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Generally, classification problems catalog instances according to their target variable with-
out considering the relation among the different labels. However, there are real problems
in which the different values of the class are related to each other. Because of interest in
this type of problem, several solutions have been proposed, such as cost-sensitive classi-
fiers. Ensembles have proven to be very effective for classification tasks; however, as far
as we know, there are no proposals that use a genetic-based methodology as the meta-
heuristic to create the models. In this paper, we present OCEAn, an ordinal classification
algorithm based on an ensemble approach, which makes a final prediction according to
a weighted vote system. This weighted voting takes into account weights obtained by a
genetic algorithm that tries to minimize the cost of classification. To test the performance
of this approach, we compared our proposal with ordinal classification algorithms in the
literature and demonstrated that, indeed, our approach improves on previous results.
� 2021 The Authors. Published by Elsevier Inc. This is an open access article under theCCBY-

NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The vast majority of classification algorithms predict a categorical variable and do not consider a possible order relation
among the labels. This is one of the great challenges that exist today, because a great variety of problems exist in which the
entries to be classified maintain a positional or ordinal dependency that conditions the best solution. The discipline that
addresses this type of problem is called ‘‘ordinal classification” or ‘‘ordinal regression” (the terms are used interchangeably).
This technique attempts to solve this problem by considering a set of ordered labeled data, in which each instance is a pair
key-value ðx; yÞ 2 X � Y that follows an unknown distribution Pðx; yÞ, where x is an input vector that belongs to a space X, and
y is a label within a finite space of ordered labels Y ¼ fC1;C2; . . . ;Ckg [25]. These labels can take any value, even numeric, but
there is no meaningful numeric difference among them [17]. The goal of ordinal classification is to find a classifier or a func-
tion h : X ! Y that predicts the value of y using the knowledge obtained from x. The effectiveness of these algorithms is mea-
sured through a loss function Lðy; ŷÞ that determines the cost of predicting ŷ when the actual value is y. This cost function
takes into account that there is a natural order between the labels to correctly guide the algorithm being used to solve the
problem. This order can be expressed by C1 � C2 � . . . � Ck, where � expresses a relation of order. Ordinal classification has
been successfully applied in several works, as in [35], where an order-preserving tree-generation algorithm was used to
solve multi-attribute classification problems with k linearly ordered classes.
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Today, ensembles are considered one of the most precise methods of solving problems in the area of machine learning, as
can be seen in [37]. The main idea of ensemble algorithms is to combine multiple classifiers in some way (typically by
weighted or unweighted voting) to produce a single classification that is generally found to be more accurate than any of
the classifications given by each of the base classifiers alone. The classifiers used to compose the ensemble can be algorithms
of any type, such as neural networks, decision trees, and so on. These algorithms take a set of labeled data and produce a
model that is later used to label new examples with unknown labels. The main objective of combining the outputs of these
classifiers is to compensate for the errors that a classifier can make with the outputs of other base classifiers [37].

The main line of research in the field of ensembles is to find the optimal way to combine the classifiers that compose it.
The work carried out in [38] serves as an example on how to combine base classifiers; they propose a new ensemble method
based on artificial neural networks, called CCE, to solve multiclass classification problems, where the final output is calcu-
lated by averaging the outputs associated with each class and choosing the class with the maximum value.

In this study, we present OCEAn (Ordinal Classification algorithm based on an Ensemble Approach), which makes a final
prediction according to a weighting-vote system, with the weights being optimized by means of a genetic algorithm. To ver-
ify the performance of this ensemble, we compared it with the experimentation carried out in [19], where datasets from dif-
ferent sources and with different characteristics were used. As listed above, many papers have been published on ordinal
classification and ensembles. However, as far as we know, no one has yet combined ensembles to solve classification prob-
lems where an intrinsic order exists between class labels by means of gene-based algorithms. Research on the combination
of these techniques is promising because genetic algorithms and ensembles have shown very good results in classification
tasks [28,36].

The rest of this paper is organized as follows: In Section 2, we introduce related works. In Section 3, we define in detail the
OCEAn approach. In Section 4, we explain the datasets used in the study, the methodology used for the comparison, and the
experimental results obtained. Finally, in Section 5, we provide our conclusions.
2. Related works

All the techniques used to date for ordinal classification can be organized in 3 broad groups [19] as shown in Fig. 1: naïve
approaches, ordinal binary decompositions, and threshold models.

Naïve approaches frame all the algorithms that try to solve ordinal classification problems from a decomposition point of
view; that is, the methodology to decomposes the problem in other simpler paradigms making some conjectures. Within this
large group, there are 3 approaches: regression, nominal classification, and cost-sensitive classification. First, in regression
approaches, the target variable is converted to an integer in order to adjust the ordinal solution by means of a regression
technique and subsequently rounded in a postprocessing step. Usually, a relation exists between the actual value assigned
and the position of the label within the order of the subset. However, this is not always the best approach, because the
returned real values do not fully take into account the integer ”order” aspect that underlies an ordinal classification problem.
In 2018, a regression model to discover the relation between treatment concerns and the fertility of 1218 woman was pro-
posed in [18]. Second, when the order between the classes is not taken into account and the algorithm that is trained treats
the labels as if they were purely nominal labels, this is called nominal classification. The problem with this type of technique
is that, by not taking into account the nature of the data, the ordering information is lost, so a larger dataset is needed to
extract valuable knowledge. An example of this approach can be seen in [31], where a classification and regression tree
(CART) was used to determine the quality of the services in the public transport on the Granada metropolitan transit system
in 2007. Third are the cost-sensitive methods. In some problems, in addition to considering the order among labels, it is also
important to know that the cost of predicting a y1 label when the real one is y, is different from the cost of predicting y2 when
the real one is still y. An example of this might be predicting whether a person will commit bank fraud or not. It is worse for
the bank when the algorithm predicts that no fraud will be committed and it is actually committed than when the reverse
occurs. In cost-sensitive classification algorithms, the costs are reflected in a cost matrix Cði; jÞ, in which the columns of the
Fig. 1. Ordinal classification approaches.
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matrix indicate the actual class and the rows indicate the predicted class or vice versa; each of the positions of the matrix
indicates the cost caused by predicting the label corresponding to row i when the actual class is that of column j.

Another large group into which ordinal classification algorithms fall is called ordinal binary decompositions. This group
is based on the idea of ‘‘divide and conquer,” because its main feature is that it divides the ordinal label into several binary
labels. These models can be subdivided in 2 groups: multiple model and multiple-output single model approaches. In the first
case, a different model is trained for each of the sub-problems. In [13], an ordinal classification problem is solved by inde-
pendently processing each binary classification problem, and then binary outputs are combined into a predicted label. Still
within this group, another approach takes into account a certain order between the target variables. The method consists of
converting an ordinal classification problem into separate binary problems, so that it is transformed from a k-class problem
to k-1 binary class problems. The first step is to generate as many datasets as k-1 binary problems exist and, once these data-
sets are generated, apply a classification algorithm to each of the generated data sets. When predicting the label for a new
unknown instance, each of the probabilities of the original k ordinal classes is estimated using the k-1 learning models gen-
erated, and the one with the highest probability is then selected. In [6], an ordinal hyper-plane ranking algorithm, OHRank,
based on multiple-model approach, was proposed. It was applied to the problem of estimating human ages via facial images.
In the multiple-output single model, only one model is trained for all sub-problems encountered when dividing up the class.
One of the most common techniques used when dealing with multiple-output models is neural networks, as they easily
allow multiple responses to be dealt with in a friendly way. In [29], a deep convolutional neural network was used to predict
the age of people from photos of their faces; in particular, an ordinal regression problem was transformed into a series of
binary classification sub-problems.

Finally, threshold models are the best known and most successful models in modeling problems with ordinal character-
istics. These approaches take into account that there is a continuous variable that can explain the behavior of the ordinal
variable. The main objective of these algorithms is to find a function f ðxÞ that allows the mapping of the continuous values
predicted into the ordinal labels. This vast group can be subdivided into 7 subgroups: cumulative link models, support vector
machines, discriminant learning, perceptron learning, augmented binary classification, ensembles, and Gaussian processes. A deep
convolutional neural network model for ordinal regression using cumulative link models in the output layer is proposed in
[41]. A support vector machine (SVM) model can be seen in [9], where SVOREX, an SVM with explicit constraints, is used to
carry out a classification approach that deals with the remitting behavior of immigrants according to their individual char-
acteristics. A comparison of 3 linear discriminant learning algorithms used for ordinal classification can be found in [5],
where the experiments were carried out on synthetic and real datasets. In 2005, a perceptron learning method for ordinal
classification was proposed in [10], where they developed a new algorithm, called PRank, to predict user ratings on new
films. Furthermore, a new evaluation methodology for the algorithms used for text line segmentation is developed in [4],
using an augmented binary classification approach. An ensemble method for ordinal classification in the transportation sec-
tor was developed by [49]. Finally, within the group of Gaussian processes, we find the work carried out by [8], where a gene
selection algorithm was developed to discover gene expression patters associated with ordinal clinical phenotypes.

Many researchers make use of ensembles in classification tasks because of their high performance. This type of learning is
considered the state-of-the art approach for solving not only supervised problems [1], but also unsupervised problems [11].
Ensemble methods use multiple learning algorithms to obtain better predictive performance than could be obtained from
any of the base learning algorithms alone [30].

