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ABSTRACT

For graphs Gy, . . ., Gs, the multicolor Ramsey number R(Gy, . . ., G) is the smallest integer r such that if we
give any edge col-oring of the complete graph on r vertices with s colors then there exists a monochromatic
copy of G;colored with color i, for some 1 <i < s. In this work the multicolor Ramsey number

R(Kp,, ... Kp,, Kigys - - Ki,,) is determined for any set of com-plete graphs and stars in terms of R(K;,, . . .,
Kpp)-

1. Introduction

All graphs considered are undirected, finite and contain neither loops nor multiple edges. Unless
otherwise stated, we follow [2,5] for terminology and definitions.

Let V(G) and E(G) denote the set of vertices and the set of edges of the graph G, respectively. |V (G)|
is called the order of G, and |E(G)| is called the size of G. For a subset S C V(G), the neighborhood of
S, denoted by N;(S), is the set of vertices in V(G) \ S that are adjacent to some vertex of S. If S = {v}
we put simply Ng(v). Let dg(v) be the degree of vertex v. The maximum degree and minimum degree
of G are denoted by A(G) and §(G), respectively. For any subset S € V(G) (resp. W C E(G)), the
induced subgraph of G by S (resp. by W), denoted by G[S] (resp. G{[W]) is the graph with vertex
set S (resp. edge set W) whose edges are the edges of G joining vertices of S (resp. whose vertices
are incident to some edge of W). A subset S C V(G) is called independent if G[S] has no edges. The
independence number of G, denoted by «(G), is the cardinality of the largest independent set. Formally,
o(G) = max{|S| : S C V(G)isindependent}. The complete graph on p vertices is denoted by K,
whereas the complete bipartite graph with one vertex in the first class and q vertices in the second
class is denoted by K; 4 and it is also called a star on q + 1 vertices.

For graphs Gy, Gy, ..., G5, a (Gq, Gy, . .., Gs)-coloring is a coloring of the edges of a complete graph
with s colors, such that it does not contain a subgraph isomorphic to G; whose all edges are colored
with color i, for each 1 < i < s. Similarly, a (G, Gy, ..., Gs; r)-coloring is a (G1, G, . .., Gs)-coloring

E-mail addresses: boza@us.es (L. Boza), mcera@us.es (M. Cera), pgvazquez@us.es (P. Garcia-Vazquez), pastora@us.es
(M.P. Revuelta).


http://www.elsevier.com/locate/ejc
http://www.elsevier.com/locate/ejc
mailto:boza@us.es
mailto:mcera@us.es
mailto:pgvazquez@us.es
mailto:pastora@us.es
http://dx.doi.org/10.1016/j.ejc.2010.03.009

of the complete graph K;. on r vertices. The multicolor Ramsey number R(Gy, G, ..., Gs) is defined
to be the least positive integer r such that there exist no (Gq, G,, ..., Gs; )-coloring.

In this paper we focus on the multicolor Ramsey number for cliques and stars. Let pq, ..., Pm,
i, - - -, qq be positive integers. Set P = {py, ..., pn}and Q = {q1, ..., g.}. ByR(P, Q) = R(K,,, .. .,
Ky, Kiq,, ..., Ki,q,) we denote the Ramsey number for cliques and stars and by (P, Q)-coloring a
Kpys -, Kpps Kigqs - - -, K1 g, )-coloring. Following this notation, R(@, Q) = R(Ky q,, ..., Ki4,) and
R(P, %) =R(Kyp,, ..., Kp,,)-

Some results concerning the classical multicolor Ramsey number R(K},, ..., K;,,) are known only
for a small number of cliques. Exact values for R(K3, K;), £ € {3,...,9}, can be found in [6-8,10,
12,14]. Moreover, R(K4, K;), £ € {4, 5}, is determined in [7,11,15] and the only known value of
R(Kp,, ..., Kp,,) form > 3 up to now is R(3, 3, 3) = 17, proved in [7]. Other structures involving
multicolor Ramsey number have been studied (see for instance [13,16-18]).

