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In this paper, we study the asymptotic behaviour of sequences of conduction problems
and sequences of the associated diffusion energies. We prove that, contrary to
the three-dimensional case, the boundedness of the conductivity sequence in L1

combined with its equi-coerciveness prevents from the appearance of nonlocal effects in
dimension two.More precisely, in the two-dimensional case we extend theMurat–Tartar
H-convergence which holds for uniformly bounded and equi-coercive conductivity
sequences, as well as the compactness result which holds for bounded and equi-
integrable conductivity sequences in L1. Our homogenization results are based on
extensions of the classical div-curl lemma, which are also specific to the dimension two.

Keywords Dirichlet forms; Div-curl results; Elliptic problems; Homogenization;
�-convergence; Unbounded coefficients.
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1. Introduction

This paper is devoted to the asymptotic analysis of sequences of conduction
problems and sequences of the associated diffusion energies.

Let � be a bounded open set of �2, and let �An�n∈� be a sequence of equi-
coercive matrix-valued functions in L����2×2. We consider the conduction problem{

−div�An�un� = f in �

un = 0 on ��
(1.1)

Concerning the energy associated with the conduction problem (1.1) we restrict
ourselves to a symmetric conductivity matrix, but in the same time, we extend the
framework by replacing the Lebesgue measure by a sequence of Radon measures.
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936 Briane and Casado-Díaz

Let ��n�n∈� be a bounded sequence of Radon measures defined on � and let �An�n∈�
be a sequence of equi-coercive matrix-valued functions in L�

�n
���2×2. We consider

the quadratic functional defined in L2��� by

Fn�u� �=

∫
�
An�u · �ud�n if u ∈ C1

0���

+� elsewhere.
(1.2)

The first issue is to determine the asymptotic behaviour of the conduction
problem (1.1) and of the diffusion energy (1.2). The second issue is to predict the
appearance of nonlocal effects from the knowledge of the conductivity sequence An

in (1.1) or An d�n in (1.2).
The topic has been widely studied for the last thirty years. The pioneer work is

due to Spagnolo (1968) in the end of the sixties. He treated the homogenization of
problem (1.1) by introducing the G-convergence theory. So, under the assumption
that An is symmetric, equi-coercive, and equi-bounded, he proved that the limit
problem is of same nature. In the seventies, Tartar (1977) and Murat (1998)
extended with the H-convergence theory the Spagnolo result by getting rid of the
symmetry assumption and by giving a corrector result.

A few years later, Buttazzo and Dal Maso (1980) as well as Carbone and
Sbordone (1979) obtained a compactness result, in the context of the �-convergence,
for any sequence of quadratic functionals (1.2) with d�n = dx and An symmetric but
without equi-coerciveness assumption. Under the assumption that �An� is bounded
and equi-integrable in L1���, they proved that any sequence Fn, �-converges
for the strong topology of L2���, up to a subsequence, to a quadratic form
of the same type (1.2) at least on the set of regular functions. More recently,
starting from the Beurling–Deny theory of the Dirichlet forms (Beurling and Deny,
1958), Mosco (1994) proved that any sequence of quadratic forms of type (1.2),
which is asymptotically regular (i.e., for any u ∈ C1

0���, there exists a sequence un
with lim inf Fn�un� < +� which strongly converges to u in L2���), �-converges
for the strong topology of L2���, up to a subsequence, to a Dirichlet form F
on L2���, which satisfies the Beurling–Deny representation formula (Beurling and
Deny, 1958), i.e., for every u ∈ L2��� with F�u� < +�,

F�u� = Fd�u�︸ ︷︷ ︸
strongly local term

+
∫
�
u2 dk︸ ︷︷ ︸

simply local term

+
∫
�×�\diag

�u�x�− u�y��2dj︸ ︷︷ ︸
nonlocal term

	 (1.3)

where k is a Radon measure on � and j is a Radon measure on �×� \
diag. Moreover, there exists a measure � on � and a matrix-valued function A
in L1

����
2×2 such that

Fd�u� =
∫
�
A�u · �ud�	 ∀u ∈ C1

0����

However, there is no simple way to compute the limit measures �	 k	 j from
the sequence �n. In particular, there is no general result concerning the
appearance of simply local and nonlocal terms. Moreover, assuming that �n = � is
independent of n and �An� is equi-integrable in L1

����, Mosco (1994) extended the
results (Buttazzo and Dal Maso, 1980; Carbone and Sbordone, 1979) by proving
that the �-limit F (1.3) is strongly local, i.e., k = 0 and j = 0.
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If one removes the equi-integrability assumption, then the �-limit of Fn (1.2) is
not necessarily of the same type. So, simply local and nonlocal terms may appear
in accordance with the Beurling–Deny representation formula (1.3). Fenchenko
and Khruslov (1981) were the first to obtain nonlocal effects in three-dimensional
conduction from non-uniformly bounded conductivity sequences An in (1.1). Their
model example, which consists in a periodic lattice of high-conductivity and thin-
diameter fibers embedded in a medium of conductivity 1, has been revisited and
extended by several authors in Bellieud and Bouchitté (1998), Briane and Tchou
(2001), Briane (2002; 2003). More recently, Camar-Eddine and Seppecher (2002)
proved that, in dimension three, the �-closure of the set of diffusion energies (1.2)
is exactly the set of the Dirichlet forms satisfying the Beurling–Deny formula (1.3).
Their proof is partially based on suitable fiber-reinforced microstructures which
allow them to derive particular, but rich enough, sets of nonlocal terms. Note
that the situation is completely different in elasticity for which Camar-Eddine and
Seppecher (2003) proved a spectacular closure result. Very recently, Alibert and
Seppecher (2005) completely solved the one-dimensional conduction case.

In the particular case of periodic microstructures (An�x� �= Bn

(
x

n

)
, with Bn

periodic and 
n → 0, being a highly-oscillating sequence of matrix-valued functions),
the first author gave in Briane (2002) an asymptotic barrier below which nonlocal
effects do not appear. More essentially, he obtained in Briane (2006) a periodic H-
convergence result in dimension two under the assumption that the conductivity
sequence An in (1.1) is equi-coercive but only bounded in L1���2×2. Of course, the
model example of Fenchenko and Khruslov (1981) and Khruslov (1991) shows that
the L1-boundedness does not prevent from the appearance of nonlocal effects in
dimension three. This example points out the specificity of the two-dimensional
result (Briane, 2006). Therefore, this result shows the gap between the dimension
three and the dimension two concerning the appearance of nonlocal effects.

Our present contribution deals with the asymptotic behaviour of (1.1) and (1.2)
in the very few studied two-dimensional case. We extend the result of Briane
(2006) to a non-periodic framework by introducing measures. Generally speaking,
we prove that simply local and nonlocal effects cannot appear in dimension two
under the assumption that the conductivity sequence is equi-coercive but only
bounded in L1���2×2. On the one hand, we extend (see Theorem 2.14) the Murat–
Tartar H-convergence relating to problem (1.1), assuming that the conductivity
sequence An is equi-coercive but that �An� only weakly ∗ converges in the sense of
the Radon measures to a function in L����. On the other hand, we obtain (see
Theorem 2.9) a two-dimensional compactness result similar to that of Buttazzo and
Dal Maso (1980), Carbone and Sbordone (1979), and Mosco (1994), assuming that
the sequence An is equi-coercive and equi-bounded but that the sequence �n only
weakly ∗ converges in the sense of the Radon measures. Shortly, in dimension two
the �-limit of Fn (1.2) is still a strongly local Dirichlet form, without any equi-
integrability condition but under the equi-coerciveness assumption.

The key-ingredients of the previous results are original two-dimensional div-curl
lemmas. Recall that the classical Murat–Tartar div-curl lemma (Murat, 1978) claims
that, for any bounded sequence �n in L2���2 with compact divergence in H−1���,
and for any bounded sequence vn in H1���, the sequence �n · �vn converges in the
distributions sense to the product of the limits � · �v. In the context of problem (1.1),
replacing the L2���2 bound of �n with the assumption that the sequence A−1

n �n · �n
is bounded in L1��� while leaving the other assumptions unchanged, the previous
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convergence still holds true (see Theorem 2.1). The new assumption is weaker than
the boundedness in L2���2 since the conductivity sequence An is not uniformly
bounded and its inverse is thus not equi-coercive. In the context of (1.2), an estimate
satisfied by �n replaces (more or less equivalently) the boundedness of A−1

n �n · �n
in L1��� (see Theorem 2.6). These div-curl results are also specific to the dimension
two and are false in dimension three (see Example 2.4).

The paper is organized as follows. The second section is devoted to the
statement of the results. We start by stating the two div-curl results (Theorems 2.1
and 2.6). Then, we give the two applications about the lack of nonlocal effects
in two-dimensional homogenization (Theorems 2.9 and 2.14). The third section is
devoted to the proof of the div-curl results and the homogenization results.

First of all, let us give a few notations:

Notations

• · denotes the scalar product in �2 and � · � the euclidian norm;
• for any matrix A ∈ �2×2, At denotes the transposed of A, As �= 1

2 �A+ At� its
symmetric part and Aa �= A− As its antisymmetric part;

• for any A ∈ �2×2, �A� �= max���=1 �A�� denotes the matrix-norm associated
with � · �, which coincides with the spectral radius when A is symmetric;

• I denotes the unit matrix of �2×2 and J �= (
0 −1
1 0

)
;

• � denotes a bounded open set of �2;
• for any open subset 
 of �, 
̄ denotes the closure of 
 in �2 and the
inclusion 
̄ ⊂ � is denoted by 
 � �;

• a.e. means almost everywhere with respect to the Lebesgue measure, and
�-a.e. means almost everywhere with respect to the measure �;

• dx denotes the integration with respect to the Lebesgue measure and d� the
integration with respect to the measure �;

• for any measure space �X	 �� with ��X� > 0, and any f ∈ L1
��X�, we denote

−
∫
X
f d� �= 1

��X�

∫
X
f d��

• ⇀ denotes a weak convergence and −→ a strong one;
• C��� denotes the space of the continuous functions on �, and C0��� the
space of the functions in C��� which vanish on ��, equipped with the usual
norm;

• C1
0��� denotes the subspace of C0��� composed of the differentiable

functions on � the derivative of which belongs to C0���
2, and Ck

c ��� denotes
the space of the k-differentiable functions on � with compact support in �;

• ���� (respectively ����) denotes the set of the Radon measures on �
(respectively �), i.e., the dual of C0��� (respectively C���);

• ��� denotes the total variation of the measure � in ����;
• the weak-∗ convergence in the Radon measures sense of a sequence �n
to � in ���� (respectively ����) is denoted by �n ⇀ � weakly in ���� ∗
(respectively ���� ∗), i.e.,∫

�
�d�n −→

n→+�

∫
�
�d�	 for any � ∈ C0����respectively C�����

• c denotes a suitable positive constant which may vary from line to line.
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Now, let us recall a few results concerning the De Giorgi �-convergence theory,
which will be used in the sequel. We refer to Dal Maso (1993) for a general
presentation.