Ensembles also owe their good performance to their relation with other well-tested and proven methodologies, such as
granular computing [47] or multitask learning [39]. Granular computing is a paradigm of information processing. From a
practical perspective, granular computing is considered a way of structured problem solving [48]. In general, it involves 2
operations: granulation and organization. Granulation is based on the decomposition of a whole into different parts, as is
the case with the bagging methodology, since it involves random sampling of the data. In contrast, organization takes care
of integrating various parts into a whole [34], again reminiscent of bagging, because this algorithm combines the different
outputs of the base classifiers to provide a final prediction. In the work carried out in [26], the authors proposed a nature-
inspired approach of ensemble learning that was validated through experimental studies by using real-life datasets. They
showed that their proposal overcame limitations of the bagging approach. Regarding multitask learning methodologies, in
[44], a new multitask ensemble-based learning framework was proposed, whereby the authors demonstrated a new way
to manipulate class labels to construct a strong ensemble of classifiers. They generated different new class labels through
the Cartesian product, which were used to build a new component classifier for each of them. In addition, a new ensemble
decision tree learning algorithm was proposed in [45]. The novelty of this proposal was that each input attribute was con-
sidered an extra task to introduce bias in the classification problem. In terms of ordinal regression, several papers use mul-
titask learning; for example, in [24] an SVM algorithm was applied to several ordinal regression scenarios using multitask
learning via conic programming.

Ensembles can be classified into 2 categories depending on how the individual outputs of the base algorithm are aggre-
gated [37]: weighting methods and meta-learning methods. In ordinal classification, the idea is usually to adapt existing
ensemble algorithms to take into account the ordinal nature of the data being addressed. In [43], an SVM-based ensemble
was implemented for ordinal regression, and its effectiveness was demonstrated by applying it to benchmark synthetic data-
sets. Another interesting paper applying ensembles for ordinal regression can be found in [20], where a modification of the
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well-known k-nearest neighbour (knn) method was applied to a problem with an intrinsic order among its instances. They
used a weighted majority vote mechanism for the aggregation process.

All of the literature on this subject indicates that better results can be obtained when using the ensemble methodology
compared with individual base algorithms. Therefore, we propose a new methodology within this paradigm. To our knowl-
edge, no other paper has used genetic algorithms to determine the way in which the base algorithms are organized to pro-
vide an output, which is why we propose this new way of combining the individual classifiers.
3. Proposal

Ensemble methods are learning algorithms that are based on a set of classifiers that label new instances by making a con-
sensus decision from the predictions made by them. One of the possibilities to make that decision is to carry out weighted
voting with the predictions proposed by the different classifiers. In this work, we present OCEAn, a new algorithm framed
within threshold algorithms, which consists of an ensemble that uses a genetic algorithm to determine the optimal weight
for each of the base classifiers that make up the ensemble.

The steps followed in our methodology can be seen in Fig. 2. There are 3 main phases, which will be enumerated below:

1. Cost-Sensitive Base Classifiers Training: In the first step, the dataset is divided in 3 parts, the first for training the cost-
sensitive base classifiers, called DStrain, the second for training the genetic algorithm and obtaining the best weights, DSopt ,
and the third for validating the proposal, DSval. The training subset is used to train the t base classifiers chosen to compose
the ensemble using the matrix cost M. Then, once the classifiers have been trained, 2 matrices of predictions, named Copt

and Cval, are obtained, with as many rows (as instances) as the optimization and validation subsets contain, respectively,
and as many columns as there are models that have been trained. These matrices are the result of predicting with t mod-
els, the label for each of the instances of the 2 subsets of data DSopt and DSval, respectively.

2. Ensemble Optimization: In the second phase, using Copt , an ensemble optimization approach is used to establish the
weights that should be given to each of the models to provide an optimal solution to the classification problem. The opti-
mal solution is that which leads to the minimal cost, using for that purpose the cost matrix M in the error function. The
optimization process; that is, the search for the optimal weights, is performed using a genetic algorithm.

3. Evaluation: In the third phase, predictions obtained in the first phase on the validation set, Cval, are used to apply the
weights that conform the ensemble and then evaluate the performance of the proposal.

Each of these steps will be detailed below, as well as some definitions needed to understand the process. First, we explain
the necessary steps to obtain the prediction matrices that will be used as input to the genetic algorithm. We will specify the
cost-sensitive classifiers and the parameters used. Second, we explain the steps followed by the ensemble optimization algo-
rithm. Third, we will explain the 2 measures used to evaluate the results: mean absolute error (MAE) and mean zero squared
error (MZE). Finally, we will show the pseudocode for the algorithm.

3.1. Cost-sensitive base classifiers training

In the first step, the input data to the genetic algorithm are generated. With the aim that our approach takes into account
the cost idea, we decided to use cost-sensitive classifiers as the base for the ensemble. A cost-sensitive algorithm uses a cost
Fig. 2. Steps in the OCEAn proposal.
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matrix M to generate a model with the lowest cost. The cost matrix encodes the penalty of classifying samples from one class
as another.

To formalize our OCEAn approach, several definitions are required.

Definition 1 (Input Dataset). Let DS ¼ fðe1; l1Þ; . . . ; ðen; lnÞg be an input instances dataset, where each ei is an n-tuple of
attribute values belonging to a certain instance space X, and li is a label from a label set L ¼ f1;mg where m is the number of
different labels in the dataset DS.
Definition 2 (Cost Matrix). Let M be a cost matrix defined as a squared matrix. The element Mði; jÞ of the matrix represents
the cost of predicting label j when the real is i.
Definition 3 (Cost-Sensitive Base Classifiers). Let P ¼ fp1; p2; . . . ; pi; . . . ; ptg be a set of t cost-sensitive base classifiers. Each pi

classifier, given an input dataset, estimates the label lj of each instance ej, taking into account the cost matrix M.
The first step implies the building of the input data for our proposal. To this aim, the dataset DS is divided in 3 parts,

named DStrain;DSopt , and DSval. DStrain corresponds to the data that will be used in the cost-sensitive classifiers training step.
The 2 remaining parts will be used for steps 2 and 3 of our proposal. DSopt is the part of the dataset used for the ensemble
optimization process; that is, the data used to find the best weights. Then, DSval, which will be reserved until the end of the
process, will be used in the evaluation phase. Let ntrain;nopt , and nval be the number of instances in DStrain;DSopt , and DSval,
respectively. The classifiers in P are trained with cost matrix M and the DStrain subset. From this training, 2 prediction matri-
ces are obtained: Copt (nopt � t) and Cval (nval � t). A Cij term represents the prediction carried out by the classifier j in the
instance i (ei), as shown in Fig. 3:

3.2. Weighting-vote ensemble optimization

It is well known that the objective of ensemble methods is to overcome the results given by individual classifiers. There
are several ways to combine the outputs of the cost-sensitive classifiers used to conduct the ensemble. The technique that
we used is the weighting-vote method, as described in [14]. With this technique, a specific weight is assigned to each of the
classifiers used to build the ensemble, and the weight is expected to be higher for a particular base classifier that performs
better.

The main problem with this type of method is assigning the optimal weights to each classifier. This problem can be
viewed as an optimization problem [50]. Therefore, we decided to use a genetic algorithm to solve it. The purpose of the
proposed genetic-based algorithm, given a subset of data (in this case DSopt), is to find those weights for each of the base
classifiers that predict new instances in the best possible way (in this case, those predictions that imply the lowest cost).
Five main operations in genetic algorithms are repeated until the stopping criterion G (generation number) is reached. They
are described below:

Initialization and coding: In this work, each chromosome represents the weight associated with each base classifier. We
have used a positional encoding, where the gene ith represents the weight associated with the ith base classifier. Therefore,
chromosome W has the following form:
Fig. 3.
with DS
DSopt an
W ¼ ðw1;w2; . . . ;wi; . . . ;wtÞ

where t is the number of base classifiers from P. Each population in the genetic algorithm is composed of N chromosomes.

Evaluation: The evaluation of individuals is carried out on the basis of an error function, F, which calculates, for each of
the instances of the dataset, what the cost would be of predicting their label, taking into account the vote carried out with the
weights assigned by the individual. Thus, the error function would be the sum of these costs for each of the instances of the
dataset. These costs can be calculated using the cost matrix M, the real label, and the predicted label. The goal is to minimize
this error function.
Example of optimization and validation prediction matrix generation. The dataset is divided in 3 (DStrain;DSopt ;DSval), and then t classifiers are trained
train . (Although t can take any number, we are using t ¼ 2 for readability reasons). Once trained, predictions are made for each of the instances in
d DSval and each of the classifiers, obtaining the prediction matrices Copt and Cval , respectively.
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In a formal way, the error function is calculated as follows:

1. Given a chromosome W, a prediction matrix C and an instance ei for each of the possible labels in the dataset DS, the
weight associated with each is calculated as follows:
f ðW;C; ei; lÞ ¼
Xt

j¼1

wj Cij ¼¼ l
� �

;where Cij ¼¼ l
� � ¼ 1; if Cij ¼ l

0; otherwise

�
ð1Þ

Then, given W and C, the winning label Li is calculated for each instance ei as follows:

Li ¼ argmaxlf ðW;C; ei; lÞ ð2Þ
We illustrate an example in Fig. 4. ConsiderW ¼ ð3;1Þ; that is, the p1 classifier has a weight of 3 and the classifier p2 has a
weight of 1. According to the Copt matrix, p1 predicted label 0 for the instance e2 and p2 predicted label 1 for the same
instance. As a consequence, the value for f ðW;Copt; e2;0Þ is 3, because classifier p1 (with weight 3) predicted label 0.
The value for f ðW;Copt ; e2;1Þ is 1, because the classifier that predicted label 1 has a weight of 1 in W. No classifier pre-
dicted label 2 and therefore f ðW;Copt ; e2;2Þ is 0. Thus, the winning label L2 is 0.

