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This paper deals with the behavior of two-dimensional linear
elliptic equations with unbounded (and possibly infinite) coeffi-
cients. We prove the uniform convergence of the solutions by
truncating the coefficients and using a pointwise estimate of the
solutions combined with a two-dimensional capacitary estimate.
We give two applications of this result: the continuity of the
solutions of two-dimensional linear elliptic equations by a con-
structive approach, and the density of the continuous functions
in the domain of the Γ -limit of equicoercive diffusion energies in
dimension two. We also build two counter-examples which show
that the previous results cannot be extended to dimension three.
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1. Introduction

In this paper we study the behavior of degenerate linear elliptic equations posed in a bounded
open subset Ω of R

N , especially in the case N = 2, of type

−div(A∇u) = f in Ω, (1.1)
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where the right-hand side f belongs to H−1(Ω), and A is a coercive but not necessarily bounded
matrix-valued function. Indeed, the quadratic form relating to A can even take infinite values (see
Definition 2.1). Therefore, the solutions of (1.1) will be understood in the sense

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∫
Ω

A∇u · ∇u dx < ∞,

∫
Ω

A∇u · ∇v dx = 〈 f , v〉, ∀v ∈ H1
0(Ω) with

∫
Ω

A∇v · ∇v dx < ∞.

(1.2)

We will prove (see Proposition 2.3) that the solutions of this problem can be obtained as the limits
of solutions of coercive problems with bounded coefficients, using some truncation of the matrix-
valued A. In particular, this allows us to extend some classical properties of the solutions of linear
elliptic equations with coercive and bounded operators, such as the maximum principle (see Theo-
rem 2.4). The main results of the paper refer to the compactness of the solutions of (1.1) for the
uniform convergence in dimension two.

Recall that for any bounded open subset Ω of R
N , N � 1, any coercive matrix-valued function

A ∈ L∞(Ω)N×N , and any f in W −1,q(Ω) with q > 2, the solutions of (1.1) are Hölder-continuous
in Ω (see e.g. [14,18,22]). As a consequence, if un is a bounded sequence in H1(Ω) of solutions of
equations

−div(An∇un) = fn in Ω, (1.3)

where fn is bounded in W −1,q(Ω) for some q > 2, and An is uniformly coercive and bounded
in L∞(Ω)N×N , then un is compact in C0(Ω), i.e. uniformly convergent in any compact set of Ω .
In the two-dimensional case the solutions of (1.3) are still continuous even if the diffusion matrix An

is not bounded from above (see e.g. [15,17]). In general they are no longer Hölder-continuous (see
Example 4.6), but we show in the present paper that the former uniform convergence result does
subsist. More precisely, we prove (see Theorems 2.5 and 2.7) that the compactness of un in C0(Ω)

still holds true without assuming any bound from above on the equicoercive sequence An . Moreover,
if Ω is Lipschitz and un is compact in C0(∂Ω), then the sequence un is compact in C0(Ω̄).

The previous uniform convergence results are applied in two directions. On the one hand, we
give an alternative proof (see Theorem 4.1) of the continuity of the solutions of (1.3) using the
approximation by truncation of the matrix-valued An combined with the uniform convergence of the
solutions of the equations with truncated coefficients (which are known to be continuous).

On the other hand, the asymptotic behavior of sequences of solutions of (1.3) is strongly con-
nected to the homogenization theory. The homogenization of sequences of elliptic equations has
formed the subject of several works since the end of sixties. Assuming the uniformly boundedness
of the coefficients Spagnolo [24] and Murat and Tartar [21,25] proved that the limit problem of (1.3)

has the same structure. These results were extended in [10,12] and [20] under the weaker assump-
tion of the L1-equiintegrability, as well as in the periodic case [5] under the control of a weighted
Poincaré–Wirtinger inequality. Moreover, Fenchenko and Khruslov [16] proved that only L1-bounded
coefficients may induce nonlocal effects in dimension three through jumping measures which modify
the nature of the limit problem (also see the recent book [19] on the topic and another approaches
in [1,4,9,11,20]). Mosco [20] showed the nonlocal terms arise naturally in the limit process using the
Beurling–Deny [2] representation of the Dirichlet forms. Completing the previous work Camar-Eddine
and Seppecher [11] proved that in dimension three any jumping measure can be obtained by the ho-
mogenization of a suitable equicoercive sequence of conductivity matrices An . Recently, we showed
first in the periodic case [6], then in the general case [7,8], that, contrary to the dimension three, the
dimension two prevents from the appearance of nonlocal effects. In [7] we proved the compactness
of Eqs. (1.3) assuming the L1-boundedness of An and using two-dimensional div–curl lemmas. In [8]
we extended the previous result without assuming any bound from above on An .
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The uniform convergence results of the present paper allow us to complete and improve the re-
sults of [8]. More precisely, the approach of [8] is based on a (exclusively) two-dimensional capacitary
estimate (see Lemma 3.2). This tool is now combined with two extra ingredients: the truncation prin-
ciple mentioned above and a pointwise estimate satisfied by the solutions of linear elliptic equations
(see Theorem 2.4) which extends a classical one (see e.g. Theorem 8.16 of [18]). The combination
of these three ingredients yields the uniform convergence of the sequence un of solutions of (1.3)

without assuming a priori the continuity of its limit as in [8]. As a consequence of this approach, we
prove (see Theorem 4.3) that the continuous functions are dense in the domain (endowed with the
intrinsic norm) of the Γ -limit of any equicoercive sequence of linear diffusion energies in dimension
two, which is a new contribution in the topic up to our knowledge.

We conclude the paper with two counter-examples illustrating the gap between the dimension
two and the higher one, concerning the former uniform convergence results. First, we give an exam-
ple (see Proposition 4.7) of a sequence of solutions of three-dimensional Dirichlet problems, which
does not converges uniformly. Then, we construct (see Proposition 4.9) a discontinuous solution of
a three-dimensional linear elliptic equation with unbounded coefficients. The two counter-examples
are based on fibers reinforced structures which were first used in [16] to derive nonlocal effects in
homogenization.

