
Data streams classification using deep
learning under different speeds and drifts

PEDRO LARA-BENÍTEZ∗, Division of Computer Science, University of Sevilla,
ES-41012 Seville, Spain.

MANUEL CARRANZA-GARCÍA, Division of Computer Science, University of
Sevilla, ES-41012 Seville, Spain.

DAVID GUTIÉRREZ-AVILÉS, Division of Computer Science, University of
Sevilla, ES-41012 Seville, Spain.

JOSÉ C. RIQUELME, Division of Computer Science, University of Sevilla,
ES-41012 Seville, Spain.

Abstract
Processing data streams arriving at high speed requires the development of models that can provide fast and accurate
predictions. Although deep neural networks are the state-of-the-art for many machine learning tasks, their performance in
real-time data streaming scenarios is a research area that has not yet been fully addressed. Nevertheless, much effort has
been put into the adaption of complex deep learning (DL) models to streaming tasks by reducing the processing time. The
design of the asynchronous dual-pipeline DL framework allows making predictions of incoming instances and updating the
model simultaneously, using two separate layers. The aim of this work is to assess the performance of different types of DL
architectures for data streaming classification using this framework. We evaluate models such as multi-layer perceptrons,
recurrent, convolutional and temporal convolutional neural networks over several time series datasets that are simulated as
streams at different speeds. In addition, we evaluate how the different architectures react to concept drifts typically found in
evolving data streams. The obtained results indicate that convolutional architectures achieve a higher performance in terms
of accuracy and efficiency, but are also the most sensitive to concept drifts.

Keywords: Deep learning, data streaming, online learning, time series, classification.

1 Introduction

Learning from data arriving at high speed is one of the main challenges in machine learning. Over
the past decades, different models have been developed to deal with the specific requirements of data
streaming. Traditional batch-learning models are not suitable for this purpose given the high rate of
arrival of instances. In data streaming, incoming data has to be rapidly classified and discarded after
using it for updating the model. Predicting and training have to be done as fast as possible in order to
maintain a processing rate close to real time. Furthermore, the models must detect possible changes
in the incoming data distribution, which is known as concept drift [1].

Despite the incremental learning nature of neural networks, there is little research involving deep
learning (DL) models in the data streaming literature. Neural networks can adapt to changes in

∗E-mail: plbenitez@us.es

© The Author(s) 2022. Published by Oxford University Press. All rights reserved.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium,
provided the original work is properly cited.
https://doi.org/10.1093/jigpal/jzac033

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1093/jigpal/jzac033

2 Deep Learning for Data Streams varying Speed and Drift

data by updating their weights with incoming instances. However, the high training time of deep
networks presents challenges to adapt them to a streaming scenario. Very recently, a DL framework
for data streaming classification that uses an asynchronous dual-pipeline architecture (ADLStream)
was introduced in [15]. In this framework, training and classification can be done simultaneously in
two different processes. This separation allows using DL networks for data arriving at high speed
while maintaining a high predictive performance.

The aim of this study is to evaluate how different DL architectures perform on the data streaming
classification task using the ADLStream framework. Despite the promising results presented in [15],
the experiments only considered convolutional neural networks, hence the suitability and efficiency
of other types of deep networks is an area that has yet to be studied. In this work, we focus
the experimental study on time series data obtained from the UCR repository [6] that have been
simulated as streams. For this reason, we have designed DL models that are suitable for data having
an inner temporal structure [17]. The basic multi-layer perceptron (MLP) is set as the baseline
model and compared with other three architectures: long-short term memory network (LSTM),
convolutional neural network (CNN), and temporal convolutional network (TCN). These models are
evaluated in terms of accuracy and computational efficiency. Furthermore, 13 synthetic datasets have
been generated to evaluate the performance of these models under evolving streams with different
types of concept drift.

The rest of the paper is organized as follows. Section 2 presents a review on related work. Section 3
describes the materials used and the methodology. In Section 4, the experimental results obtained are
reported. Finally, Section 5 presents the conclusions and future work.

2 Related work

One of the most popular approaches is devoted to develop incremental or online algorithms
based on decision trees, for instance, the Hoeffding Adaptive Trees [3]. These models build trees
incrementally based on the Hoeffding principle, which splits a node only when there is statistical
significance between the current best attribute and the others. Later, ensemble techniques have been
successfully applied to data stream classification, enhancing the predictive performance of single
classifiers. ADWIN bagging used adaptive windows to control the adaptation of ensemble members
to the evolution of the stream [3]. More recently, researchers have focused on building ensemble
models that can deal effectively with concept drifts. The adaptive random forest (ARF) algorithm
proposes better resampling methods for updating classifiers over drifting data streams [10]. In [5],
the authors proposed the Kappa Updated Ensemble (KUE) that uses weighted voting from a pool of
classifiers with possible abstentions.

Despite the incremental learning nature of neural networks, there are few studies exploring the use
of DL for data stream mining. There have been proposals using simple networks such as the MLP
[9, 19]. For more complex networks, a DL framework for data streaming that uses a dual-pipeline
architecture was developed in [15]. A more detailed description of this framework, which was the
first using complex DL networks for data streaming, is provided in the next section.

3 Materials and methods

This section provides a description of the materials and methods used in this work. Thus, Section 3.1
introduces the ADLStream framework. Section 3.2 describes the datasets used as benchmark.
Section 3.3 describes the experimental study.

