
EFFICIENT DATA STRUCTURES FOR LOCAL

INCONSISTENCY DETECTION IN FIREWALL ACL UPDATES

S. Pozo, R. M. Gasca, F. de la Rosa T.
Department of Computer Languages and Systems,Computer Engineering College, University of Seville

Avda. Reina Mercedes S/N, 41012 Sevilla, Spain

{sergiopozo,gasca,ffrosat}@us.es

Keywords: diagnosis, consistency, conflict, anomaly, firewall, acl, ruleset, update

Abstract: Filtering is a very important issue in next generation networks. These networks consist of a relatively high

number of resource constrained devices and have special features, such as management of frequent topology

changes. At each topology change, the access control policy of all nodes of the network must be

automatically modified. In order to manage these access control requirements, Firewalls have been proposed

by several researchers. However, many of the problems of traditional firewalls are aggravated due to these

networks particularities, as is the case of ACL consistency. A firewall ACL with inconsistencies implies in

general design errors, and indicates that the firewall is accepting traffic that should be denied or vice versa.

This can result in severe problems such as unwanted accesses to services, denial of service, overflows, etc.

Detecting inconsistencies is of extreme importance in the context of highly sensitive applications (e.g.

health care). We propose a local inconsistency detection algorithm and data structures to prevent automatic

rule updates that can cause inconsistencies. The proposal has very low computational complexity as both

theoretical and experimental results will show, and thus can be used in real time environments.

1 INTRODUCTION

A wireless ad hoc network is a collection of

autonomous nodes that communicate with each

other by forming a multihop network and

maintaining connectivity in a decentralized manner.

The network topology is in general dynamic.

In these networks, before and after the

authentication step, there are attacks that can be

performed with the aim of degrading network

performance. In traditional networks, layer 3

firewalls reduce the impact of these attacks

However, the firewall concept must be adapted

(Fantacci, 2008): filtering must be implemented at

each node of the network.

An Access Control List (ACL) is an ordered list

of condition/action rules. The condition part of the

rule is a set of condition attributes or selectors. In

layer 3 firewall domain, the condition set is typically

composed of five elements, which correspond to five

fields of a packet header (Taylor, 2003). In this

paper, we are interested in consistency problems in

next generation networks (Al-Shaer, 2004) (Pozo2,

2008). Due to real-time frequent ACL updates,

inconsistencies must be detected and automatically

managed very fast.

This paper focuses in the design of specialized

data structures and an algorithm to efficiently solve

this problem. The algorithm is capable of handling

full ranges in rule selectors without doing rule

decorrelation, range to prefix conversion, or any

other pre-process. Results are returned over the

original, unmodified ACL. To the best of our

knowledge, there are only two algorithms that do not

decompose the ACL: the trivial one (which is worst

case O(f
2
) time complexity); and a modification over

it (Pozo3, 2008), which only improves the average

and best cases.

The paper is structured as follows. In section 2,

we briefly analyze the internals of the consistency

management problem in firewall ACLs. In section 3

we explain the methodology followed to solve the

problem. In section 4, we give experimental results

with real ACLs. In section 5 we review related

works. Concluding remarks are given in section 6.

2 CONSISTENCY

MANAGEMENT IN FIREWALL

ACL UPDATES

Let ACLf be a layer 3 firewall ACL consisting of

f rules, { }1
, ...

ffACL R R= . Consider

, , ,1 ,
fjR ACL H Action H Z j f∈ =< > ⊆ ≤ ≤

Z protocol srcIP srcPrt dstIP dstPrt= × × × × as a

rule, where { },Action allow deny= is its action. A

selector of a firewall rule Rj is defined as

[], ,1
j

R k k H j f∈ ≤ ≤ , Some of these selectors can

be expressed as naturals, and others as both naturals

and intervals of naturals (an analysis of the

supported syntaxes for firewall selectors is also

available (Pozo1, 2008)). Firewall ACLs can be

trivially divided in two disjoint sets, one composed

of rules with allow action (ACLallow with size m),

and the other with deny action rules (ACLdeny with

size n), with
f allow deny

ACL ACL ACL= ∪ . In real-life

firewall ACLs, m<<n or vice-versa. An example

ACL is presented in Table 1.