2. Statement of the results

2.1. A pointwise estimate of solutions of linear elliptic equations

We start the paper by giving a consistent definition of unbounded non-symmetric matrix-valued
functions, with possibly infinite values:

Definition 2.1. Let α > 0 and let Ω be a bounded open subset of R
N . Let A(α,Ω) be the set of the

matrix-valued functions A such that there exist P ∈ L∞(Ω)N×N with values on the set of orthogonal
matrices, N measurable functions d1, . . . ,dN : Ω → [α,∞], a constant β > 0, and a measurable skew-
symmetric matrix-valued function B : Ω → R

N×N , with

|B|∞ := max
1�i, j�N

|Bij| � β min{d1, . . . ,dN }, a.e. in Ω,

which satisfy for a.e. x ∈ Ω ,

A(x)ξ = P (x)t D(x)P (x)ξ + B(x)ξ, ∀ξ ∈ V x := {
ξ ∈ R

N :
∣∣D P (x)ξ

∣∣ < ∞}
, (2.1)

where D is the diagonal matrix-valued function diag(d1, . . . ,dN ).

Remark 2.2. Definition 2.1 allows us to give a sense to A(x)ξ · ξ , for a.e. x ∈ Ω and any ξ ∈ R
N , by

A(x)ξ · ξ :=
{

D(x)P (x)ξ · P (x)ξ if ξ ∈ V x,

∞ if ξ ∈ R
2 \ V x.

(2.2)

In the particular case of symmetric matrices this leads us to the following extensions of classical
definitions:

• For any A, B ∈A(α,Ω), A � B means that

A(x)ξ · ξ � B(x)ξ · ξ � ∞, for a.e. x ∈ Ω, ∀ξ ∈ R
2. (2.3)

• A sequence An ∈A(α,Ω) is said to converge a.e. to A ∈A(α,Ω) if

A(x)ξ · ξ = lim
n→∞ An(x)ξ · ξ ∈ [0,∞], for a.e. x ∈ Ω, ∀ξ ∈ R

2. (2.4)
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Let A ∈ A(α,Ω) and denote by As its symmetric part. The conditions d1, . . . ,dN : Ω → [α,∞] and
|B|∞ � β min{d1, . . . ,dN } a.e. in Ω , read as, according to (2.3),

α I � As and |B|∞ I � β As, a.e. in Ω, (2.5)

where I is the unit matrix of R
2×2.

Denote by Tκ , for κ � 0, the truncation at size κ , i.e. Tκ (t) := min(κ,max(−κ, t)) for any t ∈ R.
Then, we have the following truncation result:

Proposition 2.3. Let A be an element of A(α,Ω), and consider P , D, a, β as in Definition 2.1. For n � α,
let Dn be the diagonal matrix-valued function with entries Tn(d1), . . . , Tn(dN ), let Bn be the skew-symmetric
matrix-valued function with entries (Bn)i j := Tnβ(Bij), and let An be the element of A(α,Ω) defined by (2.1)

with P , Dn and Bn. Then, for any f ∈ H−1(Ω) and any u ∈ H1(Ω) which satisfies (1.2), the solution un of

{−div(An∇un) = f in Ω,

un − u ∈ H1
0(Ω),

(2.6)

converges strongly to u in H1(Ω). Moreover, we have

lim
n→∞

∫
Ω

An∇(un − u) · ∇(un − u)dx = 0. (2.7)

A consequence of this truncation result is the following pointwise estimate satisfied by the solu-
tions of (1.2):

Theorem 2.4. For any α > 0 and any q > 2, there exists a constant C > 0 with the following property:
For any bounded open subset Ω of R

N , A ∈ A(α,Ω), f ∈ W −1,q(Ω), q > 2, m, M ∈ R with m < M, and
any u ∈ H1(Ω) satisfying (1.2) with (m − u)+ , (u − M)+ ∈ H1

0(Ω), we have

m − C |Ω| Nq−N−q
Nq ‖ f ‖W −1,q(Ω) � u � M + C |Ω| Nq−N−q

Nq ‖ f ‖W −1,q(Ω), a.e. in Ω. (2.8)

2.2. Uniform convergence results

The main results of the paper are the following compactness result and its refinement in Theo-
rem 2.7:

Theorem 2.5. Let α > 0, let Ω be a bounded open subset of R
2 , with a Lipschitz boundary, and let Γ be a

relatively open subset of ∂Ω . Consider a sequence An in A(α,Ω), a sequence un in H1(Ω) ∩ C0(Ω ∪ Γ )

which converges weakly in W 1,p(Ω), with p ∈ (1,2], and uniformly in the closed subsets of Γ to a function
u ∈ W 1,p(Ω)∩ C0(Ω ∪Γ ), and consider a sequence fn in W −1,q(Ω), with q > 2. Assume that An, un and fn

satisfy the following conditions:

∀n ∈ N,

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∫
Ω

An∇un · ∇un dx < ∞,

∫
Ω

An∇un · ∇v dx = 〈 fn, v〉, ∀v ∈ H1
0(Ω) with

∫
Ω

An∇v · ∇v dx < ∞.

(2.9)

Then, the sequence un converges to u in C0(Ω ∪ Γ ), i.e. uniformly in any compact set of Ω ∪ Γ .



2042 M. Briane, J. Casado-Díaz / J. Differential Equations 245 (2008) 2038–2054
We introduce the following notations:

• We denote by B(x, r) the open ball of center x ∈ R
2 and of radius r > 0, by B̄(x, r) its closure, and

the corresponding half-balls by

B(x, r)+ := B(x, r) ∩ {
y ∈ R

2: y2 > x2
}

and B̄(x, r)+ := B̄(x, r) ∩ {
y ∈ R

2: y2 � x2
}
.

• For any bounded continuous function u in a subset E of R
2, we set

osc
E

u := sup
E

u − inf
E

u.