2. Finally, the error function associated with a specific individualW and a prediction matrix C belonging to a dataset DS are-
the calculated as the sum of the costs, according the cost matrix M, for each example in DS:
FðW;C;DSÞ ¼
Xn
i¼1

M li; Lið Þ ð3Þ

where li is the actual label for ith instance. An example can be seen in Fig. 5. In the figure, step 1 is applied to all rows in the
prediction matrix Copt , giving the winning label for each of the instances. Then, taking into account the cost matrix M and
the real label of the 3 instances, the error function is calculated. The error function sums up, for each of the instances, the
cost of predicting the resulting label in step 1 (Li) when the real one is li.

Selection: The methodology used to make the selection is the deterministic tournament method. This technique runs sev-
eral tournaments among a few chromosomes chosen randomly from the population. The number of chromosomes that par-
ticipate in a tournament is called selection pressure, represented by selpress, which determines the probability that individuals
with worse error take part in the tournament. In each tournament, the winning chromosome is the one with a lowest error
value.

Reproduction and crossover. Uniform crossover was used, because it is one of the most effective methods when looking
for all possibilities that can arise when the parents are recombined. In this type of crossover, each gene in the offspring has
the same probability of belonging to one or the other parent. The number of children generated by 2 fathers is called nh.

Mutation. Nonuniform mutation was used in this paper. For each chromosome in the population, this mutation operator
takes into account a mupress pressure, so that each individual in the new population has a probability of a gene mutation of
mupress%. The new gene is randomly generated from a chosen interval.

3.3. Evaluation step

Once the best weights are obtained after the optimization process, these weights are applied to the prediction matrix over
the validation set. This allows us to obtain a prediction, which is used to calculate the validation measures, in this case, MAE
and MZE.

MAE is the average of the absolute differences between prediction and actual observation, and MZE is the error rate of the
classifier:
Fig. 4. Step 1 example. The winning label for the first row in Copt is calculated by taking into account the set of weights W. It can be seen that the winning
label is 0, because it is the one with the maximum weight.
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MAE ¼ 1
n

Xn
j¼1

yj � ŷj
�� �� ð4Þ

MZE ¼ 1
n

Xn

j¼1

yj – ŷj
�� �� ¼ 1� Accuracy ð5Þ
where yi is the true label and ŷi is the predicted label. It should be noted that, in ordinal classification, when the labels are not
numeric, MAE and MZE are calculated by first converting the labels to numerical values based on the cost matrix.

To make the evaluation step more reliable, our proposal took into account several splits of the data, which led to a number
of iterations of the algorithm; that is, the OCEAn proposal was trained and validated with each of the subsets resulting from
each partition, and the resulting measure is the average of the results obtained with each iteration.

3.4. Pseudocode

The pseudocode for our proposal is given in Algorithm 1.

Algorithm 1. OCEAn Algorithm
227



Fig. 5. In this figure, the error function is calculated for Copt . Step 1 is repeated as many times as the number of rows in the prediction matrix, in this case 2
times. Once the winning label has been obtained for each row, the cost of predicting the winning label is calculated considering the cost matrix M.
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4. Results

In this section, we describe the experiments that were carried out to analyze the performance of the proposal. First,
selected datasets are described. Second, algorithm parameters are explained. Third, the software and hardware infrastruc-
ture used is specified. Fourth, the design of the comparison carried out is explained. Finally, a statistical analysis to test
the effectiveness of our proposal is included.
4.1. Data description

To show the power of the ensemble classifier, predictions were conducted based on the same datasets used in a previous
work from Gutiérrez et al. [19] to which we compared our proposal. The datasets can be divided in 2 groups: real ordinal
classification datasets extracted from 2 benchmark repositories (UCI [12] and the mldata.org repository [33]) and regression
datasets retrieved from [7], which are converted into ordinal classification datasets using equal frequency discretization;
that is, discretizing the target variable into different bins with the same number of instances in each bin. All of these data
can be found at http://www.uco.es/grupos/ayrna/orreview, provided by the team that conducted the research in [19]. It
is necessary to point out that these sets of data do not belong to ordinal classification problems, they have a regression func-
tion, and they do not present the same characteristics as those related to ordinal classification, such as data unbalance. This
allowed us to check how our approach behaved in both balanced and unbalanced datasets. In addition, we used a different
number of bins for the same dataset, so we could see whether the size of the intervals influenced the final results.

We used a total of 41 datasets, 17 of which were real ordinal classification datasets. The remaining 24 were those dis-
cretized from the 12 datasets found in [7]. Two different discretizations were made, with 5 and 10 target classes for each
dataset. Tables 1 and 2 show the characteristics of each of the datasets; that is, the name, number of instances, number
of attributes (total number of attributes, taking into account the class attribute as well), and number of classes. The first con-
tains the real ordinal classification datasets, and the second the discretized datasets.
4.2. Algorithm settings

One of the fundamental aspects in this research was the choice of the base algorithms to be used for the ensemble and of
the parameters for the genetic algorithm. The choices made will be described below.
228
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Table 2
Discretized ordinal classification datasets. This group of datasets has the peculiarity that they are not datasets intended for ordinal
classification, but are regression datasets. However, by means of a discretization process, the label can be transformed into Q
different bins with equal frequency and they become suitable for ordinal classification problems. Specifically, for each of the
original datasets, 2 binarizations were applied, one with 5 labels and the other with 10. The original data can be retrieved from [7].

Dataset name # Instances # Attributes # Classes

pyrim5 (P5) 74 27 5
machine5 (M5) 209 7 5
housing5 (H5) 506 14 5
stock5 (S5) 950 10 5
abalone5 (A5) 4177 11 5
bank5 (B5) 8192 9 5
bank5’ (BB5) 8192 33 5
computer5 (C5) 8192 13 5
computer5’ (CC5) 8192 22 5
cal.housing5 (CH5) 20640 9 5
census5 (CE5) 22784 9 5
census5’ (CEE5) 22784 17 5
pyrim10 (P10) 74 27 10
machine10 (M10) 209 7 10
housing10 (H10) 506 14 10
stock10 (S10) 950 10 10
abalone10 (A10) 4177 11 10
bank10 (B10) 8192 9 10
bank10’ (BB10) 8192 33 10
computer10 (C10) 8192 13 10
computer10’ (CC10) 8192 22 10
cal.housing10 (CH10) 20640 9 10
census10 (CE10) 22784 9 10
census10’ (CEE10) 22784 17 10

Table 1
Real ordinal classification datasets. Although many of these datasets have not been used in the literature as ordinal classification
problems, the fact that they have a categorical label can be used to establish an ordering relation among them. These datasets were
extracted from UCI [12] and the mldata.org repository [33]

Dataset name # Instances # Attributes # Classes

contact-lenses (CL) 24 5 3
pasture (PA) 36 23 3
squash-stored (SS) 52 25 3
squash-ustored (SU) 52 24 3
tae (TA) 151 6 3
newthyroid (NT) 215 6 3
balance-scale (BS) 625 5 3
SWD (SW) 1000 11 4
car (CA) 1728 7 4
bondrate (BO) 57 11 5
toy (TO) 300 3 5
eucalyptus (EU) 736 20 5
LEV (LE) 1000 5 5
automobile (AU) 205 26 6
winequality-red (WR) 1599 12 6
ESL (ES) 488 5 9
ERA (ER) 1000 5 9
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4.2.1. Cost-sensitive base algorithms
The main tool used to carry out this proposal was Weka, given its wide use in the literature [42] and its ease of use. Weka

has a cost-sensitive classification algorithm, called ‘‘CostSensitiveClassifier”, which allows any classification algorithm (called
base classifier) to be cost-sensitive. This can be done in 2 different ways: by re-weighting training instances according to the
total cost assigned to each class or by predicting the target value with minimum expected misclassification cost [46]. In this
case, the second option was used, because the intention was to maintain the same importance for each of the instances with-
out the class interfering in it. This method also needs a cost matrix to be able to carry out ordinal classification, and the
experiment took into account numerous datasets each with a different number of classes. Therefore, we opted for the sim-
plest solution in terms of cost matrix; that is, we considered the one in which the position mij of the matrix M is equal to the
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Table 3
Example of different cost matrices for 3- and 4-class classification problems.

3-class cost matrix 4-class cost matrix

0 1 2
1 0 1
2 1 0

0
@

1
A 0 1 2 3

1 0 1 2
2 1 0 1
3 2 1 0

0
BB@

1
CCA
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difference between the categories represented by position ði; jÞ; that is, mij ¼ ji� jj. Table 3 shows 2 examples of cost matri-
ces for 3- and 4-class classification problems.