For stars the problem was solved in the following Theorem proved in [4].

Theorem 1.1 (See [4]). Let q1, . . ., qn be positive integers. Then

n
R(Krg,. - Kig) =Y g —n+eq.
=1

where €g = 1if the number of even integers in the set {qj}J'?:1 is even and positive, and €, = 2 otherwise.

Regarding to the multicolor Ramsey number R(K,, ..., Ky, , Ki,q;, - . ., Kig,), the exact value is
only known for m = 1, thatis, R(Kp, K1,q;, - - -, K1,g,). This result was proved in [9].

Theorem 1.2 (See [9)). Let p, q1, . . ., qn be positive integers with p > 2. Then

n
R(Ky, K1q,» -+ > Kigy) = (0 — 1) (Z g —n+eg— 1) +1,

=1
where e = 1if the number of even integers in the set {q; }‘:1 is even and positive, and €, = 2 otherwise.
In this work we generalize Theorem 1.2 by determining the multicolor Ramsey number R(K,,, .. .,

Ko Ki,qq5 - - - » Ki,q,) for any arbitrary numbers m and n of cliques and stars, respectively. Namely the
following result will be proved.

Theorem 1.3. Let pi, ..., Pm, q1, ..., qn be positive integers, with p;, q; > 2 fori = 1,..., mand
j=1,...,n Then

n
Ry, - Ky Kigys oo Kigy) — 1= (qu —n4e — 1) (RKp,. ... K, ) — 1),
=1

where €q = 1if the number of even integers in the set {qj}jfl=1 is even and positive, and €y = 2 otherwise.

2. Definitions and previous results

In this section we give some definitions and technical results that will be used in order to obtain the
main result. We start setting the notation for a suitable partition associated to a given set of vertices.

Notation 2.1. Given a graph G and a subset U = {uq,...,ux} € V(G) of vertices of G, P(U) =
{W1, ..., Wi} will denote a partition of the set Ne(U) UU, chosen in such a way that Wy = Ng(up) U{u1}
and W; = Ng(uj) U {ui} \ UiZ W fori =2, ... k.

Observe thatif U is a set of independent vertices of G with cardinality [U| = a(G), then Ng(U)UU =
V(G) and hence, £ (U) is a partition of V(G).

The following result of Brooks [3] proves that the chromatic number of a graph different from an
odd cycle and a complete graph is upper bounded by the maximum degree.



Theorem 2.1 (See [3]). If G is a connected graph that is neither an odd cycle nor a complete graph, then
x(G) < A(G).

In the next lemma some relationships between the independence number and the maximal degree
of a graph are given.

Lemma 2.1. Let G be a graph and let Gy, . . ., G, be its components. Then the next assertions hold:

(i) If there existsi € {1, ..., s} such that G; is neither a complete graph nor a cycle of odd length, then
@(G) = G,
(i) If G; # Kagy41 foralli=1,...,s,and A(G) > 3 or G;isnot an odd cycle foralli =1, ...,s, then

V@G|
a(G) > NOR

(iii) The inequality a(G) > @ holds for any integer k > A(G) + 1.

Proof. (i) Suppose that G; is different from a complete graph and an odd cycle, then by Theorem 2.1
we have x (G;)) < A(Gy).Lety; : V(G) — {ay, ..., ayq,} be a vertex coloring of G with x (G;)
colors. By the definition of a vertex coloring, the sets yi_l(aj) C V(G),j=1,..., x(G) form
a partition of V(G;) and )/i_l(aj) N yi_l(a,) = Wforj # Ljl = 1,..., x(G;). Furthermore,
|y '(@)| < «(G)) foreveryj = 1,..., x(G;), which yields

x(Gp)
VGl =Y v @] < aGx(G) < a(G)A(G).
=1

(ii) Suppose that G; # Ka)+1 foralli=1, ... S If there existsi € {1,...,s}andj € {1, ..., A(G)}
such that G; = K, then a(G;)) = 1 > ﬁc) > ";((%))' On the other hand, if A(G) > 3 and
there exists i € {1, ..., s} such that G; is an odd cycle G, of length 2j 4 1, withj > 1, then
a(G) =j > ZJTH > ‘V(G‘)‘ . Finally, if G; is neither a complete graph nor an odd cycle, then by