As a consequence of Theorem 2.7, we have the following local estimates for the solutions of (1.2):

Corollary 2.6. Let α,ε > 0, p > 1 and q > 2. Then, there exists a constant C > 0 such that the two following
assertions hold:

(i) For any x0 ∈ R
2 , δ > 0, A ∈ A(α, B(x0,2δ)), f ∈ W −1,q(B(x0,2δ)), and any function u in

H1(B(x0,2δ)) ∩ C0(B(x0,2δ)) satisfying (1.2) with Ω = B(x0,2δ), we have

osc
B̄(x0,δ)

u � ε
(
δ

q−2
q ‖ f ‖W −1,q(B(x0,2δ)) + δ

p−2
p ‖∇u‖Lp(B(x0,2δ))2

)

+ C

δ2

∥∥∥∥u − 1

4πδ2

∫
B(x0,2δ)

u dx

∥∥∥∥
L1(B(x0,2δ))

. (2.10)

(ii) For any x0 ∈ R
2 , δ > 0, A ∈ A(α, B(x0,2δ)+), f ∈ W −1,q(B(x0,2δ)+), and any function u in

H1(B(x0,2δ)+) ∩ C0(B̄(x0,2δ)+) satisfying (1.2) with Ω = B(x0,2δ)+ , we have

osc
B̄(x0,δ)+

u � ε
(
δ

q−2
q ‖ f ‖W −1,q(B(x0,2δ)+) + δ

p−2
p ‖∇u‖Lp(B(x0,2δ)+)2

)

+ C

(
1

δ2

∥∥∥∥u − 1

2δ

δ∫
−δ

u(t,0)dt

∥∥∥∥
L1(B(x0,2δ)+)

+ osc[−2δ,2δ]×{0} u

)
. (2.11)

Using Corollary 2.6 the following result is a refinement of Theorem 2.5 in the case p = 2, without
assuming the continuity of the limit:

Theorem 2.7. Let α > 0, let Ω be a bounded open subset of R
2 , with a Lipschitz boundary, and let Γ

be a relatively open subset of ∂Ω . Consider a sequence An in A(α,Ω), a sequence un in H1(Ω) ∩
C0(Ω ∪ Γ ) converging weakly in H1(Ω) and uniformly in the closed subsets of Γ to a function u, and con-
sider a bounded sequence fn in W −1,q(Ω), with q > 2. Assume that An, un and fn satisfy (2.9). Then, the
sequence un converges to u in C0(Ω ∪ Γ ).

Note that in Theorem 2.5 the continuity of the limit cannot be removed when p < 2, as shown in
Example 4.5 below.



M. Briane, J. Casado-Díaz / J. Differential Equations 245 (2008) 2038–2054 2043
3. Proof of the results

Proof of Proposition 2.3. First of all, note that the symmetric part As
n of An is a nondecreasing se-

quence according to (2.3), which satisfies As
n � α I by (2.5), and As

n converges to the symmetric
part As of A according to (2.4). Taking un − u as test function in (2.6) we get that there exists C > 0
with ∫

Ω

An∇un · ∇un dx � C, ∀n ∈ N. (3.1)

Due to the α-coerciveness of An , the sequence un − u is bounded in H1
0(Ω). Hence, up to extracting

a subsequence, there exists u∗ ∈ H1(Ω), with u∗ − u ∈ H1
0(Ω), such that un converges weakly to u∗

in H1(Ω). By semicontinuity and the non-decrease of As
n we have for any k � α,

∫
Ω

Ak∇u∗ · ∇u∗ dx � lim inf
n→∞

∫
Ω

Ak∇un · ∇un dx � lim inf
n→∞

∫
Ω

An∇un · ∇un dx � C .

Therefore, since As
k converges to As in a nondecreasing way, we deduce from the monotone conver-

gence theorem that ∫
Ω

A∇u∗ · ∇u∗ dx = lim
k→∞

∫
Ω

Ak∇u∗ · ∇u∗ dx � C . (3.2)

Now, consider v ∈ H1
0(Ω) such that

∫
Ω

A∇v · ∇v dx < ∞. (3.3)

Taking v as test function in (2.6) we obtain for any n and k,

〈 f , v〉 =
∫
Ω

An∇un · ∇v dx =
∫
Ω

(An − Ak)∇un · ∇v dx +
∫
Ω

Ak∇un · ∇v dx. (3.4)

We will pass to the limit in the right-hand side of this equality first in n � k then in k. Consider the
second term of the right-hand side of (3.4). Since by (3.2) A∇u∗ · ∇u∗ < ∞ a.e. in Ω , by (2.2) we
have |D P∇u∗| < ∞ a.e. in Ω , hence Ak∇u∗ · ∇v converges to A∇u∗ · ∇v a.e. in Ω . Moreover, by the
Cauchy–Schwarz inequality combined with the inequalities As

k � As , |Bk| � |B| and (2.5), we have

2|Ak∇u∗ · ∇v| � 2|Dk P∇u∗ · P∇v| + 2|Bk∇u∗ · ∇v|
� Ak∇u∗ · ∇u∗ + Ak∇v · ∇v + N|Bk|∞|∇u∗|2 + N|Bk|∞|∇v|2

� A∇u∗ · ∇u∗ + A∇v · ∇v + N|B|∞|∇u∗|2 + N|B|∞|∇v|2

� (1 + Nβ)(A∇u∗ · ∇u∗ + A∇v · ∇v) ∈ L1(Ω).

Therefore, by the weak convergence of un to u∗ in H1(Ω), and the Lebesgue convergence theorem
we get

lim
k→∞

lim
n→∞

∫
Ak∇un · ∇v dx = lim

k→∞

∫
Ak∇u∗ · ∇v dx =

∫
A∇u∗ · ∇v dx.
Ω Ω Ω
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For the first term of the right-hand side of (3.4), the decomposition (2.1) for An , the Cauchy–Schwarz
inequality, the inequalities As

k � As
n � As and |Bk|∞ I � |Bn|∞ I � β As

n (as a consequence of (2.5)), and
estimate (3.1) yield

∣∣∣∣
∫
Ω

(An − Ak)∇un · ∇v dx

∣∣∣∣ �
( ∫

Ω

(An − Ak)∇un · ∇un dx

) 1
2
( ∫

Ω

(An − Ak)∇v · ∇v dx

) 1
2

+
( ∫

Ω

N|Bn − Bk|∞|∇un|2 dx

) 1
2
( ∫

Ω

N|Bn − Bk|∞|∇v|2 dx

) 1
2

�
( ∫

Ω

An∇un · ∇un dx

) 1
2
( ∫

Ω

(A − Ak)∇v · ∇v dx

) 1
2

+
( ∫

Ω

2Nβ An∇un · ∇un dx

) 1
2
( ∫

Ω

N|Bn − Bk|∞|∇v|2 dx

) 1
2

� c

( ∫
Ω

(A − Ak)∇v · ∇v dx

) 1
2

+ c

( ∫
Ω

|Bn − Bk|∞|∇v|2 dx

) 1
2

.