1.1. Recalls of �-Convergence and Dirichlet Forms

Definition 1.1. A sequence of functionals Fn � L
2��� −→ �0	+�� is said to �-

converge to F � L2��� −→ �0	+�� for the strong topology of L2��� if, for any u

in L2���,

(i) the �-liminf inequality holds

∀un −→ u strongly in L2���	 F�u� ≤ lim inf
n→+� Fn�un�	 (1.4)

(ii) the �-limsup inequality holds

∃ūn −→ u strongly in L2���	 F�u� = lim
n→+�Fn�ūn�� (1.5)

Any sequence satisfying (1.5) is called a recovery sequence.

In the sequel, we will always consider the �-convergence with respect to the
strong topology of L2���. Consequently, this topology will be not necessarily
mentioned. We then denote the �-convergence of Fn to F by

Fn
�−L2���−→ F�

Recall a few properties of the �-convergence:

Properties 1.2.

a) Since L2��� is separable, any sequence of functionals Fn � L
2��� −→ �0	+�� has

a subsequence which �-converges with respect to the strong topology of L2���.
b) Let Fn � L

2��� −→ �0	+�� be a sequence of functionals which �-converges to F .
Then, the �-limit F coincides with the �-limit of the lower semicontinuous
envelope of Fn with respect to the strong topology of L2���.

c) Let Fn � L
2��� −→ �0	+�� be a sequence of functionals which �-converges to F .

Assume that every functional Fn is Markovian, i.e.,

∀T ∈ C1��� with T�0� = 0 and 
T ′
L���� ≤ 1	 Fn � T ≤ Fn	

and that u ∈ L����. Let Tu ∈ C1��� be a smooth truncation function with

T ′

u
L���� ≤ 1, satisfying

Tu�t� �=


t if �t� ≤ M

M if t ≥ M + 2 where M �= 
u
L����

−M if t ≤ −M − 2	

�
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Then, if ūn is a recovery sequence satisfying (1.5), so is Tu�ūn� since Tu�ūn�
strongly converges to Tu�u� = u in L2��� and thus

F�u� ≤ lim inf
n→+� Fn�Tu�ūn�� ≤ lim sup

n→+�
Fn�Tu�ūn�� ≤ lim sup

n→+�
Fn�ūn� = F�u��

Therefore, we may always suppose that ūn is bounded in L���� if u ∈ L����.
d) Let Fn � L

2��� −→ �0	+�� be a sequence of quadratic forms which �-converges
to F . Then, F is a quadratic form on L2��� which is lower semicontinuous with
respect to the strong topology of L2���.

e) Let Fn � L
2��� −→ �0	+�� be a sequence of quadratic forms which �-converges

to F . Then, for any u in the domain of F , i.e., F�u� < +�, the polarized �n of
the quadratic form Fn and any recovery sequence ūn (1.5), satisfy

∀vn −→ v strongly in L2���	 Fn�vn� ≤ c �⇒ �n�ūn	 vn� −→
n→+���u	 v�	 (1.6)

where � is the polarized of the �-limit F . Property (1.6) can be considered as a
kind of asymptotic Euler equation.

Let us conclude this section by a few notions about the Dirichlet forms defined
in L2���, which will be used in the statement of Theorem 2.9 and 2.12. We refer
to Mosco (1994) for more details in connection with the �-convergence.

Definition 1.3. Let F � L2��� −→ �0	+�� be a quadratic form of domain

D�F� �= {
u ∈ L2��� � F�u� < +�}

�

(i) The form F is said to be closed if it is lower semicontinuous with respect to
the L2���-norm. The form F is said to be closable if there exists a closed
extension F̃ of F in L2��� such that D�F� ⊂ D�F̃�. The closure of a closable
form is its smallest closed extension in L2���.

(ii) A Dirichlet form on L2��� is a closed Markovian quadratic form defined
in L2���.

(iii) The form F is said to be regular if there exists a subset of D�F� ∩ C0���, which
is dense both in C0��� and in D�F� with the norm �F + 
 · 
L2����

1/2.
(iv) The form F is said to be local if its polarized � satisfies

��u	 v� = 0	 ∀u	 v ∈ D�F�	 with supp�u� ∩ supp�v� = ��

The form F is said to be strongly local if

��u	 v� = 0	 ∀u	 v ∈ D�F�	 u constant in a neighbourhood of supp�v�� (1.7)

Thanks to the Beurling–Deny theory (Beurling and Deny, 1958) any regular
Dirichlet form F on L2��� can be split in the form (1.3).

2. Statement of the Results

In the first subsection, we state two div-curl results. The first one (Theorem 2.1)
actually reads as an extension of the Murat–Tartar (Murat, 1978) div-curl lemma
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for unbounded sequences in L2. The second one (Theorem 2.6) deals with the more
general case where the conductivity sequence only converges in the weak-∗ sense of
the Radon measures.

In the second section, we give two applications in homogenization of the
previous div-curl results. The first result (Theorem 2.9), as an application of
Theorem 2.6, claims that any sequence of strongly local quadratic forms �-
converges for the strong topology of L2, to a strongly local Dirichlet form if the
conductivity sequence converges in the weak-∗ sense of the Radon measures. The
second result (Theorem 2.14), as an application of Theorem 2.1, is an extension of
the Murat–Tartar H-convergence (Murat, 1998) when the conductivity sequence is
not uniformly bounded but only converges to a bounded function in the weak-∗
sense of the Radon measures.

2.1. Two-Dimensional Div-Curl Results

2.1.1. An extension of the Murat–Tartar Div-Curl Lemma. We have the following
result:

Theorem 2.1. Let � be a bounded open subset of �2. Let � > 0, let ā ∈ L���� and
let An be a sequence of symmetric matrix-valued functions in L����2×2 satisfying

An ≥ �I a.e. in � and �An� ⇀ ā weakly in ���� ∗ � (2.1)

Let �n be a sequence in L2���2 and vn be a sequence in H1��� satisfying the following
assumptions:

(i) �n and vn satisfy the estimate∫
�
A−1
n �n · �ndx + 
vn
H1��� ≤ c� (2.2)

(ii) �n satisfies the classical condition

div �n is compact in H−1���� (2.3)

Then, there exists � ∈ L2���2 and v ∈ H1��� such that the following convergences hold
true up to a subsequence

�n ⇀ � weakly in ����2 ∗ and �vn ⇀ �v weakly in L2���2� (2.4)

Moreover, we have the following convergence in the distributions sense

�n · �vn ⇀ � · �v in �′���� (2.5)

Remark 2.2. The only but fundamental difference between Theorem 2.1 and the
Murat–Tartar div-curl lemma is that the sequence A1/2

n �n is bounded in L2���2 in
Theorem 2.1, while �n is bounded in L2���2 in the classical result.

Remark 2.3. Theorem 2.1 is false in dimension three. At this end, let us consider the
model example of nonlocal effects in conduction due to Fenchenko and Khruslov
(1981) and extended in Bellieud and Bouchitté (1998) and Briane and Tchou (2001).
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Example 2.4. Let �′ be a bounded open set of �2 and let � be the vertical (parallel
to the x3-axis) cylinder defined by � �= �′ × �0	 1�. Let 
n be a

1
n
-periodic lattice of

thin vertical cylinders of radius 1
n
e−n2 . Let an be the conductivity function defined by

an �=
{
2e2n

2
in 
n

1 in � \ 
n�

For a fixed f in L2���, let un be the solution in H1
0 ��� of the equation

−div�an�un� = f in �′���	

and let V̂n be the Y -periodic function on �3 defined on Y �= �−1	 1�3 and for
R∈ �0	 1�, by

V̂n�y� �=


ln r + n2

lnR+ n2
if r �= √

y21 + y22 ∈ �e−n2	 R�

0 if r ≤ e−n2 (region of high conductivity)

1 if r ≥ R�

�

It is easy to check that the sequences �n �= an�un and v̂n�x� �= V̂n�nx� satisfy the
assumptions (2.1)–(2.3) of Theorem 2.1 and that v̂n weakly converges to 1 in H1���.
However, we can prove that (see Briane and Tchou, 2001 for details)

�n · �v̂n ⇀ 2��u− v�	

where the weak limit u of un in H1
0 ��� and v ∈ H1

0 �0	 1� L
2��′�� satisfy the coupled

system 
−�u+ 2��u− v� = f in �

−�2v

�x23
+ v− u = 0 in �	

for which u �= v as soon as f �= 0. Therefore, convergence (2.5) does not hold true.
In this example, the function v reads as an integral in u, which yields a nonlocal
term in the limit equation satisfied by u. We will see that such nonlocal effects are
not possible in dimension two under the only assumption (2.1).

