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Perception-Aware Perching on Powerlines with
Multirotors

J. L. Paneque,1 J.R. Martı́nez-de Dios,1 A. Ollero,1 D. Hanover,2 S. Sun,2 A. Romero,2 and D. Scaramuzza2

Abstract—Multirotor aerial robots are becoming widely used
for the inspection of powerlines. To enable continuous, robust
inspection without human intervention, the robots must be able
to perch on the powerlines to recharge their batteries. Highly
versatile perching capabilities are necessary to adapt to the
variety of configurations and constraints that are present in real
powerline systems. This paper presents a novel perching tra-
jectory generation framework that computes perception-aware,
collision-free, and dynamically-feasible maneuvers to guide the
robot to the desired final state. Trajectory generation is achieved
via solving a Nonlinear Programming problem using the Primal-
Dual Interior Point method. The problem considers the full
dynamic model of the robot down to its single rotor thrusts
and minimizes the final pose and velocity errors while avoiding
collisions and maximizing the visibility of the powerline during
the maneuver. The generated maneuvers consider both the
perching and the posterior recovery trajectories. The framework
adopts costs and constraints defined by efficient mathematical
representations of powerlines, enabling online onboard execution
in resource-constrained hardware. The method is validated on-
board an agile quadrotor conducting powerline inspection and
various perching maneuvers with final pitch values of up to 180°.

SUPPLEMENTARY MATERIAL

Video: https://youtu.be/JsPavnsfpbk
Code: github.com/grvcPerception/pa powerline perching

I. INTRODUCTION

THE use of multicopters in the inspection of hazardous
industrial environments (e.g., nuclear plants, steel mills,

or power lines) provides significant opportunity to drastically
reduce the risk of human injury on the job-site. The US power
system consists of nearly 160,000 miles of high-voltage power
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Fig. 1. A quadrotor performing a perception-aware perching maneuver,
maximizing the visibility of the line during the whole trajectory. The maneuver
starts at the bottom-right corner of the image (S), and progresses first upwards
to adjust its orientation, and then towards the objective line (E).

lines, and millions of low-voltage power lines and distribution
transformers, which connect 145 million customers [1]. In-
spections of this magnitude require extensive manpower and
work hours in highly dangerous environments. Leveraging
robust autonomous robots for inspection of infrastructures
could improve throughput of these inspections, thus reducing
the possibility of failure.

In order to enable these opportunities, multicopters must
be able to operate in uncertain highly-cluttered environments,
varying environmental conditions, and with limited onboard
energy. The multicopter is then responsible for estimating
its state via onboard sensors, calculating agile trajectories
which maximize inspection coverage, and executing dynamic
maneuvers near crowded, safety critical infrastructures. The
powerline inspection task offers the possibility of perching
directly on the powerlines to recharge onboard battery systems
via wireless charging [2]. This has the potential to improve
efficiency of powerline inspection drones over manned in-
spection, but requires the unmanned system to perch on the
line. The challenge is then to design algorithms which can
identify powerlines and relevant obstacles in the observable
space, plan a trajectory that satisfies the dynamic constraints
of the multirotor and avoids obstacles while keeping the goal
point in view (see Fig. 1), and execute the trajectory in a
potentially windy or rainy environment.

Most systems perch on vertical walls by directing the robot
towards them and adjusting their angle during the maneuver
[3], [4]. Existing systems for perching on cables rely on
approaching while hovering the objective line either from the
top [5] or the bottom [6] assuming there is enough space
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to do so. Actual powerlines can come in many different
configurations where this may not be possible, necessitating
that any planning algorithm must be able to account for these
configurations directly and plan accordingly. Simply installing
multiple perching devices will not suffice because it limits the
weight and efficiency of the platform.

A. Contribution

This paper presents a novel perching trajectory generation
framework for powerlines, which produces highly versatile,
agile, collision-free, and dynamically-feasible maneuvers to
guide the robot to a desired pose at zero velocity while
maximizing the visibility of the objective powerline. It is based
on a Nonlinear Programming (NLP) optimization problem that
uses a nonlinear quadrotor model formulated down to the
rotor thrust level. The NLP uses a simplified mathematical
representation that efficiently represents the powerlines (with
negligible errors) as concatenations of segments and the robot
as an ellipsoid with three different radii.