Since As − As
k � As and |Bn − Bk|∞ I � β As , we deduce from the Lebesgue convergence theorem that

the two last terms of the previous inequality converge to zero as n � k then k tend to ∞. So, we get

lim
k→∞

lim sup
n→∞

∣∣∣∣
∫
Ω

(An − Ak)∇un · ∇v dx

∣∣∣∣ = 0,

and thus, by (3.4) we obtain

〈 f , v〉 =
∫
Ω

A∇u∗ · ∇v dx, (3.5)

for any v ∈ H1
0(Ω) which satisfies (3.3). Taking u − u∗ as test function in the difference of (1.2)

and (3.5) we deduce that u∗ = u. Then, the whole sequence un converges weakly to u in H1
0(Ω).

Now, taking un − u as test function in (2.6) and passing to the limit in n we obtain

lim
n→∞

∫
Ω

An∇un · ∇(un − u)dx = lim
n→∞〈 f , un − u〉 = 0. (3.6)

By (3.2) and reasoning similarly as in (3.4) we have

lim
n→∞

∫
Ω

An∇u · ∇(un − u)dx = 0,

which combined with (3.6) yields the desired limit (2.7). �
Proof of Theorem 2.4. Set δ := |Ω| 1

N , and define Ωδ := δ−1Ω . For a measurable function h in Ω , we
denote by hδ the measurable function defined by

hδ(y) := h(δy), a.e. y ∈ Ωδ.
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Then, taking α, q, A, f and u as in the statement of Theorem 2.4, we define Aδ , uδ by the previous
rule, and f δ ∈ W −1,q(Ωδ) by

〈
f δ,ϕδ

〉
W −1,q(Ωδ),W 1,q′

0 (Ωδ)
:= 〈 f ,ϕ〉

W −1,q(Ω),W 1,q′
0 (Ω)

, ∀ϕ ∈ W 1,q′
0 (Ω).

We have that the measure of Ωδ is equal to 1. Moreover, making the former change of variables
in (1.2), the function uδ satisfies

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
m − uδ

)+
,
(
uδ − M

)+ ∈ H1
0

(
Ωδ

)
,

∫
Ωδ

Aδ∇uδ · ∇uδ dy < ∞,

∫
Ωδ

Aδ∇uδ · ∇vδ dy = δ2−N 〈
f δ, vδ

〉
, ∀vδ ∈ H1

0

(
Ωδ

)
with

∫
Ωδ

Aδ∇vδ · ∇vδ dy < ∞.

On the other hand, let Aδ
n be the truncated of Aδ defined as in Proposition 2.3, and let uδ

n be
the solution of (2.6) with An , f , u replaced respectively by Aδ

n , f δ , uδ . Since (m − uδ)+ , (uδ − M)+
and uδ

n − uδ belong to H1
0(Ωδ), so do (m − uδ

n)+ and (uδ
n − M)+ . Then, taking into account |Ωδ | = 1,

Theorem 8.16 of [18] implies the existence of a constant C > 0 only depending on α and q, such that

m − C
∥∥ f δ

∥∥
W −1,q(Ωδ)

� uδ
n � M + C

∥∥ f δ
∥∥

W −1,q(Ωδ)
, a.e. in Ωδ, ∀n ∈ N.

However, by Proposition 2.3 the sequence uδ
n converges strongly to uδ in H1(Ω), thus in particular

a.e. in Ω (up to a subsequence). Therefore, passing to the pointwise limit in the previous inequalities
we get

m − C
∥∥ f δ

∥∥
W −1,q(Ωδ)

� uδ � M + C
∥∥ f δ

∥∥
W −1,q(Ωδ)

, a.e. in Ωδ. (3.7)

Finally, noting that

∥∥ f δ
∥∥

W −1,q(Ωδ)
= inf

ϕδ �=0

〈 f δ,ϕδ〉
W −1,q(Ωδ),W 1,q′

0 (Ωδ)

‖ϕδ‖
W 1,q′

0 (Ωδ)

= inf
ϕ �=0

〈 f ,ϕ〉
W −1,q(Ω),W 1,q′

0 (Ω)

δ
N
q −N+1‖ϕ‖

W 1,q′
0 (Ω)

= δ
N−1− N

q ‖ f ‖W −1,q(Ω),

we easily deduce (2.8). �
Let us now prove the compactness results stated in Section 2.2. First of all recall the definition of

the r-capacity:

Definition 3.1. Let r ∈ (1,2). The r-capacity of a subset E of R
2 is defined by

Cr(E) := inf

{∫
R2

|∇u|r dx: u ∈ D1,r(
R

2), u � 1 a.e. in a neighborhood of E

}
,

where D1,r(R2) denotes the space of the functions u in L
2r

2−r (R2), with ∇u ∈ Lr(R2)2.

We need the following capacitary estimate which is proved in [8]:
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Lemma 3.2. For any r ∈ (1,2), there exists a constant Rr > 0 such that for any a,b ∈ R
2 , and any curve L of

extremities a,b, we have

Cr(L) � Rr |a − b|2−r . (3.8)

Proof of Theorem 2.5. For δ > 0, we define Ωδ by

Ωδ :=
{ {x ∈ Ω ∪ Γ : dist(x, ∂Ω \ Γ ) � δ} if Γ �= ∂Ω,

Ω̄ if Γ = ∂Ω.

