Designer, a complete usage scenario can be implemented and
tested by anyone. The source code and relevant documentation and demos are
available at the INFRAWEBS project site http://www.infrawebs.eu/index.html?
menue=dissemination&site=open_software.

76 Chapter 2. Semantic Web Services

2.5 Analysis and Conclusions

There are several approaches to define SWS in the community. The most
important ones have been described in detail in previous sections, including a
description of a large set of tools that use them. WSMO, OWL-S and the results
of the METEOR-S project, specially SAWSDL, are continuously evolving, trying
to become a standard in Semantic Web Service architecture. Each one has
advantages and drawbacks that the final user has to be in consideration when
choosing a concrete framework on which a provisioning solution is going to
be based.

The following comparative analysis only shows alternatives between the
three main alternatives, namely WSMO, OWL-S, and METEOR-S, because of they
are the frameworks on which semantic provisioning approaches discussed in
Sec. §3 rely, and they are the most accepted frameworks in the community. In
the METEOR-S case, the comparison is mainly focused on SAWSDL features.

Table §2.1 shows the framework for comparison used in this report. It
presents the different approaches that the compared frameworks take in some
activities of the SWS life-cycle, and the elements defined to support them. Ad-
ditional comparisons between SWS proposals can be found in [6, 52, 66]. The
compared features of each activity are described in the following sections.

2.5.1 Discovery

The comparison between the different frameworks shows what elements
support the discovery of services. In WSMO, goals and capabilities are used to
discover SWS. A goal describes the objective that a client want to accomplish
when accessing a service, while a capability defines a service functionality.
Thus, discovery performs a matching between goals and capabilities.

The Service Profile is used in OWL-S to define the functionality that a ser-
vice provider offers within a concrete WS. In this case, to perform the neces-
sary matching, a user has to define the required functionality using another
instance of the Service Profile class.

The METEOR-S approach is based on an extension of UDDI registries to al-
low semantic matching. This is also accomplished by using SAWSDL to anno-
tate WSDL documents, so a discovery solution intended for any other frame-
work can be applied to SAWSDL.

2.5. Analysis and Conclusions 77

A
ct

iv
it

ie
s

W
SM

O
O

W
L-

S
M

ET
EO

R
-S

D
is

co
ve

ry
G

oa
ls

an
d

C
ap

ab
ili

ti
es

Se
rv

ic
e

Pr
ofi

le
SA

W
SD

L
an

d
U

D
D

I

Q
O

S
D

es
cr

ip
ti

on
s

N
FP

ex
te

ns
io

ns
Se

rv
ic

e
Pa

ra
m

et
er

In
te

rf
ac

e
C

at
eg

or
iz

at
io

n

Se
le

ct
io

n
N

ot
de

fin
ed

N
ot

de
fin

ed
N

ot
de

fin
ed

In
te

ro
pe

ra
ti

on
C

ho
re

og
ra

ph
y

Pr
oc

es
s

M
od

el
SA

W
SD

L
an

d
B

P
E

L
4W

S

C
om

po
si

ti
on

O
rc

he
st

ra
ti

on
C

on
tr

ol
C

on
st

ru
ct

s
B

P
E

L
4W

S

In
vo

ca
ti

on
W

SD
L

G
ro

un
di

ng
Se

rv
ic

e
G

ro
un

di
ng

W
SD

L

Ta
bl

e
2.

1:
Se

m
an

tic
W

eb
Se

rv
ic

es
in

iti
at

iv
es

.

78 Chapter 2. Semantic Web Services

2.5.2 QoS Descriptions

Concerning QOS or non-functional properties, each framework has place-
holders to associate them to service descriptions. WSMO includes a predefined
set of non-functional properties that can be used to describe any first-level
component of the framework. Furthermore, that set can be easily extended to
support richer QOS descriptions.

Within the OWL-S service profile, there is an extension point called Service
Parameter that can be used to describe QOS properties. However, there are
some predefined properties, which can be considered meta-information about
the service, as well as a service categorization initially intended for discover-
ing, but not used by any provisioning approach.

This categorization is the unique available possibility of describing QOS
in the METEOR-S framework, and it is present in WSDL-S, but not in SAWSDL.
However, SAWSDL can benefit from QOS descriptions from the imported an-
notations.

2.5.3 Selection

Selection processes have to take QOS descriptions and a set of discovered
services to rank them so the best service in terms of QOS can be chosen. None
of the discussed frameworks has specific elements to support selection pro-
cesses, though there are many extensions presented in Sec. §3 that propose
solutions to this task.

2.5.4 Interoperation

The interoperation mechanisms describes how a service works, in terms of
communication of inputs and outputs. In WSMO, the choreography elements
defines pre and post conditions of the capabilities of each service.

OWL-S envision services as a process, described by their Service Models.
Basically, in OWL-S a service is viewed as a transformation of inputs to outputs
and as state transition.

Finally, METEOR-S framework add semantics to WSDL by mapping schema
elements to ontologies concepts within SAWSDL proposal. Interfaces, opera-
tions, and their inputs and outputs are semantically described in order to en-
able interoperation. Furthermore, BPEL4WS also can be annotated to provide
semantics to process models.

2.5. Analysis and Conclusions 79

2.5.5 Composition

About the service composition, the analysis has been done on how to de-
fine the communication process between services. WSMO defines the orches-
tration processes, but they are not completely defined yet.

Composition processes in OWL-S use control constructs, which provide a
process annotation to define data flow between processes (i.e. services). Fi-
nally, METEOR-S framework uses BPEL4WS to create a representation of the
web process, providing a rich set of tools for modeling the workflow and rep-
resenting requirements.

2.5.6 Invocation

The mechanism to actually invoke a service is provided by the ground-
ing information. WSMO defines the grounding through the choreography, al-
though it is not completely specified how it can be used to actually invoke a
service. This grounding can be connected to WSDL definitions.

In OWL-S the Service Grounding is a top-level element that provides the
means and the information to access the service. OWL-S also provides a stan-
dard grounding for WSDL, though it does not dictate the grounding mecha-
nism.

METEOR-S framework uses the current standards of WSDL and SOAP for
invocation purposes, because of their proposal to semantically annotate WSDL
documents.

80 Chapter 2. Semantic Web Services

Chapter 3

Semantic Provisioning Approaches

I n this chapter a thorough analysis of the related work on discovery and selec-
tion of SWS is presented. Several proposals on discovering and selecting SWS

are discussed, along with a survey on how user preferences are described by different
approaches. Furthermore, a comparative analysis is showed, presenting some conclu-
sions about all this related work. Although some proposals present approaches on both
discovery, selection and user preferences descriptions, each one is discussed in only
one of the sections, depending on its focus.

82 Chapter 3. Semantic Provisioning Approaches

3.1 Discovering Semantic Web Services

An early work on SWS discovery by Paolucci et al. propose a DAML-S-
based solution to perform semantic matching between user requirements and
services provided capabilities [69]. They claim that UDDI registries and lan-
guages such as WSDL can not represent capabilities, so they are not able to
support semantic matching. Their matching engine, based on DAML-S, return
a match between a user request and a service capability (referenced by the
authors as advertisement) if they both are “sufficiently similar”, i.e. the cor-
responding service provides the capability requested by the user in some de-
gree. Thus, the matching engine has to allow flexible matches. That similarity
or matching degree is firstly computed between service output of both request
and advertisements, and then between their input. The matching degree with
regards to output parameters can result one of the following, ordered by pref-
erence.

exact: If the request and advertisement output are equivalent, or if the request
output is a subclass of the advertisement one.

plug in: If the output of the advertisement subsumes the one of the user re-
quest. This is weaker than the above.

subsumes: If the output of the request subsumes the one of the advertise-
ment, then the provider does not completely fulfill the request.

fail: If no subsumption relation between advertisement and request is identi-
fied.

These degrees are equivalent in the case of matching the input. A higher
matching degree on the output is preferred over input matches. Thus, a simple
selection can be performed using this approach. Paolucci et al. also provide
an architecture to apply their matching engine to a UDDI registry.

Sycara et al. apply the previous matching engine in their work, that discuss
how semantic information allows automatic discovery, invocation and compo-
sition of WS [83]. They provide an early integration of semantic information in
a UDDI registry, and propose a matchmaking architecture. Additionally, they
present a virtual machine that implements the DAML-S Process Model so it can
be used to manage the interaction with WS.

They update their work to OWL-S in [84]. However, their approach are not
able to perform discovery and selection taking QOS properties into account,
because of the DLs formalism they use.

3.1. Discovering Semantic Web Services 83

There are more proposals that perform the discovery of SWS using DLs
[36, 53, 56]. Particularly, González-Castillo et al. provide a matchmaking algo-
rithm using the subsumption operator between DLs concepts describing user
requests and provided services [36]. In order to describe them, they use an ad
hoc DAML-based ontology, that allow the use of DLs to perform the match-
making. However, existing DLs reasoners, as RACER [40] and FaCT [45], do
not provide a sufficiently expressive DLs variant for their proposed service
description, though they are used to partially validate their proposal.

Giving a requested service description S, their algorithm returns matches
that are equivalent concepts to S; sub-concepts of S; super-concepts of S that
are subsumed by a top-level serviceDescription concept; or subconcepts of any
direct super-concept of S whose intersection with S is satisfiable. Thus, these
matching possibilities are quite similar to the defined by Paolucci et al., though
González-Castillo et al. do not state any preference order.

On the other hand, Lutz and Sattler [56] do not provide an algorithm,
but give the foundations to implement it using subsumption. They further
discuss the different DLs variants that are useful to describe services, along
with complexity analysis of the associated inference problems within discov-
ery processes. Additionally, they describe services in terms of the actions they
perform to transform their concept world.

The same applies to Li and Horrocks work [53], who also give hints to im-
plement a prototype using RACER. Their proposal are based on DAML-S, so
it has the same problems about existing implementations of the chosen DLs
variant as González-Castillo et al. work. However, their matching algorithm
extends the degree definition described by Paolucci et al., by adding a “inter-
section satisfiable” match level. Thus, if the intersection of the advertisement
and the request is satisfiable, the match constitutes an intersection. This match
is considered better than a fail (or a disjoint match, as referenced by the au-
thors), but weaker than subsume match.

All the previously discussed proposals define different matching degrees,
from exactly equivalents to disjoint, so they perform a selection based on these
degrees. All of them perform this matching by comparing inputs and outputs
from the request and the advertisements. However, Benatallah et al. propose
to use a best profile covering to discover and hence select the requested ser-
vice [11]. Thus, they take a more flexible approach, performing the discovery
process using rewriting techniques and hypergraphs, but it results to be a NP-
hard problem, as in any optimization problem [14].

On the other hand, Benbernou and Hacid realise that some kinds of con-
straints are necessary to discover SWS, including QOS related ones, so they

84 Chapter 3. Semantic Provisioning Approaches

formally discuss the convenience of incorporating constraints in SWS discov-
ery [12]. However, instead of using any existing SWS description framework,
their proposal uses an ad hoc Services Description Language, in order to be
able to define complex constraints. In addition, the resolution algorithm uses
constraint propagation and rewriting, but performed by a subsumption algo-
rithm, instead of a Constraint Programming solver.

An early approach on modeling QOS in the context of SWS discovery are
found in [73]. In this work, Ran presents a UDDI extension and a catalog of
QOS parameters that can be included in UDDI descriptions. Discovery is per-
formed using queries with functional requirements, as well as conditions on
QOS. However, the actual discovery algorithm is not defined, and queries that
use QOS are not shown, so their expressiveness is unknown. Additionally,
UDDI only supports a keyword based search, so no form of inference or flex-
ible match can be performed [83]. Apart from that, the user have to perform
different queries in order to perform a selection of the best service.

While discovery approaches do not normally take QOS preferences into
account, selection proposals use them to rank services, in order to choose the
best suited service with regards to QOS-aware user preferences. In the follow-
ing Section, several QOS-aware selection proposals are discussed. Some of
them also define discovery processes, but they mainly use similar approaches
as the ones discussed in current Section, so the following section is only fo-
cused on selection approaches, unless the corresponding discovery process is
noteworthy.

3.2 QoS-Aware Selection

Although their proposal is not semantically enabled, Liu et al. present a
QOS computation model including a selection algorithm [55], which is applied
in other approaches [70, 87]. They propose an extensible QOS model that com-
prises both generic and domain specific criteria. Thus, they do provide a very
simple generic QOS model for every WS, but allowing its extension with QOS
domain specific properties. The generic QOS criteria provided contains the
execution price, execution duration and reputation. Both generic and domain
specific criteria define an expression that compute the quality critera value used
in the selection process.

Liu et al. also propose a service selection where the service ranking is per-
formed based on user preferences over QOS requirements. These preferences
are expressed by relative weights that come into the QOS computation algo-
rithm at its last stage. Thus, the selection process is reduced to a matrix-based

3.2. QoS-Aware Selection 85

QOS computation. In this computation, a matrix, whose elements are the ob-
tained from the QOS criteria of each service, is normalized two times, finally
obtaining a global QOS value for each service, where user preferences are
taken into account. This algorithm suppose that the set of input services have
the same functional properties, due to they have been previously discovered.

A semantic framework for service discovery is presented by Pathak et al.,
which models mappings between ontologies in [70]. They propose to use do-
main specific ontologies to define QOS properties among user requests and
service descriptions. In their work, selection is done using matching degrees
at a first stage, such as the degrees defined in [53]. Thus, the set of discovered
services is filtered, removing those services that fall under intersection and dis-
joint categories.

The second step of their selection process further refines the set of can-
didate services by QOS parameters. The values from these parameters are
collected in a quality matrix and normalized, in order to calculate a fixed,
weighted utility function for each candidate service. Then, candidates whose
utility function is above a given threshold, are passed to the final step of the
process, where they are ranked by one QOS parameter that is applied to a
ranking function in order to obtain the optimal service with regards to user
preferences. These user preferences are specified in two different stagers: (1)
weights for each QOS parameter used in the computation of the utility func-
tion, and (2) ranking attribute and ranking function used at the final stage.

In addition to the two previous proposal, Wang et al. also define a QOS-
aware selection model for SWS that makes use of QOS matrices [87]. They
provide an extension to WSMO ontology that enables handling QOS parame-
ters. Within this extension, users may define expressions that provide the ac-
tual value of a measured QOS parameter, and also the associated preference.
This preference is defined in terms of relative weights and preferred tendency,
whose value may be one of the following:

small: The value of the QOS parameter is preferred to be as low as possible.

large: The value of the QOS parameter is preferred to be as high as possible.

given: The value of the QOS parameter is preferred to be as close to a given
value as possible.

Wang et al. define a QOS selection model and an algorithm based on a
QOS matrix that contains values of QOS parameters. Before, in a previous
step, discovery is performed by matching functional properties. The selection

86 Chapter 3. Semantic Provisioning Approaches

algorithm first normalize matrix values in order to homogenize them. Then, a
uniformity analysis is done applying different formulas depending on the ten-
dency preference of each QOS parameter. Finally, for each service (represented
by a row in the normalized matrix), the evaluation result can be computed by
adding the resulting values for each parameter applying the corresponding
weights.

On the other hand, Zeng et al. show a basic QOS model to Web services
composition in [88], although it can be applied to discovery and selection.
Their QOS model has a limited number of QOS criteria, though it is extensible.
These criteria comprise five common properties that can be applied to any
WS: execution price, execution duration, reputation, successful execution rate,
and availability. They also provide formulas for computing those QOS criteria
values, both for atomic and composite services. These formulas can be seen as
utility functions.

Furthermore, Zeng et al. propose a global service selection process based
on these utility functions. Actually, they provide two techniques to perform
the selection: (1) using QOS matrix normalization, and (2) obtaining the op-
timum by a Integer Programming method, which is more reliable. However,
this proposal do not take semantics into account and that the utility functions
are fixed, so the user can define its preferences only by means of weights.

Another non-semantic, but noteworthy proposal, by Ruiz-Cortés et al., de-
scribes an automatic, QOS-aware provisioning using Constraint Programming
[76]. They model requests and service descriptions using a language specially
devised for transforming these descriptions into Constraint Satisfaction Prob-
lems (CSP). Thus, provisioning processes are performed by checking the con-
formance of both request and candidate services CSPs, in order to discover the
conformant services.

Then, the best service is selected by means of the optimization of a
weighted composition of utility functions, defined over each relevant QOS pa-
rameter. This optimization is solved by Constraint Satisfaction Optimization
Problems (CSOP). This approach provides a high level of expressiveness by
defining user preferences as utility functions that the CSOP solver can handle
with, including inequalities and non-linear expressions.

A semantically-enabled matching using CSPs is presented in [51] by Kri-
tikos and Plexousakis, based on [76]. They propose an ontology similar to
the proposed by Maximilien and Singh [60], mixing requests and QOS-aware
service descriptions within OWL-S. Moreover, they present a matching algo-
rithm to infer equivalences between differently named QOS parameters that
are semantically equivalent, although it is generally undecidable. Their ex-
tension ontology, OWL-Q, is separated in several facets that concentrates on a

3.3. User Preferences and QoS Ontologies 87

particular part of their QOS WS description, such as connection with OWL-S
instances,the actual QOS descriptions, metrics facets that provide classes to
formally define QOS metrics, units, etc.

Concerning discovery and selection, they use CSPs to perform the match-
making of compatible provided services, and then select the best service by
means of a weighted composition of utility functions, which balance the worst
and best scenarios to compute the utility value. However, these user prefer-
ences are not included in their QOS ontology.

