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Abstract: Filtering is a very important issue in next generation networks. These networks consist of a relatively high 

number of resource constrained devices and have special features, such as management of frequent topology 

changes. At each topology change, the access control policy of all nodes of the network must be 

automatically modified. In order to manage these access control requirements, Firewalls have been proposed 

by several researchers. However, many of the problems of traditional firewalls are aggravated due to these 

networks particularities, as is the case of ACL consistency. A firewall ACL with inconsistencies implies in 

general design errors, and indicates that the firewall is accepting traffic that should be denied or vice versa. 

This can result in severe problems such as unwanted accesses to services, denial of service, overflows, etc. 

Detecting inconsistencies is of extreme importance in the context of highly sensitive applications (e.g. 

health care). We propose a local inconsistency detection algorithm and data structures to prevent automatic 

rule updates that can cause inconsistencies.  The proposal has very low computational complexity as both 

theoretical and experimental results will show, and thus can be used in real time environments.  

1 INTRODUCTION 

A wireless ad hoc network is a collection of 

autonomous nodes that communicate with each 

other by forming a multihop network and 

maintaining connectivity in a decentralized manner. 

The network topology is in general dynamic.  

In these networks, before and after the 

authentication step, there are attacks that can be 

performed with the aim of degrading network 

performance. In traditional networks, layer 3 

firewalls reduce the impact of these attacks 

However, the firewall concept must be adapted 

(Fantacci, 2008): filtering must be implemented at 

each node of the network. 

An Access Control List (ACL) is an ordered list 

of condition/action rules. The condition part of the 

rule is a set of condition attributes or selectors. In 

layer 3 firewall domain, the condition set is typically 

composed of five elements, which correspond to five 

fields of a packet header (Taylor, 2003). In this 

paper, we are interested in consistency problems in 

next generation networks (Al-Shaer, 2004) (Pozo2, 

2008). Due to real-time frequent ACL updates, 

inconsistencies must be detected and automatically 

managed very fast.  

This paper focuses in the design of specialized 

data structures and an algorithm to efficiently solve 

this problem. The algorithm is capable of handling 

full ranges in rule selectors without doing rule 

decorrelation, range to prefix conversion, or any 

other pre-process. Results are returned over the 

original, unmodified ACL.  To the best of our 

knowledge, there are only two algorithms that do not 

decompose the ACL: the trivial one (which is worst 

case O(f
2
) time complexity); and a modification over 

it (Pozo3, 2008), which only improves the average 

and best cases. 

The paper is structured as follows. In section 2, 

we briefly analyze the internals of the consistency 

management problem in firewall ACLs. In section 3 

we explain the methodology followed to solve the 

problem. In section 4, we give experimental results 

with real ACLs. In section 5 we review related 

works. Concluding remarks are given in section 6. 



 

2 CONSISTENCY 

MANAGEMENT IN FIREWALL 

ACL UPDATES 

Let ACLf be a layer 3 firewall ACL consisting of 

f rules, { }1
, ...

ffACL R R= . Consider 

, , ,1 ,
fjR ACL H Action H Z j f∈ =< > ⊆ ≤ ≤  

Z protocol srcIP srcPrt dstIP dstPrt= × × × ×  as a 

rule, where { },Action allow deny= is its action. A 

selector of a firewall rule Rj is defined as 

[ ], ,1
j

R k k H j f∈ ≤ ≤ , Some of these selectors can 

be expressed as naturals, and others as both naturals 

and intervals of naturals (an analysis of the 

supported syntaxes for firewall selectors is also 

available (Pozo1, 2008)). Firewall ACLs can be 

trivially divided in two disjoint sets, one composed 

of rules with allow action (ACLallow with size m), 

and the other with deny action rules (ACLdeny with 

size n), with  
f allow deny

ACL ACL ACL= ∪ . In real-life 

firewall ACLs, m<<n or vice-versa.  An example 

ACL is presented in Table 1. 

Definition 1. Inconsistency between two rules. 

Two rules ,
i j fR R ACL∈  are inconsistent if and 

only if the intersection of each of all of their k 

selectors ,k H H Z∈ ⊆  is not empty, and they have 

different actions, independently of their priorities. 

