
A Quality Model in a
Quality Evaluation Framework for MDWE

Methodologies

F. J. Dominguez-Mayo, M. J. Escalona, M. Mejias, A. H. Torres
Departamento de Lenguajes y Sistemas Informaticos

University of Seville
Seville, Spain

fjdominguez@us.es, mjescalona@us.es, risoto@us.es, arturohtz@gmail.com

Abstract- Nowadays, diverse development methodologies exist in

the field of Model-Driven Web Engineering (MDWE), each of
which covers different levels of abstraction on Model-Driven

Architecture (MDA): CIM, PIM, PSM and Code. Given the high
number of methodologies available, it is necessary to evaluate the
quality of existing methodologies and provide helpful information
to the developers. Furthermore, proposals are constantly

appearing and the need may arise not only to evaluate the quality
but also to find out how it can be improved. In this context,

QuEF (Quality Evaluation Framework) can be employed to
assess the quality of MDWE methodologies. This article presents

the work being carried out and describes tasks to define a

Quality Model component for QuEF. This component would be

responsible for providing the basis for specifying quality
requirements with the purpose of evaluating quality.

Keywords: Model-Driven Web Engineering; Quality; Quality
Model; Software Metrics; Methodologies; Model-Driven
Engineering;

I. INTRODUCTION

Model-Driven Engineering (MDE)[35] is a paradigm of
software development which consists of the creation of models
closer to a particular domain rather than concepts or a specific
syntax. The domain environment specific to MOE for web
engineering is called Model-Driven Web Engineering
(MDWE)[II]. The Object Management Group (OMG) has
developed the standard Model-Driven Architecture (MDA)
which defines an architecture platform for proposals based on
the Model-Driven paradigml.

According to the OMG [29], the goals of MDA are
portability, interoperability and reusability through
architectural separation. The concept of platform independence
appears frequently in MDA. Models may have the quality of
being independent from the characteristics of any technological
platform. By applying this paradigm, the lifecycle of a software
system is completely covered, starting from requirements
capture, passing through the generation of code, and up to the
system maintenance.

l. http://www.omg.org

MDA determines a minimum number of stages or levels of
abstraction: Computation Independent Model (CIM), Platform
Independent Model (PIM), Platform Specific Model (PSM),
and Code. However, research in this field is mainly oriented
towards the CIM and PIM levels of abstraction.

In recent years, the growing interest in the internet has led
to the generation of a high number of MDWE approaches
which offer a frame of reference for the Web environment [11].
On the other hand, there are a high number of approaches
without standard consensus [13][19][33], a lack in the use of
standards, and scarcity of both practical experience and tool
support. In the face of this situation, an important need to
assess the quality of existing methodologies arises. In this
paper, QuEF (Quality Evaluation Framework), an environment
for the quality evaluation of Model-Driven Web methodologies
based on MDA is proposed.

The paper is organized into the following sections. In
Section II a general analysis of the situation is presented.
Section III presents the problem, motivation and goal, and is
intended to lay the basis of a framework that allows the
evaluation of the quality of different methodological proposals.
In Section IV concepts such as MDWE methodology and
framework are explained and a short description of the
components of the framework is given. In Section V, the
Quality Model component for QuEF is defined and the stages
for the definition of the Quality Model component for QuEF
and a description of every component, structure and process to
achieve the Quality Model are shown. In Section VI, an
example of applying the Quality Model proposed with the
NDT methodology is performed. Finally, in Section VII, a set
of conclusions and contributions is laid out, and possible future
work is given.

A. Surveys

II. RELATED WORK

There are many methodological approaches in the area of
MDWE and numerous comparative studies [33], [31], [11],

[19]. Along these lines, [3 3] must be considered, which
specifically considers modelling concepts for their ubiquitous
nature, together with an investigation of available support for
Model-Driven Development in a comprehensive way, using a
well-defined as well as fine-grained catalogue of more than 30
evaluation criteria.

B. Quality Evaluation

In [5], an approach is proposed to evaluate Web quality that
provides all the elements which, according to the ISO/IEC
14598, are essential parts of a software quality evaluation,
namely: (1) quality model, (2) a method of evaluation, (3) a
software measurement process, and (4) supporting tools. The
idea of developing an MDE framework for evaluating quality
has been applied in various studies [25], [26], where it is stated
that the quality of models is affected by the quality of
modelling languages, tools, modelling processes, the
knowledge and experience of modellers, and the quality
assurance techniques applied. In other papers by the same
authors, some related work on quality frameworks and
requirements for their evaluation is presented. Furthermore, a
7-step process is proposed on how to define a quality
framework adapted to MOE, which integrates quality
engineering with quality evaluation. Existing quality models
are discussed in their other papers before a metamodel is
proposed for specifying quality models in the context of MOE.
Along these lines, in yet another paper, these authors analyze
the existing literature in order to extract model quality
properties and to build a quality model with focus on the
quality of models.

C. Software Metrics

In the literature there are numerous references to metrics
[7], [20], [21], [10], [3], according to which, software
measurement integration could be achieved by adopting the
MOA approach. To this end, an approach is described in [14]
for the management of measurement of software processes.
From the methodological perspective, software measurement is
supported by a wide variety of proposals, with the Goal
Question Metric (GQM) method (Basili and Victor), the
Practical Software & systems Measurement (PSM)
methodology [23], and the ISO 15539 and IEEE 1061-1998
standards all deserving special attention. As far as web metrics
quality is concerned, in [6] some important metrics proposed
for web information systems are classified, with the aim of
offering the user a global vision of the state of the research
within this area. Studies on the quality of products and
processes for the Web are rather recent and there are still no
widely used metrics and models for different assessment and
prediction purposes [1]. Although a few heuristics and metrics
currently exist for the evaluation of a few quality
characteristics such as usability [28], accessibility [18], user
traffic and performance, most of them lack a sound and
rigorous definition and validation framework.

With regards to the metrics model, an important study has
been revealed in [1], which proposes a set of metrics for
navigational models to analyze the web application quality in
terms of size and structural complexity.

D. Quality Models

The term quality model is often used to refer to a set of
quality attributes (also known as quality characteristics) and
relations between them, with the aim of evaluating quality.
Research on quality models has been going on for decades and
different quality models have emerged. In [27] some of the
best-known quality models are identified, one of which is
McCall's hierarchical quality model which focuses on product
quality, dividing it into the external view as seen by users
(quality factors to specify) and the internal view as seen by the
developers (quality criteria to build) [22]. By answering "yes"
and "no" to questions related to quality criteria, one may
measure to what extent a quality criterion is achieved. Another
is Boehm's hierarchical quality model with three levels of
quality characteristics: high-level characteristics form the
users' perspective, intermediate characteristics which are
software characteristics needed to achieve the high-level
characteristics, and primitive characteristics which are the
foundation for evaluation and defining metrics [2]. ISO
standards are set out in [17], especially the ISO-9126 series
with the hierarchical model of six quality factors and
subcharacteristics related to each factor. The standard divides
metrics into internal, external and quality-in-use metrics.
Oromey' s model, which has three main principles: quality
attributes, product properties that are important for achieving
quality attributes, and links between product properties and
quality attributes. Dromey defines a five-step process for
building product-specific quality models. Along these lines, P.
Mohagheghi and V. Oehlen [9] propose a five-step approach in
constructing a quality model.