Finally, an approach that merges discovery and selection algorithms ex-
ecution is presented by Vu et al. [86]. They provide an extension to WSMO
ontology in order to support QOS properties. Their extension model is based
on axioms from the underlying WSMO ontology. They show a QOS-aware dis-
covery framework that takes QOS values of WS based on user feedback and
perform the discovery process, ranking the services in terms of QOS compli-
ance. Actually, the ranking of services is obtained with regards to user pref-
erences, defined by relative weights. Additionally, they sketch both a central-
ized architecture and a scalable one, that can be deployed into a peer-to-peer
network.

3.3 User Preferences and QoS Ontologies

The following proposals do not fall exactly into any of the two previous
Sections, because they focus on providing QOS or user preferences descrip-
tions. These proposals constitute an important contribution to successfully
express QOS within SWS frameworks, that most of them can be applied to.
Although it is not the focus of this Section, their discovery and selection ap-
proaches are also briefly described in the following.

An extension to DAML-S to include QOS profiles is proposed in [89] by
Zhou et al.. Their extension is divided in three layers with different roles.
Thus, the QOS profile layer provides support for the different roles of the pro-
visioning process: service provider, user requests (inquiries), and templates.
This layer provide three common superclasses for matchmaking. The con-
straints that can be defined in each profile can be described by properties def-
initions and cardinality. The QOS property definition layer allows to specify
the domain of the QOS properties, i.e. core, input, output, preconditions and
effects. Finally, the QOS metrics layer defines how each QOS property is mea-
sured, and who is the organization that guarantees that measurement.

Furthermore, Zhou et al. provide a basic profile with commonly used QOS
properties defined, such as cost, response time, reliability and throughput.

88 Chapter 3. Semantic Provisioning Approaches

Their proposal only allows order constraint between QOS parameters, so it
performs discovery and selection using DLs. The QOS ontology is simple
and can be easily linked to the DAML-S service profile. However, its selection
algorithm uses matching degrees to order the resulting set of services, so the
user preferences can not be expressed, as they are inherent to that selection
algorithm. Thus, the different QOS constraints stated in the profile are the
only way to influence in the selection process.

Another DAML-based proposal is also presented in [82], where Bilgin and
Singh provide a DAML-based query language, instead of just extending OWL-
S. Using this Semantic Web Services Query and Manipulation Language, they
advertise QOS attributes and perform the selection. They provide a simple on-
tology for service categories and QOS attributes associated to these categories.
The main drawbacks of this approach are the same as in [73], with limitations
on the expressiveness of queries, due to the use of DAML as its foundation.
Thus, user preferences can not be expressed in those queries, and are inherent
to their selection algorithm, as in [89]. Additionally, their ontology is coupled
with a UDDI registry that has to be used in their proposal, including the URL
of the registry inside the ontology, for instance.

Maximilien and Singh present a framework and a QOS ontology for dy-
namic selection in [60]. They use an agent-based approach within their Web
Services Agent Framework (WSAF). Thus, they provide a complete architec-
ture to perform service selection, that uses a layered QOS ontology. This on-
tology has the following three layers:

• The QOS upper ontology, which defines basic concepts associated with
a QOS parameter, such as measurement, relationships, and aggregate
support.

• The QOS middle ontology, which defines the most frequent QOS param-
eters and metrics encountered in distributed systems, such as availabil-
ity, capacity, cost, security, interoperability, performance, etc.

• The user-defined lower ontology that defines concepts from the domain
of each service.

This framework constitutes a very comprehensive solution to describe
QOS in SWS, and it is referenced by other authors [27, 51, 70]. However, user
preferences based on QOS parameters from their ontology have to be defined
externally to the ontology itself, in a QOS policy description that WSAF apply
to perform the selection process.

3.4. Analysis and Conclusions 89

Finally, Dobson et al. presents QoSOnt in [27], which is an ontology that
extends OWL-S to describe QOS attributes and metrics. Their approach is sim-
ilar to the one from Maximilien and Singh, separating QoSOnt ontology in
different smaller ontologies. Thus, the base ontology contains basic QOS con-
cepts, such as Attribute and Metric. Then, concepts specific to some attribute
can be built into separate ontologies on top of the base concepts. For instance,
a separate ontology for availability can be specified, which contains concepts
and metrics that can be only applied to availability specification. Addition-
ally, generic metrics concepts can be defined in another separate ontology, for
reuse.

These metrics also define the user preferences applied to them, using the
acceptability direction, that is the preferred tendency of metric values (e.g. the
higher the best). However, Dobson et al. do not explicitly show how to per-
form selection, and their proposal suffers from OWL limitations, so they have
to use an ad hoc XML language to allow custom data ranges.

3.4 Analysis and Conclusions

Once all the different proposals have been described, an analysis and a
framework for comparison between their different features can be done. Table
§3.1 shows this comparison, merging proposals from the previous sections
so they can be compared each other. In this table, ordered by the order of
exposition, the following features are shown:

• QOS Props.: Whether each proposal takes QOS properties into account
when performing its defined processes or not.

• User Preferences: How a proposal expresses user preferences.

• Discovery: The discovery technique that a proposal uses.

• Selection: The selection technique that a proposal uses.

In the following, each feature is independently analyzed, and then global
conclusions are discussed.

3.4.1 QoS Properties Definition

Concerning QOS properties, there is a straightforward tendency to support
their description in proposals that are mainly focused on selection processes.

90 Chapter 3. Semantic Provisioning Approaches
Proposal

Q
O

S
Props.

U
ser

Preferences
D

iscovery
Selection

Paoluccietal.[69]
N

o
Fixed

D
Ls

m
atching

M
atching

degree

Sycara
etal.[83]

N
o

Fixed
D

Ls
m

atching
M

atching
degree

G
onzález-C

astillo
etal.[36]

N
o

Fixed
D

Ls
m

atching
M

atching
degree

Lutz
&

Sattler
[56]

N
o

Fixed
D

Ls
m

atching
M

atching
degree

Li&
H

orrocks
[53]

N
o

Fixed
D

Ls
m

atching
M

atching
degree

Benatallah
etal.[11]

N
o

Fixed
R

ew
riting

R
ew

riting

Benbernou
&

H
acid

[12]
N

o
Fixed

D
Ls

+
C

SP
N

otdefined

R
an

[73]
Yes

Fixed
U

D
D

I
N

otdefined

Liu
etal.[55]

Yes
W

eights
N

otdefined
Q

O
S

m
atrix

Pathak
etal.[70]

Yes
W

eights
D

Ls
m

atching
Q

O
S

m
atrix

W
ang

etal.[87]
Yes

Tendencies
N

otdefined
Q

O
S

m
atrix

Z
eng

etal.[88]
Yes

U
tility

&
w

eights
N

otdefined
Integer

Prog.

R
uiz-C

ortés
etal.[76]

Yes
U

tility
&

w
eights

C
SP

C
SO

P

K
ritikos

&
Plexousakis

[51]
Yes

U
tility

&
w

eights
C

SP
+

M
atching

C
SO

P

V
u

etal.[86]
Yes

W
eights

D
Ls

M
atching

R
eputation

R
ank

Z
hou

etal.[89]
Yes

Fixed
D

Ls
M

atching
M

atching
degree

Bilgin
&

Singh
[82]

Yes
Fixed

U
D

D
I

Q
uery

language

M
axim

ilien
&

Singh
[60]

Yes
External

D
Ls

M
atching

M
atching

degree

D
obson

etal.[27]
Yes

Tendencies
D

Ls
M

atching
N

otdefined

Table
3.1:Sem

antic
provisioning

proposals.

3.4. Analysis and Conclusions 91

The reason clearly is that SWS discovery is treated as a functional filter, where
candidate services are chosen depending on the functionality requested. How-
ever, some selection proposals, such as [76, 87], also advocate the use of QOS
properties in discovery processes, provided that these properties further filter
the set of candidate services. In these cases, QOS properties have to be sepa-
rated into two groups: the ones that purely filter the candidates, and the ones
that define preferences used in selection processes.

Furthermore, the current trend in the SWS provisioning research field is to
gradually include QOS definitions within proposals, provided that research
on functional discovery is attracting less attention because current proposals
are well established.

3.4.2 User Preferences Definition

There are several choices to define user preferences for SWS. First of all,
most of the proposals that are focused on discovery processes and/or perform
simple selection offer fixed user preferences, i.e. they do not provide alterna-
tives in order to allow a user to define his or her own preferences.

Secondly, tendencies and weights constitute a simple, yet powerful alter-
native to express user preferences. These formalisms are widely extended be-
tween SWS selection proposals, because they enable easier and efficient QOS
parameter transformations using vectorial operations, providing a reasonable
level of precision and recall. Tendency information usually comes with rela-
tive weights, too.

Finally, the most expressive alternative to define user preferences seems
to be utility functions, which are also used in conjunction with weights. Al-
though they may be complex to define, they constitute a very powerful ap-
proach to properly define QOS-aware user preferences. Proposals that make
use of utility functions perform selection processes using optimization tech-
niques, such as Integer Programming or Constraint Programming.

3.4.3 Discovery Techniques

Most of the discussed approaches perform the discovery process by means
of DLs matching. This is clearly a consequence of DLs spreading among the
Semantic Web applications. Actually, this approach is the most straightfor-
ward and powerful enough to match requested capabilities and service de-
scriptions, which are mostly defined by functional properties that can be easily
described within DLs ontologies.

92 Chapter 3. Semantic Provisioning Approaches

However, there are other proposals that use different formalisms, includ-
ing logical ones. Those proposals may offer higher precision, but this may
produce efficiency and even decidability problems.

3.4.4 Selection Techniques

The last feature analyzed is the selection techniques that are been used.
In this case, most discovery focused proposals compute matching degrees in
order to rank candidate services. This approach does not generate many extra
computing cost to discovery, but relax the matching algorithm. However, the
performed selection results with low precision, and does not allow the user to
state his or her preferences.

More powerful and precise solutions are implemented in selection pro-
posals. They propose to rank services by means of user-defined preferences,
that are collected and transformed into QOS matrices or optimization prob-
lems. On the one hand, QOS matrix based algorithms are easier to implement,
performing normalizations, vectorial operations, and applying weighted rela-
tions. On the other hand, optimization problems can be solved using several
techniques, such as Integer Programming or Constraint Programming. These
solvers become a more efficient, expressive and powerful approach to service
selection.

3.4.5 Final Conclusions

Several conclusions can be obtained from the discussed comparison.
Firstly, there are a few proposals that uses utility functions to express user
preferences [51, 76, 88], although only [76] allows the user to define complex
utility functions. These three proposals use optimization techniques, as Inte-
ger Programming or Constraint Programming, to select the best services, pro-
viding more efficiency and precision than other approaches based no match-
ing degrees. Therefore, utility functions become the natural choice to define
highly expressive user preferences.

Secondly, there are many proposals that provide a semantic framework to
define QOS properties [27, 51, 60, 70, 82, 87, 89], although [60] do not han-
dle user preferences in their ontology and [82, 89] have a fixed definition of
user preferences, inherent to their selection algorithm. [51] is the most expres-
sive when defining user preferences, followed by [27, 70, 87], that limit their

3.4. Analysis and Conclusions 93

preferences to weights and parameter tendencies. According to all those pro-
posals, it is clear that QOS properties have to be defined semantically in order
to apply them to SWS provisioning.

Thirdly, it is commonly accepted that functional SWS discovery has to be
performed by DLs reasoners, that are able to match user requests and service
capabilities. Although there are some proposals that use other approaches,
they are mainly non-semantic proposals, or try to extend UDDI registries with
semantic information. These other approaches are not successful and efficient
enough to take them into account.

Finally, we conclude that none of the above proposals semantically define
user preferences, although in [27, 87] the authors include in their ontology ex-
tension the tendency of QOS parameters. What is more, most of the proposals
that perform selection tasks in terms of user preferences describe them using
ad hoc , non-semantic descriptions completely decoupled with the ones used
to describe service functionality, causing a semantic gap between functional
descriptions and user preferences.

The motivation of our research work is precisely to tackle the previous
problems. Most recent proposals use utility functions to express user prefer-
ences, and there are many QOS ontologies which a novel proposal should be
integrated with. Our proposal is to mix the expressiveness of utility functions
and weights proposed by Ruiz-Cortés et al., the semantic definition of QOS
from Maximilien and Singh or Kritikos and Plexousakis, and an extension to
give semantics to utility functions. Thus, this proposal takes full advantage of
Semantic Web approaches on selecting the best services, while allowing to de-
fine user preferences using the most expressive solution, i.e. utility functions.
Furthermore, we put functional, non-functional (QOS), and user preferences
at the same semantic level, by means of using extensions to current SWS on-
tologies.

94 Chapter 3. Semantic Provisioning Approaches

Part III

Final Remarks

Chapter 4

Conclusions and Future Work

I n order to sum up this research report, this chapter presents a summary of our
research and the main conclusions that show that our initial hypothesis was

correct. Additionally, future work areas that arise from our discussion are described,
along with a brief review of our ongoing work.

98 Chapter 4. Conclusions and Future Work

4.1 Conclusions

In this research report, we present a thoroughly review of the state-of-the-
art on QOS-aware SWS provisioning. An analysis of current SWS frameworks
is discussed, comparing each proposal and showing their approach to service
provisioning. Although initially SWS frameworks cannot perform QOS-aware
selection, there are several extensions to these frameworks to allow it. These
extension approaches are also discussed and analyzed.

These analysis show that our initial hypothesis was correct, and can be
summarized in the following statements:

• There is a gap between functional and QOS preferences, with each pro-
posal providing different QOS ontologies that are not properly linked
with functional descriptions.

• Selection techniques are highly coupled with the concrete QOS represen-
tation chosen by each proposal.

• Expressiveness of QOS user preferences varies between each proposal.

From these statements, that support our work hypothesis, we conclude
that there is a need for a holistic solution that offer a QOS-aware SWS pro-
visioning, by providing a generic extension to current SWS ontologies that
allows to define QOS preferences at the same abstraction level than service
functionality, and that is loosely coupled with the actual selection technique
to be used. This solution has to be based on current QOS ontologies, while
supporting the most expressive approach to define user preferences, i.e. util-
ity functions.

4.2 Future Work

Our future research work is focused on developing such QOS-aware pro-
visioning solution. We have already published two early contributions on this
field, and have another one in reviewing process. Thus, our research work
is aimed at providing a complete solution to the identified problems in QOS-
aware SWS provisioning.

In particular, we are extending our initial approach on semantic descrip-
tion of user preferences, by developing the proposed ontology and evaluating

4.2. Future Work 99

its soundness and applicability to a concrete SWS provisioning scenario. This
ontology has to be decoupled with the actual selection algorithm to be used,
and it has to allow to connect it to already proposed QOS ontologies.

In order to decouple user preferences descriptions with the selection algo-
rithm, we plan to develop generic transformations that transform those user
preferences into optimization problems that are described so that can be used
within specific selection algorithms, such as the discussed ones in Sec. §3.2 .
These transformations are being developed using XSLT style sheets.

100 Chapter 4. Conclusions and Future Work

Part IV

Appendices

Appendix A

Relevant Publications

In this appendix, two published contributions that provide an early ap-
proach to QOS-aware semantic provisioning are enclosed along with another
paper that is in process of review. These contributions show our first attempt
to provide a solution to the identified problems in previous sections. The pa-
pers are included in the following preserving their original layout.

Firstly, we present a paper published in the proceedings of the Fifth Inter-
national Conference on Service Oriented Computing (ICSOC 2007), where a hybrid
SWS discovery approach that takes care of QOS properties is presented. This
conference has been ranked in the A category in the CORE ranking. More-
over, that conference edition had an acceptance rate of 78.4 percent, and it has
an h-index of 10.

Secondly, our contribution to the First Non-Functional Properties and Service
Level Agreements in Service Oriented Computing Workshop (NFPSLA-SOC 2007)
is showed. In this contribution, we provide an approach to semantically de-
scribe user preferences. This workshop had an acceptance rate of 38.8 percent
and is going to be published by Springer in its LNCS series.

Finally, a submission to the 2008 International Conference on Semantic Web
and Web Services (SWWS 2008) that is currently been reviewed is also included.
This contribution presents a selection model to perform semantic provisioning
using an ontology for user preferences that is also provided. This conference
is positioned in the Top 80 of the CSCR ranking.

An Hybrid, QoS-Aware Discovery of Semantic

Web Services Using Constraint Programming�

José Maŕıa Garćıa, David Ruiz, Antonio Ruiz-Cortés, Octavio Mart́ın-Dı́az,
and Manuel Resinas

Universidad de Sevilla
Escuela Técnica Superior de Ingenieŕıa Informática

Av. Reina Mercedes s/n, 41012 Sevilla, España
josemgarcia@us.es

Abstract. Most Semantic Web Services discovery approaches are not
well suited when using complex relational, arithmetic and logical expres-
sions, because they are usually based on Description Logics. Moreover,
these kind of expressions usually appear when discovery is performed in-
cluding Quality-of-Service conditions. In this work, we present an hybrid
discovery process for Semantic Web Services that takes care of QoS con-
ditions. Our approach splits discovery into stages, using different engines
in each one, depending on its search nature. This architecture is exten-
sible and loosely coupled, allowing the addition of discovery engines at
will. In order to perform QoS-aware discovery, we propose a stage that
uses Constraint Programming, that allows to use complex QoS condi-
tions within discovery queries. Furthermore, it is possible to obtain the
optimal offer that fulfills a given demand using this approach.