Definition 1. Inconsistency between two rules.

Two rules ,
i j fR R ACL∈ are inconsistent if and

only if the intersection of each of all of their k

selectors ,k H H Z∈ ⊆ is not empty, and they have

different actions, independently of their priorities.

The inconsistency is considered to be a fault if an

administrator identifies the behaviour of the

executed ACL as being causing undesirable effects

(or having errors).

There are three basic update operations:

insertion, removal or modification of one or more

rules. These operations need an analysis in order to

know if they can cause an inconsistency. This

analysis has been provided in other works (Al-Shaer,

2004) (Pozo3, 2008). It is assumed in the paper that

a collection of these operations over an ACL is

always executed in sequence. It is also assumed that

the initial node rule set (if any) is consistent.

3 INCONSISTENCY DETECTION

PROCESS

The process is based on divide and conquer

algorithm. We depart from the trivial ACLf

decomposition in ACLallow and ACLdeny. For the rest

of the section and in order to simplify explanations,

it is assumed that n<<m and that Rd (a rule that is

going to be inserted in the node ACL) has deny

action. If Rd has allow action and/or n>>m,

explanations are analogous. The proposed algorithm

returns all rules in ACLallow that are inconsistent with

Rd, during an update operation.

Rd

R0

R1

R2

...

Rf

0<=i<=f

ACLf

Combine

R0

...
Ri

0<=i<=m

R0

...

Rj

0<=j<=n

Source

IP ADT

Dest

IP ADT

Proto
ADT

Source

Port

ADT

Dst

Port

ADT

Inconsistency
detection resultACLdeny

ACLallow

[Another five ADTs]

Figure 1. Proposed inconsistency detection process

(considering updates).

Table 1. Example ACL.

Priority/ID Protocol Source IP Src Port Destination IP Dst Port Action

R0 tcp 192.168.1.5 any *.*.*.* 80 deny

R1 tcp 192.168.1.* any *.*.*.* 80 allow

R2 tcp *.*.*.* any 172.0.1.10 80 allow

R3 tcp 192.168.1.* any 172.0.1.10 80 deny

R4 tcp 192.168.1.60 any *.*.*.* 21 deny

R5 tcp 192.168.1.* any *.*.*.* 21 allow

R6 tcp 192.168.1.* any 172.0.1.10 21 allow

R7 tcp *.*.*.* any *.*.*.* any deny

R8 udp 192.168.1.* any 172.0.1.10 53 allow

R9 udp *.*.*.* any 172.0.1.10 53 allow

R10 udp 192.168.2.* any 172.0.2.* any allow

R11 udp *.*.*.* any *.*.*.* any deny

One of the main ideas of our approach is to use a

specialized abstract data type (ADT) to store the set

of all selectors of the same type in ACLallow (i.e. one

ADT to store protocols used in all rules, two ADTs

to store the source and destination IPs used in all

rules, and another two ADTs to store source and

destination ports). In fact, a duplicate of these ADTs

is necessary in order to store ACLdeny selectors (if Rd

has allow action), but as we have noted before, the

process is analogous. Process is depicted in Fig. 1.

Three main operations are needed in these

ADTs: search, insert, remove. The three operations

must be fast enough, since all of them are used for

any of the three ACL update operations. ADT

population is done before deployment (off-line).