III. PROBLEM, MOTIVATION AND GOAL

The main goal of this research is to lay the basis of a
quality evaluation framework that facilitates the quality
assessment of different methodological approaches under some
specific criteria. The ability to measure these methodologies,
facilities the assessment. The problem of measurement not only
entails understanding the worth of a proposal, but also requires
an objective criterion for improvement or the possibility of
unifying criteria when designing new proposals in the future.

Today' s modem web information systems are called to
manage a huge amount of information which is difficult to
develop and maintain. In this sense, there is a need for the
suitable design of MOWE methodologies and effective tools.
In this way, our work concentrates on evaluating and
comparing existing proposals. The assessment is based on
quality models which ensure the quality of proposals. As a
result, a goal for the future could be to unify the criteria to
decide on the use of a particular proposal in MOWE, or to
improve the design of new proposals and the use of standards.

The use of an MOWE methodology and its influence on the
final product quality is a crucial aspect under consideration.
Nowadays, it is essential in the software industry to produce
faster, cheaper software of higher quality. The use of a
methodology based on MDA is fundamental to achieve this
objective.

IV. QuEF (QUALITY EVALUATION FRAMEWORK), A
QUALITY EVALUATION FRAMEWORK FOR MDWE

METHODOLOGIES

Methodology and framework are some words commonly
used in software engineering literature and sometimes their
meanings are not clear. Therefore, a brief definition of what
these words mean in this work is given together with a short
explanation for each QuEF component.

• "Methodology": We refer to an approach or
methodology as a Model-Driven proposal for the
development of web applications. It may provide a set
of guidelines, techniques, processes and/or tools for the
structuring of specifications, which are expressed as
models. In this sense, only web modelling approaches
which are based on MDA (Model-driven architecture) in
the framework are considered.

• "Framework": Numerous definitions of the framework
concept exist. In addition to this, a very broad definition
has allowed the term to be used as a buzzword,
especially in a software context. For example, the Java
collection framework is not a software framework, but a
librarl. On the other hand, a software framework is a
re-usable design for a software system (or subsystem).
A software framework may include support programs,
code libraries, a scripting language, or other software to
help develop and glue together the different components
of a software project. Various parts of the framework
may be exposed through an API (Application
Programming Interface). However, in this work, a
quality evaluation framework is a basic conceptual
structure composed of a set of components used to
evaluate Model-Driven Web Engineering (MDWE)
methodologies.

Therefore, a quality evaluation framework with a set of
elements based on existing literature is proposed as shown in
Figure 1, where four components for the evaluation of the
quality of MDWE methodologies can be seen:

Input

approach

Approach
Characteristics

Template

Process

Quality Model

Evaluation

reSJlts

Figure 1 . Component diagram of QuEF for MDWE methodologies.

[]

• Approach Characteristics Template: This component
has the responsibility for describing the input
methodology characteristics to be evaluated.

• Thesaurus & Glossary: This component is responsible
for improving the standardization of the access channel
and communication between users of different MDWE
methodologies.

• Quality Model: This component is responsible for
providing the basis for the specification of quality
requirements with the purpose of evaluating quality.

• Quality Evaluation Process: This component has the
responsibility for carrying out the quality evaluation
process.

V. THE QUALITY MODEL COMPONENT IN QuEF

First of all, the meaning of the term Quality Model in this
work is described, since various definitions in the literature can
be found. Furthermore, the elements and relations between the
elements of the Quality Model are explained.

According to (IEEE 610), the word "quality" has two
definitions: "(1) The degree to which a system, component or
process meets specified requirements. (2) The degree to which
a system, component, or process meets customer or user needs
or expectations." In this work, a Quality Model is a set of
characteristics, subcharacteristics and metrics, quality factors,
quality attributes and the relationships between them, which
provides the basis for specifying quality requirements and
evaluating quality. It may be defined as "conformance to
requirements" and/or "fitness of use". In simple terms all the
stakeholders must be well-informed of what is expected, what
the subcharacteristics to be achieved are, which impact should
be achieved on quality attributes, what the evaluation criteria
are and how these criteria can contribute towards achieving the
goal. In Figure 2, the Quality Model metamodel with the
relations between the different elements in the Quality model
are shown, and the elements are described and explained.

Qualtiy Factor Characteristic

1 .. 'Y +quality attnbute 1···Y+SUbCharactensiC

Quality Attribute Subcharacteristic Metric +param

1 .. . 1 ..

-----:- ------:-
1 .. .

1 .. 1 ..

�
Base Metric Derived Metric

+base metric

1 .. . �--
Aggregated Metri

Figure 2. Quality Model Metamodel

• Quality Factor: This is a higher-level feature that
affects an item's quality. For example, a quality factor
could be Usability, Functionality, Portability, etc. In
ISO 9126 the quality factors are classified according to
three different views:

• External Quality: which measures the software
itself (ISO 9126-2)

• Internal Quality: which measures the system
behaviour (ISO 9126-3)

• Quality in Use: which measures the effect of
using the software in a specific context (ISO
9126-4)

ISO 9126 describes ten quality factors, six that are
common to internal and external quality and four that
are specific to the quality in use. Each quality factor
and attribute in ISO 9126 is described in relation with
a software product but in our particular case all quality
factors and attributes are described in relation with
approach characteristics. Quality factors could be
classified into two categories:

• External/Internal Quality: which measures the
approach characteristics themselves.

• Quality in Use: which measures the effect of
using the approach characteristics in a specific
context.

• Quality Attribute: According to (IEEE 610), a quality
attribute is "A feature or characteristic that affects an
item's quality (Syn: quality factor). In a hierarchy of
quality attributes, higher-level attributes may be called
quality factors, lower-level attributes called quality
attributes". For example, Usability is defined for
various quality attributes as Learnability,
Understandability, Operability, etc.

• Characteristic: This is a higher-level concept of an
approach. It may be, for example, the software
development process, models, metamodels, languages,
tools, transformations or the quality assurance
techniques.

• Subcharacteristic: This is a lower-level concept of an
approach. For example, the Model-Driven Engineering
characteristic may have various subcharacteristics such
as, the Language Definition, Transformations, Trace
Generation, etc.

