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Abstract. Given an nD digital image I based on cubical n-xel, to fully
characterize the degree of internal topological dissimilarity existing in I
when using different adjacency relations (mainly, comparing 2n or 2" —1
adjacency relations) is a relevant issue in current problems of digital
image processing relative to shape detection or identification. In this
paper, we design and implement a new self-dual representation for a
binary 2D image I, called {4, 8}-region adjacency forest of I ({4,8}-RAF,
for short), that allows a thorough analysis of the differences between the
topology of the 4-regions and that of the 8-regions of I. This model can
be straightforwardly obtained from the classical region adjacency tree
of I and its binary complement image I¢, by a suitable region label
identification. With these two labeled rooted trees, it is possible: (a) to
compute Euler number of the set of foreground (resp. background) pixels
with regard to 4-adjacency or 8-adjacency; (b) to identify new local and
global measures and descriptors of topological dissimilarity not only for
one image but also between two or more images. The parallelization of
the algorithms to extract and manipulate these structures is complete,
thus producing efficient and unsophisticated codes with a theoretical
computing time near the logarithm of the width plus the height of an
image. Some toy examples serve to explain the representation and some
experiments with gray real images shows the influence of the topological
dissimilarity when detecting feature regions, like those returned by the
MSER (maximally stable extremal regions) method.

Keywords: Hierarchical representation - Digital image - Topological
dissimilarity + Parallelism - (4 - 8)-adjacency tree - {4,8}-adjacency
forest

1 Introduction

In 1979, Azriel Rosenfeld presented in [18] a new area of mathematical knowl-
edge, called digital topology, that is dedicated to studying basic topological
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properties of digital images. This work was later continued in [8]. Rosenfeld’s
framework uses a dual pair of adjacencies to get rid of connectivity paradoxes.
This fact leads to ambiguities: depending on the chosen dual pair of adjacencies,
the results may be different, even for the most elementary digital images pro-
cessing algorithms. To overcome this problem, Latecki, Eckhardt and Rosenfeld
[10] introduced in 1995 a new concept of 2D sets free from topological para-
doxes, called well-composed sets. The connected components (CC, for short) of
these sets (and of their complements) do not depend on the chosen connectivity.
In others words, in the case of rectangular pixels, a set D = I[1] C I is well-
composed if and only if 8-adjacency (vertex-connectedness) implies 4-adjacency
(edge-connectedness). It is clear that the two patterns consisting of four mutu-
ally 8-adjacent square pixels having four (Foreground or Background) 4-CCs are
the only ones which are forbidden in well-composedness.

On the other hand, starting from a binary digital image I defined on a
square grid, Rosenfeld [17] appropriately redefined the classical region adjacency
tree representation of a continuous binary image (a tree-based representation
of the nested relationship between the connected components in the image).
Then the asymmetric concept of (a,b)-adjacency tree arose (a-adjacency for
black/foreground /FG pixels and b-adjacency for white/background/BG pixel,
such that a,b € {4,8} with a # b).

In this paper, the problems of classification of 2D images in terms of degree
of topological disparity or well-composedness and adjacency tree representations
are both dealt with here. We use a complete parallel approach based on the HSF
framework [14,15], allowing an efficient computation of all the needed structures
and measures.

Section 2 contains a brief introduction to related works. In Sect. 3 some intu-
itive global topological discrepancy measures are defined. Section 4 explains the
generation of the labeled bipartite graph {4,8}-RAF, and in Sect. 5 the poten-
tial importance of local disparity measures derived from that representation in
evaluating the topological robustness of the well-know feature detector MSER
is uncovered. The paper concludes in Sect. 6.

2 Related Work

From a theoretical point of view, in this paper we propose a generalization
of the classical topological Region Adjacency Tree (AdjT) notion to compute
disparity-related properties. More concretely, these properties are based on the
computing of topological Euler numbers and derived local and global homological
information for adjacency graphs built with (4,8) and (8,4) adjacency pairs.
The calculation of Euler numbers is well-known in literature, and several papers
provide algorithms to make fast calculations on large images, as can be seen in
[3,6,20], not only for 2D-images, but also for 3D-images [19]. Moreover, there
exists a strong relation between these properties and the “well-composedness”
problem in image analysis [1,2].



