
Study of Trivial Compiler Equivalence on
C++ Object-Oriented Mutation Operators

Pedro Delgado-Pérez
Escuela Superior Ingeniería, Universidad de Cádiz

Puerto Real, Spain
pedro.delgado@uca.es

Sergio Segura
ETS Ingeniería Informática, Universidad de Sevilla

Sevilla, Spain
sergiosegura@us.es

ABSTRACT

Trivial Compiler Equivalence (TCE) has been recently proposed as
an effective technique to detect equivalences between programs,
where two or more programs are equivalent if the compiler pro-
duces the same binary code. Mutation testing can greatly benefit
from TCE as a way to reveal some equivalent and duplicate mu-
tants, which traditionally hinder the applicability of the technique.
For instance, previous research has shown that about 28% of the
mutants generated by traditional mutation operators in C programs
can be removed using TCE. However, the effectiveness of TCE has
not been assessed with class-level operators, where the percentage
of equivalent mutants is known to be higher than when using tra-
ditional ones. In this paper, we present an empirical study on the
effectiveness of TCE at identifying equivalent and duplicate mutants
using C++ class operators. The results show that TCE is helpful to
discard equivalent and duplicate mutants: 241 out of 1,987 (12%)
in our study, including 189 out of 684 (27.6%) manually-identified
equivalent mutants. Large differences were observed among the
different case studies, especially in the detection rate of equivalent
mutants, which ranged from 4% to 45%.

CCS CONCEPTS

• Software and its engineering → Software testing and de-
bugging;␣

KEYWORDS

mutation testing;
equivalent mutants;
compiler optimizations;
object orientation;

 C++.

1 INTRODUCTION

Mutation testing is a well-established technique for the assessment
and improvement of test suites [20]. Given that the final goal of

developing a test suite is to detect possible faults in our program,
mutation testing focuses on analyzing the ability of the test cases
to reveal plausible defects. To that end, faulty versions derived
from the program under test are generated, called mutants. Such
mutants are usually generated following a set of transformation
rules known as mutation operators. If the mutants are killed, that is,
if the original program and the mutants behave differently when
executed against the test suite (there are observable differences in
the outputs of these programs), we can be fairly confident on the
fault detection ability of our test suite. Otherwise, undetected or
live mutants may reveal weaknesses in the test cases.

We cannot say, however, that the possible enhancement in the
test suite is proportional to the number of live mutants. This is be-
cause of the existence of equivalent mutants. An equivalent mutant
has the same functionality as the original program. Therefore, it
cannot be killed by any test case and it does not help to assess nor
improve the test suite. This fact would not have further relevance
if they could be easily discarded. However, identifying equivalent
mutants is a costly task that places a significant burden on the tester.
Despite being an undecidable problem, many researchers have pro-
posed different approaches in the past to reduce its impact [6]. A
recently proposed and promising strategy, especially because of its
cost-benefit trade-off, leverages compiler optimizations to detect
trivial equivalent mutants [19]. This technique, known as TCE or
Trivial Compiler Equivalence, has proved useful to remove on av-
erage around 28% and 11% of all C and Java method-level mutants
(also known as traditional mutants), respectively [12]. Moreover,
the technique is appealing as it is affordable and can be easily and
widely applicable.

Class or object-oriented operators were originally proposed by
Kim et al. [11] to specifically target object-oriented features, such
as inheritance or polymorphism. Currently, it is unknown the ef-
fectiveness of using compiler optimizations in the detection of
equivalent class mutants. The given reason in previous research
for excluding object-oriented operators [12] is that these operators
produce a low number of mutants and equivalent mutants, based
on the results of a previous paper [14]. While it is true that class
operators engender a lower number of mutants than method-level
operators, new studies have shown that the percentage of equiva-
lent mutants generated with class operators is significantly higher.
Namely, Segura et al. [22] found that 45.4% of the mutants were
equivalent using class operators for Java, and Delgado-Pérez et
al. [3] reported that 27.9% of class mutants for C++ were also equiv-
alent. Additionally, Derezińska and Rudnik [5] identified 20.4% of
C# class mutants as equivalent, even though they only reviewed a
subset of the live mutants. In contrast, the percentage of equivalent
mutants is between 5 and 15% for traditional operators [15]. For

https://doi.org/10.1145/3297280.3297499
https://doi.org/10.1145/3297280.3297499
https://doi.org/10.1145/3297280.3297499

instance, Segura et al. [22] identified 13.4% traditional mutants as
equivalent in the same study.