2.1.2. An Extension in the Case of Measures. Let � be a bounded open subset of
�2. We consider a bounded sequence of nonnegative measures �n in ���� and a
sequence of symmetric matrix-valued functions An in L�

�n
���2×2, and we assume that

there exist two constants �	 � > 0 such that, for any n ∈ �,∫
E
inf
���=1

An�x�� · � d�n�x� ≥ ��E�	 for any Borel set E ⊂ �	 (2.6)

where �E� denotes the Lebesgue measure of E, and

�An�x�� ≤ �	 �n-a.e. x ∈ �� (2.7)
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Note that, due to the dimension two, we have the explicit formula

inf
���=1

An� · � = 1
2

(
trAn −

√
�trAn�

2 − 4 detAn

)
∈ L�

�n
��� since An ∈ L�

�n
���2×2�

Remark 2.5. Denoting by An	r the density function of the regular part of An d�n
with respect to the Lebesgue measure, and taking into account the measure
derivation theorem which establishes

An	r�x�� · � = lim
r→0

(
−
∫
B�x	r�

An� · � d�n
)
	 ∀� ∈ �2	 a.e. x ∈ �	

it is easy to check that assumption (2.6) is equivalent to suppose that An is
nonnegative and that the smaller eigenvalue of An	r is greater or equal than �. On
the other hand, note that, thanks to the symmetry of An, the nonnegativity of An

�n-a.e. in � and (2.7) are equivalent to

�An�x���2 ≤ �An�x�� · �	 ∀� ∈ �2	 �n-a.e. x ∈ �� (2.8)

The fact that (2.8) implies the first assertion is immediate. In order to show the
direct implication, it is enough to use the Cauchy–Schwarz combined with the
nonnegativity of An, and (2.7) which imply that

�An�x���2 = An�x�An�x�� · � ≤ �An�x�An�x�� · An�x���
1
2 �An�x�� · �� 1

2

≤ ���An�x���2� 1
2 �An�x�� · �� 1

2 	

for any � ∈ �2 and �-a.e. x ∈ �. This gives (2.8).

Associated with An we define the sequence of quadratic functionals Fn � L
2��� −→

�0	+�� by

Fn�u� =

∫
�
An�u · �ud�n if u ∈ C1

0���

+� elsewhere�
(2.9)

Since �n is bounded and L2��� is separable, we may assume (up to an extraction of
a subsequence) that there exist � ∈ ���� and F � L2��� −→ �0	+��, such that

�n ⇀ � weakly in ����∗	 (2.10)

Fn
�−L2���−→ F� (2.11)

Note that the relaxed functional of Fn with respect to the L2���-norm (the domain
of which contains C1

0���) �-converges to the same limit F . By Properties 1.2,
F is a nonnegative quadratic functional which is lower semicontinuous in L2���.
Moreover, thanks to (2.6) the functional Fn satisfies the coerciveness

Fn�u� ≥ �
∫
�
��u�2 dx	 ∀ u ∈ C1

0���	 (2.12)
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so does its �-limit F on its domain by the �-limsup inequality combined with the
lower semicontinuity of the H1

0 ���-norm. Therefore, the domain D�F� of F is a
Hilbert subspace of H1

0 ��� equipped with the norm
√
F . Moreover, by the �-liminf

inequality combined with (2.7) and (2.10) we have, for any u ∈ C1
0���,

F�u� ≤ lim inf
n→+� Fn�u� ≤ lim inf

n→+�
(
�
u
2

C1
0 ���


�n
����

)
< +�	 (2.13)

hence the domain D�F� of F contains the space C1
0���. Finally, since D�F� (which

contains C1
0���) is dense in L2��� and the embedding of D�F� in L2��� is

continuous (since F satisfies (2.12)), the usual identification of L2��� with its dual
implies that

L2��� is dense in D�F�′� (2.14)

In this context, we have the following extension of the div-curl lemma:

Theorem 2.6. Assume that the conditions (2.6), (2.7), and (2.10) hold true.
Let �n � � −→ �2 be a sequence of �n-measurable functions with the following

properties:

(i) there exists a constant C > 0 such that

∫
�
���n�d�n ≤ C
�
 1

2
C0���

( ∫
�
�d�n

) 1
2

	 ∀� ∈ C0���	 � ≥ 0� (2.15)

(ii) there exists � ∈ L1
����2 such that

�nd�n ⇀ �d� weakly in ����2∗� (2.16)

(iii) there exists L ∈ D�F�′ such that, for any sequence vn in C1
0��� and any function

v ∈ D�F� ∩ C0��� satisfying

vn → v strongly in L2���	 sup
n∈�

( ∫
�
An�vn · �vnd�n + 
vn
C���

)
< +�	

(2.17)

we have

lim
n→+�

∫
�
�n · �vn d�n = L�v�� (2.18)

Then, for any sequence vn ∈ C1��̄� and any v ∈ C��̄� satisfying (2.17) and the
boundedness condition

�n · �vnd�n is bounded in ����	 (2.19)

and for any � ∈ C�
c ���, we have∫

�
�n · �vn � d�n −→

n→+�L��v�−
∫
�
� · ��v d�� (2.20)
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Remark 2.7. If in Theorem 2.6. the function v also belongs to C1���, then
from (2.16) and (2.18) with vn �= �v for any n ∈ �, we deduce that∫

�
� · ���v�d� = lim

n→+�

∫
�
�n · ���v�d�n = L��v�� (2.21)

Therefore, in this case (2.20) reads as∫
�
�n · �vn� d�n −→

n→+�

∫
�
� · ����v�− ��v�d� =

∫
�
� · �v�d�	 for any � ∈ C�

c ���	

or equivalently,

�n · �vn d�n ⇀ � · �v d� in �′���	 (2.22)

similarly to the classical div-curl lemma.

Remark 2.8. We can localize inequality (2.15). More precisely, for any � ∈ C0���
and any compact set K ⊂ �, we have

∫
K
��n����d�n ≤ C
�
 1

2
C0���

( ∫
K
���d�n

) 1
2

� (2.23)

Indeed, let us consider � ∈ C0��� such that 0 ≤ � ≤ 1 and � = 1 in K. Then, from
(2.15) we deduce that

∫
K
��n����d�n ≤

∫
�
��n�����d�n ≤ C
�
 1

2
C0���

( ∫
�
����d�n

) 1
2

�

Now, minimizing the previous inequality with respect to � yields estimate (2.23).

2.2. Applications in Homogenization

2.2.1. A Homogenization Result in the Case of Measures. We have the following
homogenization result:

Theorem 2.9. Let � be a bounded open subset of �2. Let �n be a sequence of Radon
measures in ���� satisfying convergence (2.10). Let �	 � > 0 and let An be a sequence
of symmetric matrix-valued functions in L�

�n
���2×2 satisfying the bounds (2.6) and (2.7).

Then, there exist a matrix-valued function A in L�
� ���

2×2, a subsequence of n, still
denoted by n, and a sequence of matrix-valued functions Pn ∈ C��̄�2×2 which satisfy∫

E
inf
���=1

A�x�� · � d��x� ≥ ��E�	 for any Borel set E ⊂ �	 (2.24)

�A�x�� ≤ �	 �-a.e. x ∈ �	 (2.25)

each column of Pn is a gradient,

Pn ⇀ I weakly in L2���2×2 and AnPnd�n ⇀ Ad� weakly in ���� ∗ �
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For every open set 
 ⊂ �, the �-limit G of the sequence of functionals (which exists up
to a subsequence)

Gn�u� �=

∫


An�u · �ud�n if u ∈ C1

0�
�

+� if u ∈ L2�
� \ C1
0�
�	

(2.26)

is a strongly local Dirichlet form on 
, which satisfies

G�u� =
∫


A�u · �ud�	 ∀u ∈ C1

0�
�� (2.27)

Moreover, for any u ∈ C1
0�
� and any sequence un ∈ C1

0�
� satisfying

un −→ u strongly in L2��� and G�u� = lim
n→+�Gn�un�	 (2.28)

we have

An�und�n ⇀ A�ud� weakly in ����2∗	 (2.29)

and the corrector result

lim
n→+�

∫


An��un − Pn�u� · ��un − Pn�u�d�n = 0� (2.30)

Remark 2.10. In Theorem 2.9 the matrix-valued function A does not depend on 
,
which means that the �-limit is a local process in our case. Namely, the value of
A at a point x only depends on the behaviour of An in a neighbourhood of x, that
we can choose as small as we wish. Clearly, for 
 �= �, Theorem 2.9 provides an
integral representation of the �-limit F of the sequence Fn (2.9) restricted to C1

0���.

Remark 2.11. A particular case of Theorem 2.9 is given by the following
framework:

d�n �= �Bn�dx and An �=
Bn

�Bn�
	

where Bn is a symmetric matrix-valued function in L1���2×2 satisfying, for given
� > 0 and b̄ ∈ L1���,

∀n ∈ �	 Bn ≥ �I a.e. in � and �Bn� ⇀ b̄ weakly in ���� ∗ �

Then, the assumptions (2.10) (up to a subsequence), (2.6) and (2.7) hold true. In this
case, the �-limit F is such that

F�u� =
∫
�
B�u · �udx	 for any u ∈ C1

0���	

where B is a symmetric matrix-valued function in L1���2×2 satisfying

B ≥ �I a.e. in � and B ∈ L1���2×2�
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Remark 2.12. From Theorem 2.9 the �-limit G of the sequence Gn defined by (2.26)
is a strongly local Dirichlet form (see Definition 1.3). Its restriction to D�G� ∩ C0�
�,
denoted by GC , is then strongly local, Markovian and closable. The closure �GC

of GC is thus a strongly local Dirichlet form (see e.g., Theorem 4.1.2 of Mosco,
1994). Moreover, from the Beurling–Deny theory (Beurling and Deny, 1958) �GC is a
diffusion, i.e., the killing measure and the jumping measure which appear in (1.3) are
zero in this case. Therefore, we can directly conclude to the existence of a matrix-
valued A (which could depend on 
) such that the representation (2.27) holds (see
e.g., Section 3 of Mosco, 1994). However, in Section 3.2. we give a more constructive
proof of (2.27), which is based on the second div-curl lemma (Theorem 2.6). In
general, we do not know if D�G� ∩ C0�
� is dense in D�G�, and thus, we do not
know if �GC agrees with G.