The paper has four main contributions: 1) a highly-versatile
perception-aware agile perching trajectory generation method
based on NLP; 2) a general mathematical modeling for colli-
sion avoidance and perception awareness near powerlines; 3)
experimental validation in different agile maneuvers including
extreme 180° perching; and 4) the developed code of the tra-
jectory generator, which is released to the robotics community.
We demonstrate the efficacy of the proposed method onboard
a quadrotor, first using the mathematical modeling inside
an onboard Nonlinear Model Predictive Controller (NMPC)
to perform inspection flights, and then using the developed
framework to generate perching maneuvers in three different
lines, which were followed with final pitch values of 20°, 80°,
and 180°.

The paper is organized as follows: Section II summarizes
the main works in the topics addressed in the paper. Section
III presents the problem formulation for powerline perching.
Section IV describes the proposed mathematical modeling.
Section V presents the method for perching trajectory gen-
eration. Section VI provides an experimental validation of the
developed work. Finally, Section VII concludes the paper and
highlights the main future research steps.

II. RELATED WORK

Prior works on multirotor perching have usually focused
on the problem of agile perching on walls. First, authors in
[3] performed perching trajectories by compounding multiple
linear control modes that did not guarantee the feasibility of
the maneuver. Later, the work in [4] addressed this problem
by planning for dynamically feasible maneuvers before their
execution, which is also the case in the proposed method.
Other works on perching on walls have usually focused on
the design of the perching mechanism [7], [8]. Recently, a
visual perching for walls was presented in [9], were the authors
use a combination of Apriltags and Visual Inertial Odometry
to perch on walls without a Motion Capture System. All
these systems usually attach on walls by colliding with them
with some final velocity, while the proposed one reaches the

perching state at zero (or desired) velocity. On the other hand,
works for multirotor perching on cylinders (which can include
powerlines) are usually limited to reaching the desired spot at
a hover state and attaching to the cylinder using a gripper [6],
[10]. A heterogeneous perching platform is proposed on [5],
which can rest or perch in a variety of different situations,
provided they are reached from above. For powerlines this
is not always the case, since they appear in many different
configurations where hanging from the upmost line can lead
to touching the others. Recently, [11] presented a quadrotor
with upside-down perching capabilities by using bi-directional
thrusts. In contrast, the proposed system is able to generate
perching trajectories that take multirotors to any (feasible)
desired perching state, including upside-down, without the use
of bi-directional thrusts.

During perching maneuvers, it is important to keep visibility
of the final objective, either if it is a landing area, a cylinder, or
a powerline. Traditional methods such as Image-Based Visual
Servoing [6] enforce this naturally by formulating the control
law in the image space coordinates. However, aggressive
perching maneuvers may not always have the final spot inside
its Field of View (FOV), especially if the robot’s camera
is not located at the perching mechanism. Authors in [12]
presented a perception-aware NMPC for multirotors which
uses additional error terms in its cost function to keep visibility
of a desired object while tracking a trajectory. The work in [13]
then proposed to keep different targets inside the multirotor’s
FOV by formulating their visibility as constraints inside an
NMPC controller. Later, authors in [14] developed a proba-
bilistic constraint to keep the number of successfully matched
visual landmarks over a minimum threshold during a flight,
including the multirotor’s gimbal in the modeled dynamics of
their NMPC. We take inspiration in these works and include
perception awareness in the generated perching trajectories by
formulating novel costs and constraints designed for lines and
segments instead of point landmarks, so their perception can
be considered in the computation of the perching maneuver.

III. PROBLEM FORMULATION

The objective of powerline perching is to guide an aerial
robot to a desired final pose with zero velocity, where it
can grip to a powerline. This has to be done while avoiding
collisions and maximizing the visibility of the powerline
during the trajectory. The basic scenario is composed of a
set of powerlines, not necessarily parallel, with several tens of
meters of length and at a certain height.

Powerlines follow catenary equations, whose use for costs
and constraints formulation in NLP systems would result in
very inefficient implementations. In our approach, to overcome
this issue, we adopt a mathematical model that approximates
catenary shapes as concatenations of segments. Segments can
be very efficiently integrated in NLPs both for measuring
robot-powerline distances (to ensure collision-free maneuvers)
and also for estimating the powerline visibility from the robot
camera. Powerlines can be represented by several segments
to provide an accurate representation, and there are already
algorithms to perform the approximation [15]. For instance,
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we measured that a real powerline of 185m could be modeled
by 15 segments with a mean length of 12m and a mean error
of 1’5 cm with respect to it. Moreover, an average perching
maneuver will only involve 1 or 2 of these segments per line.