The base algorithms used for training CostSensitiveClassifier are enumerated in Table 4. These algorithms were chosen
from Weka with the premise that they could handle multiclass labels, which is why we chose the 18 algorithms presented
in the table below. For each category, we selected the best known methods. All were trained with the default parameters
provided by the tool.

4.2.2. Weighting-vote ensemble optimization
As previously noted, a genetic algorithm was the methodology used to establish the best weights in the weighting vote

ensemble. There are 5 basic phases in genetic algorithms, as first stated in [21]: initialization, evaluation, selection, repro-
duction and crossover, and mutation. Because one of the fundamental aspects within genetic algorithms is the parameters
used, a parameter search was conducted. First, we fixed the population size to 200 (N ¼ 200), then we made a grid search
(Table 5) for the 2 datasets with the fewest instances for both truly ordinal and discrete datasets; that is, contact lenses (CL)
and pyrim5 (P5), and then we kept the parameters that provided better results. The parameters chosen for each of the phases
are listed below and can be seen in Table 6.

1. Initialization: The initial population consisted of 200 individuals (N ¼ 200), each of which was made up of 18 elements
(one for each of the trained base algorithms) of random integers, as done in [40] between 1 and 10, in order to cover a
wider spectrum of possible combinations among the 18 classifiers. This avoids the situation in which the dominant clas-
sifiers always obtained the best weights, with the goal that all algorithms take part in the optimization process.

2. Evaluation: The evaluation of individuals was carried out on the basis of an error function that calculates, for each
instance of the dataset, what the cost would be of predicting a label, taking into account the vote carried out with the
weights assigned by the individual in question, so that the error function would be the sum of these costs for each
instance of the dataset. The goal is to minimize this error function.

3. Selection: The methodology used to make the selection was the deterministic tournament method. To be able to explore
new regions in the search space, a pressure of 2 was considered; that is, in each tournament, 2 individuals participate
ðselpress ¼ 2Þ and the one with the lowest error is considered to be in the next generation.

4. Reproduction and crossover: Uniform crossover was used. The number of children generated from 2 parents is 2; that is,
nchildren ¼ 2.
Table 4
Base learners used in CostsensitiveClassification Weka algorithm.

Algorithm Family Algorithm Name

Functions Logistic (Log)
MultilayerPerceptron (MLP)
SMO

Bayes NaivesBayes (NB)
BayesNet (BN)

Lazy KStar
IBk

Meta AdaBoostM1 (AdB)
Bagging (Bag)
LogitBoost (LB)
ClassificationViaRegression (CVR)

Trees J48
DecisionStump (DS)
LMT
RandomForest (RF)
REPTree

Rules PART
JRip
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Table 6
Parameters used to conduct the genetic algorithm.

Parameter Number

N 200
selpress 2
mupress 0.4
nchildren 2
G 40

Table 5
Grid search for the training parameters of OCEAn.

Parameter Grid Search

selpress [2, 4, 6]
mupress [0.2, 0.4, 0.6]
G [40, 60, 80, 100]
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5. Mutation:Mutation takes into account amupress pressure of 0.4, so that each individual in the new population has a prob-
ability of a gene mutation of 40 %. The new gene will be randomly generated from the interval between 1 and 100.

The stop criterion is the number of generations, G; in this case, we chose G ¼ 40; that is, for each of the iterations, 40 rep-
etitions of the genetic algorithm were conducted. We also took into account 10 different seeds to make up the ensemble, to
reduce the influence of the initial population used to carry out the optimization process. For that purpose, the number of
iterations was used as the initial seed in the generation of the initial population. All of the parameters chosen are listed
in Table 6.

4.3. Software and experimental setting

The cost-sensitive base classifiers used to carry out the ensemble were implemented with the Python Weka Wrapper,
which allowed us to use Weka from within Python. It also provides a wrapper around the basic functionality of Weka. Weka
is software for machine learning written in Java, developed at the University of Waikato. This is free software licensed under
the GNU General Public License. The optimization process and the evaluation step were carried out with the Python pro-
gramming language. Because of the large number of experiments, this work made intensive use of the High Performance
Computing (HPC) cluster at Centro Informático Científico de Andalucía (CICA) formed by more than 60 nodes, with a total
of almost 650 cores, with 32 calculation nodes (372 cores) connected to each other through Infiniband DDR at 20 Gbps.
The source code with the different tests performed in this study can be found in https://github.com/bvegaus/OCEAn.

4.4. Experimental results

In this subsection, we explain how the experimental setting was designed and the results obtained. In the survey carried
out in [19], 16 algorithms were used to assess the performance obtained by each one of them. To make the comparison with
our proposal, we decided to keep the algorithms that stood out in terms of error in the survey carried out in [19]; that is,
SVC1V1 [22], SVMOP [13,43], SVORIM [9], and SVOREX [9], as well as a simple voting algorithm to serve as a baseline. In
addition, for a more extensive and fair comparison, we added the results obtained with a model based on granular compu-
tation presented in [26].

To make the comparison and validation more reliable, we used the same methodology as in [19], where random splits
were carried out: one part to train the algorithms and the remainder to test the classifiers. Because these splits only consid-
ered 2 partitions (Dtrain;Dopt) and we needed 3 (DStrain;DSopt ;DSval), we kept their Dopt as our DSval subset in both types of data-
sets, ordinal and discretized. For our DStrain and DSopt subsets we needed to split their Dtrain subset into 2 parts. Depending on
whether the dataset was ordinal or discretized, we used different approaches. For ordinal regression datasets, 66% was con-
sidered for DStrain and the remaining 34% for DSopt (in this way we had the same number of instances for optimization and
validation). For the discretized regression datasets, 50% was considered for DStrain and the remaining 50% for the DSopt subset.
This decision was made because in some datasets, the number of instances for validation was higher than that for training, so
if we kept the same proportion used in the ordinal regression datasets, only a few instances would be used for the training of
classifiers and the genetic algorithm (steps 1 and 2 of the proposal). We carried out 5 random splits.

The comparison between our proposal and [19] can be seen in Tables 7 and 8 for real ordinal datasets, and in Tables 9 and
10 for ordinal discretized datasets. For each dataset, we show the results achieved with SVC1V1, SVMOP, SVORIM, SVOREX,
granular computing Model (GC), simple voting (SimpleVot) and results obtained with the OCEAn algorithm, for both MAE
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Table 8
MZE comparison for real ordinal datasets.

MZE

SVC1V1 SVMOP SVORIM SVOREX GC SimpleVot OCEAn

CL 0:3330:000 0:3330:000 0:3330:000 0:3330:000 0:2000:139 0:2000:075 0:1930:099

PA 0:5330:049 0:6220:230 0:6660:000 0:5770:092 0:5330:197 0:2670:100 0:2680:105

SS 0:5840:042 0:5530:191 0:5690:042 0:5840:042 0:4460:126 0:3380:088 0:3270:060

SU 0:3530:116 0:3380:042 0:5380:000 0:3840:143 0:4000:147 0:2620:069 0:2490:046

TA 0:5890:044 0:7570:075 0:6680:014 0:5680:047 0:4470:067 0:5110:040 0:5070:033

NT 0:2960:000 0:2700:057 0:2960:000 0:2960:000 0:0590:035 0:0330:009 0:0300:007

BS 0:1190:018 0:6280:460 0:1040:022 0:1190:018 0:1740:024 0:1160:018 0:0950:020

SW 0:5180:025 0:6620:059 0:5570:036 0:5230:044 0:4340:029 0:4160:025 0:4160:019

CA 0:2870:009 0:1840:071 0:2060:011 0:2920:004 0:0590:002 0:0710:005 0:0340:006

BO 0:4130:029 0:4800:073 0:4130:029 0:4130:029 0:6930:076 0:4530:12 0:4370:094

TO 0:7060:000 0:6820:082 0:7360:005 0:7060:000 0:2100:041 0:1810:058 0:1540:049

EU 0:6410:044 0:8250:125 0:4900:034 0:6720:033 0:4700:048 0:3410:024 0:3370:023

LE 0:5710:017 0:6310:078 0:4960:015 0:5710:010 0:4010:021 0:4020:018 0:3810:022

AU 0:6800:010 0:5960:067 0:7340:008 0:6800:010 0:5650:072 0:2620:067 0:2530:042

WI 0:4190:005 0:4290:020 0:4300:024 0:4430:033 0:4880:022 0:3740:007 0:3470:020

ES 0:4340:021 0:3030:028 0:3310:014 0:4060:017 0:3450:006 0:3180:018 0:3190:014

ER 0:8190:001 0:7960:025 0:7540:024 0:8190:001 0:7320:031 0:7470:024 0:7470:027

The best result obtained for each of the datasets is highlighted in bold type.

Table 7
MAE comparison for real ordinal datasets.