Then, for any l ∈ N, we take δl > 0 which converges to zero such that

∣∣u(x) − u(y)
∣∣ <

1

2l
, ∀x, y ∈ Ω̄δl with |x − y| � δl. (3.9)

Now, since un converges weakly in W 1,p(Ω) and Ω is regular, we can take r ∈ (1, p) and a sub-
sequence of un , still denoted by un , which converges Cr -quasi-uniformly to u. Also using that un

converges to u in C0(Γ ), we can choose this sequence in such a way that there exists an open sub-
set Gl of Ω , which satisfies (Rr defined in Lemma 3.2)

Cr(Gl) < Rrδ
2−r
l , (3.10)

∣∣un(x) − u(x)
∣∣ <

1

2l
, ∀x ∈ (Ω \ Gl) ∪ (Γ ∩ Ωδl ), ∀n � l. (3.11)

Let us prove that this subsequence un converges to u in C0(Ω ∪ Γ ). This will prove that the whole
sequence un converges to u in C0(Ω ∪ Γ ). We fix δ > 0 and we take l such that 2δl < δ.

Consider a connected component O of Gl such that O ∩ Ωδ �= ∅. Since O is connected by curves,
for any y1, y2 ∈ O , there exists a curve L ⊂ O , which contains y1, y2. By Lemma 3.2 and (3.10) we
have

Rr |y1 − y2|2−r � Cr(L) � Cr(O ) � Cr(Gl) � Rrδ
2−r
l ,

hence diam(O ) � δl . Therefore, since 2δl < δ, we have Ō ⊂ Ωδl , which implies in particular that ∂ O ⊂
(Ω \ Gl) ∪ (Γ ∩ Ωδl ).

By (2.9), the fact that un ∈ C0(Ω ∩ Γ ), by Theorem 2.4 and |O | � πδ2
l /4, we have (for another

constant C )

min
∂ O

un − Cδ
q−2

q

l ‖ fn‖W −1,q(Ω) � un � max
∂ O

un + Cδ
q−2

q

l ‖ fn‖W −1,q(Ω), in O , ∀n � l. (3.12)

Moreover, thanks to (3.11) and (3.9) we have

min
∂ O

un � min
∂ O

u − 1

2l
� u(x) − 1

l
, max

∂ O
un � max

∂ O
u + 1

2l
� u(x) + 1

l
, ∀x ∈ O , ∀n � l.

Hence, inequality (3.12) implies that

|un − u| � 1 + Cδ
q−2

q

l ‖ fn‖W −1,q(Ω), in O , ∀n � l.

l
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Since Gl is equal to the union of its connected components, (3.11) and the previous estimates thus
yield

|un − u| � 1

l
+ Cδ

q−2
q

l ‖ fn‖W −1,q(Ω), in Ωδ, ∀n � l.

This combined with the boundedness of ‖ fn‖W −1,q(Ω) proves the convergence of un in C0(Ω ∪ Γ ). �
Proof of Corollary 2.6. We will only prove (ii). The proof of (i) is quite similar.

First, let us prove that there exists a constant C > 0 such that for any A ∈ A(α, B(0,2)+),
f ∈ W −1,q(B(0,2)+), and any u ∈ H1(B(0,2)+) ∩ C0(B̄(0,2)+) which satisfies (1.2) with Ω =
B(0,2)+ , we have

∥∥∥∥∥u − 1

2

1∫
−1

u(t,0)dt

∥∥∥∥∥
C0(B̄(0,1)+)

� ε
(‖ f ‖W −1,q(B(0,2)+) + ‖∇u‖Lp(B(0,2)+)2

)

+ C

(∥∥∥∥∥u − 1

2

1∫
−1

u(t,0)dt

∥∥∥∥∥
L1(B(0,2)+)

+ osc[−2,2]×{0} u

)
. (3.13)

We reason by contradiction. If (3.13) does not hold true, then for any n ∈ N, there exist An

in A(α, B(0,2)+), fn ∈ W −1,q(B(0,2)+), and un ∈ H1(B(0,2)+) ∩ C0(B̄(0,2δ)+) satisfying (1.2) with
Ω = B(0,2)+ , such that

∥∥∥∥∥un − 1

2

1∫
−1

un(t,0)dt

∥∥∥∥∥
C0(B̄(0,1)+)

> ε
(‖ fn‖W −1,q(B(0,2)+) + ‖∇un‖Lp(B(0,2)+)2

)

+ n

(∥∥∥∥∥un − 1

2

1∫
−1

un(t,0)dt

∥∥∥∥∥
L1(B(0,2)+)

+ osc[−2,2]×{0} un

)
. (3.14)

Therefore, the sequence

zn := un − 1
2

∫ 1
−1 un(t,0)dt

‖un − 1
2

∫ 1
−1 un(t,0)dt‖C0(B̄(0,1)+)

∈ H1(B(0,2)+
) ∩ C0(B̄(0,2)+

)

satisfies (1.2) with Ω , un and fn replaced respectively by B(0,2)+ , zn and

gn := fn

‖un − 1
2

∫ 1
−1 un(t,0)dt‖C0(B̄(0,1)+)

.

Moreover, zn has zero average on (−1,1) × {0}, ‖zn‖C0(B̄(0,1)+) = 1, and

1 > ε
(‖gn‖W −1,q(B(0,2)+) + ‖∇zn‖Lp(B(0,2)+)2

) + n
(
‖zn‖L1(B(0,2)+) + osc[−2,2]×{0} zn

)
.