While perching maneuvers usually end when the robot
reaches the objective pose, it may happen that the perching
device fails to attach to the powerline. In that case, the system
must be able to recover to a safe state, while still avoiding the
powerlines. Our NLP framework is used to also compute this
recovery trajectory, appended to the perching maneuver.

IV. MATHEMATICAL MODELING

A. Nomenclature

In this work, we follow standard conventions and denote
scalar magnitudes with lowercase s, vectors with bold lower-
case v, and matrices with bold uppercase M. We also make
use of different reference frames, all defined with uppercase
F and with an orthonormal basis {xF ,yF , zF }.

We represent translations between two coordinate frames
as vectors pF1F2

∈ R3, such that a vector vF2
∈ R3 is

expressed in F1 as: vF1 = pF1F2 + vF2 . For rotations, we
use unit quaternions q ∈SO(3), which can be expressed in
different frames as qF1

= qF1F2
⊙ qF2

, where ⊙ denotes
the Hamilton product between two quaternions. Finally, we
define the rotation of a vector v ∈ R3 by a quaternion with
the following abuse of notation: q⊙ v := q⊙ [0,v]

T .

B. Multirotor Dynamics Model

Similarly to [13], [16], we model our multirotor robot as
a rigid body of mass m and diagonal moment of inertia
matrix J, with nominal dynamics ẋ down to their second order
derivatives. The robot is actuated by the thrusts γ ∈ R4 of
four individually-controllable rotors, i.e., γ = [γ1, γ2, γ3, γ4]

T .
Typically, the individual rotor thrusts γi are used as the
control inputs of the dynamic system and then are translated
into desired rotational speeds for the motors using a simple
algebraic relation [17]. However, the rotors actually behave
as a first-order system with a time constant of several ms,
which means they cannot change their thrust instantaneously
as demanded by the controller. This effect is of high impor-
tance when generating perching trajectories, which demand
fast deceleration and rotation before the end of the trajectory.
Assuming instantaneous thrust dynamics potentially leads to
generating dynamically unfeasible maneuvers that cannot be
followed by the multirotor. To solve this, we model the inputs
of the system as the desired constant thrust derivatives u ∈ R4

and include the thrusts γ as part of the state of the system,
similarly to [13]. This ensures continuity in the required
actuations and allows to include the physical limits of the rotor
angular accelerations and decelerations in the NLP framework.

The 17-dimensional robot state space is then defined as:

ẋ =


ṗWB

q̇WB

v̇W

ω̇B

γ̇

 =


vW

qWB ⊙
[
0,ωB

T /2
]T

1
mqWB ⊙ ΓB + gW

J−1 (Mγ − ωB × JωB)
u

 ∈ R17, (1)

where pWB and qWB are the position and orientation of the
robot’s body frame B w.r.t. the world frame W , and vW

and ωB ∈ R3 are the linear and angular velocities of the
multirotor robot, measured in global and body axes of the
robot respectively. Vector gW ∈ R3 denotes the acceleration
due to gravity in global axes. The vector ΓB ∈ R3 encodes
the collective thrust of the motors in the body axes, where in
our case all 4 motors are directed to Bz . Finally, M ∈ R3×4

is the thrust allocation matrix that converts the current rotor
thrusts into body torques in B:

ΓB =

 0
0∑
γ

 M =

 ry
T

−rx
T

κrd
T

 , (2)

where rx and ry ∈ R4 are the rotor displacements in Bx and
By , κ is the rotor drag torque constant, and rd ∈ {−1, 1}4
are the individual rotor spin directions, where rdi = −1 for
counter-clockwise direction and rdi = 1, otherwise.

C. Segment collision avoidance

First, the robot-powerline collision is modeled assuming
there is only one straight powerline. Then, the model is
extended to powerlines composed of several segments.

Let the robot’s body be represented as an ellipsoid with
principal axes {Bx, By, Bz} and principal radii δ. Assume
there is only one straight powerline whose radius is summed
in δ. The parametric equation of the line is given by oW+τ lW ,
where oW and lW ∈ R3 are the origin and direction vectors
of the line, and τ is a parameter. We can transform the line
to the body frame B and scale it with δB :

oB̆ = ∆BqBW ⊙ (oW − pWB) , lB̆ = ∆BqBW ⊙ lW , (3)

where ∆B = diag (1/{δx, δy, δz}). Note that if δ is defined in
a different frame than B, (3) can be rearranged using further
transformations until oW , lW are in its same frame.