From a computational point of view, topology is the ideal mathematical sce-
nario for promoting parallelism in a natural way, although it drives to less classi-
cal parallelism approaches. The nature of the topological properties is essentially
qualitative and local-to-global, having the additional advantage that its magni-
tudes are robust under deformations, translations and rotations. Nevertheless,
the results in the literature in that sense are rare. Up to now, the only topo-
logical invariant that has been calculated using a fully parallel computation is
the Euler number [5]. Other authors have recently proposed parallel algorithms
that compute some aspects of the homological properties of binary images [12].
In [16], a digital framework for parallel topological computation of 2D binary
digital images based on a sub-pixel scenario was developed, modeling the image
as a special abstract cell complex [9], in order to facilitate the generalization of
this work to higher dimensional images. In addition, some software libraries of
flexible C++ (RedHom, [13]) have appeared for the efficient computation of the
homology of sets. These libraries implement algorithms based on geometric and
algebraic reduction methods.

3 Topological Discrepancy of Binary Images Defined
on a Square Grid

The topological duality properties of the (a,b)-adjacency tree are remarkable:
(a) each a-connected component of the set D = I[0] of FG pixels of I can
be identified with exactly one 1-dimensional hole of its complement D¢; (b)
and each b-connected component of the set D¢ can be identified with exactly
one 1-dimensional hole of D. Moreover, from an (a,b)-adjacency tree, we can
straightforwardly extract an a-connected component labeling (CCL, for short)
for D and a b-CCL for D°.

Given the (a,b)-adjacency tree of I and in order to create a self-dual tool
(that is, a model that coincides for I and for I¢), the first candidate is, with-
out hesitation, the labeled forest formed by the two asymmetric adjacency trees
{Ta8)(I), T(g,4y(I)} of I. Using as labeling set of FG (resp. BG) nodes in both
trees the set of labels obtained in the 8-CCL of D (resp. of D¢), the resulting
labeled forest, called {4, 8}-region adjacency forest ({4,8}-RAF(I), for short),
will be the representation model from which intra and inter topological dissim-
ilarity measures can be easily derived. It is immediate to see that the {4,8}-
RAF(I) of I can be also described as a bipartite graph. Note that if I is a
well-composed image, there is no internal topological dissimilarity. Due to the
fact that in this case the {4,8}-RAF(I) is reduced to T(4g)(I) = T(g4)(I), the
local and global dissimilarity measures and descriptors of a non well-composed
image must be constructed comparing invariants or topological features that are
present in both trees. In this paper, we restrict our attention to global disparity
characteristics.

Being I a non well-composed binary image and D the set of FG pixels of I,
a first global topological discrepancy characteristic dsm( ) is based on the Euler
number:

dsm(R)(I) = [Rg(D) — Ry(D)| = [Rg(D) — Ry (D).



This is due to the fact that Rg(DUD®) = R4 (DUD®) where X, (C) (a € {4,8})
is the classical Euler number of the set C' of pixels, considering a-adjacency
between them.

This heterogeneity number dsm(R)(I) can be obtained from the {4,8}-
RAF(I) = {T(48)(I),T(s,4y(I)} without difficulty. For instance, Ng(D) is the
number of FG nodes in T(g4) (/) minus the sum of the number of children
of each FG node in T(g 4 (). This is due to the fact that Ng(D) is globally
defined in homological terms as the number of 8-CCs of D minus the num-
ber of 1-dimensional holes detected on the digital object D with 8-adjacency.
An equivalent topological invariant of I to the “Euler” 4-dimensional vector:
(Ng(D),Rg (D), Ryq(D),N4(D°)) is the following one, called Betti’s vector of I:

B(I) = (8CC(D),8CC(D*),4CC(D),4CC(D")).

where a — CC(X) (resp. a — HL(X)) specify the number of a — CCs (resp. of
1-dimensional holes) the set of pixels X has (a € {4,8}). Let us call Betti’s vector
of I to B(I). This definition takes advantage of well-know homological duality
properties between a-connected component and 1-dimensional b-holes (a # b
with a,b € {4,8}).

Finally, given two binary images I and I’ defined on a square grid, let us
define the global {4,8}-homological discrepancy between I and I’ as:

4
dsm(B)(I) = Y_ B[] — B,
i=1
where ((J)[k] means the k-component of the vector 5(J) (k =1,...,4) of the
binary image J.
In the next section, the programming approach to compute the labeled forest
{4,8}-RAF and derived local and global dissimilarity measures is shown.