• Metric: In the Quality Model, metrics should indicate
which quality attribute is affected by subcharacteristics
and also the degree to which it is affected. For each
subcharacteristic, a specification of its evaluation is
necessary. For example, the evaluation may be via
measuring quantitatively by metrics or subjective
evaluation, inspections using checklists or interviewing
the users. Links that validate that the right item is
measured are also identified. In terms of metrics, our
aim is to look for a series of qualitative and
quantitative metrics based on their nature, although it

2. http://java.sun.com

might be interesting to have standard metrics on
MDWE which are all, somehow, centralized. In the
literature, numerous references to metrics can be
found, but a standardization has yet to be carried out.
Furthermore, the metrics used must be validated
theoretically or empirically. A metric is used for
measuring subcharacteristics.

A metric may be classified according to their
nature as a base metric, aggregated metric andlor
derived metric.

o Base Metric: This is obtained directly from
analyzing a subcharacteristic.

o Aggregated Metric: This is the composition
consisting of a metric from a defined set of basic
metrics, usually by means of a weighted sum.

o Derived Metric: This is a mathematical function
whose input is the value of other metrics.

Therefore, for our purposes, a Quality Model contains a
minimal amount of characteristics and subcharacteristics
through which any kind of MDWE approach can be evaluated.
In order to define a Quality Model, it contains association links
between the subcharacteristics and the quality attributes.

These association links represent the dependencies between
subcharacteristics and quality attributes. They show quality
attributes which are affected by subcharacteristics or the areas
of the methodology that will be significantly affected if the
approach is changed. Association links may be based on
proven and real-world experience. The impact of each
subcharacteristic on quality attributes must be demonstrated
and the requirements determined by real case study
applications to a number of real projects. This should be
supplemented by reference to published literature.
Furthermore, subcharacteristics have to define quantitative or
qualitative metrics which may be used to measure each
subcharacteristic. Otherwise it would be necessary to define a
set of indicators from reference values which may be set to a
prescribed state based on the results of measuring or on the
occurrence of a specified condition. This option will be studied
in future work. Hence, a quality factor has various quality
attributes and a characteristic has various subcharacteristics as
is shown in Figure 2. The relations between quality attributes
and subcharacteristics are also presented. Moreover, a
subcharacteristic may have various metric. Metrics are used
for measuring subcharacteristics.

For example, one characteristic of the Quality Model
component in QuEF is the Model-Driven Engineering
characteristic which focuses on modelling language defmitions,
model transformations, trace generation, test-case generation,
and rule-generation models. We have identified various
subcharacteristics and defined some metrics which can be used
for evaluating the degree to which the quality attributes are
affected. The GQM templates are a structured way of
specifying goals as is shown in Table 1. The GQM template
contains the following fields:

TABLE !. AN EXAMPLE OF A GQM TEMPLATE

Field Examples

Object of study - Analyze Model-Driven
Engineering
Characteristic

F or the purpose of Improving Usability,

Focus - With respect to their Learnability,
Understandability,
Operability,
Simplicity,
Interpretability,
Attractiveness,

Stakeholder - From the point of User of one approach
view of the
Context factors - I n the context of MDWE

methodologies

This study can be for the characterization of the effect of
using the Model-Driven Engineering Characteristic for
improving Usability from the point of view of Users in the
context of MDWE methodologies. However, existing methods
could be used to defme and theoretically validate all metrics in
the framework. Although the ISO / IEC 9126 and IEEE specify
the quality factors and quality attributes of a software product,
they fail to indicate what quality measures determine a quality
attribute. Therefore, the metrics for measuring
subcharacteristics have to be identified. For example, and as
shown in Figure 3, according to the Usability quality factor,
including transformations can be a subcharacteristic that may
have an impact on Attractiveness but may have no influence
on the Understandability and Leamability quality attributes.

'3&'6'3#"+
MOE

1.,,,.#+
Transformations

Metnc

It supports
Transfonnatlons such
as transfonnations
between

CIM2PIM

CIM2CIM

PIM2PSM

PIM2PIM

Usability

'.'!!!!!@iiM�.
Attractiveness

Learnability

Understandability

Figure 3. Brief example of association links in the Quality Model

This subcharacteristic may increase the degree to which an
approach is more attractive for users in the sense of supporting
a high number of transformations. This should be validated: for
example by analyzing the number of transformations that
support the approach. A set of qualitative metrics have to be
defined to measure this subcharacteristic. Finally, indicators
may describe one state of Attractiveness. In this brief example,
it could be the number of transformations that are supported. In
this context two types of points are defmed:

• Tradeoff points are defined as the dependencies
between subcharacteristics and quality factors.

• Sensitivity points are the areas of the methodology that
will be significantly affected if the approach is
changed.

The tradeoff points are the breeding ground for the
sensitivity points, when a methodology changes, then the
connections between different subcharacteristics also change.

Therefore, two new framework components can be defined
as a consequence of the Quality Model concept in QuEF:
Quality Model component and Approach Characteristics
Template component. In this paper, the definition of the
Quality Model component is described. Although the Approach
Characteristics Template will be described in future work. In
this paper we present a process for defming a Quality Model
component for QuEF for MDWE methodologies which is
inspired by the work of [9]. The steps are defined as shown in
the Business Process Modeling Notation (BPMN) of Figure 4.
Concepts, tasks to be performed for each step, and the Quality
Model component structure which results for each step are
described.

�-----------D
2. Identify quality

attri buttes for each quality

factor

Quality

factors

�-----------D
3. Identify

characteristics

Quality attributes for

each quality factor

,,-----------L--------- ---
0

4. Identify

subcharacteristics and

m etri cs for each

characteri stic

Characteri sti cs

�---------. --

D 5 Propose a set of

hipothesisfor linking

subcharacteristics to quality

attributes

Subcharacteristics;

metrics for each

characteristic

Figure 4. BPMN for the definition of the Quality Model Component

i) identifY quality factors

Identifying quality factors should involve all stakeholders
and reflect the purposes and priorities of using a MDWE
approach. To this ends, a set of quality factors based on current
literature such as ISO/IEC 9126, IEEE and other standards
which are adapted to MDWE methodologies has to be
identified, classified and hierarchical. The Quality Factors of
an approach may be:

• External/Internal Quality: Usability, Functionality,
Reliability, Maintainability and Portability.

• Quality in Use: Effectiveness, Productivity and
Satisfaction.

Each quality factor and attribute in ISO 9126 is described in
relation with a software product but in this case all quality
factors and attributes would be described in relation with
approach characteristics.