Now that the line lies in the scaled reference frame of the
ellipsoid, ensuring that there is no intersection between them
is equal to proving that the distance from the line to the origin
of that reference frame is higher than 1. The squared point-line
distance formula from the origin of B̆ gives:∥∥oB̆ × lB̆

∥∥2∥∥lB̆∥∥2 > 1, (4)

which can finally be simplified by using ∥a× b∥2 =
∥a∥2 ∥b∥2 − (a · b)2:(∥∥oB̆

∥∥2 − 1
)∥∥lB̆∥∥2 − (oB̆ · lB̆)

2 > 0 (5)

When working with real powerlines, we need to use more
than one straight segment to approximate the curved shape
of the powerline in the maneuver’s surroundings. In that
case, the collision constraint (5) could be activated outside
of its corresponding segment and interfere with the perching
maneuver. Thus, we need to extend this constraint such that
it is not activated outside of its segment’s area of effect.

The minimum value of (5) is reached whenever oB̆ = 0 or
oB̆ ∥ lB̆ . In these cases, the value will be −

∥∥lB̆∥∥2. In (3), lB̆
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is a matrix multiplied by a rotated unit direction vector. The
maximum possible value of

∥∥lB̆∥∥ appears when qBW ⊙ lW is
aligned with the principal eigenvector of ∆B , and corresponds
to λ1(∆B), which is the maximum eigenvalue of ∆B . Thus,
we can force the collision avoidance function (5) to be always
positive by summing λ2

1(∆B) to it. We define the following
function to add that value whenever the robot is outside of the
segment’s surroundings:

k(x) = λ2
1(∆B) sigm((∥pWB − oW ∥))), (6)

where ∥pWB − oW ∥ is the distance from the robot to the
segment’s center, and sigm (·) can be any sigmoid function
that is scaled and translated such that k is 0 when this distance
is lower than half the segment’s length plus the highest
radii in δB , and is λ2

1(∆B) otherwise, since then the robot
will never collide with the segment, even when intersecting
with its corresponding line. We chose the arctan function
since it is available in two of the main NLP code-generation
frameworks [18], [19], while others such as tanh are only
available in [19]. Finally, summing (6) into (5) ensures that
the resulting collision avoidance constraint is only activated in
the surroundings of the segment:

hca (x) :=
(∥∥oB̆

∥∥2 − 1
)∥∥lB̆∥∥2 − (oB̆ · lB̆)

2 + k(x) > 0 (7)

D. Segment perception awareness

Following the previous approach, we first assume there is
only one straight powerline in the scenario, then extend to
the segment-based case. Let C be the reference frame of a
camera mounted on the robot. The position and orientation of
C are given by pWC and qWC , which are computed from the
robot’s current body pose and a fixed transformation TBC =
{pBC ,qBC}. A line is expressed in frame C as:

oC = qCW ⊙ (oW − pWC) , lC = qCW ⊙ lW (8)

We then redefine the line by its Plücker coordinates, i.e. the
normal of the plane that intersects with it and the origin, and
its direction vector: {nC , lC}, with nC = oC × lC .

Assume a classical pinhole camera model with parameters
{fx, fy, cx, cy}. For brevity, assume the pixel coordinates
are centered at the optical axis (i.e., cx = cy = 0). The
transformation of the direction vector onto the 3D image frame
I is given by lI = KP lC , with KP = diag (fx, fy, 1) ∈ R3×3

being the intrinsic camera matrix. Similarly, the vector nC

is transformed onto the image coordinates as KLnC , with
KL = diag (fy, fx, fxfy) ∈ R3×3. The point-line reprojection
error for a given 2D image point m is [20]:

r̃ (x) =
mTnI√

n2
I,x + n2

I,y

, (9)

where m ∈ R3 is the 2D point in homogeneous coordinates.
As stated in Section II, it is convenient to keep the tracked

objects (either points, lines, or other shapes) as close as
possible to the center of the image. This allows the robot
to focus on such objects and avoid losing track of them,
potentially improving the accuracy of the object’s localization

Fig. 2. Visualization of proposed mathematical modeling for (9) and (10).