3.1 ADT for Protocol Number Selector

Attending to the exhaustive analysis of real

firewall languages presented in another work

(Pozo1, 2008) the protocol selector only admit 8-bit

natural numbers and the wildcard, *. Although

symbolic names are also possible, they can be

converted to naturals using IANA protocol numbers

(RFC5237). An important fact is that no ranges are

allowed in the syntax of the selector, and thus search

is a trivial operation for the ADT: to find a non-

empty intersection with a protocol number (the one

of Rd) there are only two possible valid values in the

ADT: ‘*’ (and thus Rd intersects with all rules of the

ADT, that is all rules in ACLallow); or exactly the

same value.

To store the association <Protocol number, Rule

ID> we propose to use a hash table with perfect and

minimal hash function with protocol as the key, and

the rule IDs as value. Hash tables (Cormen, 2001)

have O(1) (constant) time complexity for insertions,

removals, updates and search operations if a perfect

hash function is used.

However, hash tables do not allow duplicate

keys to be inserted. This issue is resolved by

grouping all rules that share the same protocol

number (the same key). In this case, the associated

value to the key is a set containing the rule IDs of all

rules that have the key value as the vale of their

protocol selector. However, as removal of values

could be inefficient in this way (a hash lookup plus a

search in the list of rule IDs), the list is replaced by a

fixed-size bit set of size m (the size of ACLallow).

Each position of the bit set represents one of the m

rules in ACLallow.

3.2 ADT for Port Number Selectors

Port selectors admit 16-bit natural numbers,

double-ended closed natural intervals, and ‘*’

(Pozo1, 2008).

There are two well-known 2D problems in

computational geometry that solve similar searches:

first, given a set of data points (port numbers) and a

query rectangle (port interval), give all the points

that are inside the rectangle (this is the orthogonal

range search problem); second, given a set of

(possibly intersecting) data rectangles (port

intervals) and a query point (port number), give all

rectangles that intersect the query point (this is the

stabbing problem). These two 2D problems can be

reformulated into 1D space, where rectangles are

intervals and points are only represented by one

coordinate. In 1D, these problems are called 1D

range search problem (Cormen, 2001) and

overlapping interval search problem (Edelsbrunner,

1983), respectively. Fortunately, specialized data

structures for 1D and 2D problems that give optimal

bounds (in time and space) solutions to these two

problems exist. In the particular case of 1D, the

Interval Tree (Edelsbrunner, 1983) (Cormen, 2001),

or ITree, is the selected ADT because it has optimal

bound for the 1D problem (in time and space).

Fortunately, our port number and interval search

problems can trivially be reformulated to range

search and overlapping interval search problems, as

port numbers can be represented as points in a 1D

plane, and port intervals can be presented as lines in

the same 1D plane.

Space complexity is linear with the number of

rules in ACLallow, m. However, in our

implementation duplicate intervals or points are not

allowed, and thus space complexity is reduced in a

constant factor. Update time is in O(logm). Query

time is in O(logm + L), where L is the number of

returned results (a constant factor). Thus,

instantiation is in worst case O(m*logm), one

Figure 2. Interval tree for destination port selector of

Table 1 example.

insertion for each rule in ACLallow.More details are

available in (Edelsbrunner, 1983) (Cormen, 2001).

The result of the search operation over the ITree

with a port number or interval of the rule Rd, is the

union of all bit sets associated to port values in the

ITree which intersect the given port of Rd, or a bit

set with all bits set to ‘1’ if the given port of Rd is

‘*’. Fig. 2 presents the ITree associated to Table 1

example (destination port).

3.3 ADT for IP Address Selector

IP address selectors admit 32-bit host IP

addresses plus CIDR format, and ‘*’ (Pozo1, 2008).

Symbolic names are converted to octets.

As with previous cases duplicates are not

allowed (bit sets are used again). Thus, the result of

the search operation must be a bit set with positions

set to ‘1’ for all rule IDs of ACLallow which have an

intersecting IP with the given in the rule Rd.