L. . V(G| VGl
applying item (i) we have a(G) Z 36 Z A0 . Therefore,
N N
V(G)I V(G
a(G) = a(Gj) > = —0.
©) ; (;)_; NCERNG

(iii) If G; = Ka(g)11, for somei € {1,...,s}, thena(G) = 1 > % = W If Gi # Ka(c)11 for all
i=1,...,s,and A(G) > 3orG;isnotanodd cycle foralli =1, ..., s, then reasoning as in item
(ii) we obtain @ (G;) > G| > W(G’)‘ . Finally, if A(G) < 2 and G, is an odd cycle of length 2j + 1

= A©
then A(G) =2,k > 3and x(Gy) =j > ﬁ > W Hence,

V(G; V(G
26 = Z“@—Zl Gl _ | §<>|!

and the result follows. O
3. Main results

In[1]alower bound for the multicolor Ramsey numberR(K, , ..., Kp,,, G1, ..., Gy) in terms of the
numbers R(Kj,, . .., Kp,,) and R(Gy, ..., G,) was determined.

Theorem 3.1 (See [1]). Let p1, ..., pm be integers, withp; > 2 fori=1,...,m,and let G, ..., G, be
any arbitrary graphs. Then

R(Kp, ... Ky, G, oo, Gn) = (R(Kpy, ... Kpy) — 1) (R(Gy, ..., Gp) — 1) + 1.



w
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V(wy) = c(vy) € {ar, ..., am}

%[) 1

Fig. 1. Definition of ¢’.

Combining Theorem 3.1 with Theorem 1.1 the following lower bound for the number R(Kj,, .. .,
Ko K15 - - > Ki,q,) 1s derived:

n
Ry, - Ko Kigys oo Kigy) — 1> (qu —n4e— 1) (RKpy. ... K, )—1) (1)
j=1

where ¢; = 1 if the number of even integers in the set {qj}]’-‘:1 is even and positive, and € = 2
otherwise.
We will prove that inequality (1) is indeed an equality. Before, we need to prove some lemmas.

Lemma 3.1. Let p1, ..., Pm. q1, ..., qn be positive integers, with p;,q; > 2, fori = 1,...,m and
j=1,...,n,and denote by K the complete graph on R(P, Q) — 1 vertices. Let ¢ : E(K) — {aq, ..., ap,
by, ..., by} be a (P, Q)-coloring of K. Then the graph G with vertex set V(G) = V(K) and edge set
E(G) = c~'({b1, ..., by}) has minimum degree §(G) > 1.

Proof. Let G be the graph under the hypothesis of the lemma, and we reason by way of contradiction
supposing that there exists v € V(G) such that dg(v) = 0. Let K’ be the complete graph obtained from
K by adding a new vertex w ¢ V(K). We will arrive at a contradiction by proving the existence of a
(P, Q)-coloring of K’. Let us consider the application ¢’ : E(K') — {ai, ..., am, b1, ..., by} defined as
follows (see Fig. 1):

by ifxy = vw
c'(xy) = {c(vy) ifx=wandy e V(K)
c(xy) otherwise.