overtime (which is especially important for perching maneu-
vers and inspection tasks). We can achieve this by choosing
mT = ez = [0, 0, 1]

T and minimizing (9) for it.
However, there are two ways in which this function can

be driven to zero: by having the line centered in front of the
camera, and by doing so behind the camera. The second case
is undesirable, since for a single pinhole camera this means the
system may not see the line. We need an additional constraint
to ensure the line is centered in front of the camera. To define
this constraint, we first obtain two new vectors:

p2D
I = nI × (ez × nI) , d3D

I = lI × nI (10)

The vector p2D
I ∈ R3 is directed to the closest point of

the line from the center of the image when the line is in 2D
normalized image coordinates (Fig. 2). Conversely, the vector
d3D
I ∈ R3 is the closest point from the line to the origin of I

when the line is in 3D unnormalized image coordinates.
As stated before, we are interested in keeping the 2D line

as close as possible to the center of the image, which is the
same as keeping p2D

I as parallel as possible to ez . Since the
vector p2D

I marks where is the nearest point of the line from
the center of the image, if we obtain its intersection with the
3D line we can recover its sign and force that is positive, thus
having the line in front of the camera when minimizing (9).
The result of solving such intersection is:

p3D
I =

p2D
I

d3DI,z
, p3DI,z =

n2
I,x + n2

I,y

d3DI,z
(11)

Note that the sign of p3DI,z is determined by the sign of d3DI,z
as its numerator will always be ≥ 0. Thus, forcing the line to
be centered in front of the camera is equivalent to forcing the
following line cheirality (i.e., side) constraint:

hlc (x) := d3DI,z > 0 (12)

We now extend the given formulation to work with seg-
ments, by defining a third constraint that is complementary
to (12). Let e1I and e2I ∈ R3 be the two endpoints of
the inspected segment in the 3D image coordinates. These
points lie in the same line as p3D

I , so the dot product between(
p3D
I − e1I

)
and

(
p3D
I − e2I

)
is negative whenever p3D

I is
located between e1I and e2I . This serves to create a constraint
to keep p3D

I between the endpoints of the segment. If the line
is centered, this means at least half of the image will contain
the segment. The proposed segment visibility constraint is thus
formulated as:

hsv (x) := (−1)
(
p3D
I − e1I

)
·
(
p3D
I − e2I

)
> 0 (13)
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V. PERCHING TRAJECTORY GENERATION

A. Optimization Problem Formulation

We model the perching maneuver generation as a discrete-
time multiple-shooting NLP problem sampled in N shooting
points over a non-fixed time horizon T , which is also an
optimization variable of the problem:

min
u0...uN−1

T

N∑
k=0

∥ỹk∥2Qk
(14a)

s.t. x0 = xinit (14b)
Tmin ≤ T ≤ Tmax (14c)
xk+1 = f (xk,uk) ∀k ∈ [0, N − 1] (14d)
zmin ≤ pWB,z ∀k ∈ [0, N ] (14e)
0 ≤ γ ≤ γmax ∀k ∈ [0, N ] (14f)
umin ≤ u ≤ umax ∀k ∈ [0, N − 1] (14g)
0 < hlc (xk) ∀k ∈ [0, N ] (14h)
0 < hsv (xk) ∀k ∈ [0, N ] (14i)

0 ≤ hca,i (xk)
∀k ∈ [0, N ]

∀i ∈ [0, NL − 1]
(14j)

The problem (14) is built as follows: (14a) is the cost
function to minimize, including final and running terms; (14c)
are the limits of the total maneuver time T ; (14d) are the
dynamics of the system (see next paragraph); (14e) is the
allowed minimum height; (14f),(14g) are the constraints for
the motor thrusts and their derivatives; (14h),(14i) are the line
cheirality (12) and segment visibility (13) constraints for the
objective line; and (14j) are the line avoidance constraints
defined by (5) and (6) for all the present segments.

We implement the variable time horizon by modeling the
system dynamics (14d) using a Runge-Kutta4 integration of
the state space, scaling its derivative (1) by the total time T
and using an integration step of 1/N seconds. Since problems
where the total maneuver time is an optimization variable
suffer from bad linearization characteristics, we chose the
ForcesPRO framework [21] with [22] as the NLP solver, which
embedded a linear system solver with high numerical stability.
Convergence was typically achieved between 100 and 1000
iterations of its Nonlinear Primal-Dual Interior-Point method,
depending on the complexity of the required maneuver. This
was a feasible requirement since each maneuver is only
computed once before execution. A further analysis of this
is provided in Section VI.