The inconsistency is considered to be a fault if an 

administrator identifies the behaviour of the 

executed ACL as being causing undesirable effects 

(or having errors). 

There are three basic update operations: 

insertion, removal or modification of one or more 

rules. These operations need an analysis in order to 

know if they can cause an inconsistency. This 

analysis has been provided in other works (Al-Shaer, 

2004) (Pozo3, 2008). It is assumed in the paper that 

a collection of these operations over an ACL is 

always executed in sequence. It is also assumed that 

the initial node rule set (if any) is consistent. 

3 INCONSISTENCY DETECTION 

PROCESS 

The process is based on divide and conquer 

algorithm. We depart from the trivial ACLf 

decomposition in ACLallow and ACLdeny. For the rest 

of the section and in order to simplify explanations, 

it is assumed that n<<m and that Rd (a rule that is 

going to be inserted in the node ACL) has deny 

action. If Rd has allow action and/or n>>m, 

explanations are analogous. The proposed algorithm 

returns all rules in ACLallow that are inconsistent with 

Rd, during an update operation.  
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Figure 1. Proposed inconsistency detection process 

(considering updates). 

 

Table 1. Example ACL. 
 

Priority/ID Protocol Source IP Src Port Destination IP Dst Port Action 

R0 tcp 192.168.1.5 any *.*.*.* 80 deny 

R1 tcp 192.168.1.* any *.*.*.* 80 allow 

R2 tcp *.*.*.* any 172.0.1.10 80 allow 

R3 tcp 192.168.1.* any 172.0.1.10 80 deny 

R4 tcp 192.168.1.60 any *.*.*.* 21 deny 

R5 tcp 192.168.1.* any *.*.*.* 21 allow 

R6 tcp 192.168.1.* any 172.0.1.10 21 allow 

R7 tcp *.*.*.* any *.*.*.* any deny 

R8 udp 192.168.1.* any 172.0.1.10 53 allow 

R9 udp *.*.*.* any 172.0.1.10 53 allow 

R10 udp 192.168.2.* any 172.0.2.* any allow 

R11 udp *.*.*.* any *.*.*.* any deny 

 



 

One of the main ideas of our approach is to use a 

specialized abstract data type (ADT) to store the set 

of all selectors of the same type in ACLallow (i.e. one 

ADT to store protocols used in all rules, two ADTs 

to store the source and destination IPs used in all 

rules, and another two ADTs to store source and 

destination ports). In fact, a duplicate of these ADTs 

is necessary in order to store ACLdeny selectors (if Rd 

has allow action), but as we have noted before, the 

process is analogous. Process is depicted in Fig. 1. 

Three main operations are needed in these 

ADTs: search, insert, remove. The three operations 

must be fast enough, since all of them are used for 

any of the three ACL update operations. ADT 

population is done before deployment (off-line). 

3.1 ADT for Protocol Number Selector 

Attending to the exhaustive analysis of real 

firewall languages presented in another work 

(Pozo1, 2008) the protocol selector only admit 8-bit 

natural numbers and the wildcard, *. Although 

symbolic names are also possible, they can be 

converted to naturals using IANA protocol numbers 

(RFC5237). An important fact is that no ranges are 

allowed in the syntax of the selector, and thus search 

is a trivial operation for the ADT: to find a non-

empty intersection with a protocol number (the one 

of Rd) there are only two possible valid values in the 

ADT: ‘*’ (and thus Rd intersects with all rules of the 

ADT, that is all rules in ACLallow); or exactly the 

same value. 

To store the association <Protocol number, Rule 

ID> we propose to use a hash table with perfect and 

minimal hash function with protocol as the key, and 

the rule IDs as value. Hash tables (Cormen, 2001) 

have O(1) (constant) time complexity for insertions, 

removals, updates and search operations if a perfect 

hash function is used.  

However, hash tables do not allow duplicate 

keys to be inserted. This issue is resolved by 

grouping all rules that share the same protocol 

number (the same key). In this case, the associated 

value to the key is a set containing the rule IDs of all 

rules that have the key value as the vale of their 

protocol selector. However, as removal of values 

could be inefficient in this way (a hash lookup plus a 

search in the list of rule IDs), the list is replaced by a 

fixed-size bit set of size m (the size of ACLallow). 