Remark 2.13. Let un be a sequence in C1
0��� such that Fn�un� ≤ C. Then, by the

Cauchy–Schwarz inequality combined with (2.7) we have, for any � ∈ C0���, � ≥ 0,

∫
�
�An�un��d�n ≤ 
�
 1

2
C0���

( ∫
�
An�un · �und�n

) 1
2
( ∫

�
�An��d�n

) 1
2

≤ �C��
1
2 
�
 1

2
C0���

( ∫
�
�d�n

) 1
2

� (2.31)

Therefore, the sequence An�un satisfies estimate (2.15). Moreover, the sequence of
measures An�und�n is bounded in ����2 and we have (up to a subsequence)

An�und�n ⇀ � weakly in ����2 ∗ �

The limit measure � is absolutely continuous with respect to the measure � since
(2.31) implies that, for any � ∈ C0���, � ≥ 0,

∣∣∣∣ ∫
�
�d�

∣∣∣∣ ≤ lim sup
n→+�

∫
�
�An�un��d�n ≤ �C��

1
2 
�
 1

2
C0���

( ∫
�
�d�

) 1
2

�

2.2.2. An Extension of the H-Convergence. We have the following result:

Theorem 2.14. Let � be a bounded open subset of �2 such that its boundary �� has
a zero Lebesgue measure. Let �	 � > 0, let ā ∈ L���� and let An be a sequence of (non
necessarily symmetric) matrix-valued functions in L����2×2 such that the symmetric
part As

n of An and the antisymmetric one Aa
n satisfy

�an�I ≤ �As
n	 where Aa

n �= anJ	 (2.32)

As
n ≥ �I a.e. in � and �As

n� ⇀ ā weakly in ���� ∗ � (2.33)

Then, there exist a subsequence, still denoted by n, and a matrix-valued A in L����2×2

satisfying

A ≥ �I and A−1 ≥ ��1+ ��2
ā
L�����
−1I a.e. in �	 (2.34)
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such that, for any f in H−1���, the solution un in H1
0 ��� of the equation

−div�An�un� = f in �′���	 (2.35)

satisfies the weak convergences{
un ⇀ u weakly in H1

0 ���

An�un ⇀ A�u weakly in ����2 ∗	 (2.36)

where u is the solution in H1
0 ��� of the equation

−div�A�u� = f in �′���� (2.37)

Moreover, there exists a matrix-valued function Pn in L2���2×2 satisfying
Pn ⇀ I weakly in L2���2×2

Pn� is a gradient for any � ∈ �2

div�AnPn� is compact in H−1���	

(2.38)

AnPn ⇀ A weakly in ����2×2∗	 (2.39)

and such that, for any f in H−1���, the solutions un of (2.35) and u of (2.37) satisfy
the strong convergence

�un − Pn�u −→ 0 strongly in L1���2×2� (2.40)

Remark 2.15. Theorem 2.14 extends the H-convergence result of Murat (1998),
which holds in any dimension but for a uniformly bounded conductivity sequence.
Since the conductivity sequence An is not uniformly bounded, contrary to the
classical H-convergence, we have to assume with (2.32), that the antisymmetric part
of An is controlled by the symmetric one.

The unboundedness of the sequence An implies that the second convergence
of (2.36) and convergence (2.39) only hold true in the weak-∗ sense of the Radon
measures.

We also have the corrector result (2.40) which is quite similar to the one of the
classical H-convergence.

Remark 2.16. Thanks to Theorem 2.1 combined with (2.36) the H-convergence
according to Theorem 2.14 inherits the local property of the classical H-
convergence, which is itself a consequence of the div-curl lemma. More precisely,
if An	 Bn are two sequences in L���� satisfying (2.32), (2.33), and converging
respectively to A	B in the sense of Theorem 2.14, then we have

for any open set 
 � �	 An = Bn a.e. in 
 �⇒ A = B a.e. in 
�

Similarly, if An converges to A in the sense of Theorem 2.14, so does At
n to At.
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Example 2.17. Let us consider the case where An is a �0	 
n�
2-periodic symmetric

matrix-valued function. More precisely, assume that

An�x� �= Bn

(
x


n

)
a.e. x ∈ �	

where Bn is a Y -periodic, Y �= �0	 1�2, symmetric matrix-valued function and 
n
a positive sequence converging to 0 as n → +�. Then, assumption (2.33) is
equivalent to

sup
n∈�


Bn
L1�Y�2×2 < +�� (2.41)

Indeed, assumption (2.33) implies that the sequence �An� is bounded in L1
loc���,

hence the boundedness (2.41). Inversely, it is easy to check that (2.41) implies the
convergence (up to a subsequence)

�An� ⇀ ā weakly in ����∗	 where ā �= lim
n→+� 
Bn
L1�Y�2×2 �

Under this assumption the first author proved in Briane (2006) that the sequence An

converges in the sense of Theorem 2.14 to a constant matrix.

3. Proof of the Results

3.1. Proof of the Div-Curl Results

We start by a self-contained proof of Theorem 2.1 to present in a simpler framework
the main ideas of these two-dimensional div-curl lemmas. Then, we extend the first
proof to the case of measures in order to prove Theorem 2.6.

3.1.1. Proof of Theorem 2.1. The key-ingredient of the proof consists in subtracting
to the “good-divergence” sequence �n a compact sequence of gradients �un in such a
way that the difference �n − �un is divergence-free. Therefore, the function �n reads
as �n = �un + J�wn, where wn is a stream function. Then, considering a piecewise
constant approximation of wn we prove that the sequence wn strongly converges in
L2
loc���. The strong approximation of wn is based on the embedding of W 1	1�Q�/�

in L2�Q�, the constant of which is independent of any square Q. Finally, replacing
�n by �un + J�wn, we conclude owing to integrations by parts. So, the proof of
Theorem 2.1 is divided in five steps:

• In the first step, we prove the weak convergences (2.4).
• In the second step, we introduce the stream function wn.
• In the third step, we establish a strong approximation of wn by a piecewise
constant function.

• In the fourth step, we prove the strong convergence of wn in L2
loc���.

• The fifth step is devoted to the proof of convergence (2.5).
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First step: Proof of convergences (2.4).
The sequence �n is bounded in L1���2×2 since the Cauchy–Schwarz inequality

combined with the weak-∗ convergence of (2.1) (which implies the boundedness of
�An� in L1��� thanks to the Banach Steinhaus theorem) and (2.2) yields

∫
�
��n�dx ≤

( ∫
�
�An�dx

) 1
2
( ∫

�
A−1
n �n · �ndx

) 1
2

≤ c�

Therefore, �n converges up to a subsequence to some � ∈ ����2 in the weak-∗ sense
of the measures. Let us prove that the vector-valued measure � is actually in L2���2.
Again by the Cauchy–Schwarz inequality combined with (2.1) and (2.2) we have,
for any � ∈ C0���2,∣∣∣∣ ∫

�
��dx� ·�

∣∣∣∣ = lim
n→+�

∣∣∣∣ ∫
�
�n ·�dx

∣∣∣∣
≤ lim sup

n→+�

( ∫
�
A−1
n �n · �ndx

) 1
2
( ∫

�
�An����2dx

) 1
2

≤ c

( ∫
�
ā���2dx

) 1
2

	

which implies that � is absolutely continuous with respect to the Lebesgue measure.
Since ā ∈ L����, we also get∣∣∣∣ ∫

�
� ·�dx

∣∣∣∣ ≤ c
�
L2���2	 for any � ∈ C0���
2	

hence � ∈ L2���2. Therefore, the first convergence of (2.4) holds true with its limit
in L2���2. The second one is immediate.

Second step: Introduction of a stream function.
By (2.3) the sequence un in H1

0 ��� defined by un �= �−1�div �n� strongly
converges in H1

0 ���. Let 
 be a regular simply connected open set such that 
��.
Since by definition �n − �un is a divergence-free function in L2�
�, there exists
(see e.g. Girault and Raviart, 1979) a unique stream function wn ∈ H1�
� with zero

-average such that

�n = �un + J�wn a.e. in 
�

The boundedness of �n in L1���2 (showed in the first step) and of �un in L2���2

imply that the sequence wn is bounded in W 1	1�
�. Hence, thanks to the embedding
of W 1	1�
� in L2�
� the sequence wn is bounded in L2�
�. Therefore, wn weakly
converges up to a subsequence to some w in L2�
�. However, since the Sobolev
exponent 2 is critical in dimension two, we cannot directly conclude to the
compactness of wn in L2

loc�
�. This is the aim of the two following steps.

Third step: Approximation of wn by a piecewise constant function.
Let Q be an open set such that Q � 
. For a given h > 0, let �Qh

k�1≤k≤Nh
be a

partition of open squares satisfying

�Qh
k � = h2	 Qh

j ∩Qh
k = Ø for any j �= k	 and Q ⊂

Nh⋃
k=1

�Qh
k ⊂ 
� (3.1)
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Let w̄h
n be the piecewise constant function associated with this partition by

w̄h
n �=

Nh∑
k=1

(
−
∫
Qh
k

wn

)
1Qh

k
�

Since wn weakly converges to w in L2�
�, the sequence w̄h
n , for a fixed h, strongly

converges in L��
� to the piecewise constant function defined by

w̄h �=
Nh∑
k=1

(
−
∫
Qh
k

w

)
1Qh

k
� (3.2)

Now, let us estimate the difference wn − w̄h
n in L2�Q�-norm. Applying the Sobolev–

Poincaré inequality in each square Qh
k , relating to the embedding of W 1	1�Qh

k� in
L2�Qh

k�, whose constant CS is independent of k and h (since it is invariant by
translations and similarities), it follows

∫
Q
�wn − w̄h

n�
2dx ≤

Nh∑
k=1

∫
Qh
k

∣∣∣∣wn −−
∫
Qh
k

wn

∣∣∣∣2dx ≤ CS

Nh∑
k=1

( ∫
Qh
k

��wn�dx
)2

�

Set Ãn �= J−1A−1
n J , we have �Ã−1

n � = �An�. Then, the Cauchy–Schwarz inequality
implies that ( ∫

Qk
h

��wn�dx
)2

≤
( ∫

Qk
h

∣∣Ã−1/2
n

∣∣∣∣Ãn
1/2�wn

∣∣dx)2

≤
( ∫

Qh
k

�An�dx
)( ∫

Qh
k

Ãn�wn · �wndx

)
�

Hence, the former inequalities yield

∫
Q
�wn − w̄h

n�
2 dx ≤ CS

(
sup

1≤k≤Nh

∫
Qh
k

�An�dx
) Nh∑

k=1

∫
Qh
k

Ãn� dx�

Moreover, noting that

Ãn�wn · �wn = A−1
n ��n − �un� · ��n − �un� ≤ 2

(
A−1
n �n · �n + A−1

n �un · �un
)
	

the estimate (2.2) and the equi-coerciveness of An in (2.1) combined with the
boundedness of �un in L2���2 imply that

Nh∑
k=1

∫
Qh
k

Ã−1
n �wn · �wndx ≤ 2

∫
�

(
A−1
n �n · �n + A−1

n �un · �un
)
dx ≤ c�

Therefore, there exists a constant c > 0 such that∫
Q
�wn − w̄h

n�
2dx ≤ c sup

1≤k≤Nh

∫
Qh
k

�An�dx�
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Finally, passing to the lim sup as n → +� and using the convergence of �An� in (2.1),
we get

lim sup
n→+�

∫
Q
�wn − w̄h

n�
2dx ≤ c sup

1≤k≤Nh

∫
Qh
k

ā dx = O�h2�	 (3.3)

since ã ∈ L����.