The cost function (14a) consists of a set of errors ỹk

dependent on the states and the inputs of the system, and
weighted by a diagonal matrix Qk for every shooting node.
Different values of ỹk are used to model the terminal and
running costs (reference frames omitted for brevity):

ỹk =


[[
γk

T
N + uk

T 2

2N2

]T
wT

k r̃ (xk)

]T
k ∈ [0, N − 1][

p̃T
k q̃T

k ṽT
k w̃T

k

]T
k = N

(15)
It can be seen that ỹk ∈ R8 for the running cost and

ỹk ∈ R12 for the terminal cost. The running cost minimizes

Solve perching
NLP

Solve recovery
NLP

Collision?Integrate with
desired step

Integrate with
desired step

Increase N

Increase N

Collision?

Yes

No

Yes

No

Perching

Recovery

Fig. 3. Developed procedure for perching+recovery trajectory integration.

the integral of the motor thrusts (which is
∫ T

N

0
(γ + ut) dt =

γ T
N +u T 2

2N2 ) , as well as the angular velocities wk of the robot
and the reprojection error r̃k of the objective line. The terminal
cost minimizes the position and orientation error p̃k, q̃k as
well as the final linear and angular velocity errors ṽk, w̃k at the
desired perching state xperch. The constraints (14h)-(14j) are
always present during the whole horizon prediction. However,
while satisfying constraint (14j) is critical to avoid collisions
with powerlines, doing so for the perception constraints is not
practical, since the camera may be mounted at a different
place from the perching mechanism, and thus will not see
the powerline at the final part of the maneuver. To solve this,
we model the constraints (14h),(14i) as soft constraints with
exponentially decaying costs, such that they are negligible at
the end of the trajectory. We do the same for the cost of r̃k.
Finally, notice that since the lines are in global axes (i.e.,
mapped with any state estimator that tracks their position in
W ), the NLP does not need them to be inside the camera’s
FOV in order to work.

B. Trajectory and Recovery Integration

We are interested in perching trajectories that can recover
the robot to a safe position without any collisions even if
the perching mechanism fails. To do so, we use the same
optimization problem from (14) with different cost values
(and without perception costs and constraints) to generate a
recovery trajectory that starts right after the perching trajectory
finishes (see Fig. 3): First, we solve (14) to compute the
perching trajectory. Second, we integrate its result with a
finer resolution (we used 1ms for the proposed experiments)
using a Runge-Kutta4 integration scheme. Third, we check
the integrated trajectory for any possible collisions between
shooting nodes that could have not been detected when solving
the NLP. If necessary, we can solve (14) again with a higher
N using the current solution as a warm start (we found
N = 30 is usually good enough for trajectories of several
meters and T ≤ 5 s). Finally, we use the end of the perching
trajectory as the beginning of the recovery and solve (14) for
it, also integrating its result afterwards and adding it after the
integrated perching maneuver.

The resulting trajectory is continuous for the whole maneu-
ver, intrinsically leads to a safe recovery if the perching is not
completed, and is dynamically feasible.
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Fig. 4. Actual robot trajectory performed by the resulting NMPC in an
experiment where the provided reference had two collisions (red zones). The
front of the robot is colored in green. The powerlines appear in red. The
numbers denote the commanded waypoints.

VI. EXPERIMENTAL VALIDATION

The proposed method was evaluated onboard a custom
quadrotor platform developed at the Robotics and Perception
Group (RPG) of the University of Zurich, with a weight of
0.8 kg and a thrust-to-weight ratio of 4:1. A Radix FC board
was used as the low level flight controller, and a NVIDIA
Jetson TX2 as the main onboard computer. The robot was
equipped with a Realsense D435i camera in its front face.
The state estimates of the quadrotor are given by an optical
tracking system running at 120Hz, while the positions of the
mockup powerlines are obtained by [20], a visual-inertial state
estimator which maps point and line features with 10Hz visual
feedback (enough for mapping static lines), running in the
CPU of the system. It was adapted to map red lines by only
using the images’ red channel in its line search module.