Each position of the bit set represents one of the m 

rules in ACLallow. 

3.2 ADT for Port Number Selectors 

Port selectors admit 16-bit natural numbers, 

double-ended closed natural intervals, and ‘*’ 

(Pozo1, 2008). 

There are two well-known 2D problems in 

computational geometry that solve similar searches: 

first, given a set of data points (port numbers) and a 

query rectangle (port interval), give all the points 

that are inside the rectangle (this is the orthogonal 

range search problem); second, given a set of 

(possibly intersecting) data rectangles (port 

intervals) and a query point (port number), give all 

rectangles that intersect the query point (this is the 

stabbing problem). These two 2D problems can be 

reformulated into 1D space, where rectangles are 

intervals and points are only represented by one 

coordinate. In 1D, these problems are called 1D 

range search problem (Cormen, 2001) and 

overlapping interval search problem (Edelsbrunner, 

1983), respectively. Fortunately, specialized data 

structures for 1D and 2D problems that give optimal 

bounds (in time and space) solutions to these two 

problems exist. In the particular case of 1D, the 

Interval Tree (Edelsbrunner, 1983) (Cormen, 2001), 

or ITree, is the selected ADT because it has optimal 

bound for the 1D problem (in time and space). 

Fortunately, our port number and interval search 

problems can trivially be reformulated to range 

search and overlapping interval search problems, as 

port numbers can be represented as points in a 1D 

plane, and port intervals can be presented as lines in 

the same 1D plane. 

Space complexity is linear with the number of 

rules in ACLallow, m. However, in our 

implementation duplicate intervals or points are not 

allowed, and thus space complexity is reduced in a 

constant factor. Update time is in O(logm). Query 

time is in O(logm + L), where L is the number of 

returned results (a constant factor). Thus, 

instantiation is in worst case O(m*logm), one 

 
 

Figure 2. Interval tree for destination port selector of 

Table 1 example. 



 

insertion for each rule in ACLallow.More details are 

available in (Edelsbrunner, 1983) (Cormen, 2001). 

The result of the search operation over the ITree 

with a port number or interval of the rule Rd, is the 

union of all bit sets associated to port values in the 

ITree which intersect the given port of Rd, or a bit 

set with all bits set to ‘1’ if the given port of Rd is 

‘*’. Fig. 2 presents the ITree associated to Table 1 

example (destination port). 

 

3.3 ADT for IP Address Selector 

IP address selectors admit 32-bit host IP 

addresses plus CIDR format, and ‘*’ (Pozo1, 2008). 

Symbolic names are converted to octets.  

As with previous cases duplicates are not 

allowed (bit sets are used again). Thus, the result of 

the search operation must be a bit set with positions 

set to ‘1’ for all rule IDs of ACLallow which have an 

intersecting IP with the given in the rule Rd. 

If a comparison between this selector and the 

previous ones is made, some similitude and 

differences arise. On one hand, an IP is formed by 

four octets, each one being an 8-bit natural; but on 

the other hand, a the search operation must use the 

netmask address of the IPs stored in the ADT (Let 

IP1/CIDR1 and IP2/CIDR2 be two IP addresses, if 

CIDRs is the shortest of the two netmasks, then the 

intersection of IP1 and IP2 is not empty if 

IP1&CIDRs=IP2&CIDRs.). Thus, we propose the 

design of a completely new and specialized ADT to 

store IP addresses. Note that valid network IP 

addresses have CIDR values between 1 and 30. 

The tree is formed by four levels. For each node, 

255 children are possible at most (0-254). These 

children values of each node (octets) are stored in a 

hash table (perfect and minimal hash is possible 

again). The association <Node octet, Children 

octets> is called a node-value. 

No repetitions of node-values are allowed in an 

IP Tree, except for leaves. Leaf nodes must also 

store information regarding CIDRs and rule IDs, 

where the CIDR represents the CIDR of the IP 

whose insertion ended in that leaf, and where each 

CIDR value has an associated set of rule IDs (as a 

bit set) to associate an inserted IP/CIDR to one or 

more rule IDs (if there are repetitions). The <CIDR, 

RuleID Bit set> pair is stored as a hash table (perfect 

and minimal hash again, since there are only 30 

possible CIDRs). 