Bearing in mind the difference in time and effort required to
identify equivalent mutants manually and automatically through
TCE, it is reasonable to apply TCE even if the number of mutants is
not excessively high. Judging from the literature, method and class-
level operators are the sets of operators most commonly used [20].
Taking into account the aforementioned two factors, there is a need
to conduct new experiments to assess the effectiveness of TCE in
relation to class operators and complete the study about the benefits
of using TCE. In our study analyzing C++ test subjects, we find
that a subset of equivalent and duplicate class mutants can also be
detected using TCE. Remarkably, the results show that 12% of all
mutants can be safely discarded, removing around 27% of the set
of manually-identified equivalent mutants. TCE detected between
4.1% and 45% of these equivalent mutants in the test subjects. This
suggests that the performance mostly depends on the features of
the subject.

The paper is structured as follows. Section 2 describes TCE in
further detail, comments the state of the art and explains how we
apply the technique. Section 3 presents the experimental setup and
Section 4 shows and discusses the results of the application of TCE
to class mutants, including threats to validity. Finally, Section 6
presents the conclusions.

2 TRIVIAL COMPILER EQUIVALENCE
2.1 Definition
Trivial Compiler Equivalence is a technique that exploits the opti-
mizations performed by existing compilers to detect equivalences
in the set of mutants. Roughly speaking, when two programs are
compiled enabling compiler optimizations, they can turn out to
have the same binary code due to the transformations performed
by the set of optimizations. By means of the comparison of those
binary files, we can detect mutants that are trivially equivalent to
the original program, and mutants that are trivially equivalent to
other mutants, that is, duplicate mutants.

Formally, the application of TCE can be defined as follows. Let a
and b be two programs, and Ω a binary relation such that a Ω b iff a
and b have identical binary code. Also, let o be the original program
andM the set of mutants generated from program o. Then:
• TCE-equivalentmutants: LetTCE_EQ be the set of equiv-
alent mutants detected by TCE:

TCE_EQ = {a ∈ M | o Ω a} (1)
• TCE-duplicate mutants: Let TCE_DU be the set of dupli-
cate mutants detected by TCE:

TCE_DU = {a ∈ M | ∃b ∈ M : a Ω b} (2)
These two properties hold:

∀a,b ∈ TCE_DU ,a Ω b ⇒ b Ω a (3)

∀a,b,c ∈ TCE_DU ,a Ω b ∧ a Ω c ⇒ b Ω c (4)
Equation 3 and Equation 4 correspond to the symmetric and
transitive relation respectively.

2.2 State of the art
Although compiler optimizations have been previously suggested
to determine mutant equivalence [1], TCE was recently proposed
by Papadakis et al. [19]. That study was later extended [12] by
assessing Java in addition to C programs. In their studies, they found
that approximately 28% and 11% of C and Java traditional mutants
could be discarded respectively, and that around 30% and 50% of
all equivalent mutants could be detected. The study by Delgado-
Pérez [2] applying TCE to an industrial application supports TCE’s
effectiveness: around 35% of C traditional mutants could be removed
considering equivalent and duplicate mutants.

The analysis of the efficiency [12, 19] revealed that TCE is reason-
ably fast (especially in equivalent mutant detection) in comparison
to the effort of manual review as well as easily applicable. The appli-
cation of TCE not only allows reducing the cost of mutation testing,
but it also improves the accuracy of the mutation score, especially
because duplicate mutants, which could inflate the metric, can be
partially discarded now. For instance, previous experiments with C
programs have shown that the use of this technique can improve
the accuracy of the mutation score between 0% and 16% [12] and
10% on average [2].

Houshmand et al. [9] proposed an enhancement of TCE, which
they called TCE+. In their study, they used an obfuscator for Java
programs instead of the javac compiler, showing that the applica-
tion of TCE in combination with an obfuscation tool can increase
the effectiveness. TCE has also been applied to other sets of mu-
tants, like memory mutants [24], revealing that about 5.5% of all
mutants were TCE-equivalent or TCE-duplicate.

2.3 Application of TCE in our study
Figure 1 depicts a diagramwhich illustrates the procedure for equiv-
alent mutant detection through compiler optimizations. In this
study, we assess the set of class mutation operators implemented in
the C++ mutation tool MuCPP [3]. As a first step, the mutation tool
is applied to a C++ project to generate a set of class mutants. Then,
both the original and the mutated versions are compiled with g++
using the same set of optimizations, which results in binary files.
MuCPP stores the mutants by means of the version control system
git instead of as conventional files. As such, the binary files are
compared using the option diff for binary files provided by git.
For instance, mutantm1 can be compared with the original pro-
gram (which is saved in the branchmaster) through the following
command:

git diff --binary master m1 binaryfile

Regarding duplicate mutants, each mutant is compared with the
rest of the mutants, which makes this process more expensive than
detecting equivalent mutants. Nevertheless, the need for computa-
tion can be considerably reduced by only comparing the mutations
contained in the same unit (e.g., mutants in the same class). It is
unlikely that mutations injected into different classes turn out to
be equivalents.

