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Data centres increase their size and complexity due to the increasing amount of heterogeneous work-
loads and patterns to be served. Such a mix of various purpose workloads makes the optimisation of
resource management systems according to temporal or application-level patterns difficult. Data-
centre operators have developed multiple resource-management models to improve scheduling perfor-
mance in controlled scenarios. However, the constant evolution of the workloads makes the utilisation
of only one resource-management model sub-optimal in some scenarios.
In this work, we propose: (a) a machine learning regression model based on gradient boosting to pre-

dict the time a resource manager needs to schedule incoming jobs for a given period; and (b) a resource
management model, Boost, that takes advantage of this regression model to predict the scheduling time
of a catalogue of resource managers so that the most performant can be used for a time span.
The benefits of the proposed resource-management model are analysed by comparing its scheduling

performance KPIs to those provided by the two most popular resource-management models: two-
level, used by Apache Mesos, and shared-state, employed by Google Borg. Such gains are empirically eval-
uated by simulating a hyper-scale data centre that executes a realistic synthetically generated workload
that follows real-world trace patterns.
� 2022 The Authors. Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Data centres constitute the core infrastructure for current Inter-
net services, from world-wide web and mobile applications to Big-
data and High-Performance-Computing workloads. Therefore, the
performance of such infrastructures is crucial to enable services
that require computational and storage resources to be available,
scalable, and ready to serve the incoming workloads, which
reduces operational costs and offers the most competitive services
to the final users.

In the past, it was more common for medium and large compa-
nies to manage their own clusters, which served a fully controlled
workload. In such scenarios, the computing and storage resources
can be fine-tuned by the operation teams. Currently, hyper-scale
data centres serve a wide range of users and workload require-
ments. The mix of continental or even world-wide workloads
causes difficulties in optimising the computational resources
according to temporal or usage patterns, since the job-arrival
patterns fade away, and unknown events may cause unexpected
demand peaks that may degrade the performance of the data cen-
tre notably. In summary, the workloads related to Cloud Comput-
ing have mutated from controlled workloads to workloads that
present arrival and resource-demand patterns that evolve rapidly
and really hard to predict.

Data-centre resource managers are considered as the data-
centre operating systems, as they are responsible for the manage-
ment and monitoring of the scheduling process and the monitoring
of the computational resources and workload at the highest level.
Resource managers usually coordinate one or several scheduling
agents, which, in turn, are in charge of the application of schedul-
ing policies that determine the placement of each particular task
on the data-centre resources. Fine-tuned monolithic resource man-
agers were typically used when companies used to operate their
own small-sized data centres. However, such monolithic resource
managers, which usually employ scheduling algorithms designed
for the specific workload under consideration, cannot keep up to
the massive-scale workloads related to hyper-scale data centres.
Even though data-centre operators used to leave some data-
centre resource capacity idle to absorb moderate demand peaks
without seriously degrading the data-centre performance, the
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resource managers could not keep up with the high number of
scheduling operations present in new Cloud-Computing scenarios
(Gog et al., 2016).

Various resource managers were developed to overcome the
aforementioned limitations: centralised frameworks such as
Omega (Schwarzkopf et al., 2013) and Mesos (Hindman et al.,
2011), distributed solutions such as Pigeon (Wang et al., 2019),
and even fine-tuned hybrid approaches, such as Mercury
(Karanasos et al., 2015). The two-level (Mesos) and shared-state
(Omega) centralised strategies are the most used currently. How-
ever, such resource managers focus on serving a commonworkload
pattern present in hyper-scale data centres (Schwarzkopf et al.,
2013), where approximately 90% of batch jobs consume few
resources for a short time, whilst the 10% of jobs consume a large
amount of resources for a longer time. However, such workload
patterns change over time, making those models suboptimal in
comparison to other resource-managing models for some use
cases, or even only for a period of the same use case (D.
Fernández-Cerero et al., 2018).

This work focuses on improving the scheduling performance of
the data centre by proposing a novel resource manager selector
that determines the most performant resource management model
for each period. This proposal leverages the industry data-centre
resource management architecture, which equips only a single
resource management model, by enabling the dynamic selection
of a resource management model from a catalogue of existing
resource managers.

A gradient boosting regression model is responsible for the esti-
mation of the scheduling performance of each resource manage-
ment model in the catalogue for a given data-centre operating
situation and period. According to the estimation of scheduling
performance, the most beneficial resource management model is
applied during that particular period.

The benefit of the proposed resource management model is
then illustrated by comparing three alternatives: (a) the utilisation
of the two-level resource management model used by Mesos or
YARN; (b) the utilisation of the shared-state resource management
model used by Google Borg and Google Omega; and (c) the utilisa-
tion of the proposed resource management model, Boost, which
estimates the scheduling performance of the two resource man-
agement models above to apply them dynamically. The centralised
two-level and shared-state resource management models have
been selected as they constitute the main resource managers used
in industry. The performance and energy efficiency results of the
three alternatives above were evaluated through an extensive sim-
ulation employing a trustworthy simulation tool as well as a real-
istic hyper-scale data-centre composed of 1,000 machines and
synthetic traces that follow the patterns present in Google and Ali-
baba data-centre traces.

In this work, we do not improve data-centre performance by
proposing any scheduling algorithm, but a new data-centre
resource management model. Any scheduling algorithm can be
applied by scheduling agents coordinated by resource managers.
The scheduling algorithm employed in the experimental analysis
tries to maximise resource utilisation while preventing resource
contention by following Google’s latest improvements in this area
(Lo et al., 2016).

The following contributions are presented in this work:

� Gradient boosting regression estimator for the prediction of the
scheduling performance of the most popular industry-level
resource managers.