Fourth step: Strong convergence of wn in L2�Q�.
From the equality

wn − w = wn − w̄h
n + w̄h

n − w̄h + w̄h − w	

where w̄h is the strong L��Q�-limit of w̄h
n defined by (3.2), and from estimate (3.3)

we deduce that

lim sup
n→+�


wn − w
L2�Q� ≤ O�h�+ 
w̄h − w
L2�Q�� (3.4)

Moreover, considering a L2�
�-strong approximation of w by � ∈ C�
̄�, and using
the inequality (as a consequence of the Cauchy–Schwarz inequality)

∥∥∥∥ Nh∑
k=1

(
−
∫
Qh
k

�w − ��

)
1Qh

k

∥∥∥∥
L2�Q�

≤ 
w − �
L2�
�	

and the uniform convergence

lim
h→0

∥∥∥∥�−
Nh∑
k=1

(
−
∫
Qh
k

�

)
1Qh

k

∥∥∥∥
L��Q�

= 0	

we obtain that w̄h strongly converges to w in L2�Q� as h → 0. This combined with
estimate (3.4) yields the desired convergence.

Fifth step: Proof of convergence (2.5).
Let � ∈ C�

c ���. Using a localization argument we can assume that the support
of � is contained in a regular simply connected open set 
 such that 
 � �.
Consider the stream function wn of the second step, which satisfies the equality �n =
�un + J�wn and which converges to w ∈ L2�
� strongly in L2

loc�
� by the fourth
step. Since the limit � of �n in the weak-∗ sense of the measures belongs to L2���2

by the first step, and since � = �u+ J�w in �′�
�, where u is the strong limit of un
in H1

0 ���, we have w ∈ H1�
� and � = �u+ J�w a.e. in 
.
Integrating by parts and using that J�vn is divergence-free we get

∫
�
�n · �vn� dx =

∫
�
�un · �vn� dx −

∫


J�vn · �wn�dx

=
∫


�un · �vn� dx +

∫


J�vn · ��wn dx�
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Therefore, the strong convergence of un to u in H1
0 ���, the weak convergence of vn

to v in H1��� and the strong convergence of wn to w in L2
loc�
� imply that

lim
n→+�

∫
�
�n · �vn� dx =

∫


�u · �v�dx +

∫


J�v · ��wdx

=
∫
�
�u · �v�dx −

∫


J�v · �w�dx

by a new integration by parts. This combined with the equality � = �u+ J�w a.e.
in 
, gives the thesis. Note that convergence (2.5) holds true for the whole sequence
satisfying (2.4).

3.1.2. Proof of Theorem 2�6. In comparison to the former proof we now subtract
to the sequence �n�n a compact sequence of Radon measures �
n in such a way that
the difference �n�n − �
n is divergence-free up to a small perturbation of order 
.
Therefore, the measure �n�n reads as

�n�n = �
n + J�w

n + O�
� in any open square Q � �	

where the stream function w

n belongs this time to BV�Q�. As previously, considering

a piecewise constant approximation of w

n we prove that w


n satisfies the strong
estimate (3.10) of type (3.3) in L2

loc�Q�. However, the bounded function ā in (3.3) is
now replaced by the measure � in estimate (3.10). Therefore, we have to study the
case where � possibly loads some points of � (see the fifth step). To this end, we
need the extra assumption (2.19).

Let � ∈ C�
c ���. In order to prove (2.20) we may assume, thanks to a partition

of the unity, that the support of � is contained in a open square Q such that Q � �.
Then, the proof of Theorem 2.6 is divided in five steps:

• In the first step, we prove that, for a fixed 
 > 0, there exist a function g


in L2��� satisfying


L− div g

D�F�′ < 
	 (3.5)

a measure �
n in ����2 satisfying

lim sup
n→+�


�
n
����2 = O�
�	 (3.6)

and a function w

n in BV�Q�, with zero average in Q, such that

J�w

n = �n �n + g
 − �
n in ��Q�2� (3.7)

• In the second step, we prove that the weak limit w
 of w

n in L2��� and the

weak-∗ limit �
 of �
n in ����2 satisfy


�

����2 = O�
�	 (3.8)∫
Q
� · ��v d� =

∫
Q
w
�v · J��dx −

∫
Q
vg
 · ��dx +

∫
Q
v�� · d�
� (3.9)
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• In the third step, we prove that there exists a constant C > 0 such that, for
any � ∈ C1

0���,

lim sup
n→+�


�w

n − w
��
2L2�Q�

≤ C

[

2
�
2C0���

+ 
�
 3
2
C0���

sup
x∈�Q

����x�����x��� 1
2

]
� (3.10)

• In the fourth step, we prove the estimate

lim sup
n→+�

∣∣∣∣ ∫
�
�n · �vn� d�n − L��v�+

∫
�
� · ��v d�

∣∣∣∣
≤ C
��
 3

4

C0���
2 sup
x∈�Q

(�����x����x��) 1
4 � (3.11)

• The fifth step is devoted to the proof of the convergence (2.20).

First step: Proof of (3.5)–(3.7).
By the density result in (2.14) there exists a function h
 in L2��� such that


L− h

D�F�′ < 
�

Moreover, h
 can be written as the divergence of a vector-valued function g


in L2���2 (which can be chosen to be a gradient). This yields the first estimate (3.5).
Set

D �= {
�z � z ∈ C1

0���
}

endowed with the topology of C0���2, and define G

n ∈ D′ by

G

n��z� �=

∫
�
�n · �z d�n +

∫
�
g
 · �z dx	 for z ∈ C1

0���� (3.12)

Thanks to the Hahn–Banach theorem, G

n can be extended to a linear functional �
n

in �C0���
2�′ = ����2 such that


�
n
����2 = 
G

n
D′ �

Therefore, for any n ∈ �, we can choose zn ∈ C1
0��� with 
�zn
C0���

2 = 1, such that


�
n
����2 ≤ G

n��zn�+

1
n
=

∫
�
�n · �znd�n +

∫
�
g
 · �zndx +

1
n
� (3.13)

Since the sequence zn belongs to C1
0��� and is bounded in W 1	����, there

exists a function ẑ in W 1	���� ∩ C0��� such that zn weakly converges (up to a
subsequence) to ẑ both in W 1	����∗ and in H1

0 ���. Moreover, using successively the
�-liminf inequality of the �-convergence of Fn (2.9) to F , 
�zn
C0���

2 = 1, and the
boundedness (2.7) of An and (2.10) of �n, yields

F�ẑ� ≤ lim sup
n→+�

( ∫
�
An�zn · �znd�n

)
≤ lim sup

n→+�

( ∫
�
� d�n

)
< +�	
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hence ẑ ∈ D�F� ∩ C0���. Therefore, the condition (2.17) holds true with vn �= zn
and v �= ẑ. Then, the convergence (2.18) satisfied by �n combined with the weak
convergence of �zn and ẑ ∈ H1

0 ��� implies that

lim
n→+�

∫
�
�n · �znd�n +

∫
�
g
 · �zndx = L�ẑ�+

∫
�
g
 · �ẑ dx = L�ẑ�−

∫
�
h
ẑ dx�

(3.14)

Therefore, by (3.13), (3.14) and (3.5) we obtain

lim sup
n→+�


�
n
����2 ≤ 
L− h

D�F�′ 
ẑ
D�F� ≤ 

√
F�ẑ��

which yields (3.6).
On the other hand, since �
n is an extension of G


n defined by (3.12), we have∫
Q
�n · �z d�n +

∫
Q
g
 · �z dx −

∫
Q
�z · d�
n = 0	 for any z ∈ C1

0�Q�	

or equivalently, the Radon vector-valued measure �n �n + g
 − �
n is divergence-free
in Q. This implies the existence of a stream function w


n in BV�Q�, with zero average
in Q, which satisfies the equality (3.7).

Second step: Proof of (3.8) and (3.9).
By (3.6) the sequence �
n is bounded in ����2, and thus weakly converges up

to a subsequence to some �
 in ����2∗. The estimate (3.8) is then an immediate
consequence of (3.6).

By the equality (3.7) combined with (2.16) and (3.6) the sequence �w

n is

bounded in ��Q�2. Then, by the Sobolev–Poincaré inequality the sequence w

n is

also bounded in L2�Q�. Therefore, there exists a function w
 in BV�Q� such that (up
to a subsequence)

w

n ⇀ w
 weakly in L2�Q� and �w


n ⇀ �w
 weakly in ��Q�2 ∗ � (3.15)

Passing to the limit as n → +� in (3.7) owing to (2.16) and (3.15) we get

J�w
 = �� + g
 − �
 in ��Q�2 and
∫
Q
w
dx = 0� (3.16)

Multiplying (3.16) by v�� and integrating by parts we obtain∫
Q
� · ��v d� =

∫
Q
J�w
 · ��v−

∫
Q
g
 · ��v dx +

∫
Q
v�� · d�


= �−��w
v�+ w
�v	 J����′�Q�	C�
c �Q� −

∫
Q
g
 · ��v dx +

∫
Q
v�� · d�


=
∫
Q
w
�v · J��dx −

∫
Q
g
 · ��v dx +

∫
Q
v�� · d�


which is (3.9).