MAE

SVC1V1 SVMOP SVORIM SVOREX GC SimpleVot OCEAn

CL 0:5000:000 0:5000:000 0:5000:000 0:5000:000 0:3000:247 0:3000:218 0:3030:179

PA 0:5550:078 0:9110:318 0:6660:000 0:5770:092 0:7330:278 0:2670:1 0:2680:105

SS 0:7380:042 0:7070:323 0:5690:042 0:7380:042 0:5530:100 0:3850:095 0:3730:064

SU 0:3690:114 0:3690:034 0:5380:000 0:3840:143 0:4760:147 0:2620:069 0:2490:046

TA 0:6840:110 1:0050:143 0:6680:014 0:6260:065 0:6000:100 0:6320:082 0:6370:038

NT 0:2960:000 0:3850:130 0:2960:000 0:2960:000 0:0770:065 0:0330:009 0:0300:007

BS 0:1560:036 1:1730:920 0:1150:028 0:1560:036 0:2660:049 0:1430:033 0:1090:029

SW 0:5340:021 0:8040:154 0:5800:044 0:5430:049 0:4600:033 0:4300:025 0:4250:019

CA 0:3890:014 0:1980:081 0:2310:012 0:3880:007 0:0810:003 0:0830:009 0:0380:009

BO 0:6000:094 0:6930:111 0:6000:094 0:6000:094 1:0800:098 0:5870:179 0:5580:151

TO 1:1410:011 1:1620:170 0:9520:011 1:1410:011 0:3940:064 0:1920:066 0:1540:049

EU 1:1360:137 1:7680:471 0:5720:062 1:2330:104 0:8420:125 0:3620:033 0:3590:026

LE 0:6560:038 0:8630:101 0:5450:023 0:6470:019 0:4340:023 0:4310:015 0:4120:022

AU 1:1150:023 0:8500:097 1:0150:016 1:1150:023 1:5840:229 0:3460:087 0:3300:061

WI 0:4620:011 0:4770:023 0:4700:030 0:4910:048 0:8690:056 0:4090:01 0:3790:020

ES 0:5190:017 0:3090:031 0:3750:008 0:4900:014 0:5470:076 0:3410:013 0:3400:009

ER 1:7760:004 1:5360:180 1:2610:050 1:7760:004 1:3270:061 1:2220:048 1:2200:053

The best result obtained for each of the datasets is highlighted in bold type.
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and MZE, with the standard deviation in the 5 executions as sub-indexes. The best results obtained among the 7 algorithms
are highlighted in bold.

Tables 7 and 8 show the results obtained for real ordinal classification datasets, the first shows the results in terms of
MAE, and the second in terms of MZE. In the case of MAE, our proposal obtained better results in 13 out of 17 experiments,
and considering MZE, our proposal was better in 12 cases.

Table 9 illustrates the MAE results obtained for the discretized ordinal classification datasets (considering 5 and 10 bins).
In this case, our proposal performed better in 17 of the 24 datasets. The MZE results in Table 10 showed better results in 15
datasets with our approach.

A graphical summary of these results can be seen in Figs. 6 and 7, where we can observe the better performance of our
proposal compared with previous results.

To obtain more information about the performance of our proposal, the confusion matrices of the CA dataset were added
as an example (Table 11). In the table, 5 confusion matrices are shown, one for each of the iterations of each dataset (recall
that each of the training steps for each dataset was composed of 5 iterations, each with a different division among training,
optimization, and validation data).

As can be seen, most of the values are on the diagonal of the matrices, which would be optimal, and there are no values at
the bottom left and top right, which means that, for this dataset, our algorithm never predicted a label with a maximum cost.
This phenomenon can be seen in the F1-Score measure, which has a value of 0.909 for the CA dataset.
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Table 9
MAE comparison for discretized datasets.

MAE

SVC1V1 SVMOP SVORIM SVOREX GC SimpleVot OCEAn

P5 1:0750:313 1:6580:459 1:1660:000 1:1160:194 1:3160:234 1:0420:213 0:9640:116

M5 0:5450:078 1:1760:174 0:6500:054 0:6470:075 0:7280:192 0:4440:070 0:4570:066

H5 0:6250:053 1:6270:291 0:6260:045 1:0180:068 0:9070:119 0:3990:076 0:4110:058

S5 0:3620:045 1:4720:127 0:3370:007 0:3510:020 0:3860:555 0:1330:017 0:1220:012

A5 0:8520:055 1:3930:093 0:7820:019 1:0610:026 1:1010:072 0:7020:008 0:6850:006

B5 0:9720:075 1:3550:238 1:2000:000 0:8050:034 1:5890:049 0:6940:065 0:6240:082

BB5 1:5930:150 1:5700:085 1:2000:000 1:4000:000 1:9120:034 1:1470:034 1:1380:023

C5 0:5880:058 1:5490:417 0:7310:066 0:7480:100 1:3680:091 0:5730:028 0:7160:022

CC5 0:7230:027 1:3850:116 0:6450:006 0:7790:042 1:5300:129 0:4920:036 0:7650:040

CH5 1:0070:083 1:4490:182 1:1730:030 1:0020:112 1:1970:106 0:7480:022 0:7190:036

CE5 1:0400:033 1:6450:082 1:0140:125 1:0130:092 1:2450:057 0:7240:047 0:7160:020

CEE5 1:0580:070 1:5520:177 1:1780:020 1:0700:116 1:5030:039 0:7810:033 0:7660:041

P10 2:0500:240 3:3580:323 2:5660:086 2:6080:133 3:0330:555 2:3670:336 2:1850:346

M10 1:4400:196 3:2160:542 1:3180:126 1:3320:115 2:4640:250 1:0140:113 0:9890:092

H10 1:3950:135 2:8660:144 1:1060:059 2:2930:273 3:0180:140 0:9490:076 0:9290:087

S10 0:8130:019 2:8410:348 0:7040:022 1:7880:075 1:4160:142 0:3210:017 0:2860:014

A10 1:8610:141 2:8040:248 1:5290:032 2:6010:087 2:9190:064 1:4810:028 1:4310:021

B10 2:2720:225 2:8770:194 2:3240:107 1:7820:252 4:2170:101 1:6260:155 1:6000:122

BB10 2:8400:114 3:4260:248 2:5000:000 2:7420:097 4:4370:043 2:3760:097 2:3580:074

C10 1:2890:065 2:6220:346 1:3370:055 1:4900:177 3:8480:120 1:2080:060 1:5090:038

CC10 2:3040:181 2:7970:542 1:2710:045 2:2740:092 3:7230:159 1:0520:058 1:6120:035

CH10 2:2480:096 2:9290:213 1:7890:078 2:0640:223 3:5700:239 1:6770:080 1:5680:049

CE10 2:0830:173 2:8040:258 1:7600:102 2:3350:314 3:7260:120 1:5420:046 1:5060:041

CEE10 2:1640:069 3:0010:198 1:8200:091 2:2570:203 4:2030:102 1:6670:069 1:6150:039

The best result obtained for each of the datasets is highlighted in bold type.

Table 10
MZE comparison for discretized datasets.

MZE

SVC1V1 SVMOP SVORIM SVOREX GC SimpleVot OCEAn

P5 0:6330:068 0:8250:061 0:7910:000 0:6660:051 0:7080:083 0:6660:078 0:6230:053

M5 0:4740:033 0:7490:030 0:6060:052 0:4670:048 0:5080:047 0:4070:053 0:4090:055

H5 0:4600:022 0:8190:030 0:5610:037 0:5980:026 0:4920:050 0:3430:051 0:3550:039

S5 0:3070:043 0:8000:027 0:3360:006 0:3460:018 0:2350:029 0:1330:017 0:1220:012

A5 0:5730:009 0:8050:015 0:6070:009 0:6090:005 0:6160:018 0:5400:009 0:5300:008

B5 0:6520:036 0:7680:029 0:8000:000 0:6270:046 0:7060:010 0:560:042 0:5220:054

BB5 0:7510:024 0:7800:015 0:8000:000 0:8000:000 0:7920:003 0:7590:013 0:7550:011

C5 0:4550:013 0:8000:069 0:6420:010 0:5700:043 0:6470:017 0:4880:024 0:5460:014

CC5 0:5320:016 0:7300:048 0:6100:005 0:5550:010 0:6840:029 0:4380:035 0:5790:011

CH5 0:6440:023 0:7940:028 0:7960:005 0:6300:041 0:6530:024 0:5720:007 0:5510:017

CE5 0:6160:005 0:8090:018 0:7440:045 0:6310:017 0:6420:008 0:5530:020 0:5470:014

CEE5 0:6360:011 0:8110:022 0:7940:006 0:6630:013 0:7020:011 0:5920:009 0:5800:012

P10 0:8250:054 0:9660:034 0:9000:037 0:8500:063 0:8080:104 0:8580:092 0:8380:088

M10 0:7520:019 0:9280:032 0:7690:045 0:7180:061 0:7380:039 0:6410:023 0:6350:009

H10 0:6940:025 0:8760:011 0:7000:013 0:8110:009 0:7570:025 0:5750:026 0:5750:026

S10 0:5120:017 0:9100:020 0:6190:014 0:7450:013 0:4570:007 0:2970:020 0:2680:017

A10 0:7500:009 0:8990:006 0:7750:015 0:7800:009 0:8100:003 0:7430:006 0:7360:005

B10 0:8590:015 0:9020:011 0:8900:007 0:8050:021 0:8820:007 0:7830:023 0:7790:023

BB10 0:8610:006 0:90230:002 0:9000:000 0:8790:010 0:8980:001 0:8750:014 0:8760:013

C10 0:6790:007 0:8760:029 0:7870:011 0:7310:010 0:8470:013 0:6870:013 0:7590:013

CC10 0:8380:013 0:8780:047 0:7670:016 0:8580:010 0:8360:008 0:6410:016 0:7870:004

CH10 0:8480:006 0:9060:004 0:8480:011 0:8340:012 0:8500:016 0:7820:008 0:7590:007

CE10 0:7990:009 0:8900:012 0:8330:015 0:8130:012 0:8620:004 0:7650:017 0:7590:013

CEE10 0:8170:010 0:8990:008 0:8340:011 0:8340:008 0:8840:006 0:7930:007 0:7880:004

The best result obtained for each of the datasets is highlighted in bold type.
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4.5. Comparison with base classifiers