In this work, Usability is taken as an example of the quality
factor. In ISO 9126, Usability is a quality factor which is
defined as: "The capability of the software to be understood,
learned, used and attractive to the user when used under
specified conditions". This definition could be adapted to more
closely fit our specific domain: "The capability of an approach
characteristic to be understood, learned, used and attractive to
the user when used under specified conditions" or in a general
way could be described as: "A set of attributes that bear
influence on the effort needed for use, and on the individual
assessment of such use, by a stated or implied set of users".

2) IdentifY quality attributes for each quality factor

For each quality factor, a set of quality attributes have to be
identified. For example, quality attributes related with
Usability are described in the same way by adapting other
definitions from ISO, IEEE, other standards and work already
published. These quality attributes may be described as:

•

•

•

•

•

•

Leamability: The capability of an approach
characteristic to enable the user to learn how to use it.
[adapted from ISO 9126]
Understandability / Comprehensibility: The capability of
being understood and the extent to which an approach
characteristic is clear, without ambiguity, and easily
comprehensible. [adapted from ISO 9126]
Simplicity: The degree to which an approach
characteristic has a design that is straightforward and
easy to understand [adapted from IEEE].
Interpretability: The extent to which an approach
characteristic is in units of iriformation appropriate for
the capability of the developer.
Operability / Ease of Operation: The capability of an
approach characteristic to enable the user to operate
and control it. [adapted from ISO 9126].
Attractiveness: The extent to which an approach
characteristic is attractive for developers to use.

3) identifY characteristics

Approach characteristics can be the software development
process, models, metamodels, languages, tools, transformations
or the quality assurance techniques. In MDWE, models are
refined progressively and transformed into new models or
code. To this end, tools may also be used to test, verify or
validate the models. Moreover, each methodology may defme
its development process and/or techniques. In this context, our
belief coincides with that of other authors in that there is a
direct relationship between the quality of the final software
product and the quality of the methodologies used, such as the
qualities of consistency and completeness. The quality of
methodologies in tum depends on the following
Characteristics:

•

•

•

•

•

•

The Model-Driven Engineering: the modelling
language definition used, such as their appropriateness
for the MDWE domain and complexity,
transformations, traces, test cases, and rule generation
models as a prerequisite for successfully employing
MDE in the style of the MDA of the OMG.

The knowledge of MDWE methodology users of the
problem in hand and their experience of web modelling
languages and tool support in use.

The web modelling which covers criteria for evaluating
the web application development process, conceptual
levels, features and levels of abstraction.

The customization modelling which explicitly deals
with characteristics related with the methodology
adaptations in a web application development.

The maturity of a methodology.

The tool support
transformations, such
modelling languages
information.

used for modelling and
as compliance with the web
and capability of combining

• The quality assurance techniques applied to discover
faults or weaknesses.

Methodology users and developers use the available
modelling languages, tools and processes and develop models
based on their knowledge of the problem and their experience.
Another problem is that relations are often based on judgment.
For example, ISO and IEEE have different hierarchies of
quality factors and attributes. Therefore, a set of general
MDWE approaches, characteristics and subcharacteristics have
to be identified, classified and described based on work and
current literature. The idea is to characterize the whole MDWE
process.

4) identifY subcharacteristics and metrics for each

characteristic

A characteristic or subcharacteristic is a feature assigned to
a product, process or technique of a methodology, and hence is
generally a set of user needs or expectations of a methodology.
In this sense, evaluating the degree to which the quality
attributes would be affected is not an easy task, and for this

reason, most of the metrics defined so far are qualitative
metrics which indicate if the sub characteristic is Supported
(S), Partly Supported (PS) or Not Supported (NS).

In this work, subcharacteristics and metrics for the MDE
characteristics are described. Furthermore, a table for each
subcharacteristic is shown with the metric and its possible
values.

• Language Definition: This subcharacteristic is for the
evaluation of whether a web modelling language has been
defined explicitly in terms of a metamodel (including UML
profiles), a grammar, a semantic description in terms of
semantic web technologies, or if such a definition is absent.

TABLE I!. LANGUAGE DEFINITION SUB CHARACTERISTICS AND METRICS

Metamodel, Schema, Grammar or Ontolo!!:v

It provides a metamodel based on the Meta Object Facility S, PS
(MOF). orNS
It provides a UML-profile (a metamodel extended from the S, PS
standard UML metamodel) orNS

Visual Syntax
It provides a standard visual syntax for Model-Driven Web S, PS
modelling similar to UML orNS

Semantic

It provides an standard semantic specification using the W3C S, PS
(World Wide Web Consortium) recommendations such as orNS
OWL (the Web Ontology Language) and RDF (the Resource
Description Framework)

• Transformations: This subcharacteristic for the evaluation
of whether approaches might support or not support various
types of model transformations. For example, an approach
might support transformations between platform­
independent models (PIM2PIM), and transformations
between platform-independent and platform-specific
models (PIM2PSM), transformations between platform­
specific models and code (PSM2Code). To this end,
different kinds of model transformation languages, such as
imperative, declarative, or hybrid languages, can be used.
In addition [19], following the classification of McNeile
there are two interpretations of the MDE vision named
"elaborationist" and "translationist" approaches [24].
Following the "elaborationist" approach, the specification
of the application is built up step by step by alternating
automatic generation and manual elaboration steps. Today,
most approaches based on MDA are "elaborationist"
approaches, which have to deal with the problem of model
and/or code synchronization and reverse-engineering. In a
"translationist" approach the platform independent design

models of an application are automatically transformed to
platform specific models, which are then automatically
serialized to code. These models and the generated code
must not be modified by the developer because roundtrip
engineering is neither necessary nor allowed. In fact, the
OMG has launched a new working group on Architecture
Driven modernization (ADM), whose aims IS the
integration of Reverse Engineering and MDA.

TABLE III. TRANSFORMATION SUBCHARACTERISTICS AND METRICS

Transformations Types
It uses a standard language for defining transformations (i.e. S, PS
providing ATL and QVT transformations)

orNS

It provides mapping functions or transformations such as: S, PS

CIM2CIM S, PSorNS PIM2PIM S, PS or NS orNS

CIM2PIM S, PSorNS PIM2PSM S, PS or NS
CIM2PSM S,PSorNS PIM2Code S, PSor NS
CIM2Code S, PSorNS PSM2Code S, PS or NS

Model-Driven Reverse Engineering or Synchronization
(elaboratonist ann roach) -

It uses standard languages for defining synchronization S, PS
methods or reverse engineering techniques such as ADM,

orNS XMI, MOF; GXL, JMI, EMF, MDR, QVT, etc.