Thus, gn is bounded in W −1,q(B(0,2)+) and zn converges weakly to zero in W 1,p(B(0,2)+)

and strongly in C0([−2,2] × {0}). Hence, by Theorem 2.5 the sequence zn converges to zero in
C0(B(0,2)+ ∪ [(−2,2) × {0}]), which contradicts ‖zn‖C0(B̄(0,1)+) = 1.
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Now, from the inequality

∣∣u(x) − u(y)
∣∣ �

∣∣∣∣∣u(x) − 1

2

1∫
−1

u(t,0)dt

∣∣∣∣∣ +
∣∣∣∣∣u(y) − 1

2

1∫
−1

u(t,0)dt

∣∣∣∣∣

� 2

∥∥∥∥∥u − 1

2

1∫
−1

u(t,0)dt

∥∥∥∥∥
C0(B̄(0,1)+)

, ∀x, y ∈ B̄(0,1)+, ∀u ∈ C0(B̄(0,1)+
)
,

combined with (3.13) we deduce the inequality (2.11) for x0 = 0 and δ = 1. The general case follows
easily using the change of variables y = δ−1(x − x0), which transforms B(x0,2δ) in B(0,2). �
Proof of Theorem 2.7. By virtue of Theorem 2.5 we just need to prove that u is continuous in Ω ∪Γ .
Due to the regularity of ∂Ω , for any x0 ∈ Γ , there exist an open neighborhood O of x0, and a one-to-
one map ϕ , with ϕ and ϕ−1 Lipschitz, which transforms x0 in 0, O ∩ Ω in the half-ball B(0, ε)+ , and
O ∩ Γ in the segment B(0, ε) ∩ (R × {0}). We are thus led to the case x0 = 0 with O ∩ Γ ⊂ R × {0}.
Then, from the estimate (2.11) with p = 2, we deduce the existence of δ0 > 0 such that for any ε > 0,
there exists a constant Cε > 0 which satisfies

osc
B̄(0,δ)+

un � ε
(
δ

q−2
q ‖ fn‖W −1,q(B(0,2δ)+) + ‖∇un‖L2(B(0,2δ)+)2

)

+ Cε

(
1

δ2

∥∥∥∥∥un − 1

2δ

δ∫
−δ

un(t,0)dt

∥∥∥∥∥
L1(B(0,2δ)+)

+ osc[−2δ,2δ]×{0} un

)
,

for any δ � δ0 and any n ∈ N. This estimate combined with the convergence of un(0) (since 0 ∈ Γ )
implies that the sequence un is bounded in L∞(B(0, δ)+). Hence, un converges to u for the weak-∗
topology of L∞(B(0, δ)+). Using the boundedness of ‖ fn‖W −1,q(B(0,2δ)+) and ‖∇un‖L2(B(0,2δ)+)2 , the
strong convergence of un in L1(Ω) and in C0([−2δ,2δ] × {0}), and the lower semicontinuity of the
L∞(B(0, δ)+)-norm, we deduce from the previous estimate that there exists a constant M > 0 such
that for any ε > 0, we have

∥∥u − u(0)
∥∥

L∞(B(0,δ)+)
� Mε + Cε

(
1

δ2

∥∥∥∥∥u − 1

2δ

δ∫
−δ

u(t,0)dt

∥∥∥∥∥
L1(B(0,2δ)+)

+ osc[−2δ,2δ]×{0} u

)

� Mε + Cε

(
K‖∇u‖L2(B(0,2δ)+)2 + osc[−2δ,2δ]×{0} u

)
,

where the constant K does not depend on ε or δ. Therefore, u is continuous at 0. This also proves
that u is continuous at any point of Γ .

In order to prove the continuity of u in Ω , we proceed similarly by using inequality (2.10). Hence,
there exists a constant M > 0 such that for any ε > 0, there exists Cε > 0 which satisfies

sup ess
x,y∈B(x0,δ)

∣∣u(x) − u(y)
∣∣ � Mε + Cε‖∇u‖L2(B(0,2δ))2 ,

for any x0 ∈ Ω and any δ > 0 with B(x0, δ) ⊂ Ω . This shows that u admits a continuous representative
in Ω . �
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4. Applications and counter-examples

4.1. Applications

In this section we give two applications of the compactness Theorem 2.7. First, we have the fol-
lowing continuity result:

Theorem 4.1. Let Ω be a bounded open subset of R
2 , with a Lipschitz boundary, and let Γ be a relatively

open subset of ∂Ω . Let u be a function in H1(Ω), which has a continuous trace on Γ . Assume that there
exists A ∈ A(α,Ω) with α > 0, and f ∈ W −1,q(Ω) with q > 2, such that u is a solution of (1.2). Then, u is
continuous in Ω ∪ Γ .

Remark 4.2. The continuity of solutions of two-dimensional linear elliptic equations with unbounded
coefficients (but which are controlled from below), is already known (see e.g. the first proposition
of [17]). Our approach seems new and it is more constructive since such a solution is regarded as the
uniform limit of solutions of equations with truncated coefficients.

The second application deals with the density of the continuous functions in the domain of the
Γ -limit of a sequence of diffusion energies. We refer to [13] (see also [3]) for the definition of the
Γ -convergence and its elementary properties. The following result improves the compactness results
obtained in [8]:

Theorem 4.3. Let α > 0, and let Ω be a bounded open subset of R
2 , with a Lipschitz boundary. Let An be a se-

quence of symmetric matrix-valued functions in A(α,Ω), and define the sequence of quadratic functionals Fn

in L2(Ω) by

Fn(u) :=
{∫

Ω
An∇u · ∇u dx if u ∈ H1

0(Ω),

∞ if u ∈ L2(Ω) \ H1
0(Ω).

(4.1)

Consider the Γ -limit F of a Γ -convergent subsequence of Fn for the strong topology of L2(Ω) (such a limit
does exist), the domain of which D(F ) := {F < ∞} is endowed with the norm

√
F . Then, D(F ) ∩ C0

0(Ω) is
dense in D(F ).

Remark 4.4. In [8] we studied the Γ -limit of any sequence of functionals Fn defined by (4.1),
where An is an equicoercive sequence of symmetric matrix-valued functions in A(α,Ω)∩ L∞(Ω)2×2,
without any bound from above. Thanks to Proposition 2.3 all the results in [8] still hold true only
assuming An in A(α,Ω) and symmetric.