Keywords: Discovery Mechanisms, Quality-of-Service, Semantic Match-
ing, Constraint Programming.

1 Introduction

Most approaches on automatic discovery of Semantic Web Services (SWS) use
Description Logics (DLs) reasoners to perform the matching [7,13,15,18,26,27].
These approaches have limitations regarding with the expressiveness of searches,
especially when there are Quality-of-Service (QoS) conditions integrated within
queries. For instance, a condition like “find a service which availability ≥ 0.9,
where availability = MTTF/ (MTTF + MTTR)”1 can not be expressed in
DLs. Although there are proposals that extend traditional DLs with concrete
domains in many ways [9], they still have limitations on expressing complex
conditions [1,14], as in the previous example. These complex conditions usually

� This work has been partially supported by the European Commission (FEDER) and
Spanish Government under CICYT project Web-Factories (TIN2006-00472).

1 MTTF stands for “Mean Time To Failure”, while MTTR stands for “Mean Time To
Repair”. Both of them are QoS parameters often used to define service availability.

B. Krämer, K.-J. Lin, and P. Narasimhan (Eds.): ICSOC 2007, LNCS 4749, pp. 69–80, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

70 J.M. Garćıa et al.

appear when performing a QoS-aware discovery, so in this case DLs reasoning
is not the most suitable choice.

QoS conditions are contemplated in several SWS discovery proposals. For
instance, Wang et al. extend wsmo framework to include QoS parameters that
allow to discover the best offer that fulfills the demanded conditions [30]. Ben-
bernou and Hacid propose the use of constraints, including QoS-related ones,
to discover SWS [3]. Moreover, Ruiz-Cortés et al. model the QoS conditions as
Constraint Satisfaction Problems (CSPs) [23], but in the context of non-semantic
Web Services.

Our proposal is an hybrid architecture to discover SWS. Discovery may be
split into different stages, each of them using the best suited engine depending
on the features of the corresponding stage. We identify at least two stages in this
process: QoS-based discovery and functional (non-QoS) discovery. The former
may be done using Constraint Programming (CP), as proposed in the case of
non-semantic Web Services in [23], while the latter is usually performed by DLs
reasoners, although it is not restricted to use other techniques.

Our approach allows to filter offers, stage by stage, using a proper search
engine until the optimal offer that fulfills a demand is found. This optimization
is accomplished due to the proposed use of CP in the QoS-aware discovery stage,
also enabling the definition of more complex conditions than defined ones using
DLs. Furthermore, our proposed architecture is loosely coupled and extensible,
allowing the addition of extra discovery engines if necessary.

The rest of the paper is structured as follows. In Sec. 2 we introduce related
works on discovering SWS, discussing their suitability to perform a QoS-aware
discovery. Next, in Sec. 3 we present our hybrid discovery proposal, explaining
the proposed architecture and how CP can be used in a QoS-aware semantic
discovery context. Finally, in Sec. 4 we sum up our contributions, and discuss
our conclusions and future work.

2 Discovering Semantic Web Services

In this Section, we discuss related work on discovering SWS, describing the
different approaches and analyzing their suitability to handle QoS parameters
and conditions, in order to perform a QoS-aware discovery.

2.1 Preliminaries

Each proposal uses its own terminology to refer to the entities involved in the dis-
covery process, especially its descriptions of the requested and provided services.
For the sake of simplicity, we use one single notation along this paper.

We refer to a demand (denoted by the Greek letter delta, i.e. δemand) as a
set of objectives that clients want to accomplish by using a service that fulfills
them. It may be composed of functionality requirements and QoS conditions
that the requested service must fulfill, such as“find a service which availability ≥
0.9, where availability = MTTF/ (MTTF + MTTR)”. The different proposals

An Hybrid, QoS-Aware Discovery of SWS Using Constraint Programming 71

refer to demands as goals [22], queries [2,3,13], service request [7,19,27] or user
requirements [30].

An offer (denoted by the Greek letter omega, i.e. ωffer) of a service is the
definition of a SWS that is publicly available from a service provider. An offer
may be composed of functionality descriptions, orchestration, choreography, and
QoS conditions of the given service. For instance, an offer can consist in a QoS
condition like “MTTF is from 100 to 120 inclusive and MTTR is from 3 to 10
also inclusive”. Different approaches refer to offers as advertisements [2,13,30],
service capabilities [19,22,27], or service profiles [7,15,16].

Most proposals on discovering SWS are built upon one of the following de-
scription frameworks. Firstly, owl-s [16] is a DARPA Agent Markup Language
program initiative that defines a SWS in terms of an upper ontology that contains
concepts to model each service profile, its operations and its process model. It is
based on owl standard to define ontologies, so it benefits from the wide range of
tools available. Secondly, the Web Service Modeling Ontology (wsmo) [22] is an
European initiative whose goal, as owl-s, is to develop a standard description
of SWS. Its starting point is the Web Service Modeling Framework [6], which
has been refined and extended, developing a formal ontology to describe SWS
in terms of four core concepts: ontologies, services, goals and mediators. Finally,
the meteor-s project from the University of Georgia takes a completely differ-
ent, but aligned approach than the others. Its main target is to extend current
standards in Web Services adding semantic concepts [25], among others contri-
butions discussed here. These extensions make use of third party frameworks,
including the previous two, to semantically annotate Web Service descriptions.
These proposals have extensions to take care of QoS parameters.

2.2 Related Work

In the context of daml-s (the owl-s precursor), Sycara et al. show how se-
mantic information allows automatic discovery, invocation and composition of
Web Services [27]. They provide an early integration of semantic information
in a uddi registry, and propose a matchmaking architecture. It is based on a
previous work by Paolucci et al., where they define the matching engine used
[19]. This engine matches a demand and an offer when this offer describes a
service which is “sufficiently similar” to the demanded service, i.e. the offered
service provides the functionality demanded in some degree. The problem is how
to define that degree of similarity, and the concrete algorithm to match both
service descriptions. They update their work to owl-s in [28].

Furthermore, there are proposals that perform the matchmaking of SWS using
DLs [7,13,15]. Particularly, González-Castillo et al. provide an actual matchmak-
ing algorithm using the subsumption operator between DLs concepts describing
demands and offers [7]. They use existing DLs reasoners, as RACER [8] and
FaCT [11], to perform the matchmaking. On the other hand, Lutz and Sattler
[15] do not provide an algorithm, but give the foundations to implement it us-
ing subsumption, like Li and Horrocks [13], who also give hints to implement a
prototype using RACER.

72 J.M. Garćıa et al.

These three works define different matching degrees as in [27], from exactly
equivalents to disjoint. All of them perform this matching by comparing inputs
and outputs. Apart from that, neither of them can obtain the optimal offer
using QoS parameters. However, Benatallah et al. propose to use the degree of
matching to select the best offer in [2], but it results to be a NP-hard problem,
as in any optimization problem [4].

On the other hand, Benbernou and Hacid realise that some kinds of con-
straints are necessary to discover SWS, including QoS related ones, so they
formally discuss the convenience of incorporating constraints in SWS discovery
[3]. However, instead of using any existing SWS description framework, their
proposal uses an ad-hoc Services Description Language, in order to be able to
define complex constraints. In addition, the resolution algorithm uses constraint
propagation and rewriting, but performed by a subsumption algorithm, instead
of a CSP solver.

Concerning wsmo discovery, Wang et al. propose an extension of the ontology
to allow QoS-aware discovery [30]. The matchmaking is done by an ad-hoc algo-
rithm to add QoS conditions to offers and demands. Their implementation has
some limitations, as the algorithm can only be applied to real domain attributes,
and is restricted to three types of relational operators.

Ruiz-Cortés et al. provide in [23] a framework to perform QoS-aware discov-
ery by means of CP, in the context of non-semantic Web Services. They show the
soundness of using CP to improve the automation of matchmaking from both
theoretical and experimental points of view. Although CP solving is a NP-hard
problem, the results of their experimental study allow to conclude that CP-based
matchmakers are practically viable despite of its, theoretical, combinatorial na-
ture. This work is the starting point of our approach on using CP to perform
QoS-related stages of our hybrid SWS discovery proposal.

2.3 Frameworks

As an application of their previous work, Srinivasan et al. present an implemen-
tation to development, deployment and consumption of SWS [26]. It performs
the discovery process using the proposals introduced in [19,27]. They show per-
formance results and detail the implementation of owl-s and uddi integration,
so it can be used as a reference implementation to owl-s based discovery, but
without QoS conditions.

irs-ii [18] is an implemented framework similar to wsmf [6], that is able
to support service discovery from a set of demands. It uses descriptions of the
reasoning processes called Problem Solving Methods (PSM), similar to owl.
Moreover, irs-iii [5] updates this previous implementation, using wsmo ontology
to model SWS, and providing an architecture to discovery, composition and
execution SWS. All of them can not handle with QoS conditions, although they
are extensible so they may support them.

Another interesting proposal is done in [24], where Schlosser et al. propose a
graph topology of SWS providers and clients, connected between them as in a
peer-to-peer (P2P) network. In this scenario, searching, and specially publishing,

An Hybrid, QoS-Aware Discovery of SWS Using Constraint Programming 73

are done very efficiently, without the need of a central server acting as a register
of offers and demands. In addition, the network are always updated, due to an
efficient topology maintenance algorithm. This structure of decentralized reg-
istries is proposed in meteor-s for semantic publication and discovery of Web
Services [29]. The semantic matching algorithm uses templates to search inputs
and outputs of services described with ontological concepts, without the use of
a specific reasoner, or the possibility to express QoS conditions. Although the
matchmaking is too simple, the idea of a P2P network can be adopted in our
proposal without troubles.

Our proposal is open to be implemented in the context of any of the presented
frameworks in this section. The proposed architecture that we present in the
following section does not impose any restriction on the SWS framework used
(i.e. owl-s, wsmo or meteor-s), and can be composed of any number of the
discovery engines discussed in Sec. 2.2, due to its hybrid nature. Furthermore, it
can be materialized as the discovery component of implementations like irs-iii
[5] or owl-s ide [26].

3 Our Proposal

The addition of constraints, specially QoS-related ones, to SWS descriptions,
turns most approaches on discovering SWS insufficient, because they mainly
use DLs, which are usually limited to logical and relational expressions when
describing QoS conditions. CP becomes necessary to manage more complex QoS
conditions, so a demand can be matched with the best available offer. Instead
of using solely CP to perform the discovery, we present an hybrid solution that
splits the discovery into different stages.

3.1 Hybrid Semantic Discovery Architecture

An abstract architecture of our proposal is sketched in Fig. 1, where we show
how the different components are connected between them. Here, the dashed line
defines the boundaries of our hybrid discovery engine.

Q document corresponds to the query that a client wants to use to discover
services, i.e. the demand. This query may be expressed in any desired language
that the scheduler can handle, such as a SPARQL query [21], a wsmo goal, a
faceted search [20], or even it may be defined visually using a GUI.

R is the result set of offers that fulfill the query Q. It is the output of the
discovery process, possibly being an empty set, the best offer, or an ordered list
of offers by an optimality criterion. The format of this output should conform
the specification of a concrete SWS framework in order to successfully invoke
the discovered service(s).

The different stages of the hybrid discovery are performed by the best suited
discovery engine. In Fig. 1, E1...En represent the engines to be used in each
corresponding stage. The core component of our proposed architecture is re-
sponsible to send the input data to each engine, by decomposing the query Q

74 J.M. Garćıa et al.

Fig. 1. Architecture of our hybrid discovery proposal

in subqueries (Qi), and to recover its corresponding output (Ri), joining all of
them to output the final result R. These input and output formats depend on
the concrete engine of each stage. Thus, if we are performing a QoS-aware stage,
the input must be modeled as a CSP, so CP can be applied to perform this kind
of stage. Additionally, it is possible to use a DLs engine to perform non-QoS
discovery, or a template matchmaker [29], for instance.

Offers have to be published in some kind of repository so they can be matched
with demands by means of the different discovery engines used in our approach.
This SWS repository may be implemented in different ways: as a semantically-
extended UDDI registry [26], as a decentralized P2P registry [29], or as a wsmo
repository [5], for instance.

In addition, our architecture takes care of the NP-hard nature of optimization
[4], so we propose to include a knowledge-base (KB) that cache already performed
discoverings, so the execution of the discovery process becomes faster. Thus, we
store executed queries related with their result set of SWS from the repository
component, into the KB. irs-ii implementation uses a similar idea to accelerate
discovery [18].

Finally, the core component of our proposal is the scheduler. It has to an-
alyze the query Q, split the discovery task into stages, and communicate with
discovery engines, in order, providing them with a correct input, and obtaining
a corresponding output. These different outputs are processed stage by stage, so
the set of matching offers from the SWS repository are gradually made smaller.
Each discovery stage may be concurrently or sequentially launched in order, de-
pending on the query nature. Moreover, the scheduler update the KB using the
results of discovery process, which is output as R.

An Hybrid, QoS-Aware Discovery of SWS Using Constraint Programming 75

Scheduler

Split
Query

Engine 1 Engine 2

Matchmaking

Q

Q1 Q2

SWS

Process
Partial
Results

R1

Matchmaking

SWS1

R2

Process
Results

R

Fig. 2. Activity diagram of our discovery process

Fig. 2 shows the activity diagram of an hybrid discovery process performed
in two stages using two different engines. This diagram can be easily extended if
we need more stages. For instance, using a similar format from [13], a query Q =
(ServiceProfile ∩ A ≥ 0.9), where A corresponds to availability, is split by the
scheduler into two subqueries: QDL = (ServiceProfile) being the part expressed
in DLs, and QCP = ({A}, {[0..1]}, {A ≥ 0.9, A = MTTF/(MTTF + MTTR)})
the part modeled by a CSP.2 ServiceProfile corresponds to the definition of a
demand in terms of the owl-s profile of a service. In this scenario, the scheduler
perform a matchmaking firstly using a DLs engine with QDL, obtaining the
offers that satisfy this subquery. Then, with this resulting subset of SWS from
the registry, the scheduler performs a matchmaking using a CP engine and QCP ,
so the final result is the optimal offer that satisfies the whole query Q. For the
sake of simplicity we do not contemplate the KB role in Fig. 2, because it only
provides a way to speed up the process.

This hybrid discovery architecture has many advantages. It is loosely coupled,
due to the possibility to use any discovery engine. Also, the input query format
is not restricted, as the scheduler can analyze a given query, so it can infer the

2 A CSP consists in a three-tuple of the form (V, D, C) where V is a finite, non-empty
set of variables, D is a finite, non-empty set of domains (one for each variable) and C
is a set of constraints defined on V . The solution space of a CSP is a set composed of
all its possible solutions, and if this set is not empty, the CSP is said to be satisfiable.

76 J.M. Garćıa et al.

concrete engines to use and their order. Moreover, our proposed architecture
can be applied to any existing SWS framework and corresponding repositories,
taking benefit of the wide range of tools already implemented. Our proposal is
able to use the best suited engine to perform the corresponding search of a part
of the input query, being used in most cases CP for QoS-related part, and DLs
for non-QoS discovery, but without restrictions on adding more engines.

3.2 QoS-Aware Semantic Discovery

Focusing on the QoS-aware discovery stage, the scheduler sends the QoS-related
part of the query to a CSP solver, so the set of offers that fulfills the requirements
of a given demand can be obtained, or even obtain the optimal offer. To do so,
QoS conditions and their involved QoS parameters, defined in demands and
offers, must be mapped onto constraints in order to use a CSP solver.

Thus, each parameter must be mapped onto a variable (with its corresponding
domain), and each condition must be mapped onto a constraint. At this point,
we have to extend the demand and offer concepts previously presented because
both of them may contain complementary information. We consider they are
composed of two parts: requirements and guarantees. On the one hand, a demand
δ is composed of two parts: δγ , which asserts the conditions that the client meets
(i.e. γuarantees), and δρ, which asserts the conditions that the provider shall
meet (i.e. ρequirements). Similarly, an offer ω can also be considered composed
of ωγ (what it guarantees) and ωρ (what is required from its clients).

For example, consider the demand “The availability shall be less than 0.9,
where A = MTTF/ (MTTF + MTTR)” (δρ); and the offer “The mean time
to failure is from 100 to 120 minutes inclusive, while the mean time to repair
is from 3 to 10 minutes inclusive” (ωγ). Assuming that MTTF , MTTR and A
range over real numbers, their corresponding CSPs are defined as follows:

δρ = ({A, MTTF, MTTR}, {[−∞, +∞], [0, +∞], [0, +∞]},

{A ≥ 0.9, A = MTTF/ (MTTF + MTTR)})
ωγ = ({MTTF, MTTR}, {[0, +∞], [0, +∞]},

{100 ≤ MTTF ≤ 120, 3 ≤ MTTR ≤ 10})

Additionally, the demand may also contain the condition “My host is in Spain”
(δγ); and the offer “For American and British clients only” (ωρ), so the offer
provider requires from its clients some guarantees. Consequently, assuming that
COUNTRY variable ranges over the powerset of Λ = {ES, US, UK, FR}, i.e.
P(Λ), their corresponding CSPs are defined as follows:3

δγ = ({COUNTRY }, {P(Λ)}, {COUNTRY = {ES}})
ωρ = ({COUNTRY }, {P(Λ)}, {COUNTRY ⊆ {UK, US}})

3 Note QoS parameters can be linked together in order to express more complex condi-
tions, such as {COUNTRY = {ES, UK, FR} ⇒ 5 ≤ MTTR ≤ 10, COUNTRY =
{US} ⇒ 5 ≤ MTTR ≤ 15}. These conditions can be interpreted as “the MTTR
is guaranteed to be between 5 and 10 if client is Spanish, British, or French, else
between 5 and 15 if client is American”.