In addition to comparing our proposal with methods in the literature, we decided to see how well the base algorithms
performed separately and confirm whether our ensemble exhibited improvement in the results. One of the advantages of
using ensemble-based algorithms is that they can eliminate the difficult decision of which algorithm to choose when faced
with a given problem. An ensemble algorithm brings together all the features of the base classifiers it uses to give a final
prediction. As proof that our proposal indeed had an advantage over the base algorithms that composed it, we calculated
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Fig. 6. Comparison of MAE between previous results and our approach. All datasets, real and generated are included.
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the metrics individually for the 18 algorithms that made up our ensemble, and then calculated, for each dataset, the average
of the 18 classifiers and compared it to the results obtained by OCEAn, as shown in Figs. 8 and 9.

The specific results obtained for each individual classifier and dataset can be found in the Appendix section.

4.6. Statistical test

Because the development or modification of algorithms is a relatively easy task, there is a need for rigorous statistical
analysis of published results [16]. Therefore, to test the performance of the OCEAn approach, we applied a statistical frame-
work. The recommended approach for carrying out the statistical comparison of multiple algorithms over multiple datasets
is the nonparametric Friedman test [3], along with the Holm post hoc procedure for detecting pairwise differences between 2
algorithms within a multiple comparison test [15]. This statistical analysis was carried out using the open-source platform
StatService [32].

The Friedman test could be used to determine whether the MZE and MAE scores were significantly different from the
mean rank expected under the null hypothesis [27]. If the Friedman test rejected the null hypothesis with an a ¼ 0:05, it
means the measures’s average ranks were significantly different, so a post hoc test must be carried out to evaluate the rel-
ative performance of the proposed algorithms against a control algorithm (the one with the best value; in this case, the one
with the minimum value).

Table 12 shows the Friedman test rankings for every algorithm in the comparison, distinguishing between MAE and MZE.
The ranking shows, in both cases, that OCEAn ranks first, with scores of 1.5122 and 1.6463 respectively. The Friedman statis-
tic was 70.829 in terms of MAE and 49.002 if we consider MZE scores, with 4 degrees of freedom in both cases.

As previously stated, the level of significance considered for the Friedman test was a ¼ 0:05, which means that if the p-
value for Friedman was lower than this, significant differences exist among the algorithms compared, because the null
hypothesis, which states that they all behave in a similar way, is rejected. In both cases (MAE and MZE rankings), the p-
value was lower than 0.00001 indicating that significant differences existed among the approaches.
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Fig. 7. Comparison of MZE between previous results and our approach. All datasets, real and generated are included.

Table 11
Confusion matrices for the CA (Car) dataset. Each of the tables represents 1 of the 5 divisions of the datasets. Our methodology divided each of the datasets into
3 partitions to carry out both classification with the base algorithms and optimization of the genetic algorithm. These partitions and the entire methodology
were done 5 times so that there was no relationship between the data partitions and the final results

Belén Vega-Márquez, I.A. Nepomuceno-Chamorro, C. Rubio-Escudero et al. Information Sciences 580 (2021) 221–242

235



Fig. 8. Comparison of MAE between our proposal and the average of the 18 results obtained with each base classifier for each dataset. It can be seen that our
proposal (orange line) performed better in 39 of 41 datasets.

Fig. 9. Comparison of MZE between our proposal and the average of the 18 results obtained with each base classifier for each dataset. It can be seen that our
proposal (orange line) performed better in 38 of 41 datasets.

Table 12
Sorted mean ranking obtained by Friedman test.

Ranking

MAE MZE

OCEAn 1.5122 OCEAn 1.6463
SimpleVot 1.9390 SimpleVot 2.1829
SVORIM 3.9146 SVC1V1 3.8415
SVC1V1 4.3537 GC 4.3415
SVOREX 4.6585 SVOREX 4.7317
GC 5.5488 SVORIM 5.1951
SVMOP 6.0732 SVMOP 6.0610
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Table 13 presents the results for Conover’s post hoc test with Holm-Bonferroni correction. It shows the Conover statistic
(T-stat), aHolm, and differences among algorithms, indicating which is the best-rankedmethod, OCEAn in this case. In this post
hoc method, the null hypothesis is rejected if the p-value of the competitors is lower than the aHolm. It can be seen that all the
values were lower except for that of the SimpleVot algorithm. This means that even if our algorithm is ranked first, we can-
not say with certainty that it is significantly different from the simple voting algorithm. Even so, looking at the results
obtained for each of the datasets, we can conclude that our proposal is an approximation that improves, in many cases,
on the simple voting algorithm.
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Table 13
Post hoc analysis using Conover’s post hoc test and Holm-Bonferroni correction.

MAE MZE

Algorithm T-Stat aHolm Different (p < 0.05) from Algorithm T-Stat aHolm Different (p < 0.05) from

SVC1V1 5.946 <0.001 OCEAn, GC, SimpleVot, SVMOP SVC1V1 4.602 <0.001 OCEAn, SimpleVot, SVMOP, SVOREX,
SVORIM

SVMOP 9.545 <0.001 OCEAn, SimpleVot, SVC1V, SVOREX,
SVORIM

SVMOP 9.255 <0.001 OCEAn, SimpleVot, GC, SVC1V1, SVOREX,
SVORIM

SVORIM 5.027 <0,001 OCEAn, GC, SimpleVot, SVMOP,
SVOREX

SVORIM 7.440 <0.001 OCEAn, SimpleVot, GC, SVC1V1, SVMOP

SVOREX 6.584 <0.001 OCEAn, GC, SimpleVot, SVMOP,
SVORIM

SVOREX 6.468 <0.001 OCEAn, SimpleVot, SVC1V1, SVMOP

GC 8.447 <0.001 OCEAn, SimpleVot, SVC1V, SVOREX,
SVORIM

GC 5.650 <0.001 OCEAn, SimpleVot, SVMOP, SVORIM

SimpleVot 0.893 1 GC, SVC1V1, SVMOP, SVOREX, SVORIM SimpleVot 1.125 1 GC, SVC1V1, SVMOP, SVOREX, SVORIM
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5. Conclusions

One of the most studied techniques within the field of data science is supervised learning and all the algorithms encom-
passed by this term. The function of classification algorithms is to predict, given an instance of data, the class of that instance.
However, most of these algorithms do not take into account an ordinal relationship between these labels, although there are
increasing numbers of problems in everyday life in which this aspect is relevant.

Due to the excellent performance of ensemble algorithms in classification techniques, we decided to use this technique in
the current paper. An ensemble classifier is formed by a set of base classifiers whose individual outcomes are combined in
some way, typically through a weighted voting, to provide a final response in classifying a query sample. In this study, we
present OCEAn, an ensemble of 18 cost-sensitive classifiers to address the problem of ordinal classification. This ensemble
performs weighted voting of the predictions obtained by the classifiers that compose it. However, the task of assigning
weights is not trivial; the weights were obtained using a genetic algorithm in an attempt to minimize the cost of
classification.

To analyze the performance of our proposal, we compared it with the work done in [19], in which they surveyed a vast
number of techniques for ordinal classification and carried out an extensive experimentation. This experimentation was
based on the training of previous classifiers in the literature on 41 datasets that could be divided in 2 types, depending
on whether they were ordinal or not: 17 of the 41 datasets had an ordinal target, and the remaining 24 had a numerical class
that was transformed into an ordinal through discretization. The 2 measures used to carry out the comparison were MAE and
MZE.

The results obtained over 41 datasets showed how OCEAn is a good option to deal with ordinal classification problems. In
terms of MAE, our proposal improved results in 34 of 41 datasets; in terms of MZE, it improved results in 32 cases, repre-
senting improvement ratios of 82.92 % and 78.04 % of cases, respectively.

In future work, we propose adaptating the OCEAn algorithm to current leading technologies, such as data streaming and
Big Data paradigms, which requires a thorough examination of the effectiveness and scalability possibilities of our proposal.
We would like to consider other parameters for the optimization of our proposal, such as the cost matrix, because we believe
it could be a good option to conduct experiments with different types of matrices, due to the diversity of the datasets. Finally,
given that we have not done any preprocessing on the datasets, we will explore preprocessing techniques in future
approaches of this problem, such as feature or instance selection, which might improve the final classification result, for
which we plan to use the ideas behind active learning, as mentioned in [2,23].
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Table 14
MAE comparison with base classifiers. For each dataset, the MAE value obtained with each of the 18 base classifiers is shown, as well as the average (column ‘‘Average”) of these 18 values and the final value obtained by
our proposal (column ‘‘OCEAn”).