If a comparison between this selector and the

previous ones is made, some similitude and

differences arise. On one hand, an IP is formed by

four octets, each one being an 8-bit natural; but on

the other hand, a the search operation must use the

netmask address of the IPs stored in the ADT (Let

IP1/CIDR1 and IP2/CIDR2 be two IP addresses, if

CIDRs is the shortest of the two netmasks, then the

intersection of IP1 and IP2 is not empty if

IP1&CIDRs=IP2&CIDRs.). Thus, we propose the

design of a completely new and specialized ADT to

store IP addresses. Note that valid network IP

addresses have CIDR values between 1 and 30.

The tree is formed by four levels. For each node,

255 children are possible at most (0-254). These

children values of each node (octets) are stored in a

hash table (perfect and minimal hash is possible

again). The association <Node octet, Children

octets> is called a node-value.

No repetitions of node-values are allowed in an

IP Tree, except for leaves. Leaf nodes must also

store information regarding CIDRs and rule IDs,

where the CIDR represents the CIDR of the IP

whose insertion ended in that leaf, and where each

CIDR value has an associated set of rule IDs (as a

bit set) to associate an inserted IP/CIDR to one or

more rule IDs (if there are repetitions). The <CIDR,

RuleID Bit set> pair is stored as a hash table (perfect

and minimal hash again, since there are only 30

possible CIDRs).

Insertions are done traversing the tree from top

to bottom. First, the IP/CIDR address to be inserted,

Rd, is decomposed in its four natural octets plus the

CIDR value: o1.o2.o3.o4/cidr. Then, the root node

children hash table is asked in order to know if o1 is

already in the tree. If it is, the next step is to traverse

to the second level through the found node. If not, a

new node with value o1 is inserted in the root node

children hash table. These same is done for o2, o3,

and o4. Once at the last level, if o4 has been found, a

check is launched for the CIDR data stored in the

leaf <CIDR, Rule ID Bit set> hash table using cidr

value of the IP. If cidr value is found, the bit

corresponding to the ID of the inserted IP is set to

‘1’. If not, a new CIDR value is created with its

corresponding bit set. Thus, the insertion of a new IP

consists, in the worst case, of three constant time

searches in perfect hash tables, plus a O(1) search in

a leaf perfect hash table, resulting in O(1) worst case

time complexity.

The search operation is very similar to insertion

one. Note that in order to know if two IP addresses

intersect, the application of the shortest netmask of

the two IP addresses is necessary, as has been

pointed at the beginning of the subsection. However,

the ACLallow IP Tree contains the IPs of the m rules

in ACLallow. Thus, the application of all netmasks of

the IPs in the IP Tree which are smaller than or

equal the CIDR of the given Rd IP address is

necessary (at most 30 netmasks). The result of the

root

0 254...

0 254...

0 254...

0/

CIDR1={RuleID}

…

CIDR30={RuleID}

…

254/

CIDR1={RuleID}

…

CIDR30={RuleID}

Figure 3. IP Tree general structure.

Figure 4. IP Tree example for network IPs.

application of these netmasks is a set of (at most) 30

network IPs. Now, a search operation for each of

this IPs is launched. The search operation follows

the same algorithm used for insertions, but taking

the list of rule IDs associated to the CIDR of the leaf

which coincide with the CIDR used for the search.

The result of the search operation over the IP Tree

with an IP address of the rule Rd, is the union of all

bit sets associated to IP addresses in the IP Tree

which intersect the given IP address of Rd (e.g. the

result of the –at most- 30 searches), or a bit set with

all bits set to ‘1’ if the given IP address of Rd is ‘*’.

The general structure of an IP Tree, as well as an

example ACL and an IP Tree of network addresses

are presented in Figures 3 and 4 respectively.

3.4 Combination of Search Results

Using the calculated worst case time

complexities of the search operations for the five

selector and, by the sum of the rule, the combined

search time for five selectors is in worst case

O(1)+2O(1)+2O(logm)=O(logm). The first factor is

the time associated to searching in a hash table, the

second is the two searches in an IP Tree, and the last

one is the two searches in an ITree.