An Hybrid, QoS-Aware Discovery of SWS Using Constraint Programming 77

The conditions previously expressed in natural language should be expressed in a
semanticway,usingQoSontologies suchas theoneproposedbyMaximilienet al. in
[17].Thus, semantically definingQoSparameters that takepart in such conditions,
and integrating these descriptions in any SWS framework, they can be interpreted
later as a CSP so a solver can process them in the corresponding discovery stage.

These CSPs allow to check for consistency and conformance of offers and
demands. A demand or an offer is said to be consistent if the conjunction of
its corresponding CSPs (of requirements and guarantees) are satisfiable. On the
other hand, an offer ω and a demand δ are said to be conformant if the solution
space of the CSP of the guarantees of the offer (denoted by ψγ

ω) is a subset of
the solution space of the CSP of the requirements of the demand (ψρ

δ), and vice
versa (ψγ

δ ⊆ ψρ
ω) [23]. In the previous example, ω and δ are consistent, but they

are not conformant, because COUNTRY is guaranteed to be ES, but the offer
requires it to be UK or US.

Finally, the ultimate goal of the matchmaking of offers and demands is to find
a conformant offer that is optimal from the client’s point of view. To do so, it
becomes necessary to model the optimization task as a CSP, as with consistency
and conformance checks. More specifically, finding the optimal can be interpreted
as a Constraint Satisfaction Optimization Problem (CSOP), which requires to
explicitly establish a preference order on the offer set. This order can be defined
using a weighted composition of utility functions, which can be taken as a global
utility function for the client.

Thus, each QoS parameter can have a utility function defined, and an asso-
ciated weight to successfully describe how important the values that can take
are for the client. Fig. 3 shows an example of how to discover optimal offers.
In this case, we are assuming that the demand only specifies its requirements
(Fig. 3a) and the offer only specifies what it guarantees (Fig. 3b), so the offer
is conformant with the demand. The corresponding utility functions of the QoS
parameters involved, i.e. MTTF and MTTR, ranging over [0, 1], are shown in
Fig. 3c and 3d, respectively.

Theutility function forMTTF (Fig. 3c) is apiecewise linear functionthatdefines
aminimumutility ifMTTF is below60minutes; theutility grows linearly ifMTTF
is between 60 and120minutes, and the utility reaches its maximumvalue ifMTTF
is above 120. On the other hand, the utility function forMTTR showed in Fig. 3d is
a decreasing piecewise linear function. In order to obtain a global utility function of
the offer, we consider that MTTF has a weight of 70% and MTTR 30%.

The offer from Fig. 3b must be checked for conformance with the demand
from Fig. 3a, supposing that both descriptions have been previously checked
for consistency, and that both are based on same QoS parameters, or they
are defined using a compatible ontology. In this case, there is only one offer
conformant, but there could be more than one, being necessary to obtain the
optimal offer. To do so, utility functions for each offer have to be computed in
order to compare them and get the maximum utility value, which corresponds
with the optimal offer. In Fig. 3e we show the OPL [10] model for the computing
of the utility function of the showed offer.

78 J.M. Garćıa et al.

δρ ≡ A ≥ 0.9 ∧
A =

MTTF

MTTF + MTTR

(a) Demand requirements.

ωγ ≡ 100 ≤ MTTF ≤ 120 ∧
3 ≤ MTTR ≤ 10

(b) Offer guarantees.

(c) MTTF utility function. (d) MTTR utility function.

//variables

range TYPE_MTTF 0..255;

var TYPE_MTTF MTTF;

range TYPE_MTTR 0..255;

var TYPE_MTTR MTTR;

range TYPE_UTILITY 0..100;

var TYPE_UTILITY U_MTTF;

var TYPE_UTILITY U_MTTR;

var TYPE_UTILITY UTILITY;

minimize

UTILITY

subject to {

// Offer guarantees

100<=MTTF<=120;

3<=MTTR<=10;

// Utility function of MTTF

MTTF<=60 => U_MTTF=0;

60<MTTF<=120 =>60*U_MTTF=MTTF-60;

MTTF>120=> U_MTTF=1;

// Utility function of MTTR

MTTR<=5 => U_MTTR=1;

5<MTTR<=15 => 10*U_MTTR=15-MTTR;

MTTR>15 => U_MTTR=0;

// Utility aggregate of matching

UTILITY = 70*U_MTTF + 30*U_MTTR;

};

(e) OPL model for computing utility.

Fig. 3. An example on obtaining optimal offers

Note that we compute the minimum value of the utility function, taking the
worst-case scenario. This way, we say that an offer ω is optimal with regard
to a utility function U if the minimum value of this function is the maximum
among minimum values of all conformant offers. It is also possible to take other
approaches when computing the utility function, like using the maximum value, a
mean value, or the more general case of a weighted composition of the maximum
and minimum value [12].

4 Conclusions and Future Work

In this work, we show that using a unique engine to discover SWS is not appro-
priate, due to each engine is usually designed for a concrete kind of search. For

An Hybrid, QoS-Aware Discovery of SWS Using Constraint Programming 79

instance, DLs reasoners are well suited when discovering SWS in terms of con-
cepts and relations, but they can not handle complex numerical QoS conditions.
Although there are extensions to allow concrete domains in DLs, reasoners have
to implement them, and they may bring undecidability results.

We present an hybrid solution that consists in a n-stages discovery process,
where each stage is performed using the most appropriate technique. Further-
more, we propose to use CP to perform QoS-aware discovery stages, so the
optimal service(s) offered that fulfills a given demand can be found. In addition,
our proposed architecture is extensible and loosely coupled, allowing to define
complex QoS conditions, and to use utility functions based on QoS parameters
to obtain the optimal offer. This architecture does not impose any restriction
on the SWS framework and repository to use, allowing its materialization as a
discovery component for current SWS implementations.

For future work, we are considering to define more precisely the scheduler and
its interaction with the rest of the components. The query split mechanism has
to be characterized, so do the results merging for each engine. Thus, a catalog
of stages would be defined, including their order of execution. Moreover, we
are considering to extend current SWS frameworks using a QoS ontology to
define QoS parameters and conditions, allowing to express complex arithmetic,
relational, and logical expressions in demands and offers.

Acknowledgments. The authors would like to thank the reviewers of the 5th

International Conference on Service Oriented Computing, whose comments and
suggestions improved the presentation substantially.

References

1. Baader, F., Sattler, U.: Description logics with aggregates and concrete domains.
Information Systems 28(8), 979–1004 (2003)

2. Benatallah, B., Hacid, M., Rey, C., Toumani, F.: Semantic reasoning for web ser-
vices discovery. In: WWW Workshop on E-Services and the Semantic Web (2003)

3. Benbernou, S., Hacid, M.: Resolution and constraint propagation for semantic web
services discovery. Distributed and Parallel Databases 18(1), 65–81 (2005)

4. Bonatti, P., Festa, P.: On optimal service selection. In: 14th international conference
on World Wide Web, pp. 530–538 (2005)

5. Cabral, L., Domingue, J., Galizia, S., Gugliotta, A., Tanasescu, V., Pedrinaci, C.,
Norton, B.: IRS-III: A broker for semantic web services based applications. In:
International Semantic Web Conference, pp. 201–214 (2006)

6. Fensel, D., Bussler, C.: The web service modeling framework WSMF. Electronic
Commerce Research and Applications 1(2), 113–137 (2002)

7. González-Castillo, J., Trastour, D., Bartolini, C.: Description logics for matchmak-
ing of services. Technical Report HPL-2001-265, Hewlett Packard Labs (2001)

8. Haarslev, V., Möller, R.: RACER system description. In: Goré, R.P., Leitsch, A.,
Nipkow, T. (eds.) IJCAR 2001. LNCS (LNAI), vol. 2083, pp. 701–706. Springer,
Heidelberg (2001)

9. Haarslev, V., Möller, R.: Practical Reasoning in RACER with a Concrete Domain
for Linear Inequations. In: Int. Workshop on Description Logics (2002)

80 J.M. Garćıa et al.

10. Van Hentenryck, P.: Constraint and integer programming in OPL. INFORMS Jour-
nal on Computing 14(4), 345–372 (2002)

11. Horrocks, I.: FaCT and iFaCT. In: Int. Workshop on Description Logics (1999)
12. Kritikos, K., Plexousakis, D.: Semantic QoS metric matching. In: ECOWS 2006,

pp. 265–274. IEEE Computer Society Press, Los Alamitos (2006)
13. Li, L., Horrocks, I.: A software framework for matchmaking based on semantic web

technology. In: Int. World Wide Web Conference, pp. 331–339 (2003)
14. Lutz, C.: Description logics with concrete domains – a survey. In: Advances in

Modal Logic, pp. 265–296 (2002)
15. Lutz, C., Sattler, U.: A proposal for describing services with DLs. In: Int. Workshop

on Description Logics (2002)
16. Martin, D., Burstein, M., Hobbs, J., Lassila, O., McDermott, D., et al.: OWL-S:

Semantic Markup for Web Services. Technical Report 1.1, DAML (November 2004)
17. Maximilien, E.M., Singh, M.P.: A framework and ontology for dynamic web services

selection. IEEE Internet Computing 8(5), 84–93 (2004)
18. Motta, E., Domingue, J., Cabral, L., Gaspari, M.: IRS-II: A framework and in-

frastructure for semantic web services. In: Fensel, D., Sycara, K.P., Mylopoulos, J.
(eds.) ISWC 2003. LNCS, vol. 2870, pp. 306–318. Springer, Heidelberg (2003)

19. Paolucci, M., Kawamura, T., Payne, T., Sycara, K.: Semantic matching of web ser-
vices capabilities. In: Horrocks, I., Hendler, J. (eds.) ISWC 2002. LNCS, vol. 2342,
pp. 333–347. Springer, Heidelberg (2002)

20. Prieto-Dı́az, R.: Implementing faceted classification for software reuse. Commun.
ACM 34(5), 88–97 (1991)

21. Prudh́ommeaux, E., Seaborne, A.: SPARQL Query Language for RDF. Technical
Report Working Draft, W3C (March 2007)

22. Roman, D., Lausen, H., Keller, U.: Web Service Modeling Ontology (WSMO).
Technical Report D2 v1.3 Final Draft, WSMO (October 2006)

23. Ruiz-Cortés, A., Mart́ın-Dı́az, O., Durán Toro, A., Toro, M.: Improving the auto-
matic procurement of web services using constraint programming. Int. J. Cooper-
ative Inf. Syst. 14(4), 439–468 (2005)

24. Schlosser, M., Sintek, M., Decker, S., Nejdl, W.: A scalable and ontology-based P2P
infrastructure for semantic web services. In: Peer-to-Peer Computing, pp. 104–111
(2002)

25. Sivashanmugam, K., Verma, K., Sheth, A., Miller, J.: Adding semantics to web
services standards. In: Intl. Conference on Web Services, pp. 395–401 (2003)

26. Srinivasan, N., Paolucci, M., Sycara, K.: Semantic web service discovery in the
OWL-S IDE. In: Hawaii International Conference on Systems Science (2006)

27. Sycara, K., Paolucci, M., Ankolekar, A., Srinivasan, N.: Automated discovery, in-
teraction and composition of semantic web services. J. Web Sem. 1(1), 27–46 (2003)

28. Sycara, K., Paolucci, M., Soudry, J., Srinivasan, N.: Dynamic discovery and co-
ordination of agent-based semantic web services. IEEE Internet Computing 8(3),
66–73 (2004)

29. Verma, K., Sivashanmugam, K., Sheth, A., Patil, A., et al.: METEOR-S WSDI: A
scalable P2P infrastructure of registries for semantic publication and discovery of
web services. Inf. Tech. Management 6(1), 17–39 (2005)

30. Wang, X., Vitvar, T., Kerrigan, M., Toma, I.: A QoS-aware selection model for
semantic web services. In: Dan, A., Lamersdorf, W. (eds.) ICSOC 2006. LNCS,
vol. 4294, pp. 390–401. Springer, Heidelberg (2006)

On User Preferences and Utility Functions in
Selection: A Semantic Approach.⋆

José Maŕıa Garćıa, David Ruiz, and Antonio Ruiz-Cortés

Universidad de Sevilla
Escuela Técnica Superior de Ingenieŕıa Informática

Av. Reina Mercedes s/n, 41012 Sevilla, España
josemgarcia@us.es

Abstract. Discovery tasks in the context of Semantic Web Services are
generally performed using Description Logics. However, this formalism
is not suited when non-functional, numerical parameters are involved
in the discovery process. Furthermore, in selection tasks, where an op-
timization algorithm is needed, DLs are not capable of computing the
optimum. Although there are DLs extensions that can handle numerical
parameters, they bring decidability problems. Other solutions, as hybrid
approaches which use DLs in functional discovery and other formalisms
in non-functional selection, do not provide a semantic framework to de-
scribe user preferences based on non-functional properties. In this work,
we propose to semantically describe user preferences, so they can be used
to perform selection within a hybrid solution. By using semantically de-
scribed utility functions in order to define user preferences, our proposal
enables interoperability between service offers and demands, while pro-
viding a high level of expressiveness in these preferences and including
them within SWS descriptions.

Keywords: NFP-based Selection, Quality of Services, Utility Functions,
Semantic Web Services.

1 Introduction

Concerning Semantic Web Services (SWS), discovery is one of the main research
topics that have been widely studied and discussed, among others like compo-
sition. Description Logics (DLs) usually have become the natural choice when
discovering SWS. Traditionally, discovery tasks have been interpreted as a func-
tional filter, where demands are matched with compatible offers in terms of func-
tionality. However, including non-functional properties (NFP) in the discovery
process leads to an optimization problem. Selection of the best offer by means
of their NFP has not been contemplated as a main task in discovering, so DLs
reasoners are not well suited to select optimal offers. However, there are some
proposals to perform NFP-based discovery, as the ones discussed in this work.
⋆ This work has been partially supported by the European Commission (FEDER) and

Spanish Government under CICYT project Web-Factories (TIN2006-00472).

2

Optimization problems can be handled by solvers based on different for-
malisms, like Linear Programming, Constraint Programming, or Dynamic Pro-
gramming, among others. Thus, it is possible to split discovery and selection
tasks in terms of functional and non-functional requirements, so the former task
can be performed by DLs reasoners, while the latter can be performed by solvers,
taking a hybrid approach [3].

Focusing on selection, service demands have to state an optimality criterion,
i.e. user preferences, so a solver can obtain the best offer in terms of these
preferences. We propose to describe these user preferences by means of utility
functions, whose domains are the different QoS parameters used to define NFP of
service offers. In a SWS context, these utility functions have to be semantically
described, allowing to match demands and offers described by different, but
possibly equivalent, QoS parameters, enabling semantic interoperability between
these descriptions.

The paper is structured as follows. In Sec. 2 we analyze current approaches
on selecting SWS. Then, in Sec. 3 we show our proposal, describing what is a
utility function and how to give semantics to it, showing an example. Finally, in
Sec. 4 we discuss our conclusions.

2 Selecting Semantic Web Services

Once a set of services are discovered using a functional filter, the next step is
to select the best offer in terms of NFP and user preferences. Thus, selection is
modeled as an optimization problem. This kind of problem refers to a minimiza-
tion or maximization of a real function, choosing the appropriate values of the
involved variables.

In this context, the function to optimize is frequently called utility function or
objective function. There are different techniques to obtain the optimal value of
these functions, like Linear Programming, Constraint Programming or Dynamic
Programming, for instance. In the following, we present the different approaches
on selecting offers by means of NFP, characterizing their features and limitations
with respect to user preferences.

2.1 Current Approaches

An early approach on modeling QoS in the context of SWS discovery are found
in [10]. In this work, Ran presents a uddi extension and a catalog of QoS param-
eters that can be included in uddi descriptions. Discovery is performed using
queries with functional requirements, as well as conditions on QoS. However,
the actual discovery algorithm is not defined, and queries that use NFP are not
shown, so their expressiveness is unknown. Additionally, uddi only supports a
keyword based search, so no form of inference or flexible match can be performed
[15]. Apart from that, user preferences can not be expressed in the query and the
resultant services are not ranked, so the user have to perform different queries
in order to find the best suited service.

3

Although their proposal is not semantically defined, Liu et al. present a QoS
computation model including a selection algorithm [5], which is adapted in other
approaches [9,16]. They propose an extensible QoS model that comprises both
generic and domain specific criteria. Selection is performed using an algorithm
based on matrices normalization, where services are ranked in terms of their QoS
matrix description and a vector of relative weights between QoS parameters,
which express user preferences.

Pathak et al. also model mappings between ontologies in [9]. They propose
to use domain specific ontologies to define NFP among offers and demands. In
their work, selection is done using matching degrees at a first stage. Then, QoS
parameters values are collected in a quality matrix, which is used to calculate a
fixed, weighted utility function for each offer. Finally, offers whose utility function
is above a given threshold, are ranked by one QoS parameter to obtain the
optimal offer.