4 Generation of the Bipartite Graph

In order to tackle the disparity between Adjacency Trees when employing (4, 8)
and (8,4)-adjacency, a new hierarchical representation called {4,8}-RAF(I) is
developed here. This representation is computed by means of a bipartite graph.
We consider the union of the (4,8) and (8,4)-AdjTs and then add edges con-
necting two nodes of the same color FG or BG), one of each AdjT. That is,
4-CC nodes are connected to the 8-CC nodes containing them. In other words
the {4,8}-RAF(I) defines the inclusion relationships among regions from the
AdjTs for both (4, 8) and (8, 4)-adjacencies.

This computation is based on the algorithm CCLT (Connected Component
Labelling Tree) for labelling connected components published in [15]. An example
of this (non-unique) CCLT representation is shown in Fig. 1.

This CCLT tree contains all the information related to the AdjT, having a
unique root on the left bottom corner. This tree can be divided into rooted sub-
trees. Within each sub-tree, the root (called attractor) appears when an edge



Fig. 1. Left: a synthetic image with 5 points in diagonal (using 4 adjacency criterion).
Right: its double rooted tree. Blue crosses are added to represent the 8-connectivity of
white pixels (crosses of the chessboard).

“touches” two different colors. This simplified representation implies a more
efficient parallel topological computation [14,15]. From now on, the CCLT will
be the underlying topological encoding for all the digital image structures used
in this paper.

In order to explain the consequences of the different adjacency criterion on
our double rooted tree, Fig. 1, left, shows a simple but very common case when
binarizing color images: the apparition of “thin” oblique lines. Using 8-adjacency
criterion for FG pixels (and 4 for the BG ones) would evidently produce a single
FG CC surrounded by the BG. But the reverse criterion drives to a very different
composition (see Fig. 1, right): a set of 5 FG CCs of only one pixel each. Whereas
BG pixels are really adjacent (blue crosses have been inserted to denote this
adjacency) the tree for the BG regions “chose” the edge that runs parallel to the
5 FG pixels. Another tree building could have “decide” to cross among them,
by inserting green edges along the blue crosses. These blue crosses represent
alternatively the frontier between two FG regions. A fast measure of the disparity
between these two adjacency criteria is computed from the Euler number. In
the first case, this topological magnitude would value 1 for the FG pixels and
(1 —1) = 0 for the BG ones. On the other hand, the opposite criterion (4-
adjacency for the FG and 8 for the BG) would produce an Euler number of 5
for the FG pixels, and (1 — 5) = —4 for the BG ones (it has 5 holes, that are
the FG pixels). Obviously, Euler number for the whole image remains to be 1 in
both cases.

Figure 2 contains a synthetic image with a 4 x4 chessboard that is surrounded
by a monochrome background. The double rooted tree has been depicted with
green edges for the tree connecting BG pixels and red edges ones for that con-
necting the FG ones. In addition, blue crosses have been inserted to represent
the 8-connectivity of white pixels (crosses of the chessboard). These crosses rep-
resent the frontier among the FG components. The (4, 8)-AdjT in this case is
composed of a unique (8-connected) BG component that includes up to eight
(4-connected) FG components. Note that the BG component is the root of the
complete tree that ends in the left bottom pixel.

On the contrary, when using the opposite adjacency criterion, the very same
image would have only two BG isolated 4-CC (marked with red numbers 1
and 2), and only one 8-adjacent FG region. The (8,4)-AdjT in this case would



be composed of an external BG component (previous background plus six BG
pixels), containing the following nodes: a FG 8-CC, which includes, in turn, only
the two internal remaining BG pixels 1 and 2. The Euler numbers would then
be: 1 —2 = —1 for the FG region, and 3 — 1 = 2 for the BG one.

Fig.2. Left: a synthetic image with a 4 x 4 chessboard surrounded by a monochrome
background. Central left: its CCLT for 8-connected BG (4-connected FG) —Green
edges: BG tree; red edges: FG tree; blue crosses: the 8-connectivity of white pixels
(crosses of the chessboard)—. Central right: (4,8)-AdjT. Right: (8,4)-AdjT.