Third step: Proof of estimate (3.10).
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Let � ∈ C1
0���. Proceeding as in the third step of the proof of Theorem 2.1

owing to a piecewise approximation of w

n, and using the bound (3.6) satisfied

by �
n, the estimate (2.23) satisfied by ��n�, the convergence (2.10) of �n and the
boundedness of ��n�d�n in ���� (as a consequence of (2.16)) we get

lim sup
n→+�


�w

n − w
��
2L2�Q�

≤ c

[

2
�
2C0���

+ 
�
 3
2
C0���

sup
1≤k≤Nh

( ∫
�Qh
k

���d�
) 1

2
]
� (3.17)

On the other hand, we denote by xh the center of the square Qh
jh
such that

sup
1≤k≤Nh

∫
�Qh
k

���d� =
∫
�Qh
jh

���d��

We may assume that xh converges (up to an extraction of a subsequence) to x0 ∈ �Q
as h tends to 0. Then, for any open set O which contains x0, we have

lim sup
h→0

(
sup

1≤k≤Nh

∫
�Qh
k

���d�
)
≤

∫
O
���d�	

hence, minimizing with respect to O it follows

lim sup
h→0

(
sup

1≤k≤Nh

∫
�Qh
k

���d�
)
≤ ����x0����x0���

Therefore, we get

lim sup
h→0

(
sup

1≤k≤Nh

∫
�Qh
k

���d�
)
≤ sup

x∈�Q
����x����x���

Then, passing to the lim sup as h → 0 in inequality (3.17) and using the former
inequality we obtain the desired estimate (3.10).

Fourth step: Proof of estimate (3.11).
We start from the equality∫

�
�n · �vn� d�n =

∫
�
�n · ���vn�d�n −

∫
�
�n · ��vnd�n	 (3.18)

where thanks to assumption (2.18) we have∫
�
�n · ���vn�d�n −→

n→+�L��v�� (3.19)

For the second term of the right-hand side of (3.18) the definition (3.7) of w

n implies

that, similarly to (3.9),∫
Q
�n · ��vnd�n =

∫
Q
w

n�vn · J��dx −

∫
Q
vng


 · ��dx +
∫
Q
vn�� · d�
n� (3.20)
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Since vn weakly converges in L2���, we have

lim
n→+�

∫
Q
vng


 · ��dx =
∫
Q
vg
 · ��dx	 (3.21)

Moreover, the bound (3.6) satisfied by �
n combined with the boundedness (2.17)
of vn in C0��� implies that

lim sup
n→+�

∣∣∣∣ ∫
Q
vn�� · d�
n

∣∣∣∣ = c

��
C0���
2 � (3.22)

For the first term of the right-hand side of (3.20), the Cauchy–Schwarz inequality
combined with the weak convergence of �vn in L2���2 (as a consequence of the
equi-coerciveness (2.12) and the bound (2.17)) yields

lim sup
n→+�

∣∣∣∣ ∫
Q
w

n�vn · J��dx −

∫
Q
w
�v · J��dx

∣∣∣∣ ≤ c lim sup
n→+�


�w

n − w
���
L2�Q�2 �

(3.23)

Therefore, collecting (3.18)–(3.23) and the estimate (3.10) of the third step (� being
each of the derivatives of �) we obtain

lim sup
n→+�

∣∣∣∣ ∫
�
�n · �vn� d�n − L��v�−

∫
Q
vg
 · ��dx +

∫
Q
w
�v · J��dx

∣∣∣∣
≤ c

[


��
C0���

2 + 
��
 3
4

C0���
2 sup
x∈�Q

(�����x����x��) 1
4

]
	

which combined with the estimate (3.8) and the equality (3.9) of the second step
yields

lim sup
n→+�

∣∣∣∣ ∫
�
�n · �vn� d�n − L��v�+

∫
�
� · ��v d�

∣∣∣∣
≤ c

[


��
C0���

2 + 
��
 3
4

C0���
2 sup
x∈�Q

(�����x����x��) 1
4

]
+ O�
��

Finally, the arbitrariness of 
 in the last estimate implies (3.11).

Fifth step: Proof of (2.20).
The estimate (3.11) clearly implies convergence (2.20) if all the points in � have

zero �-measure. Otherwise, we denote by �xi�i∈� the set of points of � such that
���xi�� > 0, which is known to be at most a countable set. For 
 > 0 and i ∈ �, we
consider a function �


i in C�
c ��� such that

�

i = 1 in B

(
xi	




2

)
	 supp �


i ⊂ B�xi	 
�	 0 ≤ �

i ≤ 1	 and ���


i � <
4


�
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Then, for a fixed j ∈ �, we choose 
j > 0 small enough such that the supports of
�

j
i , 1 ≤ i ≤ j, are disjoint and 
j < 1/j. By considering the decomposition

� = �j + �j with �j �= �
j∏

i=1

�1− �

j
i �+

j∑
i=1

��xi��

j
i and �j �=

j∑
i=1

(
�− ��xi�

)
�

j
i 	

we have ∫
�
�n · �vn� d�n =

∫
�
�n · �vn�jd�n +

∫
�
�n · �vn�jd�n�

Since the supports of the functions �

i , for 1 ≤ i ≤ j, are disjoint, we also have

���j� =
∣∣∣∣�� j∏

i=1

�1− �

j
i �−

j∑
i=1

[
��− ��xi����


j
i

]∣∣∣∣ ≤ 5
��
C0���
2 � (3.24)

On the one hand, since ��j�xi� = 0 for any i ≤ j, we can apply the estimate (3.11)
with �j combined with (3.24) to deduce that

lim sup
n→+�

∣∣∣∣ ∫
�
�n · �vn�jd�n − L��jv�+

∫
�
� · ��jv d�

∣∣∣∣
≤ c
��
C0���

2 sup
i>j

(
���xi��

) 1
2 � (3.25)

On the other hand, noting that


�j
C0���
≤ 
j
��
C0���

2 ≤ 1
j

��
C0���

2	

the boundedness assumption (2.19) yields

lim sup
n→+�

∣∣∣∣ ∫
�
�n · �vn�jd�n

∣∣∣∣ ≤ c

j

��
C0���

2 � (3.26)

Therefore, the estimates (3.25) and (3.26) imply the new one

lim sup
n→+�

∣∣∣∣ ∫
�
�n · �vn� d�n − L��jv�+

∫
�
� · ��jv d�

∣∣∣∣
≤ c
��
C0���

2

[
sup
i>j

(
���xi��

) 1
2 + 1

j

]
� (3.27)

It remains to pass to the limit in (3.27) as j → +�. Since the series
∑�

i=1 ���xi��
is convergent, the right-hand side of (3.27) tends to zero as j → +�.

For the left-hand side of (3.27), first note that the �-liminf inequality

F��jv� ≤ lim inf
n→+� Fn��jvn� = lim inf

n→+�

∫
�
An���jvn� · ���jvn�d�n

combined with the bounds (3.24) and (2.17), implies that F��jv� is bounded.
Moreover, the convergence of �− �j = �j to 0 in C0��� and (3.24) imply that �j
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weakly converges to � in W 1	����∗. In particular, the sequence �jv strongly
converges to �v in L2���. Therefore, the sequence �jv weakly converges to �v
in D�F�, and the continuity of L ensures that

lim
j→+�

L��jv� = L��v�� (3.28)

On the other hand, if v ∈ C1��� then the formula (2.21) of L (see Remark 2.7)
combined with the convergence of �j to � in C0��� and (3.28) yields

∫
�
� · ��jvd� = L��jv�−

∫
�
� · �v�jd�

−→
j→+�

L��v�−
∫
�
� · �v�d�

=
∫
�
� · ��v d�� (3.29)

Otherwise, considering a C1���-regular approximation of v for the C���-norm
and using the uniform estimate (3.24) of ��j , we still obtain convergence (3.28).
Therefore, convergences (3.28) and (3.37) imply that

lim
j→+�

(
L��jv�−

∫
�
� · ��jv d�

)
= L��v�−

∫
�
� · ��v d�	

which combined with (3.27) yields the desired convergence (2.20). Theorem 2.6 is
proved.

3.2. Proof of the Homogenization Results

Let us now prove Theorems 2.9 and 2.14. The proofs of these results are based on
the previous div-curl lemmas (Theorems 2.1 and 2.6). Moreover, the proof of the
compactness in Theorem 2.14 follows the scheme of the classical H-convergence.

3.2.1. Proof of Theorem 2�9. The proof is divided in four steps. In the first step, we
prove that G is strongly local. In the second step, we construct the homogenized
matrix-valued function A of (2.27) and the corrector Pn of (2.30). In the third
step, we prove that A satisfies the properties (2.24) and (2.25). The fourth step is
devoted to the proof of the homogenization results (2.27), (2.29) and the corrector
result (2.30).