Proof of Theorem 4.1. Let un be the solution of (2.6) with the truncation An of A. By the De
Giorgi–Stampacchia theorem un is continuous in Ω ∩Γ . Moreover, by Proposition 2.3 the sequence un

converges strongly to u in H1(Ω). Thus, Theorem 2.7 implies that u is continuous in Ω ∪ Γ . �
Proof of Theorem 4.3. It is well known that F is a quadratic form in D(F ) and D(F ) is a Hilbert
space endowed with the norm

√
F . Let Φ be the bilinear form associated with F and defined

in D(F ) × D(F ). Since D(F ) is continuously embedded in H1
0(Ω) (as a consequence of the α-

coerciveness of An and thus of Fn), for any h ∈ L2(Ω), there exists a unique uh ∈ D(F ) such that

Φ(uh, v) =
∫

hv dx, ∀v ∈ D(F ).
Ω
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We clearly have

⋂
h∈L2(Ω)

Ker
(
Φ

(
uh, ·)) = {0},

hence the set {uh ∈ D(F ): h ∈ L2(Ω)} is dense in D(F ). Therefore, in order to conclude it is enough
to check that the functions uh belong to C0

0(Ω). To this end, note that, since L2(Ω) is contained in
W −1,∞(Ω) by the two-dimensional Sobolev embedding, Theorem 4.1 implies that the solution un of

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

un ∈ H1
0(Ω),

∫
Ω

An∇un · ∇un dx < ∞,

∫
Ω

An∇un · ∇v dx =
∫
Ω

hv dx, ∀v ∈ H1
0(Ω) with

∫
Ω

An∇v · ∇v dx < ∞,

belongs to C0
0(Ω). Moreover, by the Γ -convergence of Fn to F in L2(Ω) combined with the α-

coerciveness of Fn , the sequence un converges weakly to uh in H1
0(Ω). Therefore, thanks to Theo-

rem 2.7 the function uh belongs to C0
0(Ω). �

4.2. Counter-examples

First of all, the following counter-example shows that Theorem 2.7 cannot be extended to the case
p ∈ (1,2). It is based on the famous Serrin [23] example:

Example 4.5. Let Ω be the unit disk of R
2. Consider, for any integer n � 1, the matrix-valued func-

tion An and the function un defined by

An(x) := I + (n2 − 1)
x ⊗ x

|x|2 and un(x) := x1

|x|1−1/n
, a.e. x ∈ Ω. (4.2)

The functions An and un satisfy for any n � 1 (see [23] for details),

I � An � n2 I a.e. in Ω,

{
un ∈ H1(Ω) ∩ C0(Ω̄),

un(x) = x1 for any x ∈ ∂Ω,
and div(An∇un) = 0 in D′(Ω).

Hence, the conditions of Theorem 2.5 are fulfilled with Γ = ∂Ω . Moreover, the sequence un converges
weakly to u(x) := x1/|x| in W 1,p(Ω), for any p ∈ (1,2). Therefore, the limit u is not continuous in Ω̄ ,
and the sequence un ∈ C0(Ω̄) does not converge uniformly to u in Ω̄ .

The second example shows that the Hölder-continuity of the solutions of Eqs. (1.2) does not hold
in general when the matrix-valued function is not bounded:

Example 4.6. Let Ω := B(0, 1
2 ) be the ball of R

2 centered at the origin and of radius 1
2 . Let A be the

(unbounded) matrix-valued function in A((ln 2)2,Ω) (see Definition 2.1) defined by

A(x) := 2I + ((
ln |x|)2 − 2

) x ⊗ x

|x|2 , for x ∈ Ω \ {0}. (4.3)

Then, the function u ∈ H1(Ω) defined by
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u(x) := x2

|x|(ln |x|)2
, for x ∈ Ω \ {0}, (4.4)

is a solution of (1.2), with A of (4.3) and right-hand side 0, which is not Hölder-continuous in the
neighborhood of the origin.

The proof is a simple computation using polar coordinates.
Now, we will give three-dimensional counter-examples to Theorems 2.7 and 4.1 respectively. The

first result provides an example of lack of uniform convergence of the solutions of linear elliptic
equations in dimension two:

Proposition 4.7. There exist a regular bounded domain Ω of R
3 , and a sequence of functions an in

L∞(Ω; [1,∞)), such that, for any non-zero function f ∈ L2(Ω), the solution un ∈ H1
0(Ω) of the equation

−div(an∇un) = f in D′(Ω), does not converge uniformly in Ω̄ .

Remark 4.8. The proof of Proposition 4.7 is based on the example model due to Fenchenko and
Khruslov [16] of nonlocal effects arising in the homogenization of three-dimensional high-conductivity
problems (see also [1,9] and [11] for alternative approaches).

Making the additional hypothesis f ∈ W −1,q(Ω), with q > 3, the De Giorgi–Stampacchia regularity
result (see e.g. Theorem 8.29 of [18]) ensures the continuity of un for a fixed n. Then, the present as-
sumptions correspond to the ones of Theorem 2.5 for dimension three, but the conclusion of uniform
convergence is no longer satisfied.

The second result provides an example of discontinuity of a solution of a two-dimensional linear
elliptic equation with unbounded coefficients:

Proposition 4.9. There exist a regular bounded domain Ω of R
3 , a function a : Ω → [1,∞) with a =

a(x1, x2) ∈ L1(Ω), and f ∈ C∞
c (Ω), such that the solution u ∈ H1

0(Ω) of problem (1.2) with A = aI , is not
continuous in Ω .

Remark 4.10. An example of a discontinuous a-harmonic function (i.e. f = 0) with a � 1 and a expo-
nentially integrable, is given in [17] solving a De Giorgi conjecture [15]. Here, we obtain a simpler and
different counter-example with a non-zero right-hand side f but with a only integrable. The interest
of this example is that it is based on the unidirectional fibers reinforcement principle used in the
counter-example of Proposition 4.7. As a consequence, the three-dimensional conductivity a of our
example depends only on two variables contrary to the one of [17].

Proof of Proposition 4.7. Let Ω ′ be a bounded open set of R
2 and let Ω be the vertical (parallel

to the x3-axis) cylinder defined by Ω := Ω ′ × (0,1). Let ωn be a 1
n -periodic lattice of thin vertical

cylinders of radius rn := 1
n e−n2

, and let an be the function defined by

an :=
{

2e2n2
in ωn,

1 in Ω \ ωn.

For a fixed f ∈ L2(Ω), let un be the solution in H1
0(Ω) of the equation −div(an∇un) = f in D′(Ω).