It provides a synchronization method or a reverse engineering S, PS
technique between transformations such as:

orNS
PIM2CIM S, PSorNS Code2CIM S, PS or NS
PSM2PIM S, PSor NS Code2PIM S, PS or NS
PSM2CIM S, PSorNS Code2PSM S, PSorNS

• Traces: MDE processes must consider traceability
practices for its successful application. They help the
understanding, capturing, tracking and verification of
software artefacts and their relationships and dependencies
with other artefacts during the software life-cycle. This
subcharacteristic evaluates if a generation of traces has
been defined from transformations or between models.
Regarding MDE, the traceability mechanism links elements
of different models in order to specify elements useful in
generating others. Those links can also be used to analyze
impacts of model evolutions onto other models in the
transformation chain.

TABLE IV. TABLE 1. TRACE SUBCHARACTERISTICS AND METRICS

Trace Generation Lan!!:ua!!:e
It uses a standard language for defining trace generation from S, PS
transformations (i.e. providing ATL and QVT
transformations). orNS

Horizontal Trace Generation

It provides a local trace of relationships and dependencies of S, PS
models with other models (CIM2CIM, PIM2PIM, etc.).

orNS
It provides a general trace of relationships and dependencies S, PS
of models with other models (CIM2CIM, PIM2PIM, etc.).

orNS
Vertical Trace Generation

It provides a local trace of relationships and dependencies of S, PS
models with other models (CIM2PIM, PIM2PSM, etc.).

orNS
It provides a general trace of relationships and dependencies S, PS
of models with other models (CIM2PIM, PIM2PSM, etc.).

orNS

• Test Cases: This subcharacteristic evaluates whether the
approach offers effective processes for the systematic
generation of test products in order to consume the shortest
time possible and to cover a high number of tests. The test
phase is one of the most important phases in the software
development process. However, delays in development may

be caused by incorrect execution. For this reason, several
research teams are working on test cases generated directly
from requirements.

TABLE V. TEST CASE SUBCHARACTERISTICS AND METRICS

•

Metamodel, Schema, Grammar or Ontology for Test Cases

It provides a metamodel based on the Meta Object Facility S, PS
(MOF) for Test Cases.

arNS
It provides a UML-profile (a metamodel extended from the S, PS
standard UML metamodel) for Test Cases.

arNS
Visual Syntax for Test Cases

It propose a standard visual syntax for Model-Driven Web S, PS
modelling similar to UML for Test Cases

arNS
Semantic Description for Test Cases

It provides an standard semantic especification using for S, PS
example, the W3C (World Wide Web ConsortIUm)

arNS recommendations, such as OWL(the Web Ontology
Language) and RDF (the Resource Description Framework)
for the definition of a Test Case Semantic Description

Transformations for Test Cases

It uses a standard language for defining transformations (i.e. S, PS
providing ATL and QVT transformations) for Test Cases.

arNS

Rule Generation Model: This subcharacteristic is for the
evaluation of whether the information about a model is
represented separately within a rule generation model (a
translationist approach) or if this information is captured
within the transformation rules and later generating the
model is elaborated by hand. (elaborationist approach)

TABLE VI.
METRICS

RULE GENERATION MODEL SUBCHARACTERISTICS AND

Rules Generation Model
It uses a standard language for rule generation (i.e. providing S, PS
A TL and QVT).

arNS
It supports a rule generation model such as S, PS

CIM2PIM S, PSarNS arNS PIM2PSM S, PSarNS
PSM2Code S, PSarNS

5) Propose a set of hypotheses for linking

subcharacteristics to quality attributes.

In this step, the association links between subcharacteristics
and quality attributes have to be defined. On one hand, a set of
characteristics, subcharacteristics and metrics, quality factors
and quality attributes have been defined. On the other hand, a
set of hypotheses have to be proposed for indicating which
quality attribute is affected for each subcharacteristic.

For example, usability is described as a set of quality
attributes. These quality attributes could be affected by one of
various subcharacteristics as shown in table VII.

T ABLE VII. ASSOCIATION LINKS BETWEEN MOE SUBCHARACTERISTICS
AND USABILITY QUALITY ATTRIBUTES

Language
en Definition
.� Transformations
·c

UJ �Cl Traces g� S<;..;
Test Cases ..c: 0

u

.g
VJ Rule Generation

Model . .
L.: Learnabliity
U.: Understandability
S.: Simplicity

Quality Attributes of Usability
L. U. S.

X X X

X X X

. . 1.. InterpretabIlIty
0.: Operability

A.: Attractiveness

I. O. A.
X X X

X X

X X

X X

X X X

The explanation for each subcharacteristic of the MDE
characteristics and the relations between quality attributes is
described below.

• Language Definition: Our initial hypothesis is that the
language definition could bear influence on all quality
attributes of Usability in general because:

•

•

•

•

•

•

•

Learnability: It is easier to learn an approach if it
uses standard languages.

Understandability: It is easier to understand an
approach for users if it uses standard languages.

Simplicity: An approach is simpler if a standard
language used since its design is straightforward and
easy to understand.

Interpretability: It is easier to interpret an approach
for users if it uses standard languages.
Operability: An approach is more operable for its
users if it uses standard languages.

Attractiveness: We think that this quality attribute is
consequence of the others.

Transformations: Our initial hypothesis is that the
transformations could bear influence on only these quality
attributes of Usability:

•

•

Operability: Defining transformations may make it
easier to operate with an approach since it could
reduce the number of operations or actions that the
users have to carry on. In this sense, it is easier to
control the work.

Attractiveness: It is more attractive for the users of
an approach if it defines transformations since the
transformations may reduce the amount of work.

• Traces: During the development phase of a complex
system using an MDWE approach various types of errors
can be encountered: those concerning the compiler and
those concerning the system itself. Furthermore, as
systems may evolve, the implied changes in different
subparts can lead to a new stable configuration. Even if

these issues are common to any system, they require
specific management when a model-driven development
approach is used. Our initial hypothesis is that it could bear
influence on:

• Operability: Defining trace generation may make it
easier to operate with an approach since changes and
mistakes are controlled.

• Attractiveness: It is more attractive for the users of
an approach if it defines trace generation since the
trace generation may reduce the amount of work.

• Test Cases: Our initial hypothesis is that the
transformations could bear influence on only these quality
attributes of Usability:

• Operability: Defining test generation models may
make it easier to operate with an approach since it
could reduce the number of operations or actions that
the users have to carry out.

• Attractiveness: it is more attractive for the users of an
approach if it defines test case generation since the
detection of mistakes in a shorter period of time may
reduce the amount of work.

• Rule Generation Model: The employment of rule
generation models together with transformation techniques
could broaden the base of application platforms to be
employed and if realized within the accompanying tool,
could give the approaches a broader application base. Our
initial hypothesis is that it could bear influence on:

• Learnability: It is easier to learn an approach if it is
translationist than if it is an elaborationist approach
since each model or final code has to be elaborated
after transforming from other models. Users have to
learn how elaborate this model or code after
transformation.