The developed method was implemented in C++ following
the scheme in Fig. 3, and then interfaced as a ROS node.
Different experiments were performed with the developed
NLP with and without perception awareness. To remove the
perception awareness, it is only necessary to disable con-
straints (14h) and (14i), and remove (9) from the NLP, which
is done by setting their correspondent weights to zero. The
control actuations of the quadrotor during flight are computed
by a NMPC controller from RPG described at [16]. The
controller runs at 100Hz using a Real-Time Iteration (RTI)
scheme [23] and is then cascaded with a high-frequency L1
adaptive controller [24] that corrects for disturbances such as
aerodynamic drag or model inaccuracies.

Finally, in this work we are not interested in the develop-
ment of a specific perching mechanism, but rather in providing
the optimal positioning that such mechanisms would require
for the perching to happen. Thus, we focus the experiments
on the maneuvering itself and always recover the quadrotor to
a safe position after reaching the perching state.

A. Inspection experiments

First, we validate the mathematical modeling from Section
IV decoupled from the perching trajectory generation system.
To do so, we incorporate constraints (14h)-(14j) and cost (9)
into the onboard NMPC controller described in [16], without

Fig. 5. Collision avoidance constraint (14j), line reprojection error (9),
and line cheirality (14h) and segment visibility (14i) constraints during the
experiment in Fig. 4. The constraint violation zone is marked in red.

making use yet of the proposed NLP trajectory generation
system. The resulting controller is validated through missions
where the robot performs powerline inspection (see Fig. 1 for
a visual clue of the line setup). The robot is commanded
to follow straight lines between a set of waypoints which
is intentionally thought to lead the robot to collide with the
powerlines and to maintain them far from the center of the
camera. The resulting NMPC controller follows the given
trajectories adapting its yaw and height to avoid collisions
while maximizing the visibility of the required powerline. Fig.
4 shows that the trajectory actually performed by the robot
successfully avoided the two potential collisions in contrast
to the waypoint trajectory. Fig. 5 compares the reprojection
error between the commanded trajectory and the one actually
followed by the NMPC controller, showing a mean improve-
ment of 500%, which involves 100 pixels. The perception and
collision avoidance constraints are satisfied during the whole
flight, except for the segment visibility constraint during brief
instants. This exhibits the advantages of including the pro-
posed modeling in the NMPC controller. Another advantage
is that the line positions can be updated online since the NMPC
executes at real time. However, notice that the controller
still requires a feasible trajectory or reference to follow. For
agile perching, this can not be simply the desired pose or a
hover-to-hover minimum snap trajectory. The proposed NLP
solves the trajectory generation and is validated in Section
VI-B. Moreover, since the NLP already accounts for collision
avoidance and perception awareness, the controller will not
need to include these, so other trajectory-tracking controllers
with lower computational demand could be used [16].

More than 20 experiments were performed providing the
robot with various trajectories and powerline configurations,
and the resulting NMPC always achieved similar results. All
these experiments were performed with up to three segments
and with a 100 Hz RTI control rate with the only requirement
of formulating all the included constraints as soft ones, whose
costs are started at zero and are slowly increased at the
beginning of the flights. If more than one line should be
inspected at the same time, one could append more costs and
constraints for each line (increasing the computational cost),
or track the centroid of the lines as an intermediate solution.



PANEQUE et al.: PERCEPTION-AWARE PERCHING ON POWERLINES WITH MULTIROTORS 7

Fig. 6. Comparison of two perching maneuvers with and without perception
awareness. The perception-aware maneuver (orange) is followed by the black
quadrotor, while the other (blue) is followed by the grey quadrotor. The green
lines show the orientation of the robot’s camera at each instant.

B. Perching experiments

We now validate the whole proposed perching trajectory
generation system in different maneuvers that are computed
and executed onboard the robot. We assume the perching end-
effector is installed at the bottom of the quadrotor as in [11].
We add an additional degree of freedom to the end-effector,
and assume its yaw orientation can be controlled, so we can
better illustrate the effect of perception awareness.

Three powerlines were set up with different inclinations (see
Fig. 1). The robot was set to hover in front of them with
its camera parallel to the lines. The robot first performs a
perching maneuver to reach the closest line at 80° without
including perception awareness. The robot is able to follow
the trajectory, reach the perching pose with zero velocity, and
recover to a safe position afterwards. Then, the maneuver is
computed and executed for the same end pose, but including
perception awareness. Fig. 6 shows both trajectories from the
same initial point. By performing an initial correction, the
quadrotor is able to reach the same end pose while keeping the
powerline centered in its camera during most of the trajectory.
Fig. 7 shows the evolution of the reprojection error and the
segment visibility constraint during the maneuver, which was
more favorable in the perception-aware case. A comparison of
final position and orientation errors within multiple flights is
given later on Table I.