Wang et al. provide an extension to wsmo ontology [11] to handle QoS
parameters [16]. They define a QoS selection model and an algorithm based on
a quality matrix that contains values of QoS parameters. The user preferences
are described in terms of tendencies, i.e. a demand may prefer parameters to be
as small as possible, as large as possible, or around a given value.

Maximilien and Singh present a framework and a QoS ontology for dynamic
selection in [8]. They use an agent-based approach where NFP are modeled via a
three-layer ontology: an upper ontology which defines basic concepts associated
with a quality parameter, a middle ontology which defines the most frequent
QoS parameters and metrics, and a user-defined lower ontology that depends
on the domain of the service. Although it constitutes a well-defined framework
to semantically describe NFP and it is referenced by many authors [2,4,9], it
lacks of a way to semantically describe user preferences.

An extension to daml-s1 to include QoS profiles is proposed in [18] by Zhou
et al. This proposal only allows order conditions between QoS parameters, so it
performs discovery and selection using DLs. The QoS ontology is simple and can
be easily linked to the daml-s service profile. However, its selection algorithm
uses matching degrees to order the resulting set of services, so the user preferences
can not be expressed, as they are inherent to that selection algorithm.

Another daml-based proposal is also presented in [14], where S. Bilgin and
Singh provide a daml-based query language, instead of just extending owl-
s. Using this Semantic Web Services Query and Manipulation Language, they
advertise QoS attributes and perform the selection. The main drawbacks of
this approach are the same as in [10], with limitations on the expressiveness of
queries, due to the use of daml as its foundation. Thus, user preferences can
not be expressed in those queries, and are inherent to their selection algorithm,
as in [18].

Dobson et al. presents QoSOnt in [2], which is an ontology that extends owl-s
to describe QoS attributes and metrics. However, they do not explicitly explain
how to perform selection, and their proposal suffers from owl limitations, so

1 daml-s is an early version of owl-s [6]

4

they have to use an ad-hoc XML language to allow custom data ranges. User
preferences are modeled using the acceptability direction, that is the preferred
tendency of metric values (e.g. the higher the best).

On the other hand, Zeng et al. show a basic QoS model to Web services
composition in [17], although it can be applied to discovery and selection. They
propose an algorithm based on utility functions, which are already defined for
all the contemplated QoS parameters. The optimization is implemented using
Integer Programming, providing weights to the different QoS parameters in-
volved. The main drawbacks of this proposal are that it do not take semantics
into account and that the utility functions are fixed, so the user can define its
preferences only by means of weights.

Ruiz-Cortés et al. describe a QoS-aware discovery using Constraint Program-
ming, where optimization is modeled as a Constraint Satisfaction Optimization
Problem that minimize a weighted composition of utility functions, which are
defined by the client using QoS parameters from a catalog [12]. As in [17], this
proposal does not provide semantics, but user preferences, described by utility
functions, can be defined by the user with high expressiveness.

An extension to [7] is presented in [4] by Kritikos and Plexousakis. They
propose an ontology similar to the proposed by Maximilien and Singh [8], mix-
ing offers and demands within an owl-s description. Moreover, they present
a matching algorithm to infer equivalences between different named QoS pa-
rameters that are semantically equivalent, although it is generally undecidable.
Concerning discovery and selection, they use CSPs to perform the matchmaking
of compatible offers, and then select the best service by means of a weighted
composition of utility functions, which balance the worst and best scenarios to
compute the utility value. However, these user preferences are not semantically
defined in their QoS ontology.

2.2 Analysis

We show an analysis of the features of the different approaches introduced in
the section before in Table 1. In this table, ordered by the order of exposition,
we analyze if the given proposal semantically defines NFP, how it express user
preferences, and the selection algorithm used.

We obtain several conclusions from this comparison. Firstly, there are a few
proposals that uses utility functions to express user preferences [4,12,17], al-
though only [12] allows the user to define complex utility functions. These three
proposals use optimization techniques, as Integer Programming or Constraint
Programming, to select the best offers. Therefore, utility functions become the
natural choice to define highly expressive user preferences.

Secondly, there are many proposals that provide a semantic framework to de-
fine NFP [2,4,8,9,14,16,18], although [8] do not handle user preferences in their
ontology and [14,18] have a fixed definition of user preferences, inherent to their
selection algorithm. [4] is the most expressive when defining user preferences,
followed by [2,9,16], that limit their preferences to weights and parameter ten-

5

Proposal Semantic Defs. User Preferences Selection

Ran [10] No Not defined Not defined

Liu et al. [5] No Weights Quality matrix

Pathak et al. [9] Yes Weights Quality matrix

Wang et al. [16] Yes Tendencies Quality matrix

Maximilien & Singh [8] Yes External Matching degree

Zhou et al. [18] Yes Fixed Matching degree

S. Bilgin & Singh [14] Yes Fixed Query lang.

Dobson et al. [2] Yes Tendencies Not defined

Zeng et al. [17] No Utility and weights Integer Prog.

Ruiz-Cortés et al. [12] No Utility and weights Constraint Prog.

Kritikos & Plexousakis [4] Yes Utility and weights Constraint Prog.
Table 1. Comparison between discussed proposals

dencies. According to all those proposals, it is clear that NFP have to be defined
semantically.

Finally, we conclude that none of the above proposals semantically define user
preferences, although in [2,16] the authors include in their ontology extension
the tendency of QoS parameters. What is more, most of the proposals that
perform selection tasks in terms of user preferences describe them using ad-hoc,
non-semantic descriptions completely decoupled with the ones used to describe
service functionality, causing a semantic gap between functional descriptions and
user preferences.

The motivation of our work is precisely to tackle the previous problems. Most
recent proposals use utility functions to express user preferences, and there are
many NFP ontologies which our proposal can be integrated with. This proposal
comes from mixing the expressiveness of utility functions and weights proposed
by Ruiz-Cortés et al., the semantic definition of NFP from Maximilien and Singh
or Kritikos and Plexousakis, and an extension to give semantics to utility func-
tions. Thus, we take full advantage of Semantic Web approaches on selecting the
best services, while allowing to define user preferences using the most expressive
solution, i.e. utility functions. Furthermore, we put functional, non-functional,
and user preferences at the same semantic level, by means of using extensions
to current SWS ontologies.

3 Our Proposal

Utility functions are the most expressive approach presented to describe user
preferences that are used when selecting the best offers among a set. Although
there are proposals that semantically describe QoS parameters and NFP, no
one contemplates the conceptualization of utility functions. In this Section, we
firstly give an overview of utility functions. Then, an ontology of user preferences
is proposed to be used in the context of discovery and selection of SWS, showing
a concrete example.

6

3.1 Utility Functions

An utility function is a normalized function (ranging over [0, 1]) whose domain
is a given QoS parameter, that gives information about which values of that
QoS parameter are preferred by the user. Fig. 1 shows an example of a utility
function for the mean time to failure (MTTF) parameter. This function is a
piecewise linear function that defines a minimum utility (0) when MTTF is
below 60 minutes, and a maximum utility (1) when MTTF is above 120 minutes.
Between these two limits, the function grows linearly.

Fig. 1. Utility example for Mean Time To Failure.

When selecting the best offers, a composition of different utility functions
(one for each QoS parameter involved in NFPs) is often used to compute a
global utility value, which serves to sort the service offers. In this composition,
each utility function has an associated weight in the global function, so the user
can specify how important is each QoS parameter when selecting offers. The
general form of this weighted composition of utility functions U is as follows
[12]:

U(p1, . . . , pn) =
n∑

i=1

ki Ui(pi) , ki ∈ [0, 1]
n∑

i=1

ki = 1 (1)

where each pi denotes a QoS parameter, each ki its associated weight ranging
over [0, 1], and each Ui its associated utility function also ranging over [0, 1] with
the semantics previously defined.

3.2 Giving Semantics to Utility Functions

In order to provide semantic interoperability between utility functions defined
on differently named QoS parameters, we propose to model these functions,

7

or more generally, user preferences, as an ontology. This ontology has to be
instantiated by each user preference describing utility functions, so equivalences
between QoS parameters can be inferred. Furthermore, this conceptualization
allows the user to describe the whole service, including functional descriptions,
at the same semantic level, without coupling user preferences descriptions with
the selection algorithm.

Our proposed model is shown in Fig. 2. The main concept (or class) is User-
Preference, which references a Quality concept via the hasReference object prop-
erty. This Quality concept is analogous to the defined in [8], and represents the
QoS parameter which is used in the definition of the corresponding user pref-
erence. Furthermore, the UserPreference concept has a key datatype property,
hasDefinition, which links the more generic preference concept with the utility
function that defines it. Note that Quality class is the link to QoS parameters
used in the semantic definition of NFP. This definition can be performed using
the ontology from Kritikos and Plexousakis [4] or from Maximilien and Singh
[8], for instance.

Class

UserPreference

Class

Quality

range

domain

range

domain

DataTypeProperty

hasDefinition

range

domain

String Float

domain

range

ObjectProperty

hasReference

DataTypeProperty

hasName

DataTypeProperty

hasWeight

XMLLiteral

Fig. 2. Proposed ontology to model user preferences.

The utility function is initially modeled as a property that contains an XML
expression that describe the definition of each function in terms of OpenMath
standard [1], as used in [4,13], allowing the evaluation of the function with a
proper compiler or a mathematical tool, such as Mathematica.

Finally, our main concept UserPreference has two datatype properties: has-
Name and hasWeight. The former is used as an identifier of a given instance. The

8

latter is a real number which corresponds to the relative weight associated with
the corresponding QoS parameter, used to compute the global utility function
of an offer.

Fig. 3 shows an instance of our proposed ontology, in the case of an user
preference about MTTF , with an associated weight of 1. Thus, the instance
MTTFUserPreference references an instance UserMTTF of MTTF class, that is
a subclass of Quality class from [8]. Moreover, the concrete utility function is
specified as an OpenMath object that represent the one showed in Fig. 1, using
XML.

hasReference
hasName

“MTTF_UP”
1.0

hasWeight

hasDefinition
MTTFUserPreference

UserMTTF

Class

UserPreference

Class

MTTF

instanceOf

instanceOf

<om:OMOBJ>

</om:OMOBJ
Class

Quality

subClassOf

Fig. 3. Instance of our proposed ontology.

The link with the rest of the semantic description of a service, including
both functional and non-functional properties, is the QoS parameter MTTF ,
i.e UserMTTF instance in our example. In this case, the engine that perform
the selection only has to be aware of the part showed in Fig. 3 and the cor-
responding NFPs that involve the MTTF parameter, but generally, there are
more parameters and user preferences involved in the selection process.

4 Conclusions

In this work, we provide a semantic framework to define user preferences on
semantically defined QoS parameters, provided that it is used in conjunction
with another proposal that semantically defines NFP, like [4,8]. Thus, all facets of
SWS description (functional, non-functional, and user preferences) are described
at the same semantic level, so discovery and selection tasks are completely done
within a single semantic framework, allowing interoperability between different
service definitions.

Furthermore, our proposal uses a very expressive solution to define user pref-
erences, i.e. utility functions and weights, as in [4,12,17]. This formalism becomes
more generic and powerful that ones used in other approaches. Additionally, we
propose the use of a hybrid discovery engine to perform the different tasks in

9

discovery and selection using the best suited technique in each case. Thus, we
optimize these tasks without compromising expressiveness.

In conclusion, our proposal allows a semantic definition of the whole discovery
and selection process, using a hybrid approach without losing expressiveness.
These facts allow to decouple the definition of user preferences from the concrete
selection algorithm used.

Acknowledgments. The authors would like to thank the reviewers of the
NFPSLA-SOC’07 Workshop, whose comments and suggestions improved the
presentation substantially.

References

1. S. Buswell, O. Caprotti, D. P. Carlisle, M. C. Dewar, M. Gaëtano, and M. Kohlhase.
The OpenMath standard. Technical Report Version 2.0, The OpenMath Society,
2004.

2. G. Dobson, R. Lock, and I. Sommerville. Qosont: a qos ontology for service-centric
systems. In EUROMICRO-SEAA, pages 80–87. IEEE Computer Society, 2005.

3. J. M. Garćıa, D. Ruiz, A. Ruiz-Cortés, O. Mart́ın-Dı́az, and M. Resinas. An hybrid,
QoS-aware discovery of semantic web services using constraint programming. In
B. Krämer, K.-J. Lin, and P. Narasimhan, editors, ICSOC 2007, volume 4749 of
LNCS, pages 69–80. Springer, 2007.

4. K. Kritikos and D. Plexousakis. Semantic QoS metric matching. In ECOWS 2006,
pages 265–274. IEEE Computer Society, 2006.

5. Y. Liu, A. H. H. Ngu, and L. Zeng. Qos computation and policing in dynamic
web service selection. In WWW (Alternate Track Papers & Posters), pages 66–73,
2004.

6. D. Martin, M. Burstein, J. Hobbs, O. Lassila, D. Mcdermott, et al. OWL-S: Se-
mantic Markup for Web Services. Technical Report 1.1, DAML, 2004.

7. O. Mart́ın-Dı́az, A. Ruiz-Cortés, D. Benavides, A. Durán, and M. Toro. A quality-
aware approach to web services procurement. In 4th. VLDB Workshop on Tech-
nologies for E-services TES’03, pages 42–53, 2003.

8. E. M. Maximilien and M. P. Singh. A framework and ontology for dynamic web
services selection. Internet Computing, IEEE, 8(5):84–93, 2004.

9. J. Pathak, N. Koul, D. Caragea, and V. G. Honavar. A framework for semantic web
services discovery. In WIDM ’05: Proceedings of the 7th annual ACM international
workshop on Web information and data management, pages 45–50, New York, NY,
USA, 2005. ACM Press.

10. S. Ran. A model for web services discovery with QoS. SIGecom Exch., 4(1):1–10,
2003.

11. D. Roman, H. Lausen, and U. Keller. Web Service Modeling Ontology (WSMO).
Technical Report D2 v1.3 Final Draft, WSMO, 2006.

12. A. Ruiz-Cortés, O. Mart́ın-Dı́az, A. Durán-Toro, and M. Toro. Improving the
automatic procurement of web services using constraint programming. Int. J.
Cooperative Inf. Syst, 14(4):439–468, 2005.

13. A. Sánchez-Macián, D. López, J. E. López de Vergara, and E. Pastor. A framework
for the automatic calculation of quality of experience in telematic services. In 13th
HP-OVUA Workshop, Sophia Antipolis, France, May 2006.

10

14. A. Soydan Bilgin and M.P. Singh. A DAML-based repository for QoS-aware se-
mantic Web service selection. In IEEE International Conference on Web Services,
pages 368–375, 2004.

15. K. Sycara, M. Paolucci, A. Ankolekar, and N. Srinivasan. Automated discovery,
interaction and composition of semantic web services. J. Web Sem., 1(1):27–46,
2003.

16. X. Wang, T. Vitvar, M. Kerrigan, and I. Toma. A QoS-Aware Selection Model
for Semantic Web Services. In A. Dan and W. Lamersdorf, editors, ICSOC 2006,
volume 4294 of LNCS, pages 390–401. Springer, 2006.

17. L. Zeng, B. Benatallah, A. H. H. Ngu, M. Dumas, J. Kalagnanam, and H. Chang.
QoS-aware middleware for web services composition. IEEE Transactions on Soft-
ware Engineering, 30(5):311–327, 2004.

18. C. Zhou, L. Chia, and B. Lee. DAML-QoS ontology for web services. In IEEE
International Conference on Web Services, pages 472–479, 2004.

Semantic Discovery and Selection:
A QoS-Aware, Hybrid Model

(Submitted to SWWS’08)

Jośe Maŕıa Garćıa∗, David Ruiz and Antonio Ruiz-Cortés
Universidad de Sevilla

Dept. Lenguajes y Sistemas Informáticos
Escuela T́ecnica Superior de Ingenierı́a Informática

Av. Reina Mercedes s/n, 41012 Sevilla, Spain
Telephone: (+34) 9545 59814. Fax: (+34) 9545 57139

∗Contact Author. Email: josemgarcia@us.es

Abstract—Most Semantic Web Services discovery approaches
are based on Description Logics, allowing a limited expressiveness
when describing Quality-of-Service preferences. Furthermore,
DLs is not suited to perform selection tasks, because these are
modeled as optimization problems. In this work, we present a
hybrid discovery and selection model for Semantic Web Services
that takes care of QOS preferences. Our approach splits the
whole process into two stages, using the most suited engine in
each one, depending on its search nature. In order to perform
QOS-aware discovery and selection, user preferences have to be
semantically described as the rest of the service description. Our
model provides an ontology for user preferences, so instances can
be transformed into optimization problems that can be solved by
using the most suited engine.

Index Terms—Service Discovery, Quality-of-Service, Semantic
Web Services, Ontology Languages, QoS-Aware Selection.

I. I NTRODUCTION

Most approaches on automatic discovery of Semantic Web
Services (SWS) use Description Logics (DLs) reasoners to
perform the matching [1]–[6]. These approaches have limita-
tions regarding with the expressiveness of searches, especially
when there are Quality-of-Service (QOS) conditions integrated
within user preferences. For instance, a condition like “find
a service whichavailability ≥ 0.9, where availability =
MTTF/ (MTTF + MTTR)”1 can not be expressed in DLs.
However, there are some proposals that extend DLs with
concrete domains [7], though they still have limitations on
expressing complex conditions [8], [9]. Furthermore, selection
tasks lead to optimization problems, so DLs are not suited in
that stage of the whole discovery process.