• Understandability: It is easier to understand an
approach if it is translationist than if it is an
elaborationist approach since each model or final code
has to be elaborated after transforming from other
models. Users have to understand how to elaborate
this model or code after transformation.

• Simplicity: A translationist approach has a design that
is straightforward and easier to understand.

• Interpretability: It is easier to interpret a
translationist approach than an elaborationist
approach. Users have to interpret how to elaborate this
model or code after transformation.

• Operability: Defining Rule Generation Models may
make it easier to operate with an approach since it
could reduce the number of operations or actions that
the users have to carry out. It is easier to control the
work with this subcharacteristic.

• Attractiveness: It is more attractive for the users of
an approach if it defmes a Rule Generation Model
since a model for describing every new model may
reduce the amount of work. Everything is more
centralized.

The Quality Model component would be refined and
improved based on results, experience or current literature.
Other subcharacteristics have to be proposed and they have to
be associated with quality attributes. In this work, a set of
Model-Driven Engineering subcharacteristics and a set of
hypotheses for linking these sub characteristics to quality
attributes of Usability are proposed as an example.

VI. EXAMPLE: NOT METHODOLOGY

A. General Description of NDT (Navigational Development
Techniques)

NOT (Navigational Development Techniques) is a
methodological approach oriented to Web Engineering. Web
Engineering is a specific line in Software Engineering that
offers specific models and techniques to deal with the special
characteristics of Web systems. In recent years, numerous web
approaches have been defined [12].

However, comparative studies concluded that these
approaches are mainly focused on analysis and design phases
and there is a major gap in the treatment of Web requirements.
NDT is oriented to cover this gap. Thus, it is mainly focused on
the requirements and the analysis phases. It is an approach
defined in the Model Driven paradigm and it offers a suitable
and easy methodological environment. The most important
characteristics of this approach are:

• It offers an easy interface for the fmal user in the
requirements phase.

• It is based on a set of MOF metamodels of which the
development team need no previous knowledge. These
metamodels are the base of the NOT development
process.

• It follows the requirements traceability from the capture
to the analysis, offering a systematic process based on
formal transformations defined by QVT.

• NDT is completely based on UML, thus it can be
compatible with other approaches.

• NDT is being applied in several real projects. It has been
a widely applied methodology in real environments and
is yielding very good results.

Nowadays, NOT has evolved in the enterprise environment and
now covers the complete life cycle of a software project. With
the use of NOT-Suite, NOT offers a tool support for each phase
of the life cycle. In the next evaluation of NDT the extended
revision supported by NOT-Suite is considered.

B. Applying the Quality Model in the NDT methodology for
the Model-Driven Engineering Characteristic.

In the use of QuEF, this step would be similar to applying
the Approach Characteristic Template component for the
framework input because that component is based on the
Quality Model. However, the Approach Characteristic
Template component has not yet been fully developed, and a
brief application of the approach is used as an example. On the
other hand, this set of metrics could be quantified in order to
give an idea of quantity for every quality attribute.

• Language Definition.

T ABLE VIII. THE LANGUAGE DEFINITION SUBCHARACTERISTIC ON NOT

Metamodel, Schema, Grammar or Ontol02)
It provides a metamodel based on the Meta Object Facility S
(MOF).
It provides a UML-profile (a metamodel extended from the S
standard UML metamodel).

Visual Syntax
It provides a standard visual syntax for Model-Driven Web S
modelling similar to UML.

Semantics
It provides a standard semantic specification using the W3C NS
(World Wide Web Consortium) recommendations such as
OWL(the Web Ontology Language) and RDF (the Resource
Description Framework).

With respect to the Language Definition of NOT, it only
tails to support a Semantic specification language. In this way
and according to the Quality Model component, NOT reaches
good scores in some quality attributes, such as Leamability,
Understandability, Operability, Simplicity, Interpretability and
Attractiveness.

• Transformations

TABLE IX. THE TRANSFORMATION SUBCHARACTERISTICS ON NOT

Transformation Types
It uses a standard language for defining transformations (i.e. S
providing ATL and QVT transformations).
It provides mapping functions or transformations such as:

CIM2CIM S PIM2PIM S
CIM2PIM S PIM2PSM S S
CIM2PSM S PIM2Code S
CIM2Code S PSM2Code S

Model-Driven Reverse Engineering or Synchronization

(elaborationist approach)
It uses standard languages for defining synchronization
methods or reverse engineering techniques such as ADM, NS
XMI, MOF; GXL, JMl, EMF, MDR, QVT, etc.

It provides a synchronization method or a reverse
engineering technique between transformations such as:

PIM2CIM S Code2CIM NS PS
PSM2PIM NS Code2PIM NS
PSM2CIM NS Code2PSM S

NOT reaches good scores in transformations. This means
that is easier to operate with NOT, and attractive for users. In
this way, NOT only provides synchronization between
PIM2CIM and Code2PSM levels of abstraction.

• Traces:

TABLE X. THE TRACE SUBCHARACTERISTICS ON NOT

Trace Generation Language
It uses a standard language for defining trace generation from
transformations (i.e. providing ATL and QVT S
transformations).

Horizontal Trace Generation

It provides a local trace of relationships and dependencies of S
models with other models (CIM2CIM, PIM2PIM, etc.).
It provides a general trace of relationships and dependencies S
of models with other models (CIM2CIM, PIM2PIM, etc.).

Vertical Trace Generation

It provides a local trace of relationships and dependencies of S
models with other models (CIM2PIM, PIM2PSM, etc.).
It provides a general trace of relationships and dependencies S
of models with other models (CIM2PIM, PIM2PSM, etc.).

In the same way as for Transformations, NOT reaches good
scores in trace generation. This means that is easier to operate
with NOT, and is very attractive for users.

• Test Cases:

TABLE XI. THE TEST CASE SUBCHARACTERISTICS ON NOT

Metamodel, Schema, Grammar or Ontology for Test Cases
It provides a metamodel based on the Meta Object Facility S
(MOF) for Test Cases.
It provides a UML-profiJe (a metamodel extended from the S
standard UML metamodel) for Test Cases.

Visual Syntax for Test Cases
It proposes a standard visual syntax for Model-Driven Web S
modelling similar to UML for Test Cases.

Semantic Description for Test Cases
It provides a standard semantic specification using, for
example the W3C (World Wide Web Consortium)
recommendations such as OWL(the Web Ontology Language) NS
and RDF (the Resource Description Framework) for the
definition of Test Case Semantic Description.

Transformations for Test Cases
It uses a standard language for defining transformations (i.e. S
providing ATL and QVT transformations) for Test Cases.