Consequently, we propose an algorithm which firstly computes the (4,8) and
(8,4)-AdjTs and, then, adds the edges between pairs that follow the mentioned
inclusion relationship. The complete pipeline is portrayed in Fig. 3.

CCLT48

,—) AdjG4B
I T init() ——»|J_computation() Transports() Compute AdjG4() &
CCLTS:
{4-8}-RAF
CCLTS:
Complementary() | J_init() ——» J_ ion() »| Transports() Compute AdjG4()
» AdjGaw

CCLT4

Fig. 3. Pipeline of the method for computing the final labeled bipartite graph {4 — 8}-
RAF from an image I. Compute_AdjG4() function is defined in Fig. 7.

Indeed, the capability of the CCLT to extract the topological information of
the given image in the form of its AdjT in an efficient, parallel manner is here
exploited. We can summarize the CCLT algorithm in the following phases:

1. J_ndt(): A jump matrix J of the same size as I is initialized, where each FG
or BG pixel points into an 8-adjacent FG or a 4-adjacent BG pixel resp.

2. J_computation(): Jumps/distances are propagated, where each pixel will
eventually point into another of the same FG or BG region whose jump value
is equal to zero. These pixels are provisional “attractors”.

3. Transports(): Connectivity inconsistencies are solved, where the same region
could be composed of different attractors. Hence, “false” attractors end up
pointing into the “true” attractor of its FG or BG region.



Finally, AdjT(I) has been implicitly defined in J once theses phases are
performed, since the color-opposite region adjacent to each attractor is the region
that surrounds the region of the attractor (which is a hole). Hence, this inclusion
relationship builds up the AdjT of the image, with (4, 8)-adjacency.

Using this method, a straightforward solution for building the (8,4)-AdjT of a
given binary image I is as simple as computing the (4, 8)-AdjT of its complement
I¢. This approach is feasible, by considering attractors as pixels not related to
its color (FG or BQ), using 8-adjacency for FG pixels and 4-adjacency for BG
pixels. Thus, the relationship between attractors of both AdjTs is established.

Different 4-adjacent attractors of one AdjT are contained in the region rep-
resented by one 8-adjacent attractor of the opposite AdjT and, therefore, the
bipartite graph {4 — 8}-RAF is formed. The proposed algorithm for such task is
fully described in Fig. 7. Its execution consists of searching for 4-adjacent attrac-
tors (pixels with value equal to zero in the jump matrix J) via matrix scan
and checking if that pixel is also an 8-adjacent attractor or, on the contrary, it
has a jump value pointing into another 8-adjacent attractor. In the later case,
a new edge in the bipartite graph is detected, and hence it is stored in a table
containing all the 4 to 8-adjacency inclusion relations.

One example of the application of the proposed algorithm is shown in Fig. 4.
Considering the original binary image and its complement, the results of com-
puting the CCLT algorithm are summarized in table of Fig.5, where all the
regions are stored with the linear indexes of their respective attractors. Finally,
a bipartite graph is fully computed when checking the inclusion relations between
attractors, and in this case the results are written as sets of 4-adjacent regions
in parenthesis. Its graphical representation is portrayed in Fig. 6.

Fig. 4. A synthetic 11 x 12 binary image showing several cases where 4 and 8 adjacency
criteria produce different adjacency trees. 4-regions are labelled with numbers and
letters for BG and FG regions resp.

Once the {4,8}-RAF(I) is constructed, extracting local and global discrep-
ancy measures (like dsm(R)(I) and dsm(5)(I) defined in Sect. 3) is straightfor-
ward from {4,8}-RAF (tables of Fig.5). For the image in Fig.2, the last two
elements of dms(3) are respectively the number of rows of each table; and the
first two elements are computed as the number of labels that appear in the last
column of each table, that is: dsm(8)(I) = (3, 2, 8, 3).