� Transformation rules that enable the successful estimation of
the scheduling performance of resource managers.
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� Resource management model that leverages the estimator
developed to select the most performant resource management
model for a period and predicted incoming workload.

The benefits of the aforementioned contributions are backed
by:

� Analysis of the impact of each feature of the regression models
on the quality of the predictions for the catalogue of resource
management models employed to train the regression models
used in this work: two level (Mesos) and shared state (Omega).

� Analysis of the behaviour of our proposed resource manage-
ment model, Boost, vs. the most utilised resource managers in
extreme situations related to hyper-scale data centres, where
the workload arrival pattern follows an extreme-value distribu-
tion. All the experimentation is based on realistic workload
traces, which enables Boost to be applied in production
environments.

� Analysis of the full scheduling time Key Performance Indicator
(KPI), in addition to the traditional scheduling queue times eval-
uated in the literature (Schwarzkopf et al., 2013; Tirmazi et al.,
2020).

� Evaluation of the performance impact of estimating and select-
ing the resource manager synchronously, that is, every time a
job is submitted, vs. carrying it out asynchronously in the back-
ground every given period. Three time periods are analysed for
the background process.

� Evaluation of the energy consumption of the proposed resource
management model and the comparison with current resource
managers.

This paper is organised as follows: Section 2 examines the
related work, while Section 3 presents the theoretical basis that
supports this study. The machine learning regression model is
illustrated in Section 4. The results of the empirical analysis per-
formed are evaluated in Section 5. Finally, Section 6 presents the
conclusions of this work and future work.

2. Related work

Most research on data centres has focused on the increase of
performance, reduction of costs, and improvement of computa-
tional and storage services. Over the last ten years, the focus has
shifted to the application of various Artificial Intelligence tech-
niques to various goals.

Workload classification and workload prediction have attracted
considerable attention from the research community, as they are
essential for the improvement of data-centre performance, the
reduction of energy consumption, compliance with the required
quality of service (QoS) levels, and the improvement of the scala-
bility of cloud service providers.

Concerning workload classification, the authors of Dewangan
et al. (YYYY) proposed a modified KNN algorithm for the classifica-
tion of jobs into four categories, so the scheduling process takes
into account both the user priority and the operating costs. The
aim of Wu et al. (2018) is to classify jobs according to the required
resources, such as CPU, memory, network, and storage, to develop
a scheduling algorithm that includes this classification among the
heuristic rules used to determine the optimal resources. The
authors of Elrotub and Gherbi (2018) propose a deterministic
method for the classification of tasks according to their size. Three
groups are considered in the proposed scheduling algorithm to
select optimal resources for each task: heavy, medium, and light
tasks. Iqbal et al. (2018) shows an analysis of a web application
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workload based on URI requests to auto-scale the needed
resources. The authors employ artificial intelligence to generate
the so-called probabilistic workload pattern for the prediction of
the incoming workload. Such prediction is then used to provision
the estimated resource demand. Other works focus only on the
analysis of various workloads to identify, classify, and cluster the
jobs in differentiated groups. In these works, the authors do not
directly employ such classification and clustering models to
improve the data-centre KPIs. Genkin et al. (2019) focuses on the
classification of Spark and Hadoop workloads by taking into
account the container performance. A recent analysis of the Google
traces presented in Patel and Kushwaha (2020) reveals that the
Gaussian Mixture Model results in a better workload clustering
in comparison with other methods.

Regarding to workload prediction, the majority of proposals are
based on machine learning and artificial intelligence techniques,
from Neural Networks to regression-based models. A sample of
some representative proposals is presented below.

The authors of Singh et al. (2019) propose a Support Vector
Machine model for the estimation of the characteristics of the
incoming jobs in a given time window so that the resource provi-
sioning process can be optimised. Li et al. (2021) proposes a hybrid
model based on Autoregressive Integrated Moving Average model
(ARIMA) and Back Propagation (BP) neural networks to predict SLA
violations and VM migration times. The authors of Zhang et al.
(2018) propose a new Deep Learning model based on canonical
polyadic decomposition to efficiently predict the incoming work-
load. A trace included in the CloudSim simulator is used to validate
the efficiency and accuracy of the proposed model. Wamba et al.
(2017) compares constraint programming and neural network
models to predict and generate traces, and reached the conclusion
that neural network models offer better prediction results while
constraint programming is more suitable for trace generation.

The authors of Kumar et al. (2018) present an interesting com-
bination of three-layered neural networks and a self-adaptive dif-
ferential evolution algorithm, and claim very good results in
terms of workload prediction accuracy to improve resource provi-
sioning. The training data set is based on the requests done to a
very specific service (a Canadian university web server and a NASA
Kennedy Space Center web server as well). The results reported by
Gao et al. (2020) suggest that it is important to perform the predic-
tion some time before it is needed, so that the scheduling algo-
rithm has enough time to adapt. These authors compare various
techniques and conclude that clustering methods for prediction
can achieve up to 90% of prediction accuracy for CPU and memory.
The authors of Tang et al. (2018) performed an analysis to deter-
mine suitable techniques for workload prediction to develop
energy-aware scheduling algorithms. They combine linear regres-
sion and wavelet neural networks to this end and conclude that
these techniques can be useful for low-utilisation cloud data cen-
tres. In Amiri et al. (2018), the authors propose a prediction model
that outperforms the performance of current predictors. Their
model is based on episode mining and is able to adapt to the work-
load changes rapidly, which is then used to improve the resource
provisioning process.