Let us see that ¢’ is a (P, Q)-coloring of the graph K’. First assume that K’ contains an a;-colored
copy of K, for some i € {1,...,m}, thenw € V(Kp,), since ¢/(E(K)) = c(E(K)) and c is a (P, Q)-
coloring of K. Thus, v & V(Kp,), because ¢’(vw) = by # a;. Let us denote the set of vertices of K, by
V(Ky) = {w, v1, ..., vp-1}. Since ¢’(wv;) = g; and ¢’(wvy) = c(vyy) forallj =1,...,p; — 1,and
further a; = ¢’(vjve) = c(vjve) forallj # €,j, £ = 1, ..., pj—1thenc (E(K[{v, v1, ..., vp—1}])) = a;,
contradicting the fact that cisa (P, Q)-coloring of K. Second assume that K’ contains a bj-colored copy
of Ky 4 for somej € {1,...,n}, then vw € E(Kyg,), since ¢’ ({by, ..., by}) = ¢ '({b1, ..., by}) U
{vw} = E(G) U {vw}, due to the fact that d;(v) = 0. Thusj = 1 and notice that there is no more
incident edges to edge vw with color by, because dg(v) = 0 and ¢’(wy) = c(vy) € {ay, ..., ay}, for
everyy € V(K),y # v. Therefore, we arrive at a contradiction with the hypothesis q; > 2.

Hence, ¢’ is a (P, Q)-coloring of the complete graph K’ with R(P, Q) vertices, which is a contradic-
tion. Then G has minimum degree §(G) > 1. O

Given a (P, Q; R(P, Q) — 1)-coloring and Q" 2 Q, the next result leads us to obtain a (P, Q’)-
coloring of an appropriated complete graph, under certain restrictions.

Lemma 3.2. Let py,...,Pm, q1, ..., dn be positive integers, with p;,q; > 2, fori = 1,...,m and
j = 1,...,n Let K = Kgp.q)—1 be the complete graph on R(P, Q) — 1 vertices. Let ¢ : E(K) —
{ai, ..., am, by, ..., by} bea (P, Q)-coloring of K. Set B = ¢~ '({b1,...,b:}), U = {uy, ..., Ug (kB]) }
a set of independent vertices of K[B] and £(U) = {W1,..., Wy«s)} the partition of V(K[B])
following Notation 2.1. Let k be a non negative integer and set Q' = {q1, ..., qn, - - ., qnax} sSuch that
Wil <R(@,Q") —1foralli=1,..., a(K[B]). We consider the complete graph K;* whose set of vertices



is obtained from W; by adding new vertices not belonging to V(K) such that |V(K})| = R(#,Q") — 1,
and V(K*) N V(Kj*) = QPforall1 < i # j < «a(K[B]). Let K* be the complete graph with set of
vertices Ufi'f[BD V(K?) and let ¢ : E(K') — {b1,..., bayr} be a (9, Q')-coloring of K. Let c* :
E(K*) — {ai, ..., Gm, b1, ..., bpyk} be an application define as follows:

X ¢(vw) if vw € E(K)
< vw) = {c(uiuj) if ve V(K and w € V(K") withi # j.

Then the next assertions hold:

(i) c*isa (P, Q')-coloring of K*.
(i) V(K™ < (R(P, 9) — D(R@, Q") — 1).

Proof. (i) First, suppose that there exists j € {1,...,n 4+ k} such that (C*)_]({bj}) 2 E(Kig).
Since c*(uiu)) = c(y) € {ay,...,an}forall1 < i # j < «a(K[B]), then there exists
h e {1,..., a(K[B])} such that E(Ki4) < E(K}). Moreover, the definition of c* implies that
c*(E(Kqu)) =c (EKr,q)) = {b;} and this is not possible because c; is a (4, Q)-coloring of K.

Second, suppose that there exists i € {1, ..., m} such that (c*)"'({a;}) 2 E(Kp,), and set
V(Kp,) = {v1, ..., vp}. Letus see that v, € V(ij) forevery¢ =1,...,p;andj, # jyif 1 <€ #
£’ < p;. Otherwise, there exist h € {1,...,a(K[B])} and ¢, ¢’ € {1, ..., p;} such that v,, vy €
V(K. Then c*(vever) = ¢ (veve) € {b1, ..., byi} and this not possible since ¢*(E(K},)) = {a;}.