As shown by Houshmand et al. [9], we support the application
of TCE via scripts instead of integrating the technique as a further
functionality of a mutation tool. Thanks to this, we can reuse the

Figure 1: Diagram of the application of TCE to detect equivalent mutants in this work.

same scripts for different tools (provided that they follow the con-
ventional mutation testing process) without the need to modify the
source code of each tool.

3 EXPERIMENTAL SETUP
The aim of our experiments is to answer two main research ques-
tions regarding C++ class-level mutants:

Research question 1: What is the rate of equivalent and
duplicate mutants detected by TCE when applied to class
mutation operators? What is the impact of the different opti-
mization options?

Research question 2: What are the class operators that
often generate TCE-equivalent and TCE-duplicate mutants?

The experiments have been conducted on a computer running
Ubuntu 14.04 LTS with gcc 4.8 (both the version of the operating
system and the compiler are the same used in the study by Kintis et
al. [12]). We have compiled the programs using four different levels
of optimization1: None (default optimization option), -O, -O2 and
-O3. Additionally, we used git 1.9.1 to compare the binary files. The
class operators that generated mutants in our study can be seen
in Table 1 (further information about this set of operators can be
found in a previous work [3]).

We have used a set of five C++ object-oriented systems, shown
in Table 2. The mutants generated in these programs were manually
reviewed to determine which of them were equivalent. As it can be
seen in Table 2, the percentage of equivalent mutants (34.4%) is in
line with the ratios of class equivalent mutants found in previous
studies on object-oriented operators (see discussion in Section 1).
That set of equivalent mutants is used as the ground truth in our
experiments. We do not know, however, about the existing equiva-
lences amongmutants. As such, the detection capability of duplicate
mutants is calculated taking as reference all mutants except those in
the set TCE_EQ (i.e., TCE-equivalent mutants). Note that, because
of the transitive relation (see Equation 4), if o Ω a and o Ω b, then

1Information about these optimization options can be found here: https://gcc.gnu.org/
onlinedocs/gcc-4.8.2/gcc/Optimize-Options.html

Table 1: Set of C++ object-orientedmutation operators exam-
ined in the study

Group Op. Description

Inheritance IHI Hiding variable insertion
ISD Base keyword deletion
ISI Base keyword insertion
IOD Overriding method deletion
IOP Overriding method calling

position change
IOR Overriding method rename
IPC Explicit call of a parent’s

constructor deletion

Polymorphism PCI Type cast operator insertion
and dynamic PMD Member variable declaration
binding with parent class type

PPD Parameter variable declaration
with child class type

PNC New method call with
child class type

Method OMD Overloading method deletion
overloading OMR Overloading method contents replace

OAN Argument number change

Object MCO Member call from another object
and member MCI Member call from another
replacement inherited class

Miscellany CTD this keyword deletion
CTI this keyword insertion
CID Member variable initialization

deletion
CDC Default constructor creation
CDD Destructor method deletion
CCA Copy constructor and assignment

operator overloading deletion

a Ω b. Therefore, TCE-equivalent mutants have to be discarded to
avoid that they are counted also as duplicate.

As mentioned earlier, this work is partially related to the work of
Papadakis et al. [19], where the effectiveness of TCE was evaluated
in the context of C traditional operators. Since we are applying
the same approach as in their study (that is, we are applying the
same compiler and the same optimizations levels), and there is no
material difference between compiling traditional and class mutants
in terms of performance, we do not replicate the study about the
efficiency of TCE in this paper.

https://gcc.gnu.org/onlinedocs/gcc-4.8.2/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc-4.8.2/gcc/Optimize-Options.html

Table 2: Mutants in the C++ test subjects and number and
proportion (% Eq.) of manually-identified equivalent mu-
tants

Program Classes Mutants Equivalent % Eq.

Matrix TCL Pro 9 135 20 14.8
Dolphin 13 208 69 33.2
TinyXML2 20 433 91 21.0
MySQLServer 8 530 268 50.5
QtDOM 11 681 236 34.6

Total 61 1,987 684 34.4

Table 3: Number (No.) and proportion (%) of equivalent mu-
tants detected by TCE in each program using the different
optimization levels.

Prog.
None -O -O2 -O3

No. % No. % No. % No. %

TCL 2 10 9 45 9 45 9 45
DPH 14 20.3 19 27.5 19 27.5 19 27.5
TXM 22 24.2 29 31.9 30 33 30 33
SQL 8 3 11 4.1 11 4.1 11 4.1
DOM 20 8.5 20 8.5 20 8.5 20 8.5