In summary, as shown in Table 1, various research studies
employ artificial intelligence models to analyse, classify, and even
apply this knowledge to improve existing scheduling algorithms.
However, to the best of our knowledge, no progress has been made
at the resource-management level. This work presents a prediction
model based on gradient-boosting regression that predicts the
scheduling performance of a catalogue of resource management
models for a given data-centre operating environment and period,
which enables the selection of the resource management strategy
that minimises the scheduling time for that period and incoming
workload from such catalogue. The proposed resource manage-
3193
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ment model does not conflict with the state of the art, since
resource managers could coordinate the scheduling agents that
equip the scheduling algorithms considered, as well as the provi-
sioning and migration techniques.
3. Theoretical framework

Let us denote a single workload as W, whilst W represents all
workloads to be served. In this work, the values of the following
parameters characterise each workload:

� Inter-arrival time Dtj;sub � Wei 0:5; kWð Þ represents the time
between two consecutive job submissions (tj;sub and tj�1;sub for
the job Jj) of a particular workload for j ¼ 1;2; . . .. We employ
an extreme-value Weibull distribution with a shape value of a
= 0.5 to generate the inter-arrival times with a scale value of
1=kW to represent the hardly predictable workload inter-
arrival patterns present in hyper-scale data-centres.

� Number of tasks nj � Exp kj;n
� �

represents the number of tasks
that a job is composed of, following an Exponential distribution
with a given mean value of 1=kj;n.

� Job duration lj � Exp kj;l
� �

represents the period of time a given
job Jj consumes resources in the data centre, generated by
means of the Exponential distribution with the given expected
value 1=kj;l.

� Resource usage uj is the amount of CPU (denoted by KCPU) and
RAM (denoted by KRAM) that all the tasks of each particular job Jj
in a workload consumes.

Each workload is composed of a set of jobs W ¼ Jj
� �n

j¼1
for

n 2 N, and each jth job is composed of tasks Tj ¼ tjn
� �nj

n¼1 for
nj 2 N. Every time a job Jj is submitted to the data centre at a par-
ticular operation time, considered as the job submission time tj;sub
of the job Jj, the scheduling process graphically represented in
Fig. 1 starts.

Every time a job arrives, one scheduling agent performs a job
scheduling action if it is available or puts the job in a queue until
it becomes available. A scheduling action can be defined as the pro-
cess that employs a scheduling algorithm to determine the set of
resources where the tasks of a job are to be executed. When a
scheduling action is unable to schedule all the tasks in a job, new
Fig. 1. General incremental job sch
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scheduling actions will be performed until all the tasks of the job
are assigned to computing resources or a time-out is reached. Once
this process is over, the job is considered fully scheduled
at tj;sched. The time required by the scheduling agents to fully
schedule the job Jj is denoted as Sj, which represents the sum of
times Sji needed for each scheduling action performed on the

job Jj, as follows: Sj ¼
PnjA

i¼1Sji, where njA denotes the number of
scheduling actions needed to fully schedule the job Jj. Hence,
tj;sched ¼ tj;sub þSj. The completion time tj;com of job Jj may be
denoted, then, as follows: tj;com ¼ tj;sched þ lj, i.e: tj;com ¼ tj;subþ
Sj þ lj.

Let us denote by A the set of all AW actions, that is:

A ¼ AW ;W 2 Wf g ¼ Aj;i; j ¼ 1;2; ::;n; i ¼ 1;2; ::;njA
� � ð1Þ

Each scheduling action Aji takes some time to compute the
algorithms needed to make the deployment decisions, as follows:

SA i; jð Þ ¼ KJ jð Þ þ
Xnj;uns
n¼1

KT n; jð Þ ð2Þ

SA i; jð Þ denotes the time required to perform the ith scheduling
action for the jth job, KJ jð Þ represents the time the scheduling
algorithm executed at the job level, KT n; jð Þ designates the time
of the scheduling algorithm applied to nth task in the jth job, while
nj;uns represents the remaining number of tasks to be scheduled.
The equation above assumes the scheduling agent is free when
the job arrives. However, this may not happen when previous jobs
in the queue are not fully scheduled. Then, the time that a job waits
in the queue must be added to the equation as follows:

SA i; jð Þ ¼ Qji þKJ jð Þ þ
Xnj;uns
n¼1

KT n; jð Þ ð3Þ

Qji represents the time the jth needed to wait in queue when the
ith scheduling action started.

Each scheduling action Aji may provide two outcomes:

(a) The scheduling action Aji succeeds in the deployment of all
tasks Tj of the job Jj. In such scenario, tj;sched ¼ tj;sub þSj, where
Sj ¼ SA 0; jð Þ. In this equation, tj;sched denotes the operation
time where the job is fully scheduled and SA 0; jð Þ the time
needed to perform the first scheduling action.
eduling and execution process.
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(b) The scheduling action Aji can’t fully deploy all Tj tasks of
the job Jj, due to two main reasons: the data centre has not
enough free resources to execute them, or the transaction that
commits the scheduling action raises a conflict in optimistic-
locking strategies. In such scenarios, the scheduling action Aji

needs to be retried until the number of scheduling actions njA

reaches the limit of scheduling actions nmax
jA , increasing the

number of timed-out jobs Jto; or until the job Jj is fully deployed
in the successive scheduling actions, when the number of
required scheduling actions njA < nmax

jA . In such scenarios,

Sj ¼
PnjA

i¼1Sji.

Boost employs a Machine Learning algorithm to estimate the
performance of the resource manager for a certain data-centre
operation period DD to apply the optimum resource-management
model for that particular period. In this work, we consider two ver-
sions of the dynamic resource-management agent:

1. Background agent which performs the resource-management-
model selection decision D every fixed time period DD, inde-
pendently from the scheduling actions A to avoid scheduling
overhead in each job scheduling action Aji and the related scal-
ability issues.