We consider the set of vertices {u;,, ..., ufpi} C U. From the definition of c*, it follows that
c*(uj, ) = c(uj,uj, ) = c*(vj,v;,) = agiforalll < £ # ¢’ < pi.Hence,c(E(K[{y;,, ..., uj,, ) =
{a;} and therefore c~'({a;}) D E(Kp,). This is an contradiction since c is an (P, Q)-coloring of K,
and the result follows.

(ii) From the definition of K*, we know that V(K*) = U?:('f[B]) V(K) and K N Kj* =@Pforl1 <
i #j < a(K[B]). Thus, V(K| = Y™ V(K" = a[B]) (R®, Q") — 1). Notice that
the restriction of ¢* to K*[{uy, . . ., Uyay}] is @ (P, ¥)-coloring of K*[{u1, . . ., Uyxsy }], because
c*(uiyy) = c(uiy;) € {as, ..., an}. Thus,

a(K[Bl) = V(K™ [{uy, ..., ugwpp}D| < RP, ) — 1
and therefore, |V(K*)| < (R(P,¥) — 1) (R®, Q) —1). O

The next result provides an upper bound on the Ramsey number R(P, Q) when the number of
integers g; that are even is 0 or odd.

Proposition 3.1. Let py, ..., Pm, q1, - . ., qn be positive integers, with p;, q; > 2, fori = 1,..., mand
j=1,...,nIf the number of integers q; that are even is 0 or odd, then

n
R(Kp,s -« s Ko Kigys - s Kigy) — 1< (qu —n+ 1) (R(Kp,. ... K, ) —1).
j=1

Proof. Set K = Kgp,g)—1 and let ¢ : E(K) — {ai,...,am, b1,..., by} be a (P, Q)-coloring of
K.Set Q" = Q and let U = {uy, ..., usxs)} be a set of independent vertices of K[B], where
B=c'({b1,...,bs}). Let Wy, ..., W, k(57 be the partition & (U) of K[B] according to Notation 2.1.
By the construction of W;, we have |W;| < A(K[B]) +1 < Z}’Zl(qj —D+1= Z}Ll gi—n+1,fori=
1, ..., a(K[B]).From Theorem 1.1, it follows that R(#, Q") —1 = Z}’Zl gj—n+1, which implies |W;| <
R(@,Q") —1foralli = 1,...,a(K[B]). Then, by applying Lemma 3.2, we may construct a (P, Q')-
coloring of a complete graph K* 2 K such that |V (K*)| < (R(P, #) — 1) (R(@, Q) — 1). Hence,

R(P,Q) — 1= V()| < VK| < RP, %) — 1) (R®, Q) — 1)

and the result follows. O



Fig. 2. Color assignment in Case 1.

To determine an upper bound for the multicolor Ramsey number R(P, Q) when the number of
integers g; that are even is even and positive, we need to show this lemma.

Lemma 3.3. Let p1, ..., Pm. q1, ..., qn be positive integers, with p;,q; > 2, fori = 1,...,m and
j=1,...,n and set K = K q)—1. If the number of integers q; that are even is even and positive,
then there exists a (P, Q)-coloring ¢ : E(K) — {ay, ..., G, by, ..., by} such that A(K[B]) > 3 or K[B]
contains no an odd cycle, where B = ¢~ '({by, ..., ba}).

Proof. Let ¢ : E(K) — {ai,...,am, by, ...,b,} be a (P, Q)-coloring such that |B| = |c~'({b,
..., by})| is maximum.

Without lost of generality we may assume that |V(K)| > 4. Otherwise, we are done unless
K = K[B] = Gs. In this case, it is enough to replace the color b; of any edge of K[B] with any color g;,
and the result holds.