Total 66 9.6 88 12.9 89 13 89 13

4 RESULTS AND DISCUSSION
4.1 Equivalence detection
Table 3 shows the results of applying TCE to our test subjects
with the four optimization levels. Namely, the number of equiva-
lent mutants detected and the proportion with respect to the set
of manually-identified equivalent mutants. We can highlight the
following findings:
• TCE was able to detect up to 13% of all equivalent mutants
identified in our programs (89 out of 684) with the highest
optimization options (-O2 and -O3). Looking at the results
of the programs individually, we can observe a varying de-
tection power, from 4.1% to 45%. This fact suggests that the
effectiveness of TCE greatly depends on the features of the
subject under test.
• Applying no optimizations (None) was the least effective
option by far. Except for DOM, where the results for all
optimization levels were the same, None is the option that
detected fewer equivalent mutants, with significant differ-
ences in TCL or TXM. Besides, we should note also that all
equivalent mutants revealed with None were also revealed
by the other options.
• Regarding the rest of optimization levels, there was no differ-
ence between -O2 and -O3, and no meaningful differences
with -O (just one mutant generated by the operator CID
was not detected by -O in comparison with the other more
demanding options). Again, all the mutants detected by -O
were detected with -O2 and -O3 as well.

Figure 2: Percentage of TCE-equivalent mutants detected
per mutation operator using -O3, taking into account all the
analyzed programs. Onlymutation operators that generated
at least one equivalent mutant are considered.

In order to know about the distribution of TCE-equivalent mu-
tants in the set of mutation operators, Table 4 furnishes the percent-
age of equivalent mutants detected per operator in each program
and optimization level. Figure 2 helps to interpret the performance
of TCE in each mutation operator globally. As it can be seen, TCE
was able to identify equivalent mutants in 8 out of 16 mutation
operators that generated at least one equivalent mutant. These 8
operators belong to different categories: inheritance (IHI), poly-
morphism (PMD and PCI), method overloading (OAN and OMD)
and operators related to construction and destruction of objects
(CCA, CID and CDD). The best operators in terms of TCE detection
were PMD, CCA, OAN and OMD, with a ratio TCE-equivalent to
manually-identified equivalent mutants over 30% (see Figure 2). It
is remarkable that all equivalent mutants from PMD were detected;
also, a subset of the equivalent mutants from PCI was revealed in
all the programs in which this operator produced some equivalent
mutants. In contrast, it is the fifth operator in which TCE seems to
be more effective.

4.2 Duplicate mutant detection
Table 5 presents the results of the detection of duplicate mutants
(number and proportion) thanks to TCE. The minimum and maxi-
mum percentage of duplicate mutants found was 1.1% and 18.5%
respectively. The option -O3 was the most effective, although all
options performed similarly. We should note that the number of
duplicate mutants shown in this table represents the number of
mutants that are not necessary because there are other mutants
with the same binary code. For instance, if three mutants are equiv-
alent among them, that means that two of them can be discarded
and one should be kept in the set. Recall that the percentages of
TCE-equivalent and TCE-duplicate mutants (respectively shown in
Table 3 and Table 5) should not be interpreted in the same way; we
use manually-equivalent mutants as ground truth to calculate the
proportion of TCE-equivalent mutants, while the detection rates
of TCE-duplicate mutants take the complete set of mutants except
those in TCE_EQ as reference point.

Table 4: Percentage of TCE-equivalent mutants divided by operator, case study and optimization level. Those optimization
levels that reported the same percentages in each program have been grouped under a common heading (for instance, -O/-O3
means that the options O, -O2 and -O3 reported the same results).

Op.
TCL DPH TXY SQL DOM

None -O/-O3 None -O/-O3 None -O -O2/-O3 None -O/-O3 None/-O3

IHI 0 0 0 0 0 3.1
ISI 0 0 0 0 0
IOD 0 0 0 0 0 0 0 0
IOR 0 0 0 0 0 0
IPC 0 0 0 0
PCI 32.7 38.5 38.5 12.5 12.5 9.5
PMD 100 100 100 100 100 100
PPD 0 0 0 0
OMD 25 62.5 0 100 0 14.3 14.3 0 0 0
OMR 0 0 0 0 0 0
OAN 0 37.5
MCO 0 0 0 0 0 0 0 0
MCI 0 0 0
CID 0 0 72.2 72.2 0 0 10 0 0 0
CDD 0 50 0 0 0 0 0 0
CCA 0 42.9 20 100 50 100 100 0

Table 6 shows the number of duplicate mutants between mu-
tation operators in a matrix-like structure. We should note that
we did not find any case where more than two operators gener-
ated duplicate mutants among them. In other words, all mutants in
TCE_DU (i.e., the set of TCE-duplicate mutants) were equivalent to
other mutants generated by the same operator (as in the case of IHI
andMCO) or equivalent to just another operator (e.g., CTI and CID).
It is interesting to remark that the percentage of duplicate mutants
between two operators (e.g., IOD and OMD) accounted for about
14% of the mutants in TCE_DU , and only six operators generated
such mutants (IOD, OMD, CTD, CTI, CID and CCA). Nevertheless,
these low numbers are not surprising: unlike traditional operators,
it is known that each class mutation operator addresses a different
object-oriented feature [4] and, as such, it is unlikely that many
class mutants result in the same binary code.