2. Online agent which performs the resource-management model
selection decision D for every job scheduling action Aji, thus,
DD ¼ f Aji

� �
;Aji 2 A therefore increases the time needed for

each job scheduling action. In this online approach, the estima-
tion algorithm time KD must be taken into account to compute
each scheduling action, which may cause scalabilty issues in the
scheduling process:
SA i; jð Þ ¼ Qji þKJ jð Þ þKD jð Þ þ
Xnj;uns
n¼1

KT n; jð Þ ð4Þ

The completion time (makespan) Cj is the final performance
indicator that represents the end of the execution process for the
job Jj, and may be denoted as follows: Cj ¼ Sj þ lj.

The following energy measurement model is employed in this
work:

E Tð Þ ¼
X
t2D

X
r2R

P r; tð Þd ð5Þ

Let t 2 D ¼ d;2d; . . . ; Tf g, where T denotes the total operation
time. The power state for each computing resource in every
machine P r; tð Þ is measured every d time period. Two different
power levels are considered in this work: P 2 Idle;Executingf g.
The Idle power level denotes the power consumption of the com-
puting resource when no tasks are being executed, while the Exe-
cuting power level may be defined as follows:
PExecuting ¼ PMax �PIdle, where PMax represents the maximum
power consumption when the computing resource is used at a
maximum level. Hence, the power consumption P rð Þ ¼ PIdleþrexec

ridle
�

PExecuting , where rexec
ridle

represents the resource utilisation rate.

The proposed resource management model cannot impact neg-
atively in terms of data-centre availability and robustness, since its
main task, the prediction and dynamic application of the optimal
resource-managing model for a given period, would not interfere
in the workload execution. Even in a crash of the service executing
the proposed resource management model, the resource manager
that was running would keep serving the incoming workload as
usual.
3195
4. Gradient boosting regression model

4.1. Generation of the training data set

In this work, we will employ a regression model, which will be
responsible for the determination of a numeric output from an
input vector, to estimate the scheduling performance of two
resource-managing strategies every certain period. A set of
instances, each one composed of a pair of one input vector and
one numeric output, shapes the data set our regression model is
trained with. A 15-day data-centre execution trace, provided by
the simulation tool SCORE Fernández-Cerero et al. (2018) is taken
as the raw training data.

Synthetic data-centre execution traces for each resource man-
ager considered are employed to train the estimation model. Such
traces follow the workload patterns present in Google cluster 2011
and 2018 real data-centre traces (C. Reiss et al., 2012; Tirmazi et al.,
2020). We employed realistic synthetic workload traces for several
reasons:

� Normalisation and obfuscation of the workload. The aforemen-
tioned data-centre workload traces from Google 2011 and 2018
hide the real low-level characteristics of both the computational
resources, such as the number of CPUs and GBs of RAM of each
machine, as well as the actual workload resource consumption.
Only a normalised value of such resource consumption can be
obtained, whereas other attributes are directly obscured. Due
to this, the actual reproduction of the physical data center with
the real workload is unattainable - mainly due to the need of big
industry players, such as Google and Microsoft, to keep the
shape of their infrastructure confidential as a part of the indus-
trial secrets-. Thus, only similar synthetic workloads can be gen-
erated, which can reproduce the behaviour of real data centres
to some extent.

� Rapid evolution of cloud computing workload. The study of the
traces above (C. Reiss et al., 2012; Tirmazi et al., 2020; Lu et al.,
2017) shows a clear pattern where the workload has changed
its shape over time: from the inter-arrival time to resource con-
sumption, as well as the heterogeneity and extreme events of
the workload. This evolution can make any resource manage-
ment model developed only for a particular scenario useful only
for a short time.

� Broader applicability of the proposal. Given the evolution of the
Cloud-computing workloads, as well as the heterogeneity of the
big Internet Data Centers present in the industry, we consider
that testing the validity of a resource management model only
for one short period of a particular environment could fall short
to show its behaviour. Thus, the generation of realistic workload
traces is relevant since it enables the evaluation of broader sce-
narios where industry players could check the benefits and
drawbacks of the proposed resource management model and
how it fits to their current situation.

� Validity of the synthetic workload. The fidelity of the synthetic
workload to reality was first validated by the Google research
team that developed both Google Omega and the first version
of the employed simulator Schwarzkopf et al. (2013), and then
such workloads have been shown to be highly useful in many
previous articles published in prestigious journals, such as
(Fernández-Cerero et al., 2018; Fernández-Cerero et al., 2018;
Fernández-Cerero et al., 2018; Fernández-Cerero et al., 2021).

Some of the features in the raw data-centre execution trace may
require some transformations to improve the usefulness of the raw
data. The raw trace and the transformed training data set can be



Fig. 2. Original vs. logarithmic Kernel density estimation (KDE) distribution for the class feature scheduling time Sj .
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found as supplementary material. In this section, the following
main data transformations applied to build our training data set
are explained: 1. Logarithmic transformation of the output feature.
2. Creation of a delta submission time feature Dtj;sub. 3. Framing by
time windows. 4. Uncertainty management for unfinished jobs.

The performance of the regression model is strongly related to
the wideness of the range of values of the output feature. Fig. 2
shows the range of values for the output feature to be predicted,
that is, the scheduling time Sj. It must be noticed in Fig. 2a that
the values are in a fairly wide range of �[0–1200] seconds, also
presenting a long-tailed distribution. Both the wide range and
the distribution skewness of Sj are challenging for the successful
training of the regression model, since the estimation results must
be precise enough in the lower extreme of the distribution while
wide enough to consider the opposite extreme of the distribution.

A logarithmic transformation is applied to the values of the out-
put parameterSj. Fig. 2 shows the resulting Kernel density estima-
tion (KDE) distribution of Sj values after the application of a
natural logarithm. As a result, the range is reduced to �[0–7],
and the distribution is much closer to a normal distribution, as
can be shown in Fig. 2b.