The obtained results are five bit sets with

positions set to ‘1’ for intersecting rule IDs.

However, from the inconsistency definitions, all

selectors must overlap for a rule to be inconsistent

with other(s). Thus, the composition of this result is

somewhat trivial: the intersection of the five bit sets.

As its name indicates, a bit set is an ADT whose

main purpose is to store bit elements. The

intersection of the five bit sets is a linear time

operation with the number of rules in ACLallow, m,

which is also the size of the bit sets. However, note

that although the problem is linear, logical

operations over bit arrays are very efficient, as they

are instructions that can be executed in one machine

cycle over 128 bit registers using special multi-

register multimedia instructions. This yields a severe

problem reduction by a big constant, k=128, in time

(with no space penalty).

Thus, time complexity of the full search process

(which is equivalent for insertion), including the

combination operation, is in worst case

O(logm+m/k),n=m=f/2�O(log(f/2))+O((f/2)/k),

m/k>logm�O((f/2)/k)�O(f/2k), k=128.

As has also been shown, the space needed in the

process is linear with the number of rules in ACLallow

plus some bit sets (the space needed to store the bit

sets is negligible).

Note that a number of optimizations have been

introduced in order to stop the search (in shortcut) if

a zero bit set is returned from any of the search

operations, because if a selector of Rd is consistent

with the same selector of all the rules of ACLallow,

then Rd is consistent by definition, and no more

searches for the rest of selectors are needed. Thus

best and average cases time complexity are achieved

when there a lot of selector repetitions in ACLallow

(and thus ADTs are very small, reducing the time

needed for search operation in the ITree to near a

constant), when n<<m, and when Rd is consistent

(there are no combination of results), resulting in

O(logn),logn≈constant�O(1).

Removals of values in the ADTs have the same

worst case time complexity than searches (minus the

combination step, O(logm)), and updates are a

removal and an insertion (or search).

4 EXPERIMENTAL RESULTS

The proposed process has been tested with real

firewall ACLs (Table 2). Experiments were

performed on a Java Sun JDK 1.6.0_10 32-bit

HotSpot VM, on a machine with AMD Geode

LX800 (500MHz) and 256Mb RAM DDR400.

Execution times are in milliseconds.

Table 2. Performance evaluation.

ACL

Size

%Deny

Rules

ACLdeny

Size

ACLallow

Size

No.

Inconsist.

Trivial

(ms)

Optimized

Trivial [8]

(ms)

Proposal

remove/search

=detection(ms)

Proposal

insert

(ms)

Proposal

update

(ms)

ADT

build

(ms)

50 28,21 11 39 37 0.23 0.19 0.05 0.1 0.15 1.41

144 30,91 34 110 108 0.66 0.58 0.07 0.14 0.21 3.94

238 66,43 95 143 231 1 0.75 0.06 0.12 0.18 6.52

450 34,73 116 334 422 2.17 1.77 0.08 0.16 0.24 14.41

900 14,8 116 784 871 5.2 4.42 0.09 0.18 0.27 31.65

2500 6,97 163 2337 3349 15.58 13.2 0.19 0.38 0.57 128.51

5000 1,98 97 4903 4903 32.6 28.28 0.34 0.68 1.02 276.75

10611 2,05 213 10398 11746 72.87 60.94 0.96 1.92 2.88 539.67

The most important fact is regarding time needed

for update. As can be seen in Table 2, the final time

for updating an ACL is much faster in our proposal

(note that search operation needs a final combine

step, and thus represents the more costly update

operation). The difference between our proposal and

the trivial or the optimized ones is dramatic. If

several update operations, op, are going to be done

over the ACL, these time results must be multiplied

by op, since they are done in sequence.

However, ADT build times are very high,

compared with time needed for update operations

(ACLallow plus ACLdeny times have been measured

here). Fortunately, ADTs can be instantiated only

once, and then be maintained. Thus, build time

should be taken as the start-up time, and needs to be

amortized. Our proposal begins to be faster than the

optimized trivial algorithm from 8-9 sequential

updates and up (for all ACL sizes). Thus, it is

possible to wait to 8-9 update operations or more

and execute them in a burst. Effectiveness of this

approach depends on ACL update frequency.