By way of contradiction, suppose that A(K[B]) < 2 and there exists an odd cycle Cy; 1 in K[B]. First,
letus see thatq; = 2 forallj = 1, ..., n. Otherwise, there would existj € {1, ..., n} such thatg; > 3.
Since |V(K)| > 4 and A(K[B]) < 2, we can find an edge uv € E(K) such that c(uv) € {ay, ..., an}.
Since the number of integers g; that are even is even and positive, then n > 2. Given b; # b;, let

¢ 1E(K) — {ay, ..., am, by, ..., by} be the application defined as follows:
b; ifxy e B
c(xy) =1b; ifxy = uv
c(xy) otherwise.
It is clear that ¢’ is a (P, Q)-coloring of K and |(c/)*1({b1, e, bn})| > |B|, which is not possible
since B has maximum cardinality. Hence, g = 2 forallj =1, ..., n.
Two cases need to be distinguished according to the length of the cycle Cy41 contained in K[B].
Case 1. Assume k > 2 and denote by {v1, ..., vak+1} the set of vertices of Cyxy1.
Assume k > 2. Since Cy41 has odd length and g; = 2 forallj = 1, ..., n, thenn > 3, that s, the

cycle Cox+1 € K[B] must be colored with at least three different colors in order to avoid the existence
of two incident edges with the same color. Indeed, there must exist a path of length three whose edges
are colored with three different colors b;,, by, , b;;. Denote by {vy, ..., vak41} the set of vertices of Corq4
so that c(v1v,) = by, c(vav3) = by, and c(v3vs) = by, (see Fig. 2). Since the number of integers g; that
are even is even, then n > 4, and therefore, there exists a color b;, & {b;,, b;,, b;,}.
If c(vivaks1) € {b;,, by} (see Fig. 2 [a]), we can define

’ b,‘ ley = V1V3
) = c(4xy) otherwise.

If c(v4vs) € {by,, bi,} (see Fig. 2 [b]), we can define

c’(xy) _ bi4 1fxy = VU4

c(xy) otherwise.
If c(v1var41) = c(v4vs) = by, (see Fig. 2 [c]), we can define

b;, ifxy = vivy

cy) = c(xy) otherwise.




Fig. 3. Color assignment for Case 2.

In any case, ¢’ is a (P, Q)-coloring of K such that !(c’)*1 (b4, ..., bn})| > |B|, a contradiction.
Case 2. Assume k = 1. Let denote by {v1, v, v3} the set of vertices of C3 C K[B]. Since c isa (P, Q)-
coloring of K and q; = 2 forallj = 1,...,n, we may assume that c(vivy) = b;;, c(vav3) = by,

and c(vqv3) = bj; with by, # b;, # by, (see Fig. 3). As [V(K)| > 4 there exists v € V(K) such that
v & V(C3). Observe that dgp (v) < A(K[B]) < 2, and so without lost of generality, we may suppose
thatc ({vy | y € V(K[BD}) < {bi,, bi,}. Let ¢’ be the following application:

b,'3 ley =V
c(xy) otherwise.

c'(xy) = {

It is easy to check that ¢’ is a (P, Q)-coloring of K verifying |(c/)*1({b1, ce, bn})‘ > |B|, which is
again a contradiction. Then, the result follows. O

Proposition 3.2. Let py, ..., Pm, q1, ..., gy be positive integers, with p;, q; > 2, fori = 1,..., mand

j=1,...,n If the number of integers q; that are even is even and positive, then

n
R(Kp,s -+ Ko Kigys oo s Kigy) = 1< (qu - n) (RKp,. ... K, ) —1).

j=1

Proof. Set K = Kgep,q)—1. By Lemma 3.3, there exists a (P, Q)-coloring ¢ : E(K) — {ai,...,an,
bi, ..., by} of K such thatthesetB = c~'({by, ..., by}) verifies A(K[B]) > 3 or K[B] does not contain
an odd cycle. By Lemma 3.1, we know that |V (K[B])| = R(P, Q) — 1 and V(K[B]) = V(K). From the
definition of K[B], it follows that di(s(v) = > i [{x | vx € B, c(vx) = bi}| < > (qi — 1), for any
vertex v € V(K). Thus, A(K[B]) < Z?:1(qr‘ — 1) and by Theorem 1.1,