Even though the job submission time tj;sub contains useful infor-
mation, the raw values of this feature are not enough for a predic-
tor to make precise decisions, since the constant increase of its
Fig. 3. Scheduling status and related times
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value makes extremely hard the establishment of patterns. Dtj;sub,
explained above, is taken to overcome this limitation and extract
valuable patterns.

The estimation problem must be modelled as a temporal series
that requires the past knowledge to be included in the regression
model through the training data set, since a set of jobs submitted
in the recent past (window frame) needs to be considered to
improve the training process.

Fig. 3 shows an example of the possible status of the scheduling
process of the previous jobs when Jj is considered. Let us use only
the scheduling status, that is, the tj;sched parameter, for the coming
explanations for the sake of clarity; however, the same explanation
applies to the rest of features. At any given submission time tj;sub
for the job Jj, any previous job Jp; p ¼ 1;2; . . . ; j� 1 may be in the
following scheduling state:

(a) The previous job was fully scheduled. In this case, the
scheduling time of the previous job, tp;sched occurred before
tj;sub, and therefore is known. This is the status of the jobs
Jj�4; Jj�3, and Jj�1 in Fig. 3.
(b) The previous job was not fully scheduled. In this case, the
scheduling time of the previous job, tp;sched will eventually occur
in an unknown future. In Fig. 3, Jj�2 represents this state.
for previous jobs when Jj is considered.
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In this work, we only employ known information to build our
training data set. Due to this, the following two features are incor-
porated into every row in our training data set, which represent
each Jj job, to manage the scenarios where unknown information
regarding previous jobs is present: (a) Fp;sched, that denotes
whether the immediate past job is fully scheduled or not. Fp;sched

is computed as follows to generate the training data set:

Fp;sched ¼ 1 if tj�1;sched 6 tj;sub
0 otherwise

�
(b) tp;sched, that represents the

known period of scheduling time of the previous job. In our train-
ing data set, tp;sched ¼ min tj�1;sched; tj;sub

� �
. This very same process is

used for job queue and completion times.
4.2. Training and evaluation of the regression model

Gradient-boosting regression (Friedman, 2002), which has been
used in the past with successful results in many regression prob-
lems (Zhang and Haghani, 2015; Cai et al., 2020), is an ensemble
learning method that combines the estimates provided by a set
of simple regressors to produce a joint prediction. Decision trees
are used in this work as base estimators.

The R2 metric is used as the main cross-validation KPI for the
evaluation of the developed regression models. The metric R2 com-
putes a correlation coefficient between the regressor output and
the expected real value, with 1 being the best possible result.
Fig. 4. R2 score evolution according

Fig. 5. Resulting learning curves from th
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Fig. 4 shows the evolution of the values of the R2 metric for the
regression models trained with the scheduling performance traces
provided by Mesos (two-level) and Omega (shared-state) resource-
managing models according to the size of the past time window.
Values in the range [1–10] are considered to analyse the impact
of the size of the past window. The results provided by employing
the original scheduling time Sj and its logarithmic transformation
for model training are shown. The analysis performed provides the
following conclusions:

� The estimation results for both the Mesos (two-level) and
Omega (shared-state) resource management models are good,
resulting in R2 values higher than 0:8.

� The logarithmic transformation is the key to achieving success-
ful results, increasing the value of R2 by approximately 0:3 for
the two-level resource management model (see Fig. 4 and by
more than 0:1 for the shared-state resource management model
(see Fig. 4b).

� The size of the past window time is also a key to improving the
estimation results, especially for Omega, where the value of R2

increases by approximately 0:1 when using a window size of
at least 3, as shown in Fig. 4b.

Fig. 5 shows the learning curves for the two-level and shared-
state resource management models. The analysis of learning
to the size of the time window.

e regression model training process.
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curves is an essential tool for the detection of overfitting. In this
figure, where the R2 score is presented versus the size of the data
set, it becomes clear that the trained regression models do not
overfit, since the gap between the training and validation curves
strongly decreases as soon as the size of the data set increases.
The stabilisation of the gap trend towards the end of the learning
curves clearly shows that the size of the training data set is large
enough.

Fig. 6 shows the Kernel Density Estimation (KDE) error distribu-
tion for the regression models trained with the Omega and Mesos
scheduling performance result traces, respectively. KDE is defined
as the difference, in seconds, between the estimations provided
by the regression models and the expected real values. These error
values are computed through cross-validation, resulting in a distri-
bution skewed toward a small value of approximately 2 s for Mesos
and Omega resource managers.

The gradient boosting technique provides a set of quality indi-
cators for each feature during the regression model training pro-
cess. The feature importance must be highlighted among the
aforementioned indicators, since it denotes the contribution of
each feature to the predictive capacity of the regression model.
In the gradient boosting model, the feature importance is calcu-
lated on the basis of the number of appearances of each feature
in the set of decision trees trained for the base models, along with
the position of each feature in those decision trees. The feature
importance indicator may be used, in addition to the implementa-
Fig. 6. Kernel density estimatio

Fig. 7. Feature importance for the prediction o
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tion of feature selection algorithms, as a first and simple step for
model explanation, since some hints about how the model per-
forms the predictions may be obtained.

Fig. 7 shows the 10 features with the highest feature impor-
tance for the prediction of the scheduling time Sj of a given job Jj
for the regression models trained with the scheduling results of
the two-level (see Fig. 7 and shared-state (see Fig. 7b) resource
management models, respectively.

It should be noted that, even if similar, the feature importance
values are different for both regression models. The following
two hints may be highlighted since they represent that the model
was successful in detecting the differences in terms of behaviour
between the strategies of the considered models.