Table 5: Number (No.) and proportion (%) of duplicate mu-
tants detected by TCE in each program using the different
optimization levels.

Prog.
None -O -O2 -O3

No. % No. % No. % No. %

TCL 3 2.3 3 2.3 3 2.3 3 2.3
DPH 2 1.1 4 2.1 4 2.1 4 2.1
TXM 24 6 24 6 24 6 25 6.2
SQL 94 18.1 96 18.5 96 18.5 96 18.5
DOM 23 3.5 24 3.6 24 3.6 24 3.6

Total 146 7.6 151 7.8 151 7.8 152 7.9

Note that the symmetric relation (see Equation 3) implies that
any mutant involved in an equivalence relation can be removed
without prejudicing the assessment. By reviewing duplicate mu-
tants, we found out that, under certain circumstances, the operators
IOD, OMD and CCA address the same method. As such, we could
work on the generation phase of these operators to prevent overlap.

Table 6: Matrix with the number of duplicate mutants be-
tween operators. Given the symmetric relation, the equiva-
lence between operators is represented in both directions.

Op. IH
I

IO
D

O
M
D

M
C
O

C
T
D

C
T
I

C
ID

C
C
A

IHI 124

IOD 6

OMD 6 12

MCO 7

CTD 1

CTI 1 2

CID 2

CCA 12

Duplicate mutants from IHI mostly appear when the inserted vari-
ables are not referenced in the child classes. This situation should
be explored further (for instance, taking into account friendship
relations), to understand the conditions that lead to these duplicate
mutants and whether they can be avoided.

4.3 Joint result
Table 7 summarizes the joint ratio of both TCE-equivalent and
TCE-duplicate mutants to the full set of mutants. In this way, we
can better observe the total number of invaluable mutants that can
be removed.

At this point, we should note that, while a manually-identified
equivalent mutant might not be detected as TCE-equivalent, it
might be identified as TCE-duplicate with other equivalent mutants.
This situation is graphically shown in Figure 3 with the shaded
region. Therefore, we additionally analyzed how many of the TCE-
duplicate mutants were in the set of manually-identified equivalent

Figure 3: Venn diagram with the sets of manually-identified
equivalent, TCE-equivalent and TCE-duplicate mutants.

mutants at the same time. Remarkably, 100 out of 152 TCE-duplicate
mutants were known to be equivalent. Since these mutants can
also be discarded, they have been added to the number of TCE-
equivalent mutants shown in Table 3. Columns Eq. and %Eq. show
the total number and the final percentage of equivalent mutants that
can be removed using -O3. Altogether, this percentage increases
from 13% to 27.6%.

Finally, we have observed a great variation in the ratio of detec-
tion of equivalent and duplicate mutants in the different programs
(see Tables 3 and 5). These ratios do not seem to relate to the size of
the set of mutants generated in the programs. This observation is in
line with the correlation measures performed by Kintis et al. [12].

Table 7: Proportion of mutants detected by TCE (equiva-
lent and duplicate mutants jointly) with the different op-
tions. Number (Eq.) and proportion (% Eq.) of equivalentmu-
tants removed using -O3 (counting TCE-duplicate mutants
as well) are also shown.

Prog. None -O -O2 -O3 Eq. % Eq.

TCL 3.7 8.9 8.9 8.9 10 50
DPH 7.7 11.1 11.1 11.1 19 27.5
TXM 10.6 12.2 12.4 12.7 37 40.7
SQL 19.2 20.2 20.2 20.2 99 36.9
DOM 6.3 6.5 6.5 6.5 24 10.2

Total 10.7 12 12 12.1 189 27.6

4.4 Answer to research questions

Research question 1: What is the rate of equivalent and
duplicate mutants detected by TCE when applied to class
mutation operators? What is the impact of the different opti-
mization options?

The percentage of mutants from the total that can be removed
thanks to TCE is 12.1% (241 out of 1,987). This percentage is similar
to the number of method-level mutants that could be discarded in
Java (11%) [12], but lower than in C programs (28%). The percentage
of equivalent mutants that can be removed is 27.6% (189 out of

684). However, the detection of TCE-equivalent mutants was quite
different in the programs (4.1% and 45% in the worst and best case).
Apparently, applying the highest optimization level is not decisive.
Given that the higher the optimization option the more time it takes
to compile mutants [12], using -O seems to be a suitable option to
save in compilation time.

Research question 2: What are the class operators that
often generate trivial equivalent and duplicate mutants?