By [9] the weak limit u of un in H1
0(Ω) and the limit v ∈ H1

0((0,1); L2(Ω ′)) of the rescaled function

vn := 1ωn

πr2
n

un in the weak-∗ sense of the Radon measures on Ω , satisfy the coupled system

⎧⎪⎨
⎪⎩

−�u + 2π(u − v) = f in Ω,

−∂2 v

∂x2
+ v − u = 0 in Ω.

(4.5)
3
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Assume that un converges uniformly to u in Ω̄ . Then, since by the De Giorgi–Stampacchia theorem
un is continuous in Ω̄ for any n � 1, so is its limit u. Hence, the rescaled function 1ωn

πr2
n

u converges

to u in the weak-∗ sense of the Radon measures on Ω . We thus have for any ϕ ∈ C0
0(Ω),

∫
Ω

ϕ(v − u)dx = lim
n→∞

[
1

πr2
n

∫
ωn

ϕ(un − u)dx

]
� lim

n→∞

[ |ωn|
πr2

n
‖ϕ‖L∞(Ω)‖un − u‖L∞(Ω)

]
= 0,

which implies that v − u = 0 a.e. in Ω . Putting this equality in system (4.5) we get the equalities
v = 0 and f = 0 a.e in Ω . Therefore, if f is a non-zero function then the uniform convergence of un

does not hold. �
Proof of Proposition 4.9. Define the open subsets of R

3, Ω := (−1,1) × (0,1)2, Ω+ := (0,1)3, Ω− :=
(−1,0) × (0,1)2 and Γ := ∂Ω+ ∩ ∂Ω− . Define the points of R

2, τn
k := (2−n,2−nk), for n ∈ N

∗ and
k ∈ {1, . . . ,2n − 1}. Denote by D(τ , r) the disk of center τ ∈ R

2 and of radius r > 0, and consider the
subsets of Ω+ defined by

ωk
n := D

(
τn

k , rn
) × (0,1), ω̂k

n := D
(
τn

k ,2−n R
) × (0,1), where rn := e−4n

, R ∈ (0,1/3). (4.6)

Note that
⋃2n−1

k=1 ωk
n is composed of 2n − 1 very thin vertical cylinders uniformly arranged along the

plane x1 = 2−n , which accumulate on the right-hand side of the boundary Γ . Let w be the function
(independent of x3) defined for x = (x′, x3) ∈ Ω , by

w(x) :=
⎧⎨
⎩

1 if x ∈ ωk
n,

ln |x′−τn
k |−ln(2−n R)

ln(rn)−ln(2−n R)
if x ∈ ω̂n

k \ ωk
n, for some n ∈ N

∗, 1 � k � 2n − 1,

0 elsewhere.

(4.7)

Let a be the function defined by

a(x) :=
{

1
3n|ωk

n| if x ∈ ωk
n, for some n ∈ N

∗, 1 � k � 2n − 1,

1 elsewhere.
(4.8)

Note that a � 1 a.e. in Ω , and

∫
Ω

a dx � |Ω| +
∞∑

n=1

2n−1∑
k=1

|ωk
n|

3n|ωk
n| � |Ω| +

∞∑
n=1

2n

3n
= |Ω| + 2,

∫
Ω

a|∇w|2 dx �
∞∑

n=1

2n−1∑
k=1

2π

ln(2−n R) − ln(rn)
�

∞∑
n=1

2n−1∑
k=1

c

4n
� c

∞∑
n=1

2n

4n
� c.

For ψ ∈ C∞
c (Ω−), ψ � 0 in Ω− , ψ non-identically zero, let u ∈ H1

0(Ω) be the solution of the problem

∫
Ω

a∇u · ∇v dx =
∫

Ω

ψv dx, ∀v ∈ H1
0(Ω). (4.9)
−



M. Briane, J. Casado-Díaz / J. Differential Equations 245 (2008) 2038–2054 2053
Taking u− := max(−u,0) as test function in (4.9), we deduce that u− = 0 and so, u � 0 a.e. in Ω .
Moreover, by Theorem 2.4 the function u belongs to L∞(Ω). Taking uw2χω̂n

k
, n ∈ N

∗ , 1 � k � 2n − 1,
as test function in (4.9), we also get

∫
ω̂n

k

a|∇u|2 w2 dx + 2
∫
ω̂n

k

a∇u · ∇w w dx = 0,

which by Young’s inequality implies

∫
ω̂n

k

a|∇u|2 w2 dx � 4
∫
ω̂n

k

a|∇w|2 dx.

This combined with the definitions (4.8) of a and (4.7) of w , yields

1

3n
−
∫
ωk

n

|∇u|2 dx �
∫
ω̂n

k

a|∇u|2 w2 dx � 4
∫
ω̂n

k

a|∇w|2 dx � c

4n
.

Then, using that u = 0 on ∂Ω , we have by the Cauchy–Schwarz inequality

−
∫
ωk

n

u dx = −
∫
ωk

n

x3∫
0

∂u

∂x3
(x′, t)dt dx �

(
−
∫
ωk

n

|∇u|2 dx

) 1
2

� c

(√
3

2

)n

, ∀n ∈ N
∗, 1 � k � 2n − 1.

Now, assume that u is continuous in a neighborhood of the boundary Γ . Then, the previous estimate
and u � 0 a.e. in Ω imply that u = 0 on Γ . Since by (4.9) and ψ = 0 in Ω+ , u is a harmonic function
in H1

0(Ω+), we thus have u = 0 a.e. in Ω+ . On the other hand, since a ∈ L1(Ω), for any ϕ ∈ C1
c (Ω),

the function ϕ(1 − w) is a suitable test function for problem (4.9), which is equal to ϕ in Ω− . Hence,
taking into account that u = 0 a.e. in Ω+ , we obtain

∫
Ω−

∇u · ∇ϕ dx =
∫
Ω

a∇u · ∇(
ϕ(1 − w)

)
dx =

∫
Ω−

ψϕ dx.

Therefore, u is solution of the Dirichlet problem

−�u = ψ �= 0 in D′(Ω−), u = 0 on ∂Ω−, and
∂u

∂ν
= 0 on Γ,

which contradicts the Hopf maximum principle, i.e. the negativity of the normal derivative of u on Γ .
As a consequence, the function u is not continuous in any neighborhood of Γ . �
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