� The two-level resource management model (Mesos) gives more
importance to the scheduling time of the previous job Sj�1,
while the shared-state model (Omega) takes into account only
whether or not the previous job Jj�1 has been completed. This
is due to the pessimistic blocking of two-level resource manager
agents (Mesos), which perform batch scheduling processes that
prevent other scheduling agents from making scheduling deci-
sions in parallel.

� The feature task scheduling attempts
PnjA

i¼1nj;uns is more critical
for Omega (shared-state model) than for Mesos (two-level
model). This is due to shared-state resource managers being
more prone to perform conflicting scheduling actions, which
n (KDE) error distribution.

f the scheduling time Sj of a given job Jj .
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need to be retried and worsen the data-centre performance,
when a higher number of task scheduling decisions are made
in the same period of time.

5. Empirical Evaluation

5.1. Experimentation framework

In this work, we used the SCORE simulator Fernández-Cerero
et al. (2018), which has been widely used (Fernández-Cerero
et al., 2018; D. Fernández-Cerero et al., 2018; Fernández-Cerero
et al., 2020; Fernández-Cerero et al., 2020; Fernández-Cerero
et al., 2021) to analyse the behaviour of realistic hyper-scale data
centres, usually composed of thousands of machines, both in terms
of energy consumption and scheduling performance.

The following key performance indicators, previously explained
in Section 3, are studied to analyse the performance impact of the
proposed data-centre resource management model:

(a) Measured average inter-arrival time Dtsub;W . In this work,
two main workloads are considered, Batch (B) and Service (Service)
workloads, that is, W ¼ B; Servicef g. 1) Batch workload. Batch
jobs are usually composed of a large number of tasks that consume
relatively few resources for a short period and have a fixed end.
Map-reduce jobs are a good example of this kind of workload.
We analyse three different scale parameters kB for the Weibull dis-
tribution used to generate the inter-arrival times for the Batch
workload 1

kB
¼ 120;100;80½ �s. 2) Service workload. Service jobs

are usually of a reduced number of tasks, which consume a high
amount of resources for a longer time period and have no deter-
mined end. Web servers or DBMS jobs are a good example of this
kind of workload. The arrival rate of this workload is set to be 10
times less frequent than that of the Batch workload, that is,
kService ¼ 10 � kB. The Batch workload usually represents almost
90% of scheduled jobs, as the workload used is modelled following
industry usage patterns (Tirmazi et al., 2020; Lu et al., 2017). Due
to the prevalence and stronger impact on the scheduling system of
this workload, the results for the Batch workload, such as Dtsub;B
instead of global Dtsub;W, are presented in the tables for the sake
of clarity. The results for the Service workload can be found as sup-
plementary material. (b) Queue times. Both Q1B, which denotes
the average time that each Jj job in the Batch workload WB waits

in queue until its first task is scheduled, and QnB, which, in turn,
represents the average time that the JB jobs in the Batch workload
wait in queue until its last task nj is scheduled, can be found in the
tables. The 90 percentiles of these values, Q1;90%B and Qn;90%B,
respectively, are also presented so that the long-tailed behaviour,
if present, is shown. (c) Scheduling time. The average scheduling
time of Batch jobs SB, and the 90 percentile value S90%B, are anal-
ysed. (d) Makespan. The average completion time of the jobs that
make up the Batch workload CB, and the 90 percentile value C90%B

are shown.
In addition to these indicators, there is a set of useful indicators

related to the behaviour of each resource management model stud-
ied. The following indicators are analysed and presented in the
tables: (a) Timed-out jobs. Jto denotes the percentage of jobs that
could not be completed due to a time-out in the scheduling pro-
cess. This event occurs when scheduling bottlenecks appear of
1,000 consecutive unsuccessful task scheduling attempts or 100
consecutive unsuccessful job scheduling attempts. Jto is only
shown in the tables when the percentage of timed-out jobs is
greater than zero in any of the experiments presented. (b) Locked
resources. Due to their pessimistic blocking strategy, both the
two-level and Boost resource management models present the
parameter Rlock, which represents the average percentage of
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resources unavailable due to a scheduling agent performing a
scheduling operation, which prevents any other scheduling agent
from performing scheduling operations in parallel. (c) Conflicted
tasks. Due to their optimistic blocking nature, both Shared-state
and Boost resource management models make conflicting task
scheduling attempts Tconf , which must be retried.

Energy consumption E is also shown in the tables to analyse the
impact of Boost in terms of energy efficiency. The value of the
scheduling algorithm times, both at the job and task level, KJ

and KT , is set following the trends of the industrial literature, in
1000 and 100 ms, respectively (Schwarzkopf et al., 2013). The exe-
cution time of the Boost estimation process KD has been estab-
lished through empirical measurements performed on an M1
Macbook Pro, which, after 500 runs, results in an average time of
100 ms. Each experiment simulates 15 days of operation of a data
centre composed of 1,000 homogeneous machines. All experiment
configurations are run 25 times. Tables 2–4 show the average per-
formance and energy results for Boost, Mesos, and Omega,
respectively.

The following statistical tests were performed in SPSS to verify
the statistical significance of a ¼ 0:05: (1) Iglewicz and Hoaglin
robust test for multiple outliers (two-sided test) with Z ¼ 3:5. (2)
Levene test to check the non–homogeneity of variances with a sig-
nificance level of a ¼ 0:05. (3) Kruskal–Wallis test for independent
samples, to analyse the difference in the results between pairs of
resource management models with a significance level of a ¼ 0:05.