AdjG4W (from CCLT48) AdjG4W

Column indexes: 0 1 2 3
Name of 4-white Linear indexes of 4- Surrounding Surrounding 4-white region 8-white
regions white regions 8-black region (of each 8-black region) region
1 131=11x12-1 ) ) 131 (1)
2 92=7x12+8 105 (AH) 131 (1) 92 (23)
3 64=5x12+4 77 (DEFG) 92 (2) 92 (23)
AdjG4B (from CCLT84) AdjG4B
Column indexes: 0 1 2 3
Name of 4-black Linear indexes of 4- Surrounding Surrounding 4-black region | 8-black region
regions black regions 8-white region (of each 8-white region)
A 105=8x12+9 131 (1) ) 105 (AH)
B 43=3x12+7 92 (23) 105 (A) 56 (BC)
C 56=4x12+8 92 (23) 105 (A) 56 (BC)
D 64=5x12+4 92 (23) 105 (A) 77 (DEFG)
E 53=4x12+5 92 (23) 105 (A) 77 (DEFG)
F 66=5x12+6 92 (23) 105 (A) 77 (DEFG)
G 77=6x12+5 92 (23) 105 (A) 77 (DEFG)
H 118=9x12+10 131 (1) | () . 105 (AH)

Fig. 5. Tables containing the {4,8}-RAF (and CCL48 and CCL84 trees) of Fig. 4. The
highest index of the 4-regions composing an 8-regions is considered to be an attractor
for this image (which may fall elsewhere within the 8-region).

Moreover, our method allows to compute at the same time (without any
additional time complexity) more information of the regions and contours, like
areas and perimeters, which might be useful for further processing (see Sect. 6).
Additionally, no processing step is done in a sequential manner. This allows to
maintain the theoretical time complexity of the whole process near the logarithm
of the width plus the height of the initial image.

5 {4,8}-RAF and Topological Feature Detectors

The {4,8}-RAF representation as well as the topological discrepancy measures
proposed here are a fundamental tool for evaluating the robustness of image pro-
cessing algorithms dealing with analytical or geometrical measures that strongly
depend on the type of connectivity used for their calculation (area, perimeter,
boundaries, curvatures, etc.).

In this Section, trying to illustrate this issue, we present a preliminary study
about evaluating the robustness of the stability criteria used in the well known
features detector algorithm MSER (Maximal Stable Extremal Region, [11]).

It is worth mentioning that the effectiveness of MSER for gray images is
limited in its capability to detect regions of interest in extreme conditions, such
as high contrast, low luminance, high light reflection, etec. [7]. Likewise, as the
authors of [4] note, MSER is sensitive to blurring. Specifically, in blurred images,
the values of intensity in the boundary of the regions change more slowly and
this issue impact on the stability criteria on which the MSER is based. The
limitations on blurred and/or textured images are related to image scaling,
since blurring could be equivalent to image downscaling. Analogously, shapes



Fig. 6. (4,8)-AdjT Right (Left) and (8,4)-AdjT (Right) of Fig. 4. Relations between
both trees (detailed in the tables of Fig. 5.) determine the Bipartite Graph.

associated with fine textures can vary fitfully in response to changes of scale.
Specifically, the jutting fragments of non-convex MSERs are especially impacted
by scaling changes [21]. It can be supposed that these issues could be related
to the fact that the computing of the areas of the regions is carried out using
4-adjacency. Specifically, at [11], it is specified that the adjacency relation used is
4-adjacency. In fact, a small transformation that modifies the pixels diagonally,
affecting connectivity at the 4-adjacency level, practically imperceptible in the
image, causes an alteration in the number and location of the detected regions.
The Figs. 8 and 9 illustrate this effect.

On the one hand, in Fig. 8 the MSER regions for the original image are shown
using the detectMSERFeatures() MATLAB function. On the other hand, Fig. 9
shows the original image slightly modified to include additional 4-connected
pixels by setting each horizontal couple with the same grey tone (that of the
arithmetic mean of the values of both pixels). In addition the MSER regions for
this modified image are also shown using the same MSER detector.

Note that both images are almost identical, but the ellipses that mark the
area and orientation of regions have changed considerably. This is noticeable
for the regions on the border of the most bottom coin: the slight change has
introduced two new regions on the bottom, and other previous region on the left
have disappeared. Likewise, a similar analysis can be discovered for the border
regions of the most left coin.

Going further, the changes on the coin on the right of this last one are
noticeable: instead of the seven original regions, the second image presents only
four regions on this coin. The rest of coins have also suffered relevant changes
on their MSER regions.

Additional tests have been done to slightly disturb the image by introducing
4 or 8 additional connected pixels. Specifically, it can be verified that the number
of MSER regions change from the 60 of the original image to 51 for the previous
Fig. 8, or 54 if the couple is done vertically. If 8-connected pixels were modified
using the same arithmetic mean of two diagonal pixels, number of MSER regions
would fall up to 47 for a left to right diagonal and 41 for the right to left one.
Although the total number of detected MSER regions vary from 10 up to 32%,



Algorithm 1. [Building and relating Adjacent trees for both 4 and 8 adjacency criteria]

Input:

I: binary image of MxN pixels.