Insertions are done traversing the tree from top 

to bottom. First, the IP/CIDR address to be inserted, 

Rd, is decomposed in its four natural octets plus the 

CIDR value: o1.o2.o3.o4/cidr. Then, the root node 

children hash table is asked in order to know if o1 is 

already in the tree. If it is, the next step is to traverse 

to the second level through the found node. If not, a 

new node with value o1 is inserted in the root node 

children hash table. These same is done for o2, o3, 

and o4. Once at the last level, if o4 has been found, a 

check is launched for the CIDR data stored in the 

leaf <CIDR, Rule ID Bit set> hash table using cidr 

value of the IP. If cidr value is found, the bit 

corresponding to the ID of the inserted IP is set to 

‘1’. If not, a new CIDR value is created with its 

corresponding bit set. Thus, the insertion of a new IP 

consists, in the worst case, of three constant time 

searches in perfect hash tables, plus a O(1) search in 

a leaf perfect hash table, resulting in O(1) worst case 

time complexity.  

The search operation is very similar to insertion 

one. Note that in order to know if two IP addresses 

intersect, the application of the shortest netmask of 

the two IP addresses is necessary, as has been 

pointed at the beginning of the subsection. However, 

the ACLallow IP Tree contains the IPs of the m rules 

in ACLallow. Thus, the application of all netmasks of 

the IPs in the IP Tree which are smaller than or 

equal the CIDR of the given Rd IP address is 

necessary (at most 30 netmasks). The result of the 
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Figure 3. IP Tree general structure. 

 
 

Figure 4. IP Tree example for network IPs. 



 

application of these netmasks is a set of (at most) 30 

network IPs. Now, a search operation for each of 

this IPs is launched. The search operation follows 

the same algorithm used for insertions, but taking 

the list of rule IDs associated to the CIDR of the leaf 

which coincide with the CIDR used for the search. 

The result of the search operation over the IP Tree 

with an IP address of the rule Rd, is the union of all 

bit sets associated to IP addresses in the IP Tree 

which intersect the given IP address of Rd (e.g. the 

result of the –at most- 30 searches),  or a bit set with 

all bits set to ‘1’ if the given IP address of Rd is ‘*’. 

The general structure of an IP Tree, as well as an 

example ACL and an IP Tree of network addresses 

are presented in Figures 3 and 4 respectively. 

3.4 Combination of Search Results 

Using the calculated worst case time 

complexities of the search operations for the five 

selector and, by the sum of the rule, the combined 

search time for five selectors is in worst case 

O(1)+2O(1)+2O(logm)=O(logm). The first factor is 

the time associated to searching in a hash table, the 

second is the two searches in an IP Tree, and the last 

one is the two searches in an ITree. 

The obtained results are five bit sets with 

positions set to ‘1’ for intersecting rule IDs. 

However, from the inconsistency definitions, all 

selectors must overlap for a rule to be inconsistent 

with other(s). Thus, the composition of this result is 

somewhat trivial: the intersection of the five bit sets.  

As its name indicates, a bit set is an ADT whose 

main purpose is to store bit elements. The 

intersection of the five bit sets is a linear time 

operation with the number of rules in ACLallow, m, 

which is also the size of the bit sets. However, note 

that although the problem is linear, logical 

operations over bit arrays are very efficient, as they 

are instructions that can be executed in one machine 

cycle over 128 bit registers using special multi-

register multimedia instructions. This yields a severe 

problem reduction by a big constant, k=128, in time 

(with no space penalty). 

Thus, time complexity of the full search process 

(which is equivalent for insertion), including the 

combination operation, is in worst case 

O(logm+m/k),n=m=f/2�O(log(f/2))+O((f/2)/k), 

m/k>logm�O((f/2)/k)�O(f/2k), k=128. 

As has also been shown, the space needed in the 

process is linear with the number of rules in ACLallow 

plus some bit sets (the space needed to store the bit 

sets is negligible). 

Note that a number of optimizations have been 

introduced in order to stop the search (in shortcut) if 

a zero bit set is returned from any of the search 

operations, because if a selector of Rd is consistent 

with the same selector of all the rules of ACLallow, 

then Rd is consistent by definition, and no more 

searches for the rest of selectors are needed. Thus 

best and average cases time complexity are achieved 

when there a lot of selector repetitions in ACLallow 

(and thus ADTs are very small, reducing the time 

needed for search operation in the ITree to near a 

constant), when n<<m, and when Rd is consistent 

(there are no combination of results), resulting in 

O(logn),logn≈constant�O(1). 