The results of the tests performed are provided as supplemen-
tary material.
5.2. Simulation evaluation

Fig. 8 shows the evolution of the selection of the resource man-
agement strategy performed by Boost depending on the workload
inter-arrival time. The red line denotes the period where the two-
level strategy is used (the same strategy employed by Mesos),
whilst the blue line represents the period where the shared-state
strategy is used (the same strategy employed by Omega). Although
the behaviour of Boost’s selection process suggests homogeneity
between Fig. 8a and 8b, a main trend is present: when the work-
load pressure of the data centre increases (see Fig. 8b), the two-
level strategy is used more frequently, while in periods of lower
utilisation rates, Boost employs the shared-state strategy more fre-
quently (see Fig. 8a).

The results in terms of performance and energy consumption
for Boost, Mesos, and Omega are shown in Tables 2–4, respectively.

It must be kept in mind that the value presented in each cell is
the average of 25 runs of the same experiment configuration, with-
out outliers. Each table shows 3 rows, corresponding to a workload
whose inter-arrival time is generated by means of a Weibull
a ¼ 0:5 with three different mean inter-arrival rates:
kB ¼ 120;100;80½ �s, which represent low, medium, and high utili-
sation rates, respectively. The experimentally measured average
inter-arrival time Dtsub;B for each workload is shown in the first col-
umn. Table 2 also shows four groups, each representing one of the
configurations for the decision period of the Boost resource man-
agement selection process: The first shows the results when the
resource management selection process is performed on each job
scheduling action, DD ¼ f Aji

� �
;Aji 2 A; the following three show

the results of making resource management selection decisions
on a background agent in every given period: DD = [30,60,120]s.

The results of the average scheduling time SB, the main
scheduling performance indicator, can be analysed to expose the
main trends in the Boost behaviour. Although our resource man-
agement model improves the performance of the data centre in
all scenarios, Boost excels as soon as the decision period for the



Table 2
Performance results of Boost for Batch Workloads.

Dtsub;B Q1B QnB Q1;90%B Qn;90%B SB S90%B CB C90%B Rlock Tconf E

(s) (s) (s) (s) (s) (s) (s) (s) (s) (%) (MWh)

DD ¼ f Aji
� �

;Aji 2 A

104,47 8,65 22,27 28,37 68,67 101,17 246,25 190,97 426,53 15,89 922 95,77
86,48 9,30 26,51 30,13 80,71 110,91 270,76 200,45 455,77 18,43 1249 96,38
68,69 10,53 35,51 33,20 104,10 130,80 323,19 220,66 503,67 22,06 1843 97,17

DD = 30 s
104,88 12,31 28,64 34,74 84,64 108,28 271,00 198,37 455,94 14,29 1051 95,85
86,27 14,99 37,11 42,66 108,86 123,02 308,89 212,92 489,67 16,94 1415 96,35
68,92 20,01 53,65 56,79 156,31 152,00 385,83 242,30 561,76 20,13 2030 97,15

DD = 60 s
104,77 17,78 34,81 52,43 101,31 111,52 277,51 201,40 461,53 13,82 1025 95,86
86,75 21,63 45,39 60,48 131,38 129,05 324,97 219,02 504,76 16,05 1378 96,40
68,87 28,79 65,00 80,93 187,21 160,79 410,88 250,79 582,59 19,34 1959 97,15

DD = 120 s
104,92 26,20 44,13 81,21 126,53 117,24 288,45 207,15 468,60 13,57 950 95,84
86,62 31,78 57,02 93,89 162,86 137,96 345,64 227,60 523,54 15,73 1306 96,38
69,20 41,73 82,22 117,22 229,64 177,16 449,54 267,32 618,41 18,93 1810 97,14

Table 3
Performance results of the two-level resource management model for Batch Workloads.

Dtsub;B Q1B QnB Q1;90%B Qn;90%B SB S90%B CB C90%B Jto Rlock E

(s) (s) (s) (s) (s) (s) (s) (s) (s) (%) (%) (MWh)

104,55 67,71 72,31 198,80 211,36 128,49 312,15 218,53 469,87 0,00 20,82 95,84
86,63 77,37 85,27 222,61 244,14 148,99 365,10 238,92 516,08 0,00 23,82 96,40
68,78 19e3 118e3 68e3 341e3 246e3 622e3 251e3 615e3 14,57 54,50 95,06

Table 4
Performance results of the shared-state resource management model for Batch Workloads.

Dtsub;B Q1B QnB Q1;90%B Qn;90%B SB S90%B CB C90%B Tconf E

(s) (s) (s) (s) (s) (s) (s) (s) (s) (MWh)

104,61 38,97 89,44 134,59 251,26 179,45 426,65 269,50 603,35 2024 95,84
86,50 73,75 170,58 252,51 460,27 270,97 640,41 360,91 800,18 2779 96,39
68,86 168,55 394,39 542,01 1017,99 510,32 1206,66 600,28 1348,31 4097 97,14

Fig. 8. Evolution of the Boost’s selection of resource-managing strategy depending on the workload inter-arrival time. In red: two-level (Mesos), in blue: shared-state
(Omega). It can be noticed that when data-centre workload pressure increases, more red periods are present, which means that the two-level strategy is employed more
frequently.
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selection of the resource management model decreases. Table 2
perfectly shows this trend: For workloads with Dtsub;B � 85 s, it
can be observed that, for a less frequent decision period DD =
120 s, the average scheduling time SB is reduced by � �10% com-
pared to Mesos (137.96 vs. 148.99 s), and almost half compared to
3200
Omega (137.96 vs. 270.97 s). However, when the resource-
management strategy selection decision is made in every schedul-
ing action, the reduction increases to � �35% (110.91 vs. 148.99 s)
and � �60% (110.91 vs. 270.97 s) compared to Mesos and Omega,
respectively. Boost improves the performance of the data centre,



Table 5
Summary and comparison of the main performance results between Boost
DD ¼ f Aji

� �
;Aji 2 A, Mesos, and Omega. The improvement of Boost is computed as

a comparison against the best of the competitors.