Optimization problems can be handled by solvers based on
different techniques, like Linear Programming (LP), Constraint
Programming (CP), or Dynamic Programming (DP), among
others. Thus, it is possible to split discovery and selection tasks
in terms of functional and QOS preferences, so the former task
can be performed by DLs reasoners, while the latter can be
performed by solvers, taking a hybrid approach.

1MTTF stands for “Mean Time To Failure”, whileMTTR stands for
“Mean Time To Repair”. Both of them are QOS parameters often used to
define service availability.

Our proposal presents a hybrid architecture to discover
SWS. Thus, our solution splits that process into two stages:
(1) functional discovery, which is usually performed by DLs
reasoners using functional preferences; and (2) QOS-driven
selection, where a solver obtain the best service in terms of
QOS preferences that define an optimality criterion. Bothuser
preferences have to be semantically described at the same
level, so different, but possibly equivalent, service descriptions
can be matched.

This model does not restrict the concrete technique to
be used in any of its stages. Our proposal provides a user
preference ontology that can be linked to any current SWS
framework. Moreover, it uses a very expressive solution to
define these preferences, i.e. utility functions and weights.
Finally, our hybrid architecture is extensible, so it is possible to
add more stages to the process, provided that the descriptions
needed by that stage are described at the same semantic level
than the rest of the service description.

The rest of the paper is structured as follows. In Sec. II we
analyze current approaches on discovering and selecting SWS.
Then, in Sec. III we present our hybrid discovery and selection
model, explaining the proposed architecture, an ontology of
user preferences using utility functions, and how to use that
ontology to perform QOS-aware semantic selection. Finally,
in Sec. IV we sum up our contributions, and discuss our
conclusions.

II. RELATED WORK

In this Section, we discuss related work on discovery and
selection of SWS, describing the different approaches and ana-
lyzing their suitability to handle QOS-aware user preferences.
Firstly, we review discovery-related proposals, which useDLs
to match services with functional preferences, and then we
present different approaches on selecting services by means
of QOS-aware user preferences.

Concerning these preferences, in the following, service
descriptions are considered as theirprovider preferences (what
a provider offers and possibly its requirements to the user),
and user requirements are referenced asuser preferences.
Nevertheless, each preference can be broken in two main parts:

(1) functional preferences, that refer to what a service hasto
do; and (2) QOS preferences, that are used to rank services in
terms of one or more QOS parameters.

A. Discovering SWS

In the context ofDAML -S (the precursor ofOWL-S [10]),
Sycaraet al. show how semantic information allows automatic
discovery, invocation and composition of Web Services [6].
They provide an early integration of semantic information in
a UDDI registry, and propose a matchmaking architecture. It
is based on a previous work by Paolucciet al., where they
define the matching engine used [11]. This engine matches
a demand and an offer when this offer describes a service
which is “sufficiently similar” to the demanded service, i.e. the
offered service provides the functionality demanded in some
degree. The problem is how to define that degree of similarity,
and the concrete algorithm to match both service descriptions.
They update their work toOWL-S in [12].

Furthermore, there are proposals that perform the match-
making of SWS using DLs [1]–[3]. Particularly, González-
Castillo et al. provide an actual matchmaking algorithm using
the subsumption operator between DLs concepts describing
demands and offers [1]. They use existing DLs reasoners,
as RACER [13] or FaCT [14], to perform the matchmaking.
On the other hand, Lutz and Sattler [3] do not provide an
algorithm, but give the foundations to implement it using
subsumption, like Li and Horrocks [2], who also give hints
to implement a prototype using RACER.

These three works define different matching degrees as in
[6], from exactly equivalents to disjoint, so they perform a
selection. All of them perform this matching by comparing
inputs and outputs. However, Benatallahet al. propose to use
the degree of matching to select the best offer in [15], but
it results to be a NP-hard problem, as in any optimization
problem [16].

On the other hand, Benbernou and Hacid realise that some
kinds of constraints are necessary to discover SWS, including
QOS related ones, so they formally discuss the convenience
of incorporating constraints in SWS discovery [17]. However,
instead of using any existing SWS description framework, their
proposal uses anad-hoc Services Description Language, in
order to be able to define complex constraints. In addition, the
resolution algorithm uses constraint propagation and rewriting,
but performed by a subsumption algorithm, instead of a CSP
solver.

B. Selecting SWS

An early approach on modeling QOS in the context of SWS
discovery are found in [18]. In this work, Ran presents a
UDDI extension and a catalog of QOS parameters that can be
included inUDDI descriptions. Discovery is performed using
queries with functional requirements, as well as conditions on
QOS. However, the actual discovery algorithm is not defined,
and queries that use QOS parameters are not shown, so their
expressiveness is unknown. Additionally,UDDI only supports
a keyword based search, so no form of inference or flexible

match can be performed [6]. Apart from that, the resultant
services are not ranked, so the user have to perform different,
successive queries, filtering the result set in order to find the
best suited service.

Although their proposal is not semantically defined, Liuet
al. present a QOS computation model including a selection al-
gorithm [19], which is adopted in other approaches [20], [21].
They propose an extensible QOS model that comprises both
generic and domain specific criteria. Selection is performed
using an algorithm based on matrices normalization, where
services are ranked in terms of their QOS matrix description
and a vector of relative weights between QOS parameters,
which express user preferences.

Pathaket al. also model mappings between ontologies in
[20]. They propose to use domain specific ontologies to define
QOS preferences among users and providers. In their work,
selection is done using matching degrees at a first stage. Then,
QOS parameters values are collected in a quality matrix, which
is used to calculate a fixed, weighted utility function for each
offer. Finally, offers whose utility function is above a given
threshold, are ranked by one QOS parameter to obtain the
optimal offer.

Wang et al. provide an extension toWSMO ontology [22]
to handle QOS parameters [21]. They define a QOS selection
model and an algorithm based on a quality matrix that contains
values of QOS parameters. The user preferences are described
in terms of tendencies, i.e. a demand may prefer parameters to
be as small as possible, as large as possible, or around a given
value. Thus, in conjunction with weights, they rank services
to select the best one within a given set.

Maximilien and Singh present a framework and a QOS
ontology for dynamic selection in [23]. They use an agent-
based approach where QOS are modeled via a three-layer
ontology: an upper ontology which defines basic concepts
associated with a quality parameter, a middle ontology which
defines the most frequent QOS parameters and metrics, and a
user-defined lower ontology that depends on the domain of the
service. Although it constitutes a well-defined framework to
semantically describe QOS and it is referenced by many au-
thors [20], [24], [25], it is not aimed at semantically describing
user preferences.

An extension toDAML -S to include QOS profiles is pro-
posed in [26] by Zhouet al. This proposal only allows order
conditions between QOS parameters, so it performs discovery
and selection using DLs. The QOS ontology is simple and can
be easily linked to theDAML -S service profile. However, its
selection algorithm uses matching degrees to rank the resulting
set of services, so user preferences can only be expressed
as ordering relations, which are inherent to that selection
algorithm.

Another DAML -based proposal is also presented in [27],
where S. Bilgin and Singh provide aDAML -based query
language, instead of just extendingOWL-S. Using this Se-
mantic Web Services Query and Manipulation Language, they
advertise QOS attributes and perform the selection. The main
drawbacks of this approach are the same as in [18], with

limitations on the expressiveness of queries, due to the use
of DAML as its foundation. Thus, user preferences can not be
expressed in those queries, and are inherent to their selection
algorithm, as in [26].

Dobsonet al. presents QoSOnt in [24], which is an ontology
that extendsOWL-S to describe QOS attributes and metrics.
However, they do not explicitly explain how to perform
selection, and their proposal suffers fromOWL limitations, so
they have to use an ad-hoc XML language to allow custom
data ranges. User preferences are modeled using the preferred
tendency of metric values (e.g. the higher the best).

On the other hand, Zenget al. show a basic QOS model
to Web services composition in [28], although it can be
applied to discovery and selection. They propose an algorithm
based on utility functions, which are already defined for
all the contemplated QOS parameters. The optimization is
implemented using Integer Programming, providing weightsto
the different QOS parameters involved. The main drawbacks
of this proposal are that it do not take semantics into account
and that the utility functions are fixed, so the user can define
its preferences only by means of weights.

Ruiz-Cort́es et al. describe a QOS-aware discovery using
Constraint Programming, where optimization is modeled as a
Constraint Satisfaction Optimization Problem that minimize a
weighted composition of utility functions, which are defined
by the client using QOS parameters from a catalog [29]. As
in [28], this proposal does not provide semantics, but user
preferences, described by utility functions, can be definedby
the user with high expressiveness.

An extension to [30] is presented in [25] by Kritikos and
Plexousakis. They propose an ontology similar to the proposed
by Maximilien and Singh [23], mixing offers and demands
within an OWL-S description. Moreover, they present a match-
ing algorithm to infer equivalences between different named
QOS parameters that are semantically equivalent, although it
is generally undecidable. Concerning discovery and selection,
they use CSPs to perform the matchmaking of compatible
offers, and then select the best service by means of a weighted
composition of utility functions, which balance the worst and
best scenarios to compute the utility value. However, these
user preferences are not semantically defined in their QOS
ontology.

C. Motivation

Several conclusions can be obtained from the analysis of the
related work. The main ones are the following, which conform
the motivation of this work.

1) Discovery proposals, all of them based on DLs, gener-
ally use matching degrees to select the best service [1]–
[3], [6]. However, they do not support QOS preferences,
so they can not perform any optimization based on
preferences.

2) There are a few proposals that uses utility functions to
express user preferences [25], [28], [29], although only
[29] allows the user to define complex utility functions.
These three proposals use optimization techniques, as

Integer Programming or Constraint Programming, to
select the best offers. Therefore, utility functions become
the natural choice to define highly expressive user pref-
erences.

3) There are many proposals that provide a semantic frame-
work to define QOS [20], [21], [23]–[27], although [23]
do not handle user preferences in their ontology and
[26], [27] have a fixed definition of user preferences,
inherent to their selection algorithm. [25] is the most
expressive when defining user preferences, followed by
[20], [21], [24], that limit their preferences to weights
and parameter tendencies. According to all those propos-
als, it is clear that QOS have to be defined semantically.

4) None of the analyzed proposals semantically define
user preferences, although in [21], [24] the authors
include in their ontology extension the tendency of QOS
parameters. What is more, most of the proposals that
perform selection tasks in terms of user preferences
describe them using ad-hoc, non-semantic descriptions
completely decoupled with the ones used to describe
service functionality, causing a semantic gap between
functional descriptions and user preferences.

These conclusions motivate this paper, because it is neces-
sary to tackle the previous problems. Most recent proposals
use utility functions to express user preferences, although
they are not semantically defined, and there are many QOS
ontologies which any solution should be able to linked with.
Our discovery and selection model takes into account all these
problems, providing a hybrid and QOS-aware solution.

III. A Q OS-AWARE, HYBRID MODEL

The addition of QOS preferences to SWS descriptions,
turns most approaches on selecting SWS insufficient, because
they mainly use DLs, which are usually limited to logical
and relational expressions when describing QOS conditions.
Discovery and selection have to become independent, so the
former can be performed by DLs reasoners, but the latter has to
use an optimization technique, although functional and QOS-
aware preferences have to be described at the same level. Thus,
a hybrid solution arise as the most adequate option. In the
following, this solution is presented, along with an ontology
of user preferences that allows to describe both discovery and
selection at the same semantic level. Although in [31] we
present a generic n-stages hybrid discovery, in this paper we
specify that early approach by using two concrete stages, as
well as providing an user preference ontology that is used in
the selection process.

Our selection proposal comes from mixing the expressive-
ness of utility functions and weights proposed by Ruiz-Cortés
et al. [29], the semantic definition of QOS from Maximilien
and Singh [23] or Kritikos and Plexousakis [25], and an
extension to give semantics to utility functions. Furthermore,
this QOS preferences ontology can be linked with functional
preferences, so the whole discovery and selection process are
performed within a hybrid architecture, where DLs is used

Discovery

Functional
preferences

SWS

Selection

Discovered
SWS

Ranked
SWS

Process
Results

Selected
SWS

QoS
preferences

Figure 1: Activity diagram of the hybrid process.

to discover services as in the proposals from Sec. II-A, and
selection is treated as an optimization problem.

A. Hybrid Semantic Discovery

Fig. 1 shows the activity diagram of a hybrid discovery
process performed by two different engines. This process
begins with the discovery stage, where a set of SWS de-
scriptions are matched with the user functional preferences.
Thus, at this point, only compatible services, in terms of
functionality, are returned to the next stage. That matching
can be performed using available DLs reasoners that can take
SWS descriptions and return those SWS which match with
the functional preferences, that can be expressed as a service
profile in OWL-S or as service capabilities inWSMO, for
instance.

Then, thediscovered SWS are further processed, ranking
them in order to select the best service. In this case, selection
process uses QOS-aware user preferences to rank services.
These preferences are also semantically described, and linked
with functional preferences to conform the whole user pref-
erence. However, QOS preferences are not semantically de-
scribed in current proposals (cf. Sec. II-B), so it is necessary
to provide a conceptualization of QOS-related user prefer-
ences. Furthermore, in order to perform the selection stage,
an optimization technique has to be used. Thus, discovered
SWS descriptions and QOS preferences are transformed into
an optimization problem that can be performed by different
techniques, such as CP, LP or DP solvers. This stage is further
explained in Sec. III-B.

Finally, the list ofranked SWS are processed at the second
stage, where the best service in terms of user preferences are
returned, so it can be invoked or composed with others. This
service is referenced asselected SWS in Fig. 1.

This hybrid discovery architecture has many advantages. It
is loosely coupled, due to the possibility to use any discovery
and selection engines. Also, user preferences expressiveness
are not constrained to a specific selection technique, provided
that a transformation from our conceptualization is available.
Moreover, our proposed architecture can be applied to any ex-

Class

UserPreference

Class

Quality

range

domain

range

domain

DataTypeProperty

hasDefinition

range

domain

String Float

domain

range

ObjectProperty

hasReference

DataTypeProperty

hasName

DataTypeProperty

hasWeight

XMLLiteral

Figure 2: Proposed ontology to model user preferences.

isting SWS framework and corresponding repositories, taking
benefit of the wide range of tools already implemented.

B. QoS-Aware Semantic Selection

In order to decouple QOS-aware preferences descriptions
with the concrete selection algorithm used, we propose to
model these preferences as an upper ontology. This concep-
tualization allows the user to describe the whole service,
including functional descriptions from a SWS framework, at
the same semantic level. Furthermore, it provides semantic
interoperability between user preferences based on differently
named QOS parameters, because equivalences between those
QOS parameters can be inferred.

Our proposed model is shown in Fig. 2. The main concept
(or class) is UserPreference, which references aQuality
concept via thehasReference object property. ThisQuality
concept is analogous to the defined in [23], and represents the
QOS parameter which is used in the definition of the corre-
sponding user preference. Furthermore, theUserPreference
concept has a key datatype property,hasDefinition, which
links the more generic preference concept with the utility
function that defines it. Note thatQuality class is the link to
QOS parameters used in the semantic definition of QOS. This
definition can be performed using the ontology from Kritikos
and Plexousakis [25] or from Maximilien and Singh [23], for
instance.

The utility function is initially modeled as a property that
contains an XML expression that describe the definition of
each function in terms of OpenMath standard [32], as used
in [25], allowing the evaluation of the function with a proper
compiler or a mathematical tool, such as Mathematica.

Finally, our main conceptUserPreference has two
datatype properties:hasName andhasWeight. The former
is used as an identifier of a given instance. The latter is a real
number which corresponds to the relative weight associated
with the corresponding QOS parameter, used to compute the
global utility function of an offer.

Fig. 3 shows two instances of our proposed ontology, in
the case of a composed user preference aboutMTTF , with

��������������
� � �� �� ��� ��� �� �

��	
	��
� �

(a) MTTF utility function.

��������������
� � �� �� ��

�������
��� �

(b) MTTR utility function.

hasReference

hasName

“MTTF_UP”

0.7

hasWeight

hasDefinition

PreferredMTTF

UserMTTF

Class

UserPreference

Class

MTTF

instanceOf

instanceOf

Class

Quality

subClassOf

�� !� "� #� $% "� #� $� %�� %!� %"�&'()('* +,,-
(c) User preference instance aboutMTTF .

hasReference

hasName

“MTTR_UP”

0.3

hasWeight

hasDefinition

PreferredMTTR

UserMTTR

Class

UserPreference

Class

MTTR

instanceOf

instanceOf

Class

Quality

subClassOf

../0./1./2./34 . 5 4. 45 0.678987: ;<<=
(d) User preference instance aboutMTTR.

Figure 3: Conceptualization ofMTTF andMTTR user preferences.

an associated weight of0.7 (Fig. 3c), andMTTR with its
corresponding weight of0.3 (Fig. 3d). On the first hand, the in-
stancePreferredMTTF references an instanceUserMTTF
of MTTF class, that is a subclass ofQuality class from
[23]. On the other hand,PreferredMTTR references an
instanceUserMTTR of MTTR class. Moreover, concrete utility
functions are specified as OpenMath objects that represent the
showed in Fig. 3a and Fig 3b, respectively, using XML.

Selection process has to take all the instances from the
proposed ontology to compose a global user preference. Thus,
in the example from Fig. 3, the concrete optimization tech-
nique used has to take both user preferences into account to
perform the actual selection, according to the relative weights
associated with each QOS preference.