Removals of values in the ADTs have the same 

worst case time complexity than searches (minus the 

combination step, O(logm)), and updates are a 

removal and an insertion (or search). 

4 EXPERIMENTAL RESULTS 

The proposed process has been tested with real 

firewall ACLs (Table 2). Experiments were 

performed on a Java Sun JDK 1.6.0_10 32-bit 

HotSpot VM, on a machine with AMD Geode 

LX800 (500MHz) and 256Mb RAM DDR400. 

Execution times are in milliseconds. 

Table 2. Performance evaluation. 

 

ACL 

Size 

%Deny 

Rules 

ACLdeny 

Size 

ACLallow 

Size 

No. 

Inconsist. 

Trivial 

(ms) 

Optimized  

Trivial [8] 

(ms) 

Proposal 

remove/search 

=detection(ms) 

Proposal 

insert 

(ms) 

Proposal 

update 

(ms) 

ADT 

build 

(ms) 

50 28,21 11 39 37 0.23 0.19 0.05 0.1 0.15 1.41 

144 30,91 34 110 108 0.66 0.58 0.07 0.14 0.21 3.94 

238 66,43 95 143 231 1 0.75 0.06 0.12 0.18 6.52 

450 34,73 116 334 422 2.17 1.77 0.08 0.16 0.24 14.41 

900 14,8 116 784 871 5.2 4.42 0.09 0.18 0.27 31.65 

2500 6,97 163 2337 3349 15.58 13.2 0.19 0.38 0.57 128.51 

5000 1,98 97 4903 4903 32.6 28.28 0.34 0.68 1.02 276.75 

10611 2,05 213 10398 11746 72.87 60.94 0.96 1.92 2.88 539.67 

 



 

The most important fact is regarding time needed 

for update. As can be seen in Table 2, the final time 

for updating an ACL is much faster in our proposal 

(note that search operation needs a final combine 

step, and thus represents the more costly update 

operation). The difference between our proposal and 

the trivial or the optimized ones is dramatic. If 

several update operations, op, are going to be done 

over the ACL, these time results must be multiplied 

by op, since they are done in sequence. 

However, ADT build times are very high, 

compared with time needed for update operations 

(ACLallow plus ACLdeny times have been measured 

here). Fortunately, ADTs can be instantiated only 

once, and then be maintained. Thus, build time 

should be taken as the start-up time, and needs to be 

amortized. Our proposal begins to be faster than the 

optimized trivial algorithm from 8-9 sequential 

updates and up (for all ACL sizes). Thus, it is 

possible to wait to 8-9 update operations or more 

and execute them in a burst. Effectiveness of this 

approach depends on ACL update frequency. 

5 RELATED WORKS 

Baboescu et al. (Baboescu, 2003) provide algorithms 

to detect inconsistencies in router filters that are 40 

times faster than O(f
2
) the trivial one for the general 

case of k selectors per rule. They also provide 

modifications to its algorithms and data structures 

for rule updates. It experimentally improves other 

previous works of detection algorithms. However, 

they preprocess the ACL and convert selector ranges 

to prefixes (Srinivasan, 1998). The range to prefix 

conversion technique could need to split a range in 

several prefixes and thus the final number of rules 

could increase over the original ACL. This kind of 

conversion could be inefficient: in the worst case, a 

range covering w-bit port numbers may require 2(w-

1) prefixes (Taylor, 2003). Furthermore, results are 

given over a modified ACL. 

Other research woks (Al-Shaer, 2004) (Pozo2, 

2008) complemented the diagnosis process with a 

characterization of the faults. However, minimal 

diagnosis and characterization is NP. 

6 CONCLUSIONS 

In this paper we have showed a divide-and-

conquer process, ADTs, and algorithms, capable of 

solving the inconsistency detection problem during 

an ACL update operation in worst case linear 

complexity divided by a big constant. The process is 

O(1) in best and average cases (no inconsistency 

found). Experimental results that support our 

theoretical complexity analysis have been provided. 
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