TCE detected equivalent mutants in half of the operators that
generated some equivalent mutants in our programs. Among them,
TCE performed better with equivalent mutants generated by PMD
(100%), CCA (60%), OAN (37%) and OMD (35%) than those produced
by PCI (20%), CID (16%), CDD (12%) and IHI (1%). There were also
eight operators involved in the detection of duplicate mutants,
although many of them were generated by IHI, and CTI and CTD
only generated one TCE-duplicate mutant between them. Given
the specificity of class operators, there are no many equivalence
relations among them.

4.5 Threats to validity
There are two main threats to the validity of the presented results,
which are common in mutation-based assessments:
• Equivalence: Being the sets of equivalent mutants reviewed
in a manual way, we might have failed when classifying
some of them. However, in that case, it is likely that the
proportion of equivalent mutants detected is greater than
the one reported in the paper (i.e., some of those mutants
could be actually killable).
• Generalization of the results: Evaluations such as the one
performed in these experiments are judged with respect to
their representativeness. To counter this threat, we analyzed
almost 2,000 mutants, of which 684 were equivalent. While
the Yao et al. [25] benchmark used to test the effectiveness of
TCE in C programs contains 990 equivalent mutants [12], our
test subjects surpass the manually-analyzed Java mutants
used by Kintis et al. [12] (1,542 mutants and 196 equivalent
mutants) and by Houshmand et al. [9] (1,872 mutants and
around 100 equivalent mutants).

There is a further threat, which is related to the underlying tech-
nologies used to apply TCE. We have not found false positives in
our study but we cannot guarantee that the compiler is exempt
from defects, such as the ones detected by Tao et al. [23] or the
false positive reported by Delgado-Pérez et al. [2]. In any event, it
is unlikely that such defects could greatly impact the results shown
in the paper. The rest of the tools utilised (git and MuCPP) can also
affect the results. In the case of MuCPP, this mutation tool imple-
ments some rules to avoid the generation of equivalent mutants
through static analysis [3]. As such, the results might be different
using other mutation tools with class operators.

5 RELATEDWORK
The automatic detection of equivalent mutants to reduce the cost
of mutation testing is a topic that has been widely studied in the
past [16, 20]. Some works, such as the one by Grün et al. [7], have

studied mutation operators that generate equivalent mutants, and
have tried to identify the causes for the generation of these mutants.
As a result, equivalence conditions can be detected and integrated
into mutation tools to avoid their generation [3, 10].

The review by Madeyski et al. [16] identified a set of relevant
techniques to address the equivalent mutant problem. Among them,
Offutt and Pan [18] devised a technique called constrained-based
test data to generate input data that are useful to identify equivalent
mutants. Hierons et al. [8] applied program slicing to help in the
detection of these mutants. Later, Schuler and Zeller [21] analyzed
the coverage impact of mutations to alleviate the effects of the
equivalence. Recently, Kintis et al. [13] found that higher-order
mutation can help to isolate equivalent mutants.

Other works are based on compiler optimizations to identify
some equivalent mutants. The first heuristics for detecting equiva-
lence were proposed by Baldwin and Sayward [1] and later studied
by Offutt and Craft [17]. Recently, Papadakis et al. [19] proposed the
technique called TCE to detect equivalent mutants by comparing
the binary files of the original program and the mutants once the
optimizations of the compiler have been applied. Their study was
later extended by Kintis et al. [12], who studied the efficiency and
effectiveness of TCE in Java programs in addition to C programs.

6 CONCLUSION
Mutation testing is a powerful technique that suffers from excessive
cost. The attempts to reduce the expense, especially that stemming
from equivalence, can favour a wider application of this technique
by practitioners. However, the empirical studies with regard to TCE
are still limited despite its promising results so far. The experiments
in this paper show that TCE is also useful to reduce the cost when
addressing object-oriented mutants, showing similar performance
as in previous studies.

As future work, we should learn about the set of optimizations
implemented in different compilers to improve TCE effectiveness,
or even to devise new equivalence rules that could be integrated
into mutation tools.

7 ACKNOWLEDGMENTS
This work has been partially supported by the European Commis-
sion (FEDER) and Spanish Government under MINECO projects
DArDOS (TIN2015-65845-C3-3-R) and BELI (TIN2015-70560-R).

REFERENCES
[1] D. Baldwin and F. Sayward. 1979. Heuristics for Determining Equivalence of

Program Mutations. Yale University, Department of Computer Science.
[2] Pedro Delgado-Pérez, Ibrahim Habli, Steve Gregory, Rob Alexander, John Clark,

and Inmaculada Medina-Bulo. 2018. Evaluation of Mutation Testing in a Nuclear
Industry Case Study. IEEE Transactions on Reliability 99 (2018), 1–14. https:
//doi.org/10.1109/TR.2018.2864678

[3] Pedro Delgado-Pérez, Inmaculada Medina-Bulo, Francisco Palomo-Lozano, Anto-
nio García-Domínguez, and Juan José Domínguez-Jiménez. 2017. Assessment of
class mutation operators for C++ with the MuCPP mutation system. Information
and Software Technology 81 (2017), 169–184. https://doi.org/10.1016/j.infsof.2016.
07.002