First step: Let u	 v be two functions in D�G� such that there exist r ∈ � and
an open set V ⊂ 
 with u = r in V and supp�v� � V . Using a truncation argument
we may assume that u	 v belong to L��
�. Denoting by � the polarized of the
quadratic form G, we have to prove that ��u	 v� = 0. To this end, we consider
two recovery sequences un	 vn in C1

0�
� relating to u	 v respectively and bounded
in L��
�, and three functions �1	 �2	 �3 in C�

c �V� satisfying

�1 = 1 in supp �v�	 �2 = 1 in supp ��1�	 and �3 = 1 in supp��2��
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By the Properties 1.2e) of a recovery sequence we have

��u	 v� = lim
n→+�

∫


An�un · �vnd�n

= lim
n→+�

( ∫


An�un · �vn �2d�n +

∫


An�un · �vn · �1− �2�d�n

)
� (3.30)

Using that �3 = 1 in supp��2�, the first term of the right-hand side of (3.30) reads as∫


An�un · �vn�2d�n =

∫


An�vn · ��un�3��2d�n�

Up to a subsequence An�vn d�n weakly converges to some �v in ����∗. Then,
since the sequence un�3 strongly converges to r�3 ∈ C1

0�
� in L2�
� and satisfies the
estimate

lim sup
n→+�

( ∫


An��un�3� · ��un�3�d�n + 
un�3
L��
�

)
< +�	

the convergence (2.22) of Remark 2.7 yields

lim
n→+�

∫


An�vn · ��un�3��2d�n =

∫


�v · ��r�3��2d� = 0�

For the second term of the right-hand side of (3.30), using that �2 = 1 in supp��1�,
we have ∫



An�un · �vn�1− �2�d�n =

∫


An�un · �

(
�1− �1�vn

)
�1− �2�d�n

=
∫


An�un · �

(
�1− �1�vn

)
d�n

−
∫


An�un · �

(
�1− �1�vn

)
�2d�n�

Since �1− �1�vn strongly converges to 0 ∈ C1
0��� in L2�
� and

lim sup
n→+�

∫


An�

(
�1− �1�vn

) · �(�1− �1�vn
)
d�n < +�	

the fact that un is a recovery sequence implies, in virtue of Properties 1.2e), that

lim
n→+�

∫


An�un · �

(
�1− �1�vn

)
d�n = ��u	 0� = 0�

Moreover, we can apply convergence (2.22) as before to get

lim
n→+�

∫


An�un · �

(
�1− �1�vn

)
�2d�n = 0�

Therefore, the right-hand side of (3.30) also tends to zero, hence ��u	 v� = 0.
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Second step: Construction of A and Pn.
We define the functional Hn � L

2��� −→ �0	+�� by

Hn�u� =

∫
�
An�u · �ud�n if u ∈ C1����

+� elsewhere �
(3.31)

Up to an extraction of a subsequence we can assume the existence of the �-
limit H of Hn. Since C1���� is contained in D�H� (see (2.13)), we know that there
exist w1

n	 w
2
n ∈ C1���� which strongly converge in L2��� respectively to the functions

w1	 w2 defined by

w1�x� = x1	 w2�x� = x2	 ∀x = �x1	 x2� ∈ ��	 (3.32)

such that, for i = 1	 2,

H�wi� = lim
n→+�

∫
�
An�w

i
n · �wi

nd�n < +�� (3.33)

Denote by �H the polarized of the quadratic form H . Thanks to Properties 1.2e)
combined with (3.33), for any v ∈ D�H� and any sequence vn ∈ C1���� strongly
converging to v in L2��� and satisfying

lim sup
n→+�

∫
�
An�vn · �vn d�n < +�	

we have

lim
n→+�

∫
�
An�w

i
n · �vnd�n = �H�w

i	 v�� (3.34)

Moreover, by the Cauchy–Schwarz inequality we have, for any � ∈ C����, � ≥ 0
on �, and for i = 1	 2,

∫
�
��An�w

i
n�d�n ≤ 
�
C����

( ∫
�
�An�d�n

) 1
2
( ∫

�
An�w

i
n · �wi

n� d�n

) 1
2

� (3.35)

In particular, the sequences An�w
i
nd�n, i = 1	 2, are bounded in ����2. So,

extracting a new subsequence (the one which appears in the statement of
Theorem 2.9) we can assume that

An�w
i
nd�n ⇀ �i weakly in ����2 ∗ �

Using (2.7) and (2.10) in (3.35) we get that the measures �i are absolutely continuous
with respect to �. Hence, there exist Ai ∈ L1

����
2×2 such that �i = Ai d�. We then

define A and Pn by

A�x�� � = A1�x��1 + A2�x��2	 ∀� = ��1	 �2� ∈ �2	 �-a.e. x ∈ �	 (3.36)

Pn�x�� � = �w1
n�x��1 + �w2

n�x��2	 ∀� = ��1	 �2� ∈ �2	 ∀x ∈ ��� (3.37)
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Third step: Proof of (2.24) and (2.25).
Since Hn defined by (3.31) is less or equal than Fn defined by (2.9), its �-limit H

is also less or equal than the �-limit F of Fn (which exists up to a subsequence).
Therefore, the linear mappings Li, for i = 1	 2,

Li � D�F� −→ �

v �−→ �H�w
i	 v�

belong to D�F�′. So, by (3.34) and (3.35) the sequences �n = An�w
i
n and vn = wi

n, i =
1	 2, satisfy the assumptions of Theorem 2.6. From (2.22) and the definition (3.36)
of A, we then deduce that, for any � = ��1	 �2� ∈ �2 and any � ∈ C�

c ���, � ≥ 0,

lim
n→+�

∫
�
An�

( 2∑
i=1

�iw
i
n

)
· �

( 2∑
i=1

�iw
i
n

)
�d�n

= lim
n→+�

2∑
i	j=1

∫
�
An�w

i
n · �wj

n�i�j� d�n =
∫
�
A� · �� d�� (3.38)

On the other hand, using the equi-coerciveness (2.6) we have

∫
�
An�

( 2∑
i=1

�iw
i
n

)
· �

( 2∑
i=1

�iw
i
n

)
�d�n ≥ �

∫
�

∣∣∣∣ 2∑
i=1

�i�w
i
n

∣∣∣∣2�dx�
In particular, the sequence wi

n which strongly converges in L2���, is bounded
in H1��� and thus weakly converges in H1��� to wi. So, we get

lim inf
n→+�

∫
�

∣∣∣∣ 2∑
i=1

�i�w
i
n

∣∣∣∣2�dx ≥ ���2
∫
�
�dx�

This combined with (3.38) implies that∫
�
A� · �� d� ≥ ����2

∫
�
�dx	 ∀� ∈ �2	 ∀� ∈ C�

c ���	 � ≥ 0	

which is equivalent to (2.24).
In order to prove (2.25), we use the Cauchy–Schwarz inequality and (2.8) which

give

∣∣∣∣ ∫
�
An�

( 2∑
i=1

�iw
i
n

)
�d�n

∣∣∣∣ ≤ ( ∫
�

∣∣∣∣An�

( 2∑
i=1

�iw
i
n

)∣∣∣∣2�d�n) 1
2
( ∫

�
�d�n

) 1
2

≤
(
�
∫
�
An�

( 2∑
i=1

�iw
i
n

)
·�

( 2∑
i=1

�iw
i
n

)
�d�n

) 1
2
( ∫

�
�d�n

) 1
2

	

for any � = ��1	 �2� ∈ �2 and any � ∈ C�
c ���, � ≥ 0. Thus, using (3.38) and the

convergence of An�
(∑2

i=1 �iw
i
n

)
d�n and �n respectively to A� d� and � in the weak-
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∗ sense of the measures in ����2, and passing to the limit as n → +� in the above
inequality, we obtain

∣∣∣∣ ∫
�
A��d�

∣∣∣∣ ≤ (
�
∫
�
A� · �� d�

) 1
2
( ∫

�
�d�

) 1
2

	

for any � = ��1	 �2� ∈ �2 and any � ∈ C�
c ���, � ≥ 0. This implies that, for any

closed ball �B�x0	 r� ⊂ � and any � ∈ �2, we have

∣∣∣∣ ∫�B�x0	r� A� d�
∣∣∣∣ ≤ (

�
∫
�B�x0	r�

A� · � d�
) 1

2

�
(�B�x0	 r�) 1

2 	

or equivalently, for ���B�x0	 r�� > 0,

∣∣∣∣−∫�B�x0	r� A� d�
∣∣∣∣ ≤ (

� −
∫
�B�x0	r�

A� · � d�
) 1

2

�

Assuming that x0 is a Lebesgue point of A with respect to � (which holds for �-a.e.
x0 ∈ �) and letting r tend to 0 in the above inequality, we get

�A�x��� ≤ (
�A�x�� · �) 1

2 	 ∀� ∈ �2	 �-a.e. x ∈ ��

By Remark 2.5 this proves (2.25).

Fourth step: Proof of (2.27), (2.29), and (2.30).
Let 
 be an open subset of � and let Gn be defined by (2.26). Up to an

extraction of a subsequence we can assume that Gn �-converges to a functional G.
Consider u ∈ C1

0�
� and a recovery sequence un ∈ C1
0�
� such that

un −→ u strongly in L2��� and G�u� = lim
n→+�Gn�un� < �� (3.39)

Denote by  d� the weak-∗ limit of An�un d�n in ��
�2, which holds up to a
subsequence by Remark 2.13. Takings into account the results of the third step and
Properties 1.2e) combined with (3.39), we may apply Theorem 2.6 (� being replaced
by 
) with the choice �n = An�un or �n = An�w

i
n, and vn = un or vn = wi

n, i = 1	 2.
Then, from (2.22) we deduce that, for any � = ��1	 �2� ∈ �2 and any �∈C�

c �
�,
� ≥ 0,

lim
n→+�

∫


An�

(
un −

2∑
i=1

�iw
i
n

)
· �

(
un −

2∑
i=1

�iw
i
n

)
�d�n =

∫


� − A�� · ��u− ��� d�	

(3.40)

which implies that

� �x�− A�x��� · ��u�x�− �� ≥ 0	 ∀� ∈ �2	 ∀x ∈ 
\N	
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where N is a zero �-measure subset of 
. For each x ∈ 
\N , setting � �= �u�x�+ t�,
t ∈ �, � ∈ �2, in the previous inequality yields

−t( �x�− A�x���u�x�+ t��
) · � ≥ 0�

To make use of the above inequality it is convenient to consider separately the cases
t > 0 and t < 0. Then, dividing by t and letting t tend to 0 we get

 �x� = A�x��u�x� �-a.e. x ∈ 
	 (3.41)

which implies convergence (2.29). Since Gn�un − u� is bounded (by (3.39) and u ∈
C1

0�
�) and un − u strongly converges to zero in L2���, the Properties 1.2e) of the
�-convergence implies that

lim
n→+�

∫


An�un · ��un − u�d�n = 0	

which combined with (3.41) and (3.39) yields∫


A�u · �ud� = lim

n→+�

∫


An�un · �ud�n

= lim
n→+�

∫


An�un · �un d�n = G�u��

This proves (2.27).
It thus remains to prove (2.30). The definition (3.37) of Pn yields∫



An��un − Pn�u� · ��un − Pn�u�d�n

=
∫


An

(
�un −

2∑
i=1

�u

�xi
�wi

n

)
·
(
�un −

2∑
i=1

�u

�xi
�wi

n

)
d�n� (3.42)

Since the sequences un and wi
n, i = 1	 2, have bounded energy by (3.39) and (3.33),

the convergences of An�un · �wi
nd�n and An�w

i
n · �wj

nd�n, i	 j ∈ �1	 2�, which hold
in the distributions sense (by the same arguments used to prove (3.40)), also hold
in ��
�∗, hence{

An�un · �wi
nd�n ⇀ A�u · �wid�

An�w
i
n · �wj

n d�n ⇀ A�wi · �wj d� weakly in ��
� ∗ �

These convergences combined with the fact that the partial derivatives of u are
suitable test-functions in C0�
�, and (2.27), (2.28) imply that the sequence (3.42)
tends to zero, hence (2.30).