IV. CONCLUSIONS

In this work, we show that using a unique engine to discover
SWS is not appropriate, due to each engine is usually designed
for a concrete kind of search. For instance, DLs reasoners are
well suited when discovering SWS in terms of concepts and
relations, but they can not handle complex numerical QOS
preferences. Although there are extensions to allow concrete
domains in DLs, reasoners have to implement them, and they
may bring undecidability results.

We present a hybrid solution that consists in a two-stages

discovery process, where each stage is performed using the
most appropriate technique. Furthermore, we provide a se-
mantic framework to define user preferences on semantically
defined QOS parameters, provided that it is used in conjunc-
tion with another proposal that semantically defines those
QOS parameters, like [23], [25]. Thus, all facets of SWS
description (functional, non-functional, and user preferences)
are described at the same semantic level, so discovery and
selection tasks are completely done within a single semantic
framework, allowing interoperability between different service
definitions.

In addition, our proposed architecture is extensible and
loosely coupled, allowing to define complex QOS conditions,
and to use utility functions based on QOS parameters to
obtain the best service. This architecture does not impose
any restriction on the SWS framework and repository to use,
allowing its materialization as a discovery component for
current SWS implementations. Moreover, it is independent on
the concrete optimization technique used in the selection stage.

ACKNOWLEDGMENT

This work has been partially supported by the European
Commission (FEDER) and Spanish Government under CICYT
project Web-Factories (TIN2006-00472) and by the Andalu-
sian Government under project ISABEL (TIC-2533).

REFERENCES

[1] J. Gonźalez-Castillo, D. Trastour, and C. Bartolini, “Description logics
for matchmaking of services,” Hewlett Packard Labs, Tech. Rep. HPL-
2001-265, 2001.

[2] L. Li and I. Horrocks, “A software framework for matchmakingbased
on semantic web technology,” inInt. World Wide Web Conference, 2003,
pp. 331–339.

[3] C. Lutz and U. Sattler, “A proposal for describing services with DLs,”
in Int. Workshop on Description Logics, 2002.

[4] E. Motta, J. Domingue, L. Cabral, and M. Gaspari, “IRS-II:A frame-
work and infrastructure for semantic web services,” inInt. Semantic Web
Conference, 2003, pp. 306–318.

[5] N. Srinivasan, M. Paolucci, and K. Sycara, “Semantic web service
discovery in the OWL-S IDE.” inHawaii International Conference on
Systems Science, 2006.

[6] K. Sycara, M. Paolucci, A. Ankolekar, and N. Srinivasan,“Automated
discovery, interaction and composition of semantic web services.”J. Web
Sem., vol. 1, no. 1, pp. 27–46, 2003.

[7] V. Haarslev and R. M̈oller, “Practical reasoning in RACER with a
concrete domain for linear inequations,” inInt. Workshop on Description
Logics, 2002.

[8] F. Baader and U. Sattler, “Description logics with aggregates and
concrete domains,”Information Systems, vol. 28, no. 8, pp. 979–1004,
December 2003.

[9] C. Lutz, “Description logics with concrete domains – a survey.” in
Advances in Modal Logic, 2002, pp. 265–296.

[10] D. Martin, M. Burstein, J. Hobbs, O. Lassila, D. Mcdermott et al.,
“OWL-S: Semantic markup for web services,” DAML, Tech. Rep. 1.1,
2004.

[11] M. Paolucci, T. Kawamura, T. Payne, and K. Sycara, “Semantic match-
ing of web services capabilities.” inInt. Semantic Web Conference, 2002,
pp. 333–347.

[12] K. Sycara, M. Paolucci, J. Soudry, and N. Srinivasan, “Dynamic dis-
covery and coordination of agent-based semantic web services.” IEEE
Internet Computing, vol. 8, no. 3, pp. 66–73, 2004.

[13] V. Haarslev and R. M̈oller, “RACER system description.” inAutomated
Reasoning, First International Joint Conference, IJCAR 2001, 2001, pp.
701–706.

[14] I. Horrocks, “FaCT and iFaCT.” inInt. Workshop on Description Logics,
1999.

[15] B. Benatallah, M. Hacid, C. Rey, and F. Toumani, “Semanticreasoning
for web services discovery.” inWWW Workshop on E-Services and the
Semantic Web, 2003.

[16] P. Bonatti and P. Festa, “On optimal service selection.”in 14th interna-
tional conference on World Wide Web, 2005, pp. 530–538.

[17] S. Benbernou and M. Hacid, “Resolution and constraint propagation for
semantic web services discovery,”Distributed and Parallel Databases,
vol. 18, no. 1, pp. 65–81, 2005.

[18] S. Ran, “A model for web services discovery with QoS,”SIGecom Exch.,
vol. 4, no. 1, pp. 1–10, 2003.

[19] Y. Liu, A. H. H. Ngu, and L. Zeng, “Qos computation and policing in
dynamic web service selection,” inWWW (Alternate Track Papers &
Posters), 2004, pp. 66–73.

[20] J. Pathak, N. Koul, D. Caragea, and V. G. Honavar, “A framework for
semantic web services discovery,” inWIDM ’05: Proceedings of the
7th annual ACM international workshop on Web information and data
management. New York, NY, USA: ACM Press, 2005, pp. 45–50.

[21] X. Wang, T. Vitvar, M. Kerrigan, and I. Toma, “A QoS-awareselection
model for semantic web services.” inICSOC 2006, ser. LNCS, A. Dan
and W. Lamersdorf, Eds., vol. 4294. Springer, 2006, pp. 390–401.

[22] D. Roman, H. Lausen, and U. Keller, “Web service modeling ontology
(WSMO),” WSMO, Tech. Rep. D2 v1.3 Final Draft, 2006.

[23] E. M. Maximilien and M. P. Singh, “A framework and ontologyfor
dynamic web services selection,”Internet Computing, IEEE, vol. 8,
no. 5, pp. 84–93, 2004.

[24] G. Dobson, R. Lock, and I. Sommerville, “QoSOnt: a QoS ontology
for service-centric systems,” inEUROMICRO-SEAA. IEEE Computer
Society, 2005, pp. 80–87.

[25] K. Kritikos and D. Plexousakis, “Semantic QoS metric matching,” in
ECOWS 2006. IEEE Computer Society, 2006, pp. 265–274.

[26] C. Zhou, L. Chia, and B. Lee, “DAML-QoS ontology for web services,”
in IEEE International Conference on Web Services, 2004, pp. 472–479.

[27] A. Soydan Bilgin and M. Singh, “A DAML-based repositoryfor QoS-
aware semantic web service selection,” inIEEE International Confer-
ence on Web Services, 2004, pp. 368–375.

[28] L. Zeng, B. Benatallah, A. H. H. Ngu, M. Dumas, J. Kalagnanam, and
H. Chang, “QoS-aware middleware for web services composition,” IEEE
Transactions on Software Engineering, vol. 30, no. 5, pp. 311–327, 2004.

[29] A. Ruiz-Cort́es, O. Mart́ın-Dı́az, A. Duŕan-Toro, and M. Toro, “Im-
proving the automatic procurement of web services using constraint
programming,”Int. J. Cooperative Inf. Syst, vol. 14, no. 4, pp. 439–
468, 2005.

[30] O. Mart́ın-Dı́az, A. Ruiz-Cort́es, D. Benavides, A. Durán, and M. Toro,
“A quality-aware approach to web services procurement,” in4th. VLDB
Workshop on Technologies for E-services TES’03, 2003, pp. 42–53.

[31] J. M. Garćıa, D. Ruiz, A. Ruiz-Cort́es, O. Mart́ın-Dı́az, and M. Resinas,
“An hybrid, QoS-aware discovery of semantic web services using
constraint programming,” inICSOC 2007, ser. LNCS, B. Kr̈amer, K.-J.
Lin, and P. Narasimhan, Eds., vol. 4749. Springer, 2007, pp. 69–80.

[32] S. Buswell, O. Caprotti, D. P. Carlisle, M. C. Dewar, M. Gaëtano, and
M. Kohlhase, “The OpenMath standard,” The OpenMath Society, Tech.
Rep. Version 2.0, 2004.

Appendix B

Curriculum vitae

The Curriculum vitae of the author of this research report is enclosed in
the following in Spanish. Further information can be provided at request if
necessary.

DATOS PERSONALES

Apellidos: García Rodríguez
Nombre: José María
DNI: 31724461-D
Fecha de nacimiento: 10/10/1981
Teléfono: 954559814
Correo electrónico: josemgarcia@us.es

AUTODEFENSA

El doctorando comenzó su carrera profesional, tras obtener su titulación de Ingeniero en
Informática con Premio Extraordinario, en Sadiel, S.A. Desde octubre de 2004 hasta octubre de
2006 estuvo ejerciendo funciones de programador para distintos proyectos realizados para la
Junta de Andalucía, incluyendo desarrollos Web con tecnología Java e integradas en la
plataforma w@ndA. En el curso 05/06 comenzó sus estudios de doctorado en el programa de
Tecnología e Ingeniería del Software. En junio de 2006 comenzó a trabajar para el proyecto
AgilWeb (IP: Miguel Toro) en tareas de apoyo a la investigación, para finalmente en octubre de
2006 comenzar a trabajar en el Departamento de Lenguajes y Sistemas Informáticos como
profesor.

Actualmente se encuentra participando como investigador en los proyectos WebFactories
(CICYT, IP: Antonio Ruiz) e ISABEL (Junta de Andalucía, IP: Antonio Ruiz), en tareas relacionadas
con el aprovisionamiento de servicios Web semánticos. En este contexto, el doctorando cuenta
con dos aportaciones, una en ICSOC’07 (Congreso A-Core) y otra en el taller NFPSLA-SOC’07.
Asimismo, se encuentra en proceso de revisión otra aportación enviada al SWWS’08 (Congreso
incluido en el Top-80 del ranking CSCR)

Finalmente, la experiencia docente cosechada en estos dos años como profesor universitario se
ha centrado en asignaturas troncales en las tres titulaciones impartidas en la ETSII, completando
21 créditos en el curso 06/07 en las asignaturas de Introducción a la Programación I y II; y 24
créditos en el curso 07/08 en las asignaturas de Ingeniería del Software I y III, y en Ingeniería
del Software de Gestión I y II.

FORMACIÓN ACADÉMICA

Titulación Superior: Ingeniero en Informática
Centro: E.T.S de Ingeniería Informática de Sevilla
Fecha: 07/04/2005
Calificación: Premio Extraordinario (2.5)

EXPERIENCIA LABORAL

07/2006-10/2006 (3 meses): Personal Investigador Titulado Superior de la Universidad de
Sevilla (Proyecto AgilWeb).
10/2004-10/2006 (24 meses): Programador en Sadiel, S.A.

IDIOMAS

Inglés: Diplomado por el Instituto de Idiomas (Universidad de Sevilla)
Alemán: Primer Curso del Instituto de Idiomas (Universidad de Sevilla)

PARTICIPACIÓN EN PROYECTOS DE I+D FINANCIADOS EN
CONVOCATORIAS PÚBLICAS

Título del proyecto: ISABEL. Ingeniería de Sistemas Abiertos Basada en LínEas de productos
Entidad financiadora: Consejería de Innovación Ciencia y Empresa de la Junta de Andalucía
(TIC-2533)
Entidades participantes: Universidad de Sevilla, Universidad Politécnica de Valencia,
Universidad de Loyola (EEUU), Universidad del Ulster, Actúan de EPOS: ISOTROL, TELVENT,
INGENIA, Hospital Universitario Virgen del Rocío.
Universidades colaboradoras: Universidad Politécnica de Valencia, Universidad de Loyola
(EEUU), Universidad del Ulster.
Duración: 2008 – 2011
Investigador responsable: Antonio Ruiz Cortés
Número de investigadores participantes: 18 (15 del grupo de la Universidad de Sevilla)
Financiación: 410.421 €
Tipo de participación: Investigador participante a tiempo completo en tareas de
aprovisionamiento de servicios Web semánticos.

Título del proyecto: WEB-FACTORIES. Fábricas Software para Sistemas con Arquitectura
Orientada a Servicios Web
Entidad financiadora: Ministerio de Ciencia y Tecnología (TIN2006-00472)
Entidades participantes: Universidad de Sevilla y Universidad de Huelva. Actúan de EPOs:
XimetriX network Thoughts, Telvent Interactiva S.A, Acromática S.L, Isotrol, Laboratorio de
Ingeniería del Software de la NASA y Consejería de Innovación Ciencia y Empresa de la Junta de
Andalucía.
Duración: 2007 – 2009
Investigador responsable: Antonio Ruiz Cortés
Número de investigadores participantes: 16 (15 del grupo de la Universidad de Sevilla)
Financiación: 229.200 €
Tipo de participación: Investigador participante a tiempo completo en tareas de
aprovisionamiento de servicios Web semánticos.

Título del proyecto: WEB-MADE. Desarrollo de aplicaciones basadas en servicios WEB,
subproyecto del proyecto coordinado Desarrollo de aplicaciones basadas en servicios WEB
(AgilWeb).
Entidad financiadora: Ministerio de Ciencia y Tecnología. TIC2003-02737-C02-01
(18.13.03.30.06 2003/1210)
Entidades participantes: Universidad de Sevilla y Universidad de Castilla–La Mancha
Duración: 2003 – 2006
Investigador responsable: Miguel Toro Bonilla
Número de investigadores participantes: 12
Financiación: 191.200 €
Tipo de participación: Titulado Superior contratado a tiempo parcial en tareas de apoyo en las
actividades de diseño e implementación de un emparejador de servicios Web.

ESTANCIAS EN CENTROS EXTRANJEROS

Centro: Semantic Technology Institute Innsbruck
Localidad: Innsbruck
País: Austria
Fecha: 23/06/2008-22/09/2008 (Estancia confirmada pendiente de llevar a cabo)
Duración: 3 meses
Tema: Selección de Servicios Web Semánticos teniendo en cuenta propiedades no funcionales y
preferencias de usuario, en el contexto de la iniciativa europea WSMO/WSMX.

CONTRIBUCIONES A CONGRESOS

Autores: José María García, David Ruiz, Antonio Ruiz-Cortés, Octavio Martín-Díaz, Manuel
Resinas.
Título: An Hybrid, QoS-Aware Discovery of Semantic Web Services Using Constraint Programming.
Congreso: International Conference on Service Oriented Computing (ICSOC'07)
Publicación: Springer Verlag, LNCS 4749
DOI: 10.1007/978-3-540-74974-5_6 ISSN: 0302-9743
Páginas: 69 - 80
Fecha: Septiembre 2007
Indicios de Calidad:

 Índice de rechazo del 78.4%

 Categoría A en el ranking CORE.

 Índice H del congreso: 10.

Autores: José María García, David Ruiz, Antonio Ruiz-Cortés
Título: On User Preferences and Utility Functions in Selection: A Semantic Approach.
Congreso: Non Functional Properties and Service Level Agreements in Service Oriented
Computing Workshop (NFPSLA-SOC’07).
Publicación: Springer Verlag, LNCS. Por publicar.
ISSN: 0302-9743
Páginas: Por publicar.
Fecha: Septiembre 2007
Indicios de Calidad: Índice de rechazo del 38.8%

Autores: Carlos Müller, Octavio Martín-Díaz, Antonio Ruiz-Cortés y José M. García.
Título: Consistencia y conformidad en un contexto temporal.
Congreso: ZOCO’06 – Métodos y Herramientas para el Desarrollo de Aplicaciones (taller
organizado en el contexto del congreso JISBD’06)
Publicación: Libro de Actas
ISBN: 978-84-690-5792-6
Páginas: 15 - 24
Fecha: Octubre 2006

OTROS MÉRITOS (RESUMEN)

 Premio Extraordinario Fin de Carrera - Universidad de Sevilla curso 2004/2005.

 Premio Real Maestranza de Caballería de Sevilla al mejor expediente del curso
2004/2005 en Ingeniería en Informática.

 Premio Ayuntamiento de Sevilla al mejor expediente del curso 2004/2005 en Ingeniería
en Informática.

 Finalizado el periodo docente de estudios de tercer ciclo en el programa con mención de
calidad concedida por el Ministerio de Educación y Ciencia con referencia MCD2005-
00261.

 Diplomado en Inglés por el Instituto de Idiomas de la Universidad de Sevilla en 2005.

 Cursando actualmente Primer Curso de Alemán en el Instituto de Idiomas de la
Universidad de Sevilla.

 Alumno interno del Departamento de Lenguajes y Sistemas Informáticos de la
Universidad de Sevilla en el curso 2001/2002.

 Asistencia a los siguientes cursos y seminarios:
o JSP's Avanzado - CLE Formación (10 horas)
o Oracle 9i: XML Develop Applications (DXML9) - Oracle Educación (15 horas)
o Flash MX 2004 para diseñadores - Confederación de Empresarios de Andalucía

(50 horas)
o Programación avanzada en ASP.NET - Confederación de Empresarios de

Andalucía (50 horas)
o Introducción a OpenCMS y Cocoon - Sadiel, S.A. (32 horas)
o Creación de aplicaciones gráficas en lenguaje C/C++ mediante entornos visuales

de programación en sistemas Unix/Linux - Universidad de Sevilla (40 horas)
o II Curso Linux Avanzado: Administración y Servidores - Universidad de Sevilla

(40 horas)
o Seminario sobre Orientación Sociolaboral - Schlumberger – Sema (8 horas)

 Proyecto Fin de Carrera: Diseño e Implementación de un Framework para el Desarrollo
de Servicios de Intermediación; Tutor: Antonio Ruiz Cortés. Calificación obtenida: 9,5.