[4] Pedro Delgado-Pérez, Sergio Segura, and Inmaculada Medina-Bulo. 2017. As-
sessment of C++ object-oriented mutation operators: A selective mutation ap-
proach. Software Testing, Verification and Reliability 27, 4-5 (2017). https:
//doi.org/10.1002/stvr.1630

[5] Anna Derezińska and Marcin Rudnik. 2012. Quality Evaluation of Object-
Oriented and Standard Mutation Operators Applied to C# Programs. In Objects,

Models, Components, Patterns, Carlo A. Furia and Sebastian Nanz (Eds.). Lec-
ture Notes in Computer Science, Vol. 7304. Springer Berlin Heidelberg, 42–57.
https://doi.org/10.1007/978-3-642-30561-0_5

[6] F. Cutigi Ferrari, A. Viola Pizzoleto, and J. Offutt. 2018. A Systematic Review of
Cost Reduction Techniques for Mutation Testing: Preliminary Results. In 2018
IEEE International Conference on Software Testing, Verification and Validation
Workshops (ICSTW). 1–10. https://doi.org/10.1109/ICSTW.2018.00021

[7] Bernhard J. M. Grün, David Schuler, and Andreas Zeller. 2009. The Impact of
Equivalent Mutants. In Proceedings of the IEEE International Conference on Soft-
ware Testing, Verification, and Validation Workshops (ICSTW ’09). IEEE Computer
Society, Washington, DC, USA, 192–199. https://doi.org/10.1109/ICSTW.2009.37

[8] Rob Hierons, Mark Harman, and Sebastian Danicic. 1999. Using program slicing
to assist in the detection of equivalent mutants. Software Testing, Verification and
Reliability 9, 4 (1999), 233–262. https://doi.org/10.1002/(SICI)1099-1689(199912)9:
4<233::AID-STVR191>3.0.CO;2-3

[9] Mahdi Houshmand and Samad Paydar. 2017. TCE+: An Extension of the TCE
Method for Detecting Equivalent Mutants in Java Programs. In Fundamentals of
Software Engineering, Mehdi Dastani and Marjan Sirjani (Eds.). Springer Interna-
tional Publishing, Cham, 164–179. https://doi.org/10.1007/978-3-319-68972-2_11

[10] J. Hu, N. Li, and J. Offutt. 2011. An Analysis of OO Mutation Operators. In IEEE
Fourth International Conference on Software Testing, Verification and Validation
Workshops (ICSTW), 2011. 334–341. https://doi.org/10.1109/ICSTW.2011.47

[11] Sunwoo Kim, J A Clark, and J A McDermid. 1999. Assessing Test Set Adequacy
for Object-Oriented Programs using Class Mutation. In Proceedings of the f the
3rd Symposium on Software Technology (SoST’99), Buenos Aires, Argentina. 72–83.

[12] M. Kintis, M. Papadakis, Y. Jia, N. Malevris, Y. Le Traon, and M. Harman. 2018.
Detecting Trivial Mutant Equivalences via Compiler Optimisations. IEEE Trans-
actions on Software Engineering 44, 4 (April 2018), 308–333. https://doi.org/10.
1109/TSE.2017.2684805

[13] Marinos Kintis, Mike Papadakis, and Nicos Malevris. 2015. Employing Second-
order Mutation for Isolating First-order Equivalent Mutants. Software Testing,
Verification and Reliability 25, 5-7 (Aug. 2015), 508–535. https://doi.org/10.1002/
stvr.1529

[14] Yu-Seung Ma, Mary Jean Harrold, and Yong-Rae Kwon. 2006. Evaluation of
Mutation Testing for Object-oriented Programs. In Proceedings of the 28th In-
ternational Conference on Software Engineering (ICSE ’06). ACM, New York, NY,
USA, 869–872. https://doi.org/10.1145/1134285.1134437

[15] Yu-SeungMa, Yong Rae Kwon, and Sang-Woon Kim. 2009. Statistical Investigation
on Class Mutation Operators. ETRI Journal 31, 2 (April 2009), 140–150. https:
//doi.org/10.4218/etrij.09.0108.0356

[16] Lech Madeyski, Wojciech Orzeszyna, Richard Torkar, and Mariusz Jozala. 2014.
Overcoming the Equivalent Mutant Problem: A Systematic Literature Review
and a Comparative Experiment of Second Order Mutation. IEEE Transactions on
Software Engineering 40, 1 (Jan. 2014), 23–42. https://doi.org/10.1109/TSE.2013.44

[17] A. Jefferson Offutt and W. Michael Craft. 1994. Using compiler optimization tech-
niques to detect equivalent mutants. Software Testing, Verification and Reliability
4, 3 (1994), 131–154. https://doi.org/10.1002/stvr.4370040303