3.2.2. Proof of Theorem 2�14. We will follow the scheme of the proof of the Murat-
Tartar H-convergence. However, the unboundedness of An induces extra technical
difficulties in comparison to the classical proof (in particular in the non symmetric
case) which are detailed below.

The proof is divided in four steps. In the first step, we prove the convergence
(up to a subsequence) of the sequence of operators div

(
An� · ). In the second step,
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we construct the homogenized matrix-valued function A. In the third step, we prove,
thanks to the div-curl lemma (Theorem 2.1), that the limit operator is of type
div

(
A� · ). In the fourth step, we prove that A satisfies (2.34). Finally, we refer

to Murat (1998) for the proof of the corrector result (2.40) which is quite similar to
the classical one.

First step: Convergence of the sequence −div�An� ·�.
Let �n � H

1
0 ��� −→ H−1��� be the linear operator defined by �n �= −div�An� ·�

and let �n �= �−1
n be its inverse. Thanks to the �-coerciveness of An and to a

diagonalization procedure using the separability of the space H−1��� (see Murat,
1998 for details), there exist a subsequence, still denoted by n, and a bounded linear
operator � � H−1��� −→ H1

0 ��� such that

∀f ∈ H−1���	 �nf ⇀ �f weakly in H1
0 ���� (3.43)

Let us prove that � is invertible. Let vn be a sequence in H1��� and let � ∈ C�
c ���

2.
By (2.32) and the Cauchy–Schwarz inequality we have∣∣∣∣ ∫

�
An�vn ·�dx

∣∣∣∣ ≤ ∣∣∣∣ ∫
�
As
n�vn ·�dx

∣∣∣∣+ ∣∣∣∣ ∫
�
anJ�vn ·�dx

∣∣∣∣
≤

( ∫
�
�As

n����2dx
) 1

2
( ∫

�
As
n�vn · �vndx

) 1
2

+
( ∫

�
�an����2dx

) 1
2
( ∫

�
�an���vn�2dx

) 1
2

≤ �1+ ��

( ∫
�
�As

n����2 dx
) 1

2
( ∫

�
An�vn · �vn dx

) 1
2

�

This combined with convergence (2.33) yields

lim sup
n→+�

∣∣∣∣ ∫
�
An�vn ·�dx

∣∣∣∣ ≤ √
�
�
L2���2 lim sup

n→+�

( ∫
�
An�vn · �vndx

) 1
2

	

where � �= �1+ ��2 
ā
L����� (3.44)

Let f ∈ H−1���. Applying inequality (3.44) to vn �= �nf and � �= ��, for � ∈
C�
c ���, and using convergence (3.43) it follows

��f	 ��H−1���	H1
0 ���

� = lim sup
n→+�

∣∣∣∣ ∫
�
An�vn · ��dx

∣∣∣∣
≤ √

�
��
L2���2 lim sup
n→+�

��f	 vn�H−1���	H1
0 ���

�
1
2

= √
�
�
H1

0 ���

(�f	�f�H−1���	H1
0 ���

) 1
2 	

which implies the inequality

�f	�f�H−1���	H1
0 ���

≥ �−1
f
2H−1����
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Therefore, the operator � is �−1-coercive and by the Lax–Milgram theorem � is
invertible. The inverse operator � �= �−1 satisfies 
�
 ≤ �.

Second step: Construction of the homogenized matrix A.
Let �̃ be an open subset of �2 such that � � �̃. Let Ãn be the matrix-valued

function defined by

Ãn �=
{
An in �

�I in �̃\�� (3.45)

Let �̃n � H
1
0 ��̃� −→ H−1��̃� be the operator defined by �̃n �= −div

(
Ãt
n� · ) and

let �̃n be its inverse. Since �� has a zero Lebesgue measure, by (2.33) the
sequence ��Ãt

n�
s� = �Ãs

n� weakly converges in ���̃�∗ to the function ã defined by

ã �=
{
ā in �

� in �̃\��

Therefore, the first step implies that the sequence �̃n converges in the sense
of (3.43) to an operator �̃ satisfying 
�̃
 ≤ �−1. Moreover, �̃ �= �̃−1 is a bounded
operator satisfying 
�̃
 ≤ �, where � is defined in (3.44).

Let ! be a fixed cut-off function in C�
c ��̃� such that ! = 1 in �. Let w̃i

n, i = 1	 2,
be the function in H1

0 ��̃� defined by

w̃i
n = �̃n � �̃

(
!�x�xi

)
or div

(
Ãt
n�w̃

i
n

) = �̃
(
!�x�xi

)
in �′��̃�� (3.46)

Since the sequence �̃n converges to �̃−1 in the sense of (3.43), w̃i
n satisfies (up to a

subsequence)

w̃i
n ⇀ !�x�xi weakly in H1

0 ��̃� and
∫
�̃
Ãt
n�w̃

i
n · �w̃i

ndx ≤ c� (3.47)

By the estimate (3.44) with Ãt
n, combined with (3.47) the sequence Ãt

n�w̃
i
n weakly

converges (up to a subsequence) in ���̃�∗ to a Radon measure �̃i satisfying∣∣∣∣ ∫
�̃
�̃i�dx� ·�

∣∣∣∣ ≤ c
�
L2���2	 for any � ∈ C�
c ���

2	

hence �̃i is actually a function in L2��̃�2. Then, we can define the matrix-valued A
in L2���2×2 by the convergence

Ãt
n�w̃

i
n ⇀ �̃i = Atei weakly in ����2 ∗ � (3.48)

Third step: Determination of the limit operator �.
Let f ∈ H−1��� and let un �= �nf . As for w̃i

n in the second step, up to a
subsequence, the sequence un weakly converges to some u in H1

0 ��� and the
sequence An�un weakly converges to some � ∈ L2���2 in ����2∗. The control (2.32)
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of the antisymmetric part of An by its symmetric part and the equality detAn =
detAs

n + a2
n, yield

�As
n�

−1 = detAn

detAs
n

�A−1
n �s =

(
1+ a2

n

detAs
n

)
�A−1

n �s ≤ �1+ �2��A−1
n �s	

and similarly for the transposed matrix,

�As
n�

−1 = (
�At

n�
s
)−1 ≤ �1+ �2�

(
�At

n�
−1
)s
�

This implies that

{
�As

n�
−1� · � ≤ �1+ �2�A−1

n � · �
for any � ∈ L1���2�

�As
n�

−1� · � ≤ �1+ �2��At
n�

−1� · �
(3.49)

Then, by estimates (3.47) and (3.49) the sequences �n = An�un (respectively �n =
At
n�w̃

i
n) and vn = w̃i

n (respectively vn = un) satisfy the assumptions (2.2) and (2.3) of
the div-curl lemma (Theorem 2.1) with the symmetric matrix-valued function As

n.
Then, from the convergence (2.5) of Theorem 2.1 we deduce that

An�un · �w̃i
n ⇀ � · ei and At

n�w̃
i
n · �un ⇀ Atei · �u in �′���	

hence � = A�u. Therefore, the weak convergences (2.36) hold true for the whole
subsequence defining A in (3.48). We have also established that � = −div

(
A� · ).

Fourth step: Proof of (2.34).
Let u ∈ C�

c ��� and let un be the sequence in H1
0 ��� defined un �= �n � ��u�,

which weakly converges to u in H1
0 ���. On the one hand, the �-coerciveness of An

yields ∫
�
���un�2dx ≤

∫
�
An�un · �undx =

∫
�
A�u · �un dx�

Therefore, using the lower semicontinuity of the L2���-norm we get∫
�
A�u · �udx ≥

∫
�
���u�2dx	 for any u ∈ C�

c ����

Taking (as in the proof of Lemma 22.5, p. 234 of Dal Maso, 1993) the test-functions
��x� cos�t� · x� and ��x� sin�t� · x�, for arbitrary � ∈ C�

c ���, � ∈ �2 and t > 0, in
the previous inequality we obtain that A� · � ≥ ����2 a.e. in �.

On the other hand, estimate (3.44) combined with the weak convergence (2.36)
of An�un yields, for any � ∈ C�

c ���2,

∣∣∣∣ ∫
�
A�u ·�dx

∣∣∣∣ ≤ √
�
�
L2���2

( ∫
�
A�u · �udx

) 1
2

�
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This inequality also holds true for any � ∈ L2���2, thanks to the density of C�
c ���

2

in L2���2. Then, setting � �= A�u (recall that A ∈ L2���2×2) in the previous
inequality we get∫

�
�A�u�2dx ≤

∫
�
�A�u · �udx	 for any u ∈ C�

c ���	

which implies that (again using the former test-functions)

�A��2 ≤ �A� · � a.e. in �	 for any � ∈ �2�

From this we deduce that A−1 ≥ �−1I a.e. in �.
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