Appendix C

Bibliography

[1] G. Agre and Z. Marinova. An INFRAWEBS Approach to Dynamic Com-
position of Semantic Web Services. Cybernetics and Information Technologies,
7(1), 2007.

[2] G. Agre, P. Kormushev, and I. Dilov. INFRAWEBS Axiom Editor - A
Graphical Ontology-Driven Tool for Creating Complex Logical Expres-
sions. International Journal Information Theories and Applications, 13(2):169–
178, 2006.

[3] G. Agre, Z. Marinova, T. Pariente, and A. Micsik. Towards Semantic Web
Service Engineering. In Proceedings of the SMR2 2007 Workshop on Service
Matchmaking and Resource Retrieval in the Semantic Web, volume 243 of CEUR
WS, 2007.

[4] G. Agre. INFRAWEBS Designer - A Graphical Tool for Designing Semantic
Web Services. In J. Euzenat and J. Domingue, editors, AIMSA 2006, volume
4183 of LNAI, pages 275–289. Springer, 2006.

[5] R. Akkiraju, J. Farrell, J. Miller, M. Nagarajan, M. T. Schmidt, A. Sheth, and
K. Verma. Web service semantics - WSDL-S. Technical Note v. 1.0, IBM and
University of Georgia, April 2005.

[6] A. Ankolekar, D. Martin, D. Mcguinness, S. Mcilraith, M. Paolucci, and
B. Parsia. OWL-S’ relationship to selected other technologies. Technical
report, DAML, 2004.

[7] G. Antoniou and F. van Harmelen. A Semantic Web Primer. Cooperative
Information Systems. MIT Press, April 2004.

142 Bibliography

[8] F. Baader, D. Calvanese, D. L. Mcguinness, D. Nardi, and P. F. Patel-
Schneider, editors. The Description Logic Handbook : Theory, Implementation
and Applications. Cambridge University Press, January 2003.

[9] S. Battle, A. Bernstein, H. Boley, B. Grosof, M. Gruninger, R. Hull, M. Kifer,
D. Martin, S. Mcilraith, D. Mcguinness, J. Su, and S. Tabet. Semantic web
services framework (SWSF) overview. Technical report, World Wide Web
Consortium, September 2005.

[10] C. Becker, K. Geihs, and J. Gramberg. Representation of Quality of Service
Preferences by Contract Hierarchies. 1999.

[11] B. Benatallah, M. Hacid, C. Rey, and F. Toumani. Semantic reasoning for
web services discovery. In WWW Workshop on E-Services and the Semantic
Web, 2003.

[12] S. Benbernou and M. Hacid. Resolution and constraint propagation for
semantic web services discovery. Distributed and Parallel Databases, 18(1):65–
81, 2005.

[13] T. Berners-Lee, J. Hendler, and O. Lassila. The semantic web. Scientific
American, 284(5):34–43, 2001.

[14] P. Bonatti and P. Festa. On optimal service selection. In 14th international
conference on World Wide Web, pages 530–538, 2005.

[15] Web services architecture. Technical report, World Wide Web Consor-
tium, February 2004.

[16] I. Bratko. Prolog Programming for Artificial Intelligence. Addison Wesley,
September 2000.

[17] C. Bussler, D. Fensel, and A. Maedche. A conceptual architecture for
semantic web enabled web services. SIGMOD Rec., 31(4):24–29, December
2002.

[18] L. Cabral, J. Domingue, S. Galizia, A. Gugliotta, V. Tanasescu, C. Pedri-
naci, and B. Norton. IRS-III: A broker for semantic web services based ap-
plications. In International Semantic Web Conference, pages 201–214, 2006.

[19] Web Services Description Language (WSDL) Version 2.0. Technical re-
port, World Wide Web Consortium, June 2007.

[20] UDDI Version 3.0.2. Technical report, OASIS, October 2004.

Bibliography 143

[21] M. Crubézy, M. A. Musen, E. Motta, and W. Lu. Configuring online
problem-solving resources with the internet reasoning service. IEEE Intelli-
gent Systems, 18(2):34–42, 2003.

[22] J. Davies, R. Studer, and P. Warren, editors. Semantic Web Technologies:
Trends and Research in Ontology-based Systems. John Wiley & Sons, July 2006.

[23] J. de Bruijn, H. Lausen, R. Krummenacher, A. Polleres, L. Predoiu,
M. Kifer, and D. Fensel. D16.1v0.21: The Web Service Modeling Language
WSML. WSMO, October 2005.

[24] S. Dietze, A. Gugliotta, and J. Domingue. Context-aware process support
through automatic selection and invocation of semantic web services. In
Service-Oriented Computing and Applications, 2007. SOCA ’07. IEEE Interna-
tional Conference on, pages 199–206, 2007.

[25] M. Dimitrov, D. Ognyanov, and A. Simov. wsmo4j programmers guide.
Technical report, OntoText Lab, November 2004.

[26] M. Dimitrov, A. Simov, V. Momtchev, and M. Konstantinov. WSMO Stu-
dio - a semantic web services modelling environment for WSMO. In The
Semantic Web: Research and Applications (ESWC 2007 Proceedings), volume
4519 of LNCS, pages 749–758. Springer, 2007.

[27] G. Dobson, R. Lock, and I. Sommerville. QoSOnt: a QoS Ontology for
Service-Centric Systems. In EUROMICRO-SEAA, pages 80–87. IEEE Com-
puter Society, 2005.

[28] J. Domingue. Tadzebao And Webonto: Discussing, browsing, editing
ontologies on the web. In 11th Knowledge Acquisition for Knowledge-Based
Systems Workshop, 1998.

[29] Semantic annotations for WSDL and XML schema. Technical report,
World Wide Web Consortium, August 2007.

[30] C. Feier and J. Domingue. WSMO primer. WSMO Final Draft D3.1v0.1,
DERI, April 2005.

[31] D. Fensel and C. Bussler. The web service modeling framework WSMF.
Electronic Commerce Research and Applications, 1(2):113–137, 2002.

[32] S. Galizia, A. Gugliotta, and J. Domingue. A trust based methodology for
web service selection. In Semantic Computing, 2007. ICSC 2007. International
Conference on, pages 193–200, 2007.

144 Bibliography

[33] J. M. García, D. Ruiz, A. Ruiz-Cortés, O. Martín-Díaz, and M. Resinas.
An hybrid, QoS-aware discovery of semantic web services using constraint
programming. In B. Krämer, K.-J. Lin, and P. Narasimhan, editors, ICSOC
2007, volume 4749 of LNCS, pages 69–80. Springer, 2007.

[34] J. M. García, D. Ruiz, and A. Ruiz-Cortés. On user preferences and utility
functions in selection: A semantic approach. In 1st Non Functional Properties
and Service Level Agreements in Service Oriented Computing Workshop, LNCS.
Springer, 2008. To appear.

[35] K. Gomadam, K. Verma, D. Brewer, A. Sheth, and J. Miller. Radiant: A
tool for semantic annotation of web services. In 4th International Semantic
Web Conference, 2005.

[36] J. González-Castillo, D. Trastour, and C. Bartolini. Description logics for
matchmaking of services. Technical Report HPL-2001-265, Hewlett Packard
Labs, 2001.

[37] T. R. Gruber. A translation approach to portable ontology specifications.
Knowl. Acquis., 5(2):199–220, June 1993.

[38] M. Grüninger and C. Menzel. The process specification language (PSL)
theory and applications. AI Magazine, 24(3):63–74, 2003.

[39] SOAP Version 1.2. Technical report, World Wide Web Consortium, April
2007.

[40] V. Haarslev and R. Möller. RACER system description. In Automated Rea-
soning, First International Joint Conference, IJCAR 2001, pages 701–706, 2001.

[41] F. Hakimpour, D. Sell, L. Cabral, J. Domingue, and E. Motta. Semantic
web service composition in IRS-III: the structured approach. In E-Commerce
Technology, 2005. CEC 2005. Seventh IEEE International Conference on, pages
484–487, 2005.

[42] A. Haller, E. Cimpian, A. Mocan, E. Oren, and C. Bussler. WSMX - A
Semantic Service-Oriented Architecture. In IEEE International Conference on
Web Services (ICWS’05), volume 0, pages 321–328, Los Alamitos, CA, USA,
2005. IEEE Computer Society.

[43] A. Heß, E. Johnston, and N. Kushmerick. ASSAM: A tool for semi-
automatically annotating semantic web services. In 3rd International Seman-
tic Web Conference, 2004.

Bibliography 145

[44] I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, and
M. Dean. SWRL: A Semantic Web Rule Language Combining OWL and
RuleML. Technical report, W3C Member Submission, 2004.

[45] I. Horrocks. FaCT and iFaCT. In Int. Workshop on Description Logics, 1999.

[46] M. Jaeger, G. Rojec-Goldmann, C. Liebetruth, G. Mühl, and K. Geihs.
Ranked matching for service descriptions using OWL-S. Kummunikation
in Verteilten Systemen (KiVS), pages 91–102, 2005.

[47] F. Kaufer and M. Klusch. WSMO-MX: A logic programming based hybrid
service matchmaker. pages 161–170, 2006.

[48] U. Keller, R. Lara, A. Polleres, I. Toma, M. Kifer, and D. Fensel. WSMO
web service discovery. Technical Report D5.1v0.1, DERI, November 2004.

[49] M. Kerrigan. Web Service Modeling Toolkit (WSMT). Technical report,
DERI, April 2005.

[50] L. Kovács, A. Micsik, and P. Pallinger. Two-phase semantic web service
discovery method for finding intersection matches using logic program-
ming. In Workshop on Semantics for Web Services (SemWS’06), 2006.

[51] K. Kritikos and D. Plexousakis. Semantic QoS metric matching. In
ECOWS 2006, pages 265–274. IEEE Computer Society, 2006.

[52] R. Lara, D. Roman, A. Polleres, and D. Fensel. A conceptual comparison
of WSMO and OWL-S. In ECOWS 2004, volume 3250 of LNCS, pages 254–
269. Springer, 2004.

[53] L. Li and I. Horrocks. A software framework for matchmaking based on
semantic web technology. In Int. World Wide Web Conference, pages 331–339,
2003.

[54] K. Li. Lumina: Using WSDL-S for Web Service Discovery. PhD thesis, Uni-
versity of Georgia, 2005.

[55] Y. Liu, A. H. H. Ngu, and L. Zeng. QoS computation and policing in
dynamic web service selection. In WWW (Alternate Track Papers & Posters),
pages 66–73, 2004.

[56] C. Lutz and U. Sattler. A proposal for describing services with DLs. In
Int. Workshop on Description Logics, 2002.

[57] RDF Primer. Technical report, World Wide Web Consortium, February
2004.

146 Bibliography

[58] D. Martin, M. Burstein, J. Hobbs, O. Lassila, D. Mcdermott, and Others.
OWL-S: Semantic Markup for Web Services. Technical Report 1.1, DAML,
2004.

[59] D. Martin, M. Paolucci, S. Mcilraith, M. Burstein, D. Mcdermott,
D. Mcguinness, B. Parsia, T. Payne, M. Sabou, M. Solanki, N. Srinivasan,
and K. Sycara. Bringing semantics to web services: The OWL-S approach.
In J. Cardoso and A. Sheth, editors, SWSWPC 2004, volume 3387 of LNCS,
pages 26–42. Springer, 2004.

[60] E. M. Maximilien and M. P. Singh. A framework and ontology for dy-
namic web services selection. Internet Computing, IEEE, 8(5):84–93, 2004.

[61] OWL web ontology language overview. Technical report, World Wide
Web Consortium, February 2004.

[62] S. McIlraith, T. Son, and H. Zeng. Semantic web services. IEEE Intelligent
Systems, 16(2):46–53, 2001.

[63] A. Mocan, E. Cimpian, M. Stollberg, F. Scharffe, and J. Scicluna. WSMO
mediators. WSMO Working Draft D29v0.2, DERI, December 2005.

[64] E. Motta, J. Domingue, L. Cabral, and M. Gaspari. IRS-II: A framework
and infrastructure for semantic web services. In Int. Semantic Web Confer-
ence, pages 306–318, 2003.

[65] E. Motta. Reusable Components for Knowledge Modelling: Case Studies in
Parametric Design Problem Solving. IOS Press, 1999.

[66] M. Moyano, A. Buccella, and A. Cechich. Semantic resources to support
web services selection, mediation, and composition. In Proceedings of the
Third Latin American Web Congress. IEEE, 2005.

[67] N. Oldham, K. Verma, A. Sheth, and F. Hakimpour. Semantic WS-
agreement partner selection. In WWW ’06: Proceedings of the 15th interna-
tional conference on World Wide Web, pages 697–706. ACM, 2006.

[68] B. Omelayenko, M. Crubézy, D. Fensel, R. V. Benjamins, B. J. Wielinga,
E. Motta, M. A. Musen, and Y. Ding. UPML: The language and tool support
for making the semantic web alive. In D. Fensel, J. A. Hendler, H. Lieber-
man, and W. Wahlster, editors, Spinning the Semantic Web, pages 141–170.
MIT Press, 2003.

[69] M. Paolucci, T. Kawamura, T. Payne, and K. Sycara. Semantic matching
of web services capabilities. In Int. Semantic Web Conference, pages 333–347,
2002.

Bibliography 147

[70] J. Pathak, N. Koul, D. Caragea, and V. G. Honavar. A framework for
semantic web services discovery. In WIDM ’05: Proceedings of the 7th annual
ACM international workshop on Web information and data management, pages
45–50, New York, NY, USA, 2005. ACM Press.

[71] A. Patil, S. Oundhakar, A. Sheth, and K. Verma. METEOR-S web service
annotation framework. In International Conference on World Wide Web, pages
553–562, 2004.

[72] SPARQL query language for RDF. Technical report, World Wide Web
Consortium, January 2008.

[73] S. Ran. A model for web services discovery with QoS. SIGecom Exch.,
4(1):1–10, 2003.

[74] M. Resinas. Propuesta para la provisión de servicios web usando criterios
de calidad. Master’s thesis, Universidad de Sevilla, June 2004.

[75] D. Roman, H. Lausen, and U. Keller. Web service modeling ontology
(wsmo). Technical Report D2 v1.3 Final Draft, WSMO, 2006.

[76] A. Ruiz-Cortés, O. Martín-Díaz, A. Durán, and M. Toro. Improving the
automatic procurement of web services using constraint programming. Int.
J. Cooperative Inf. Syst., 14(4):439–468, 2005.

[77] C. Schröpfer, M. Schönherr, P. Offermann, and M. Ahrens. A flexible ap-
proach to service management-related service description in SOAs. pages
47–64. 2007.

[78] J. Scicluna, C. Abela, and M. Montebello. Visual modelling of OWL-S
services. In IADIS International Conference WWW/Internet, 2004.

[79] G. Silver, J. Miller, A. Sheth, J. Myers, A. Maduko, and R. Jafri. Modeling
and simulation of quality of service for composite web services. In 7th World
Multiconference on Systemics, Cybernetics and Informatics, 2003.

[80] K. Sivashanmugam, K. Verma, A. Sheth, and J. Miller. Adding semantics
to web services standards. In Intl. Conference on Web Services, pages 395–401,
2003.

[81] K. Sivashanmugam, J. Miller, A. Sheth, and K. Verma. Framework for
semantic web process composition. International Journal of Electronic Com-
merce, 9(2):71–106, 2004.

[82] A. Soydan Bilgin and M.P. Singh. A DAML-based repository for QoS-
aware semantic Web service selection. In IEEE International Conference on
Web Services, pages 368–375, 2004.

148 Bibliography

[83] K. Sycara, M. Paolucci, A. Ankolekar, and N. Srinivasan. Automated
discovery, interaction and composition of semantic web services. J. Web
Sem., 1(1):27–46, 2003.

[84] K. Sycara, M. Paolucci, J. Soudry, and N. Srinivasan. Dynamic discov-
ery and coordination of agent-based semantic web services. IEEE Internet
Computing, 8(3):66–73, 2004.

[85] K. Verma, K. Sivashanmugam, A. Sheth, A. Patil, S. Oundhakar, and
J. Miller. METEOR-S WSDI: A scalable P2P infrastructure of registries for
semantic publication and discovery of web services. Inf. Tech. Management,
6(1):17–39, 2005.

[86] L. H. Vu, M. Hauswirth, F. Porto, and K. Aberer. A search engine for QoS-
enabled discovery of semantic web services. International Journal of Business
Process Integration and Management, 1(4):244–255, 2006.

[87] X. Wang, T. Vitvar, M. Kerrigan, and I. Toma. A QoS-Aware Selection
Model for Semantic Web Services. In A. Dan and W. Lamersdorf, editors,
ICSOC 2006, volume 4294 of LNCS, pages 390–401. Springer, 2006.

[88] L. Zeng, B. Benatallah, A. H. H. Ngu, M. Dumas, J. Kalagnanam, and
H. Chang. QoS-aware middleware for web services composition. IEEE
Transactions on Software Engineering, 30(5):311–327, 2004.

[89] C. Zhou, L. Chia, and B. Lee. DAML-QoS ontology for web services. In
IEEE International Conference on Web Services, pages 472–479, 2004.

This document was typeset on // using RC–BOOK α. for LATEX2ε.
Should you want to use this document class, please send mail to

contact@tdg-seville.info.