[18] A. J. Offutt and Jie Pan. 1996. Detecting equivalent mutants and the feasible path
problem. In Proceedings of the Eleventh Annual Conference on Computer Assurance,
1996. COMPASS ’96, Systems Integrity. Software Safety. Process Security. 224 –236.
https://doi.org/10.1109/CMPASS.1996.507890

[19] Mike Papadakis, Yue Jia, Mark Harman, and Yves Le Traon. 2015. Trivial Com-
piler Equivalence: A Large Scale Empirical Study of a Simple, Fast and Effective
Equivalent Mutant Detection Technique. In Proceedings of the 37th International
Conference on Software Engineering - Volume 1 (ICSE’15). IEEE Press, Piscataway,
NJ, USA, 936–946. https://doi.org/10.1109/ICSE.2015.103

[20] Mike Papadakis, Marinos Kintis, Jie Zhang, Yves Le Traon, and Mark Harman.
2018. Mutation Testing Advances: An Analysis and Survey. Advances in Comput-
ers (2018).

[21] David Schuler and Andreas Zeller. 2013. Covering and Uncovering Equivalent
Mutants. Software Testing, Verification and Reliability 23, 5 (2013), 353–374.
https://doi.org/10.1002/stvr.1473

[22] Sergio Segura, Robert M. Hierons, David Benavides, and Antonio Ruiz-Cortés.
2011. Mutation testing on an object-oriented framework: An experience report.
Information and Software Technology 53, 10 (2011), 1124–1136. https://doi.org/
10.1016/j.infsof.2011.03.006 Special Section on Mutation Testing.

[23] Q. Tao, W. Wu, C. Zhao, and W. Shen. 2010. An Automatic Testing Approach for
Compiler Based on Metamorphic Testing Technique. In 2010 Asia Pacific Software
Engineering Conference. 270–279. https://doi.org/10.1109/APSEC.2010.39

[24] Fan Wu, Jay Nanavati, Mark Harman, Yue Jia, and Jens Krinke. 2017. Memory
mutation testing. Information and Software Technology 81 (2017), 97 – 111. https:
//doi.org/10.1016/j.infsof.2016.03.002

[25] Xiangjuan Yao, Mark Harman, and Yue Jia. 2014. A Study of Equivalent and Stub-
born Mutation Operators Using Human Analysis of Equivalence. In Proceedings
of the 36th International Conference on Software Engineering (ICSE 2014). ACM,
New York, NY, USA, 919–930. https://doi.org/10.1145/2568225.2568265

https://doi.org/10.1109/TR.2018.2864678
https://doi.org/10.1109/TR.2018.2864678
https://doi.org/10.1016/j.infsof.2016.07.002
https://doi.org/10.1016/j.infsof.2016.07.002
https://doi.org/10.1002/stvr.1630
https://doi.org/10.1002/stvr.1630
https://doi.org/10.1007/978-3-642-30561-0_5
https://doi.org/10.1109/ICSTW.2018.00021
https://doi.org/10.1109/ICSTW.2009.37
https://doi.org/10.1002/(SICI)1099-1689(199912)9:4<233::AID-STVR191>3.0.CO;2-3
https://doi.org/10.1002/(SICI)1099-1689(199912)9:4<233::AID-STVR191>3.0.CO;2-3
https://doi.org/10.1007/978-3-319-68972-2_11
https://doi.org/10.1109/ICSTW.2011.47
https://doi.org/10.1109/TSE.2017.2684805
https://doi.org/10.1109/TSE.2017.2684805
https://doi.org/10.1002/stvr.1529
https://doi.org/10.1002/stvr.1529
https://doi.org/10.1145/1134285.1134437
https://doi.org/10.4218/etrij.09.0108.0356
https://doi.org/10.4218/etrij.09.0108.0356
https://doi.org/10.1109/TSE.2013.44
https://doi.org/10.1002/stvr.4370040303
https://doi.org/10.1109/CMPASS.1996.507890
https://doi.org/10.1109/ICSE.2015.103
https://doi.org/10.1002/stvr.1473
https://doi.org/10.1016/j.infsof.2011.03.006
https://doi.org/10.1016/j.infsof.2011.03.006
https://doi.org/10.1109/APSEC.2010.39
https://doi.org/10.1016/j.infsof.2016.03.002
https://doi.org/10.1016/j.infsof.2016.03.002
https://doi.org/10.1145/2568225.2568265

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 12.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 322
 Fixed
 Up
 12.6000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 7
 6
 7

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move down by 3.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 322
 Fixed
 Down
 3.6000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 7
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 7
 6
 7

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 7
 6
 7

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 7
 6
 7

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 7
 6
 7

 1

 HistoryList_V1
 qi2base