With respect to the Test Cases of NOT, it only fails to
suuport a Semantic specification language. In this way and
according to the Quality Model component, NOT yields good
results for quality attributes such as Leamability,
Understandability, Operability, Simplicity, Interpretability and
Attractiveness.

• Rule Generation Model

TABLE XII. THE RULE GENERATION MODEL SUB CHARACTERISTICS ON
NOT

Rule Generation Model
It uses a standard language for rule generation (i.e. providing NS
A TL and QVT).
It supports a rule generation model such as

I CIM2PIM INS I

I PIM2PSM I Z�

On the other hand, NOT has no Rule Generation Model.
This is comprehensible since NOT is mainly focused on the
requirements and the analysis phases. Furthermore, NOT
methodology is an "elaborationist" approach. And hence
remains unattractive for the users.

C. Using the Quality Modelfor the evaluation of NDT
methodology

The Quality Model Component is needed for the
development of the Quality Evaluation Process component. To
illustrate this, for every quality attribute, an example of a
quantitative value for each subcharacteristic is calculated. The
total value for the quality attribute could be, for example, the
number of values divided by the total metrics in the
subcharacteristic. The metric value in the example is 1 if it is
supported, 112 of the arithmetic mean of supported elements
from among the total elements (for example in transformations)
if it is partly supported and 0 if it is not supported.

T ABLE XIII. VALUES ON APPLYING THE QUALITY MODEL TO NOT

Subcharacteristics Quantified Total

Value Value

Learnability
Language Definition 3 / 4

Rule Generation Model 0 3/8

Understandability
Language Definition 3 / 4

Rule Generation Model 0 3/8

Simplicity
Language Definition 3 / 4

Rule Generation Model 0 3/8

Interpretability
Language Definition 3 / 4

Rule Generation Model 0 3/8

Language Definition 3 / 4

Transformations (1+ 1+0+2/6
) /4 = 3/5 5/8

Operability Traces I
Test Cases 4/5

Rule Generation Model 0

Language Definition 3 / 4

Transformations
(1+ 1+0+2/6
) /4 = 3/5 5/8

Attractiveness Traces I
Test Cases 4/5

Rule Generation Model 0

Finally, as is shown in Figure 5, as a graph to make
Usability may be represented the evaluation of each quality
factor or some aspect of quality easier. In the figure, the grey
line represents Usability on the NOT methodology and the
black line represents the ideal usability in an ideal approach
according to the subcharacteristics under consideration. These
types of graphs may be very useful in the evaluation.
According to the results of the evaluation of the NOT
methodology with the Quality Model, their graphs are very
similar and regular but this is due to the fact that only one
characteristic has been considered in the example. Hence, the
same subcharacteristics have been considered for each quality
attribute of Usability. This is the cause of results. If we would

consider other characteristics and subcharacteristics the results
could have been very different and the line which represents
the NOT methodology would have been more irregular but
more representative for the usability quality factor.

Attractiveness

q u a l i ty attr ibut

O perab i l i ty q u a l i

attr ibute

Usa bi l ity q u a l ity fa ctor

learnab i l i t y

qua l i ty attr ibute
1

I n terpreta b i l i ty

q u a l i ty attr ibute

ndersta ndabi l i ty

q u a l i ty attr ibute

i m p l i c i ty q u a l ity

at t r ibute

__ N DT methodology

__ Ideal Approach

Figure 5. An example of NOT methodology evaluation

VII. CONCLUSIONS & FUTURE WORK

The Quality Model component in QuEF for MOWE
methodologies is proposed in this paper and an example of its
use in QuEF is described. With regards to the contributions
obtained from this research, a Quality Model is proposed and a
set of quality attributes are proposed for the Usability quality
factor. Furthermore, subcharacteristics related with the MOE
characteristic have been described which are required for the
measurement of the value of MOWE methodologies in order to
be able to assess and improve their Usability. In order to
achieve a fully developed Quality Model, other quality factors
and attributes, characteristics and subcharacteristics and
associations links have to be studied in future work.

In this way, criteria can be unified when developing a new
methodology or improving current proposals. We think that the
use of QuEF would enhance the quality of products, processes
and techniques of approaches. Therefore the use of QuEF may
improve the efficiency and effectiveness of MDWE
methodologies, and in tum may make their use more
widespread. Since, "You can't control what you can't measure"
(Tom DeMarco), we consider that QuEF is needed in MDWE
to guide the way in which methodologies are able to assure the
quality of the different MOWE development processes,
techniques and the quality of the MOWE intermediate artifacts.

The principal benefit of QuEF is the ability to see if a
proposed MDWE methodology will live up to user
expectations. The approach evaluation helps one understand
the strengths and weaknesses of a methodology. QuEF would
not only help evaluate the current input approach, but would
also help with the design of a new approach. This framework
would help designers to ask the right questions and solve
critical issues. Furthermore, it would be necessary to carry out
a standardization of terminology to improve the access channel
for communication in MOWE.

ACKNOWLEDGMENT

This research has been supported by the project QSimTest
(TIN2007-67843-C06_03) and by the RePRIS project of the
Ministerio de Educaci6n y Ciencia (TIN2007-30391-E), Spain.

REFERENCES

[1] S . Abrahao, L. Olsina, and O. Pastor, " A Methodology for Evaluating
Quality and Functional Size of Operative WebApps". Proc. of 2nd Int.
Workshop on Web Oriented Software Technology (ECOOP'02)
Workshops, pp. 1 -20, Spain, 2002.

[2] S. Abrahao, N. Condori-Fermlndez, L. Olsina and O. Pastor, "Defining
and Validating Metrics for Navigational Models". IEEE Computer
Society. Proceedings of the Ninth International Software Metrics
Symposium (METRICS' 03), pp. 200, Australia, 2003.

[3] L. C. Briand, W. L. Melo. and J. wust. "Assessing the Applicability of
Fault-Proneness Models Across Object-Oriented Software Projects".
ISERN Report No. ISERN-00-06, V. 2, 2006.

[4] C. Cachero, G. Poels, C. Calero, "Towards a Quality-Aware Web
Engineering Process". Twelfth International Workshop on Exploring
Modelling Methods in Systems Analysis and Design. Vol. 1 , pp 7 - 16.
Held in conjunction with CAISE' 07Trondheim, Norway, 2007.

[5] C. Cachero, C. Calero, Y. Marhuenda, "A Quality-Aware Engineering
Process for Web Applications". Handbook of research on Web
Information Systems Quality. 2008.

[6] C. Calero, J. Ruiz, M. Piattini, "Classifying web metrics using the web
quality model". Vol. 29, No. 3, pp. 227-248, 2005.