5 RELATED WORKS

Baboescu et al. (Baboescu, 2003) provide algorithms

to detect inconsistencies in router filters that are 40

times faster than O(f
2
) the trivial one for the general

case of k selectors per rule. They also provide

modifications to its algorithms and data structures

for rule updates. It experimentally improves other

previous works of detection algorithms. However,

they preprocess the ACL and convert selector ranges

to prefixes (Srinivasan, 1998). The range to prefix

conversion technique could need to split a range in

several prefixes and thus the final number of rules

could increase over the original ACL. This kind of

conversion could be inefficient: in the worst case, a

range covering w-bit port numbers may require 2(w-

1) prefixes (Taylor, 2003). Furthermore, results are

given over a modified ACL.

Other research woks (Al-Shaer, 2004) (Pozo2,

2008) complemented the diagnosis process with a

characterization of the faults. However, minimal

diagnosis and characterization is NP.

6 CONCLUSIONS

In this paper we have showed a divide-and-

conquer process, ADTs, and algorithms, capable of

solving the inconsistency detection problem during

an ACL update operation in worst case linear

complexity divided by a big constant. The process is

O(1) in best and average cases (no inconsistency

found). Experimental results that support our

theoretical complexity analysis have been provided.

ACKNOWLEDGEMENTS

This work has been partially funded by Spanish

Ministry of Science and Education project under

grant DPI2006-15476-C02-01, and by FEDER.

REFERENCES

Al-Shaer, E., Hamed, H. Modeling and Management of

Firewall Policies". IEEE eTransactions on Network

and Service Management (eTNSM) Vol.1, No.1, 2004.

Baboescu, F., Varguese, G. “Fast and Scalable Conflict

Detection for Packet Classifiers.” Elsevier Computers

Networks (42-6) (2003) 717-735.

Cormen, T., Leiserson, C., Rivest, R., Stein, C.

Introduction to Algorithms, McGraw-Hill, 2001.

Edelsbrunner, H. A new approach to rectangle

intersections, Part II. International Journal on

Computational Mathematics. Vol.13, pp. 221-229,

1983.

Fantacci, R., Maccari, L., Neira, P., Gasca, R. M.

“Efficient Packet Filtering in Wireless Ad Hoc

Networks”. IEEE Communications Magazine Vol.46,

No.2, 2008.

Pozo1, S., Ceballos, R., Gasca, R.M. "AFPL, An Abstract

Language Model for Firewall ACLs". 8th International

Conference on Computational Science and Its

Applications (ICCSA). Perugia, Italy. Springer-Verlag,

2008.

Pozo2, S., Ceballos, R., Gasca, R.M. "Improving

Computational Complexity of the Inconsistency

Characterization Problem in Firewall Rule Sets".

International Conference on Security and

Cryptography (SECRYPT). Porto, Portugal. INSTICC

Press, 2008.

Pozo3, S., Ceballos, R., Gasca, R.M. "Fast Algorithms for

Local Inconsistency Detection in Firewall ACL

Updates". 1st International Workshop on Dependability

and Security in Complex and Critical Information

Systems (DEPEND). Cap Esterel, France. IEEE

Computer Society Press, 2008.

Srinivasan, V., Varguese, G, Suri, S., Waldvogel, M. “Fast

and Scalable Layer Four Switching.” Proceedings of

the ACM SIGCOMM conference on Applications,

Technologies, Architectures and Protocols for

Computer Communication, Vancouver, British

Columbia, Canada, ACM Press, 1998.

Taylor, David E. Survey and taxonomy of packet

classification techniques. ACM Computing Surveys,

Vol. 37, No. 3, 2005. Pages 238 – 275.