MAE

NaivesBayes MLP SMO IBk KStar AdB Bag LB J48 DS LMT RF REPTree PART JRip Log CVR BN Average OCEAn

CL 0.433 0.233 0.533 0.367 0.333 0.433 0.333 0.500 0.333 0.333 0.467 0.267 0.467 0.333 0.633 0.600 0.333 0.367 0.405 0.303
PA 0.267 0.311 0.311 0.444 0.467 0.267 0.333 0.356 0.289 0.333 0.289 0.222 0.333 0.356 0.511 0.356 0.267 0.200 0.328 0.268
SS 0.415 0.508 0.431 0.415 0.338 0.369 0.615 0.354 0.385 0.354 0.462 0.415 0.569 0.354 0.415 0.569 0.508 0.431 0.439 0.373
SU 0.262 0.277 0.292 0.400 0.369 0.323 0.446 0.277 0.231 0.292 0.323 0.262 0.569 0.215 0.292 0.477 0.477 0.369 0.341 0.249
TA 0.642 0.637 0.632 0.637 0.663 0.668 0.737 0.626 0.642 0.668 0.647 0.632 0.716 0.674 0.658 0.658 0.674 0.611 0.656 0.637
NT 0.022 0.037 0.104 0.030 0.052 0.052 0.056 0.030 0.096 0.222 0.022 0.033 0.074 0.085 0.063 0.033 0.041 0.033 0.060 0.030
BS 0.127 0.112 0.172 0.234 0.195 0.414 0.270 0.185 0.361 0.758 0.131 0.239 0.364 0.297 0.350 0.106 0.155 0.386 0.269 0.109
SW 0.467 0.474 0.47 0.490 0.459 0.504 0.446 0.462 0.475 0.504 0.461 0.478 0.478 0.473 0.495 0.446 0.456 0.476 0.473 0.425
CA 0.178 0.035 0.125 0.109 0.142 0.256 0.123 0.164 0.122 0.412 0.059 0.079 0.165 0.074 0.231 0.077 0.066 0.179 0.144 0.038
BO 0.787 0.613 0.533 0.600 0.960 0.747 0.520 0.653 0.600 0.733 0.587 0.533 0.600 0.653 0.680 0.640 0.560 0.453 0.636 0.558
TO 0.832 0.547 0.939 0.152 0.136 0.987 0.181 0.907 0.197 0.987 0.221 0.125 0.291 0.272 0.205 0.912 0.229 0.963 0.504 0.154
EU 0.675 0.463 0.696 0.652 0.465 0.798 0.741 0.366 0.474 0.798 0.414 0.485 0.818 0.486 0.527 0.484 0.389 0.573 0.572 0.359
LE 0.46 0.433 0.462 0.438 0.422 0.710 0.450 0.421 0.456 0.710 0.427 0.453 0.509 0.432 0.445 0.422 0.450 0.569 0.481 0.412
AU 0.638 0.435 0.577 0.431 0.585 0.700 0.665 0.365 0.385 0.700 0.408 0.350 0.819 0.435 0.508 0.696 0.469 0.554 0.540 0.330
WI 0.538 0.446 0.498 0.470 0.488 0.492 0.408 0.434 0.505 0.492 0.457 0.366 0.474 0.511 0.495 0.452 0.435 0.470 0.468 0.379
ES 0.341 0.333 0.52 0.362 0.344 0.739 0.389 0.375 0.385 0.739 0.323 0.364 0.467 0.408 0.413 0.31 0.400 0.433 0.424 0.340
ER 1.218 1.261 1.334 1.292 1.295 1.421 1.260 1.229 1.290 1.421 1.221 1.318 1.299 1.306 1.491 1.194 1.261 1.319 1.302 1.220
P5 1.017 0.933 0.958 1.000 1.033 1.067 0.983 1.033 1.283 1.067 1.092 0.925 1.108 1.092 1.233 0.958 1.150 1.017 1.052 0.964
M5 0.549 0.515 0.803 0.559 0.583 0.824 0.505 0.508 0.590 0.824 0.502 0.464 0.702 0.620 0.742 0.512 0.502 0.593 0.600 0.457
H5 0.651 0.475 0.728 0.568 0.577 0.797 0.448 0.462 0.513 0.797 0.453 0.405 0.568 0.553 0.546 0.475 0.410 0.605 0.550 0.411
S5 0.542 0.169 0.578 0.138 0.135 0.686 0.177 0.178 0.204 0.686 0.201 0.127 0.238 0.245 0.270 0.217 0.160 0.250 0.288 0.122
A5 0.889 0.698 0.889 0.907 0.811 0.916 0.732 0.748 0.870 0.916 0.697 0.717 0.799 0.900 0.971 0.679 0.689 0.882 0.817 0.685
B5 0.660 0.717 0.909 1.162 1.049 0.970 0.811 0.741 0.832 0.970 0.568 0.710 0.966 0.896 0.942 0.818 0.665 0.896 0.849 0.624
BB5 1.192 1.225 1.125 1.408 1.366 1.240 1.175 1.314 1.456 1.240 1.191 1.110 1.326 1.409 1.297 1.255 1.212 1.202 1.263 1.138
C5 0.561 0.591 0.769 0.641 0.802 0.904 0.644 0.640 0.657 0.904 0.590 0.560 0.840 0.737 0.936 0.711 0.689 0.743 0.717 0.716
CC5 1.151 1.146 1.435 1.139 1.743 1.905 1.167 1.256 1.383 1.905 1.222 1.014 1.656 1.537 1.947 1.763 1.269 1.335 1.442 1.612
CH5 0.978 0.731 0.997 0.963 1.047 0.966 0.814 0.848 0.966 0.966 0.725 0.809 0.919 0.959 0.999 0.682 0.738 1.003 0.895 0.719
CE5 0.886 0.886 0.974 1.046 0.947 1.038 0.755 0.772 0.912 1.038 0.760 0.686 0.919 0.867 0.928 0.753 0.766 0.843 0.876 0.716
CEE5 1.051 0.915 0.985 1.081 0.945 1.112 0.785 0.797 0.965 1.112 0.850 0.727 0.989 0.977 1.020 0.853 0.835 0.905 0.939 0.766
P10 2.508 2.000 2.108 2.000 1.908 2.333 2.175 2.175 2.492 2.333 2.258 2.033 2.442 2.667 2.558 2.45 2.117 2.383 2.274 2.185
M10 1.125 1.075 1.759 1.186 1.139 1.783 1.098 1.112 1.336 1.783 1.092 0.922 1.346 1.322 1.769 1.088 1.190 1.332 1.303 0.989
H10 1.505 1.187 1.516 1.271 1.159 1.685 0.953 1.019 1.195 1.685 1.076 0.866 1.332 1.262 1.507 1.190 1.018 1.222 1.258 0.929
S10 0.821 0.389 1.238 0.298 0.285 1.410 0.449 0.422 0.450 1.410 0.417 0.291 0.539 0.585 0.802 0.461 0.423 0.62 0.628 0.286
A10 1.880 1.455 1.804 1.875 1.663 1.891 1.511 1.513 1.848 1.891 1.462 1.493 1.649 1.880 1.992 1.412 1.457 1.806 1.693 1.431
B10 1.934 1.684 2.060 2.358 2.155 1.951 1.769 1.877 1.792 1.951 1.597 1.580 2.189 2.249 2.259 2.094 1.828 2.087 1.967 1.600
BB10 2.678 2.603 2.342 2.973 2.937 2.372 2.431 2.616 2.803 2.372 2.494 2.227 2.665 2.918 2.649 2.701 2.447 2.459 2.593 2.358
C10 1.241 1.299 1.527 1.345 1.679 1.957 1.227 1.431 1.674 1.957 1.250 1.104 1.658 1.687 1.964 1.611 1.431 1.474 1.528 1.509
CC10 1.151 1.146 1.435 1.139 1.743 1.905 1.167 1.256 1.383 1.905 1.222 1.014 1.656 1.537 1.947 1.763 1.269 1.335 1.440 1.612
CH10 1.995 1.604 2.172 1.968 2.167 2.044 1.825 1.688 2.103 2.044 1.603 1.714 2.037 2.265 2.157 1.528 1.625 2.112 1.92 1.568
CE10 1.797 1.819 2.039 2.198 1.925 2.055 1.513 1.611 1.875 2.055 1.617 1.417 1.895 1.875 2.076 1.633 1.595 2.032 1.834 1.506
CEE10 2.057 1.982 2.058 2.223 1.883 2.103 1.615 1.740 2.012 2.103 1.760 1.464 2.033 2.100 2.188 1.944 1.746 2.255 1.950 1.615

The best result obtained for each of the datasets is highlighted in bold type.
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Table 15
MZE comparison with base classifiers. For each dataset, the MZE value obtained with each of the 18 base classifiers is shown, as well as the average (column ‘‘Average”) of these 18 values and the final value obtained by
our proposal (column ‘‘OCEAn”).