After showing the capabilities for perception-awareness, we
test its functioning in extreme perching maneuvers, where the
drone stops completely upside down at the perching pose. We
note that this has currently only been done with quadrotors
with bi-directional thrust capabilities [11]. We set up the
bottom powerline at a height of 3’7 m, leaving roughly 2’5
m of operation for the quadrotor in the Z axis (its minimum
allowed height is of 0.8 m). The robot is set to hover in front of
the line and then computes and executes the required perching
maneuver. Its tracking can be seen in Fig. 8. Moreover, the

Fig. 7. Line reprojection error (9) and segment visibility constraint (14i)
during both maneuvers in Fig. 6. The obstacle avoidance (14j) and line
cheirality (14h) constraints are always satisfied for both maneuvers and thus
are not shown. The constraint violation zone is marked in red.

Maneuver pRMSE (cm) qRMSE (°) tp (ms) tr (ms)
80 ° 3.1 2.0 432 221

80 °+ PA 3.4 2.6 1526 584
20 ° 2.7 2.1 457 351

20 °+ PA 4.8 7.2 1893 461
180 ° 6.9 3.0 532 1214

TABLE I
POSITION AND PITCH-ROLL RMSE OF DIFFERENT TRACKED PERCHING

TRAJECTORIES, AND COMPUTATIONAL TIME TO PRODUCE THEM.

posterior recovery of the system is also accomplished without
reaching the demanded minimum height. In this case the effect
of the perception awareness becomes negligible unless its
corresponding costs are significantly increased, resulting in
a divided maneuver that first moves towards the line while
keeping it in view and then only performs perching when the
perception costs decay. This is an expected outcome since the
already restrictive demanded maneuver leaves no margin to
reorientate the robot’s front during it. Thus, this result is not
further analyzed.

Finally, we analyze the average performance of the whole
system in a set of different perching experiments. We repeat
the experiments presented in Figs. 6 and 8, and add an
additional experiment where the robot performs a perching
maneuver to the top line in Fig. 6, at a pitch angle of 20°,
with and without perception awareness. For 5 experiments of
each maneuver, we compute the mean RMSE position and
orientation errors at the perching point, as well as the time
required for computing the perching and recovery maneuvers.
Table I summarizes these results. We observed that in general
the trajectories could be tracked with fairly low position error
with the exception of the upside-down perching. This could
potentially be improved with a finer tuning of the onboard
controller, though it can be compensated by having a certain
degree of tolerance in the perching mechanism. On the other
hand, we found that the performance of perception-aware
maneuvers was highly dependent on the starting position with
respect to the objective line (all performed maneuvers started
at the same relative position to the whole setup). For example,
the 20°PA maneuver was harder to compute and follow since
it was started from a lower altitude than the objective line,
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Fig. 8. Tracked perching maneuver where the robot finishes upside-down.
The numbers denote the evolution of the trajectory.

while this was not the case in the one with 80°. This opens
future research on how to compute the optimal starting point
for a perching maneuver.

VII. CONCLUSIONS AND FUTURE WORK

In this work we presented a novel perching trajectory gen-
eration framework which generates highly versatile perching
trajectories that satisfy collision avoidance with powerlines
and maximize their visibility during flight. The efficacy of our
method was demonstrated on a set of real world experiments
onboard a computationally limited quadrotor. We show that
the quadrotor is capable of executing the perching trajectory
with minimal tracking error and complete obstacle avoidance,
even at very high angles of attack. If the perching mechanism
were to fail, our algorithm provides a fail safe trajectory such
that the drone automatically recovers and maintains flight.
Additionally, we show that our formulation is capable of
running inside an onboard controller in real time, providing
it with capabilities for inspection of powerlines, avoiding
collisions with them and ensuring that the inspected line is kept
in view at all times. In the future, we want to explore how the
starting point of a perching trajectory impacts its performance,
and how to utilize this information to increase the likelihood of
a successful perching. We also hope to explore how multiple
cameras or sensors can be taken into account simultaneously
into the same perching maneuver, combining their potential at
the parts of the maneuver where they best suit for.
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