Output:

AdjG4B: CCLT Table for the 4-B regions/8-W regions and its correspondence with and 8-B regions
AdjG4W: CCLT Table for the 8-B regions/4-W regions and its correspondence with and 8-W regions

begin

//computing CCL trees of 7 and its complementary ! I

CCLT48 = CCL_tree (1), // 4 adj. for black pixels, and 8 adj. for white pixels,
CCLT84 = CCL_tree (! I); // 8 adj. for black pixels, and 4 adj. for white pixels,

(n_4Black_regions , AdjG4B ) = compute_ AdjG4(CCLT48, CCLTS84);
(n_4White_regions , AdjG4W ) = compute_ AdjG4(CCLT84, CCLT48);
end

Sunction (idx_4, AdjG4) = compute AdjG4(CCLT1, CCLT2)
idx_4 = 0, //index for the table of 4-black regions
// matrixes CCLT48 and CCLT84 are indexed with a linear index running from 0 to MxN-1
for /=0: MxN-1 do
// running along the CCL tree to extract the critical cells, that is, the representative of each region
if (CCLTI (1) == 0) then
AdiG4 (idx_4)(0) = 1;
opp_idx = CCLTI (I+1) ; //(I1+1) points to a pixel of inverse color in the CCL_tree (1)
// Only for the last pixel M*N-1 this indexation is not valid
AdjG4 (idx_4)(1) = (I+opp_idx);
idx8 = CCLTI (I+opp_idx);
AdiG4 (idx_4)(2) = idxS;

//' looking in the CCL_tree (!I) of the complement image
idx8_2 = CCLT2 (1);
AdjG4 (idx_4)(3) = (I+idx8_2); // this is the linear index of the 8 CC
idc 4 =idx_4+1;
end if
end for
// finally idx_4 contains the number of 4-black regions,
// and the representative of the regions in the tables are ordered by the linear indexes
// theoretical time complexity is very near O(1) because the only loop-carried
// dependences among iterations is thus of the index idx 4 that fill the table.

Fig. 7. Algorithm 1. [Building and relating the (4, 8) and (8,4)-AdjT]

as previously mentioned, most regions (around 60%) change significantly from
position, area or orientation, mainly those situated near the coin borders. Only
those large evident regions, like that embedding a whole coin, are insensitive to
these small changes.

It is worth to mention that this issue occurs in most gray images; we have
simply chosen the coin examples because they clearly show the effect in the
alteration of the MSER regions. This simple test illustrates the relevance of the



Fig. 8. Left: classical image of coins showing the MSER regions, with an ellipse that
denotes their orientation and area. Right: same regions coloured.

Fig. 9. Left: classical image of coins, slightly modified by adding additional 4-connected
pixels, that includes the MSER regions, with an ellipse that denotes their orientation
and area. Right: same regions coloured.

connectivity criterion when processing areas of images resulting from a threshold
operation.

From this short analysis, the following starting hypothesis is plausible: Having
at hand an efficient software for computing topological dissimilarity measures
(like dms(f3)) extracted from the {4,8}-RAF, constitutes a breakthrough in
evaluating digital image processes that are based on the notion of topological
region.

6 Conclusions

We propose here a parallel computational framework of a new hierarchical rep-
resentation called {4,8}-RAF for digital images based on a square grid. As a
conclusion from a basic analysis about the robustness of the stability criterion
of the MSER feature detector, it can be said that an efficient software for com-
puting (mainly, local) topological discrepancy measures derived from the RAF
within the 2D and 3D context, could have a considerable influence on the fast
and correct detection of characteristics in feature detectors that are based on the



topological notion of region. In a near future, we plan to advance in the following
questions: (a) to have a fully operative software for calculating the {4,8}-RAF
and derived local and global measures; (b) to design and implement a topologi-
cally improved MSER method; (c) to obtain the {4,8}-RAF (or, an equivalent
graph structure) directly from the region contours via the Homological Spanning
Forest model; and (d) to build a topologically robust computational framework
of topological 3D disparity.
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