MZE

NaivesBayes MLP SMO IBk KStar AdB Bag LB J48 DS LMT RF REPTree PART JRip Log CVR BN Average OCEAn

CL 0.367 0.133 0.300 0.333 0.267 0.367 0.300 0.300 0.200 0.333 0.333 0.200 0.367 0.200 0.367 0.367 0.200 0.267 0.288 0.193
PA 0.267 0.311 0.311 0.444 0.467 0.267 0.333 0.356 0.289 0.333 0.289 0.222 0.333 0.333 0.467 0.356 0.267 0.200 0.324 0.268
SS 0.354 0.446 0.385 0.400 0.323 0.308 0.569 0.323 0.338 0.323 0.400 0.385 0.554 0.308 0.354 0.523 0.446 0.385 0.395 0.327
SU 0.262 0.277 0.277 0.385 0.369 0.323 0.415 0.277 0.215 0.292 0.323 0.262 0.538 0.215 0.292 0.446 0.431 0.369 0.331 0.249
TA 0.526 0.479 0.500 0.468 0.489 0.637 0.611 0.505 0.511 0.637 0.495 0.484 0.632 0.537 0.605 0.495 0.511 0.495 0.534 0.507
NT 0.022 0.037 0.104 0.030 0.052 0.052 0.056 0.030 0.096 0.222 0.022 0.033 0.074 0.085 0.063 0.033 0.041 0.033 0.060 0.030
BS 0.117 0.096 0.127 0.217 0.171 0.353 0.200 0.150 0.245 0.420 0.116 0.210 0.225 0.208 0.217 0.093 0.136 0.327 0.201 0.095
SW 0.429 0.445 0.454 0.455 0.433 0.486 0.426 0.442 0.447 0.486 0.438 0.447 0.450 0.442 0.458 0.426 0.445 0.449 0.447 0.416
CA 0.157 0.031 0.124 0.092 0.116 0.219 0.108 0.144 0.106 0.299 0.056 0.070 0.140 0.062 0.178 0.073 0.060 0.160 0.121 0.034
BO 0.560 0.533 0.440 0.467 0.720 0.613 0.400 0.493 0.413 0.547 0.467 0.413 0.413 0.493 0.493 0.533 0.413 0.400 0.489 0.437
TO 0.648 0.488 0.712 0.152 0.136 0.717 0.181 0.536 0.187 0.717 0.200 0.125 0.269 0.219 0.203 0.712 0.229 0.693 0.395 0.154
EU 0.558 0.400 0.562 0.482 0.412 0.663 0.529 0.337 0.409 0.663 0.367 0.424 0.551 0.429 0.438 0.412 0.353 0.468 0.469 0.337
LE 0.427 0.402 0.433 0.399 0.390 0.606 0.414 0.390 0.419 0.606 0.398 0.406 0.454 0.399 0.408 0.392 0.419 0.515 0.437 0.381
AU 0.477 0.331 0.492 0.323 0.338 0.604 0.465 0.273 0.269 0.604 0.304 0.269 0.554 0.296 0.331 0.396 0.338 0.392 0.392 0.253
WI 0.462 0.404 0.463 0.402 0.415 0.438 0.374 0.402 0.429 0.438 0.414 0.334 0.427 0.438 0.434 0.408 0.402 0.426 0.417 0.347
ES 0.316 0.320 0.434 0.349 0.321 0.580 0.362 0.346 0.361 0.580 0.307 0.348 0.418 0.382 0.385 0.295 0.379 0.392 0.381 0.319
ER 0.741 0.734 0.783 0.754 0.756 0.774 0.764 0.742 0.738 0.774 0.744 0.760 0.762 0.754 0.799 0.732 0.765 0.774 0.758 0.747
P5 0.608 0.592 0.733 0.625 0.658 0.700 0.658 0.667 0.717 0.700 0.650 0.617 0.750 0.667 0.783 0.658 0.717 0.700 0.677 0.623
M5 0.451 0.451 0.708 0.451 0.488 0.661 0.447 0.461 0.485 0.661 0.410 0.420 0.536 0.502 0.556 0.420 0.451 0.492 0.502 0.409
H5 0.477 0.380 0.655 0.439 0.459 0.650 0.390 0.391 0.429 0.650 0.385 0.361 0.468 0.433 0.448 0.386 0.355 0.450 0.455 0.355
S5 0.395 0.158 0.565 0.138 0.135 0.600 0.174 0.171 0.195 0.600 0.186 0.127 0.229 0.221 0.222 0.197 0.158 0.241 0.261 0.122
A5 0.587 0.518 0.720 0.607 0.581 0.640 0.559 0.568 0.583 0.640 0.540 0.552 0.577 0.594 0.663 0.527 0.542 0.593 0.588 0.530
B5 0.520 0.571 0.723 0.710 0.658 0.700 0.639 0.555 0.587 0.700 0.479 0.584 0.660 0.602 0.653 0.613 0.558 0.643 0.619 0.522
BB5 0.726 0.733 0.772 0.770 0.768 0.783 0.785 0.759 0.764 0.783 0.732 0.775 0.788 0.762 0.782 0.746 0.756 0.794 0.765 0.755
C5 0.470 0.480 0.690 0.500 0.574 0.679 0.532 0.517 0.521 0.679 0.497 0.486 0.613 0.552 0.634 0.548 0.551 0.563 0.560 0.546
CC5 0.440 0.464 0.618 0.468 0.596 0.683 0.461 0.477 0.528 0.683 0.469 0.428 0.573 0.534 0.540 0.574 0.506 0.481 0.529 0.579
CH5 0.634 0.548 0.742 0.636 0.670 0.702 0.621 0.607 0.625 0.702 0.546 0.615 0.656 0.631 0.669 0.524 0.582 0.705 0.634 0.551
CE5 0.616 0.601 0.726 0.662 0.633 0.721 0.586 0.570 0.610 0.721 0.566 0.545 0.614 0.591 0.613 0.557 0.602 0.621 0.612 0.547
CEE5 0.665 0.618 0.713 0.674 0.639 0.724 0.604 0.590 0.639 0.724 0.613 0.583 0.675 0.631 0.670 0.597 0.636 0.640 0.646 0.580
P10 0.858 0.808 0.908 0.817 0.817 0.883 0.833 0.833 0.858 0.883 0.825 0.842 0.908 0.850 0.892 0.825 0.833 0.858 0.851 0.838
M10 0.641 0.647 0.895 0.681 0.685 0.827 0.658 0.658 0.698 0.827 0.675 0.607 0.736 0.712 0.763 0.658 0.722 0.708 0.711 0.635
H10 0.695 0.640 0.838 0.675 0.643 0.827 0.593 0.606 0.652 0.827 0.616 0.575 0.701 0.649 0.702 0.635 0.616 0.649 0.674 0.575
S10 0.507 0.330 0.750 0.276 0.269 0.800 0.392 0.381 0.368 0.800 0.357 0.276 0.422 0.410 0.479 0.383 0.374 0.479 0.447 0.268
A10 0.759 0.731 0.860 0.771 0.755 0.841 0.752 0.756 0.767 0.841 0.741 0.754 0.765 0.770 0.804 0.729 0.753 0.775 0.773 0.736
B10 0.777 0.790 0.885 0.847 0.811 0.854 0.827 0.783 0.789 0.854 0.773 0.804 0.867 0.818 0.845 0.830 0.827 0.859 0.824 0.779
BB10 0.878 0.872 0.892 0.885 0.883 0.881 0.892 0.867 0.873 0.881 0.871 0.886 0.900 0.880 0.888 0.876 0.878 0.896 0.882 0.876
C10 0.678 0.697 0.839 0.687 0.751 0.843 0.712 0.724 0.747 0.843 0.720 0.680 0.775 0.747 0.808 0.752 0.774 0.760 0.752 0.759
CC10 0.649 0.654 0.831 0.651 0.749 0.841 0.694 0.687 0.688 0.841 0.674 0.646 0.770 0.725 0.791 0.75 0.742 0.725 0.728 0.787
CH10 0.795 0.761 0.884 0.79 0.823 0.855 0.821 0.768 0.802 0.855 0.775 0.801 0.838 0.816 0.846 0.742 0.810 0.867 0.813 0.759
CE10 0.769 0.789 0.873 0.828 0.807 0.858 0.780 0.773 0.792 0.858 0.767 0.763 0.823 0.790 0.827 0.757 0.798 0.852 0.805 0.759
CEE10 0.807 0.806 0.861 0.828 0.808 0.864 0.799 0.795 0.812 0.864 0.795 0.780 0.837 0.817 0.843 0.799 0.816 0.880 0.822 0.788

The best result obtained for each of the datasets is highlighted in bold type.
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Appendix A

The following tables show the effectiveness of the individual base algorithms compared to our proposal. There is a column
for each of the algorithms used as base classifiers, and a column (‘‘Average”) indicating what is the average, for each dataset,
of MAE and MZE, respectively, among all base classifiers that compose OCEAn. If the average is compared to the results
obtained by OCEAn, we obtained better results in 39 out of 41 datasets in terms of MAE and 38 out of 41 datasets in terms
of MZE.

For each of the rows, the best performing algorithm is shown in bold. In both tables, it can be seen that in certain cases,
some individual classifiers outperform our proposal. However, as we obtained better results on average, our proposal elim-
inates the decision of which algorithm to choose, which represents a significant advantage (see Tables 14 and 15).
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