RB.Q =) g—n+1=) (¢—1)+1> AKB)+1.
i=1 i=1

Two cases need to be distinguished:
Case 1. Assume Z?:l(qi — 1)+ 1= A(K[B]) + 1. Thatis, A(K[B]) = Z?:l gi—n=R®Q)—1.

If Kakis)+1 € K[B] then the restriction of the (P, Q)-coloring ¢ on E(Ka (syy+1) must be a (4, Q)-
coloring of K sy)+1, Which is not possible because |V (Ka «g)+1)| = A(K[B]) +1 = R(¥, Q). Hence,
by applying Lemma 2.1 (item (ii)) we have
) > [V(K[BD|I _ R(P,Q) —1

~ AK[B) & '
KIBD — 5~
i=1

o (K[B]

Case 2. Assume Y . ,(qi — 1) + 1 > A(K[B]) + 1. Thatis, A(K[B]) < Y.I, ¢ — n. Denoting by
k= 2?21 gi — n and applying Lemma 2.1 (item (iii)) we have

> IVKIBDI _ R(P,Q) — 1

a(K[B]) P g
Z gi—n
i=1




Hence, in any case it follows that

a(K[B]) > w. (2)

Z‘L‘—n

i=1
LetQ' =QU {2} ={q1, ..., qn> Gn+1 = 2}. By Theorem 1.1, we deduce that

n+1

R, Q)—Zqi—(n+1)+2_2q,_n+3 )

LetU = {uy, ..., Uy } be a set of independent vertices of K[B] and let us consider the partition
PU) = {Wiy, ..., Wy} of K[B] constructed following Notation 2.1. Foreveryi =1, ..., a(K[B])
we know by (3) that

n
Wil < |Nige(up) U {ui}| < AKIBD+1<) g—n+1<R®Q)—1.
i=1
Then the hypothesis of Lemma 3.2 are satisfied, hence we consider the graphs K and K*
constructed following Lemma 3.2. Thus,

a(K[B]) a(K[B])
RP,Q) =1z VE) = Y [VE)| = D (R, Q) —1) =aXB) (R®, Q) - 1).

i=1 i=1

Combining (2) and (3), we have

RP.Q) 12 "W 1 (qu—n+2>
qu_n i=1
i=1

yielding to
(RP,Q) — 1) (Z qi — n)
i=1

n

> g—n+2
i=1

RP,Q)—-1= (4)

Since the number of integers q; of Q that are even is odd, by applying Theorem 3.1 and by assuming
equality (3), it follows that

R(P, Q") — 1< R(P, %) — 1) (RG, Q) — 1) = R, ) — 1) (Z Gi—n+ 2) . (5)
i=1

Finally, from inequalities (4) and (5), we have

(La-n) n
R(P,Q)—1= fli(R(P,ﬂ)—l) (Zq,——n—}—Z)
> q—n+2 i=1

i=1

(Z q - n) REP. %) — 1),
i=1

which proves the result. O



As a consequence of (1), Propositions 3.1 and 3.2, the following theorem determines the multicolor
Ramsey number R(K,,,, ..., Kp,,, K14, . .., Ki,4,) for any set of complete graphs and stars in terms of
R(Kp,, . .., Kp,,). This result generalizes Theorem 1.2 proved in [9].

Theorem 3.2. Let m, n be positive integers. Then

n
R(Kpy» - - Ko Kigys o Kig) = 1= | D gj—n+eq = 1) (RU,,.....K, ) = 1),
j=1

where g = 1if the number of even integers in the set {q;}} is even and positive, and ey = 2 otherwise.
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