[7] S.R. Chidarnber, C.F. Kemerer, "A Metrics Suite for Object Oriented
Design, IEEE Transactions on Software Engineering", Vol. 20, No. 6,
pp. 476-493, 1 994.

[8] Y. Deshpande, S. Marugesan, A. Ginige, S. Hanse, D. Schawabe, M.
Gaedke, B. White, "Web Engineering", J. Web Eng., Vol. 1, No.1 , pp.
3- 17 , 2002.

[9] R. G. Dromey, "Concerning the Chimera". IEEE Software 1 3(1), pp.
33-43, 1 996.

[1 0] A. Etien and C. Rolland, "A Process for Generating Fitness Measures".
(CAiSE 2005), LNCS 3520, pp. 227-292. 2005.

[1 1] MJ. Escalona, G. Aragon, "NDT. A Model-Driven Approach for Web
Requirements". IEEE Transactions on software engineering, Vol. 34,
No. 3, pp. 377-390, 2008.

[1 2] MJ. Escalona, J. Torres, M. Mejias, J.J. Gutierrez, D. Villadiego. 'The
treatment of navigation in Web Engineering". Advances in Engineering
Software Elsevier Ld.; England. Vol. 38, pp. 267-282, 2007.

[1 3] MJ. Escalona, N. Koch, "Requirements Engineering for Web
Applications - A comparative study". Journal of Web Engineering. Vol.
2, No. 3, pp. 1 93-21 2, 2004.

[1 4] F. Garcia, M. Serrano, J. Cruz-Lemus, F. Ruiz, M. Piattini, "Managing
software process measurement: A metamodel-based approach",
Information Sciences. Vol. 1 77, No. 1 2, pp. 2570-2586, 2007.

[1 5] JJ. Gutierrez, MJ. Escalona, M. Mejias, I. Ramos, J. Torres, "An
approach for Model Driven test generation", Proceeding of the IEEE
International Conference on Research Challenges in Information
Science. IEEE Morocco (RCIS 2009), pp. 337-346, Morocco. 2009.

[1 6] IEEE Std 6 1 0.1 2- 1 990. IEEE Standard Glossary of Software
Engineering Terminology.

[1 7] ISO- International Organization for Standardization, ISO/IEC 9 1 26- 1 ,
http://www.iso.org.

[1 8] J. Kirakowski, R. Whitehead, N. Claridge, "Human Centered Measures
of Success in Web Site Design", Proc. of 4th Conference on Human
Factors & the Web, Basking Ridge, New Jersey, USA, 1 998.

[1 9] C. Kroi�, N. Koch, "UWE Metamodel and Profile, User Guide and
Reference". Technical Report 0802. Programming and Software
Engineering Unit (PST), Institute for Informatics. Ludwig-Maximilians­
Universitat Munchen, Germany, 2008.

[20] A. Lake, C. Cook, "Use of factor analysis to develop OOP software
complexity metrics". Proc. 6th Annual Oregon Workshop on Software
Metrics, Silver Falls, Oregon, 1 994.

[21] y.-s. Lee, B.-S. Liang, S.-F. Wu, F.-J. Wang, "Measuring the Coupling
and Cohesion of an Object-Oriented Program Based on Information
Flow", in Proc. International Conference on Software Quality, Maribor,
Slovenia, 1 995.

[22] J. A. McCall, P. K. Richards, G. F. Walters, "Factors in Software
Quality", Nat'l Tech. Information Service, Vol. 1 , 2 and 3. 1 977.

[23] J. Mcgarry, D. Card, C. Jones, B. Layman, E. Clark, J. Dean, F. Hall,
"Practical Software Measurement. Objective Information for Decision
Makers", Addison-Wesley, 2002.

[24] A. McNeile. MDA: The VISIOn with the Hole
http://www.metamaxim.comldownloadldocuments/MDA v 1 . pdf, 2003.

[25] P. Mohagheghi, V. Dehlen, "Developing a Quality Framework for
Model-Driven Engineering". Models in Software Engineering:
Workshops and Symposia at MoDELS 2007, pp. 275-286, 2008.

[26] P. Mohagheghi, J. Aagedal, "Evaluating Quality in Model-Driven
Engineering". International Workshop on Modeling in Software
Engineering. (MISE'07), IEEE Computer Society, 2007.

[27] P. Mohagheghi, V. Dehlen, "A Metamodel for Specifying Quality
Models in Model-Driven Engineering." 2007

[28] J. Nielsen, "Designing Web Usability: The Practice of Simplicity", New
Riders Publishing, 2000.

[29] OMG: MDA. http://www.omg.org/mdaifaCLmda.htm

[30] OMG: MDA Guide, http://www.omg.org/docs/omg/03-06-0 1 .pdf. 2005.

[31] J. M. Perez, F. Ruiz, M. Piattini, "Model Driven Engineering Aplicado a
Business Process Management", Informe Tecnico. UCLM-TSI-002,
2007.

[32] J. Ralyte, X. Lamielle, N. Arni-Bloch, M. Leonard, "A Framework for
Supporting Management in Distributed Information Systems
Development". 2nd In. Conference on Research Challenges in
Information Science (RCIS 2008), pp. 381 -392, Morocco, 2008.

[33] A. Schauerhuber, M. Wimmer, E. Kapsarnmer, "Bridging existing Web
Modeling Languages to Model-Driven Engineering: A Metamodel for
WebML". II Int. Workshop on Model-Driven Web Engineering,
International Conference On Web Engineering, Vol. 1 55 , No. 5, USA,
2006.

[34] W. Schwinger,W. Retschitzegger, A. Schauerhuber, G. Kappel, M.
Wimmer, B. Prall, C. Cachero Castro, S. Casteleyn, O. De Troyer, P.
Fraternaii, I. Garrigos, F. Garzotto, A. Ginige, G-J. Houben, N. Koch, N.
Moreno, O. Pastor, P. Paolini, V. Pelechano Ferragud, G. Rossi, D.
Schwabe, M. Tisi, A. Vailecillo, van der Sluijs and G. Zhang, "A
survey on web modeling approaches for ubiquitous web applications".
International Journal of web Information Systems Vol. 4 No. 3, pp. 234-
305, 2008.

[35] A. Valle cillo, N. Koch, C. Cachero, S. Comai, P. Fratemali, I. Garrigos,
J. Gomez, G. Kappel, A. Knapp, M. Matera, S. Melia, N. Moreno, B.
Prall, T. Reiter, W. Retschitzegger, J. E. Rivera, W. Schwinger, M.
Wimmer, and G. Zhang, "MDWEnet: A Practical Approach to
Achieving Interoperability of Model-Driven Web Engineering
Methods", Proc. Third Int' I Workshop Model-Driven Web Eng., pp.
246-254, 2007.

[36] World Wide Web Consortium (W3C): www.w3.org