Resource manager QnB SB CB

(s) (s) (s)

Low workload pressure. Dtsub;B � 105s
Boost 22,27 101,17 190,97
Mesos 72,31 128,48 218,53
Omega 89,44 179,45 269,5
Improvement 69,20% 21,26% 12,61%

Medium workload pressure. Dtsub;B � 85s
Boost 26,51 110,91 200,45
Mesos 85,27 148,99 238,92
Omega 170,58 270,97 360,91
Improvement 68,91% 25,56% 16,10%

High workload pressure. Dtsub;B � 70s
Boost 35,51 130,8 220,66
Mesos 118e3 246e3 251e3
Omega 394,39 510,32 600,28
Improvement 91,00% 74,37% 63,24%
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especially when the data centre is under pressure. Let us analyse
the increase in the average scheduling time SB between the first
two result rows of Tables 2–4, to confirm this behaviour. The aver-
age Mesos scheduling time SB shown in Table 3 increases by
almost 20% (128.49 vs. 148.99 s) when the measured average
workload inter-arrival time Dtsub;B is reduced from � 105 to � 85
s, while Omega suffers a higher performance penalty of � +50%
(179.45 vs. 270.97 s), as shown in Table 4. This extra penalty is
imposed by the � 750 extra task scheduling actions re-tried due
to the conflicts related to the higher frequency of scheduling
actions, as can be seen in the results of Tconf (2,024 vs. 2,779). Boost
overcomes the bottleneck related to the pessimistic blocking strat-
egy, such as the two-level model used by Mesos. Even though four
parallel Batch scheduling agents are working, when the data centre
is under high workload pressure, Mesos cannot keep up with the
incoming workload. This behaviour is shown in Table 3 in the third
row, where all performance indicators are three orders of magni-
tude worse than those achieved in environments of lower use. It
should be noted that this case is the only scenario in which almost
15% of the workload is left in the queue, as shown by the Jto param-
eter. The rest of the tables do not show the Jto parameter because
its value is always 0.

Fig. 9 visually summarises the trends described above. It
becomes evident that the increase in workload pressure has a les-
ser negative impact on Boost than the industry alternatives when
the columns are compared. It is also shown in the comparison
between rows that the increase in frequency in the selection of
resource-management strategy makes Boost’s CDF line more verti-
cal, which means greater performance. In Fig. 9b it is shown that
80% of the jobs are fully scheduled in less than approximately
270 s, when decisions are made every 120 s. On the other hand,
Fig. 9. Comparative of the cumulative distribution function (CDF) of the schedulin
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in Fig. 9d, 80% of the jobs are fully scheduled in less than 200 s
when decisions are made in each job scheduling action.

Boost performance gains are not related to the improvement of
shared-state or two-level scheduling strategies, but just to the
selection of the best resource management strategy for each per-
iod. This statement becomes evident when the rate of increment
of conflicts Tconf of Boost is compared to that of Omega: the incre-
ment of both follows the same trend, increasing by � +30% when
g time according to the decision period and the workload inter-arrival time.
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the mean inter-arrival time is reduced from � 105 to � 70 s, and by
� +50% when it is reduced from � 85 to � 70 s.

In terms of energy consumption, Boost does not have a negative
impact on energy efficiency. The only difference in terms of energy
consumption is the reduction shown in the last row of Table 3 and
is due to Mesos being unable to execute the incoming workload,
leaving the data centre more idle.

Table 5 presents a summary in which the proposed model
shows its ability to improve the overall scheduling performance
without negatively impacting energy efficiency by successfully
selecting the best scheduling strategy for each period and operat-
ing environment, especially with a high frequency of selection
decisions.
6. Conclusions

In this paper, we have presented a novel model that predicts the
scheduling performance of a set of resource managers based on the
gradient-boosting regression technique, so that the optimal one
can be selected for a given operation period. The results reported
here confirm that our proposal reduces the average scheduling
time by approximately 20% compared to Mesos and by more than
50% compared to Omega. The usage of synthetic workload traces
that represent real-world hyper-scale data centre operation envi-
ronments and the analysis of the most popular industry-level
resource managers enables the adoption of the proposed model
in similar data centres.

We have devised a method for the transformation of a workload
trace into a time-series data set suitable for the training of artificial
intelligence models. The results of this study explain that some
features are key to the quality of the predictions. Among them:
the number of task-scheduling attempts and the scheduling state
of previous jobs. In addition, the logarithmic transformation of
the scheduling time is a key to the quality of the predictions. As
a result, our trained regression model achieved a high R2 score,
higher than 0:8.

One potential application of our results could be the creation of
a background agent that estimates and selects the best resource
manager. Although the results clearly state that the real-time agent
provides the best performance results, this strategy can impose
higher stress on the scheduling agent and cause bottlenecks. How-
ever, the background agent does not impose any additional stress
on the scheduling agents, while performance degradation is minor
when short decision periods are considered.

For future work, the following limitations should be considered.

� No real-world traces have been used, but synthetically gener-
ated ones that follow the same realistic industry patterns have
been used. As a consequence, workload-trace simplifications
restrict the application of even more complex artificial intelli-
gence models. In future work, performance techniques that pro-
vide confidence errors by nature should be employed for
workload generation, in addition to the approximation through
simulation.

� Other resource-managing models and data-centre configura-
tions should be explored in future work.

� A logarithmic transformation was used to improve the estima-
tion process, leading to a loss of precision for long-tailed distri-
bution values. In future work, we could coordinate two versions
of the model, with and without the logarithmic transformation,
to fine-tune the estimations of such long-tailed values. In addi-
tion, more powerful machine learning algorithms should be
explored so that no logarithmic transformation is needed to
obtain high-precision estimates.
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