Deep Learning for Data Streams varying Speed and Drift 3

FIGURE 1. Asynchronous dual-pipeline DL framework.

3.1 ADLStream framework

In this study, we use the ADLStream framework for data streaming presented in [15]. As can be
seen in Figure 1, the proposed system has two asynchronous layers for training and predicting. This
improves the processing rate of incoming data since instances are classified as soon as they arrive
using a recently trained model. In the other layer, the weights of the network are constantly being
updated in order to be adjusted to the evolution of the stream. This framework allows using complex
DL model, such as recurrent or convolutional, that would not be possible to use in a data streaming
scenario if they are trained sequentially. The source code of the ADLStream Python library can be
found in [13] and the implementation of the experiments can be found here [14].

3.2 Datasets

3.2.1 Time series classification For the experimental study, 29 one-dimensional time series
datasets from the UCR repository have been simulated as streams [6]. The selected datasets have
different characteristics and are categorized into six different domains. Table 1 presents a detailed
description of the number of instances, length of the time series and the number of classes of each
dataset. For the experimental study, each dataset is simulated with three different stream speed: 20,
10 and 5 instances per seconds.

3.2.2 Concept drift datasets We have generated 15 synthetic datasets that simulate a wide variety
of concept drift. More specifically, we can distinguish between three different types of concept
drift: abrupt, which represents a significant sudden change on the data distribution; gradual, when
the data stream oscillates between two distribution before completely drifting; and incremental,
when the distribution experiences barely noticeable change at each time step. These streams have
been simulated with different algorithms (RBF, LED, RandomTree, Agrawal, SEA) found in River
library [16]. Table 2 provides a detailed description for the number of attributes, number of classes,
imbalance rate (IR) and type of drift of each dataset.

4 Deep Learning for Data Streams varying Speed and Drift

TABLE 1. Datasets used for the study.

Dataset Instances Length Classes Type

1 TwoPatterns 5000 128 4 SIMULATED
2 CinCECGtorso 1420 1639 4 ECG
3 TwoLeadECG 1162 82 2 ECG
4 Wafer 7164 152 2 SENSOR
5 Pendigits 10992 16 10 MOTION
6 FacesUCR 2250 131 14 IMAGE
7 Mallat 2400 1024 8 SIMULATED
8 FaceAll 2250 131 14 IMAGE
9 Symbols 1020 398 6 IMAGE
10 ItalyPowerDemand 1096 24 2 SENSOR
11 ECG5000 5000 140 5 ECG
12 MoteStrain 1272 84 2 SENSOR
13 NonInvasiveFetalECGThorax1 3765 750 42 ECG
14 NonInvasiveFetalECGThorax2 3765 750 42 ECG
15 SwedishLeaf 1125 128 15 IMAGE
16 FordA 4921 500 2 SENSOR
17 Yoga 3300 426 2 IMAGE
18 UWaveGestureLibraryX 4478 315 8 MOTION
19 FordB 4446 500 2 SENSOR
20 ElectricDevices 16637 96 7 DEVICE
21 UWaveGestureLibraryY 4478 315 8 MOTION
22 UWaveGestureLibraryZ 4478 315 8 MOTION
23 HandOutlines 1370 2709 2 IMAGE
24 InsectWingbeatSound 2200 256 11 SENSOR
25 ShapesAll 1200 512 60 IMAGE
26 MedicalImages 1141 99 10 IMAGE
27 PhalangesOutlinesCorrect 2658 80 2 IMAGE
28 ChlorineConcentration 4307 166 3 SIMULATED
29 Phoneme 2110 1024 39 SENSOR

3.3 Experimental study

In this section, we present the design of the different types of DL models selected for the
experimental study. Furthermore, we describe the details of the evaluation method used for the data
streaming classification task.

3.3.1 DL models Our aim in this study is to evaluate the performance of different DL architectures
within the ADLStream framework. Four different families of architectures are considered in the
experiments: MLP, LSTM, CNN and TCN. While the MLPs is unable to model the time relationships
within the input data, the last three architectures are particularly indicated for dealing with data that
has a temporal or spatial grid-like structure [12], such as the selected datasets. LSTM networks
are one of the most popular types of recurrent neural networks. They connect each time step with
the previous ones in order to model the long temporal dependencies of the data without forgetting

Deep Learning for Data Streams varying Speed and Drift 5

TABLE 2. Datasets used for drift analysis.

Dataset Attributes Classes IR Drift type

RTGa 20 3 4 to 2
RTGa3 20 3 4 to 30
RTGa6 20 3 4 to 60 Abrupt
ARGWa-F1F4 9 2 2 to 1
ARGWa-F2F5F8 9 2 1 to 50
SEAa-F2F4 3 2 1

RTGg 20 3 4 to 2
RTGg3 20 3 4 to 30
RTGg6 20 3 4 to 60 Gradual
ARGWg-F1F4 9 2 2 to 1
ARGWg-F2F5F8 9 2 1 to 50
SEAg-F2F4 3 2 1

RBFi-slow 20 3 3
RBFi-fast 20 3 3 Incremental
LED-4 24 10 1

TABLE 3. MLP architecture.

MLP

Layer Type Neurons

0 Input f
1 Dense 32
2 Dense 64
3 Dense 128
4 Softmax c

Params f × 32 + 10240 + c × 128

TABLE 4. CNN architecture (k indicates the kernel size).

CNN

Layer Type Neurons

0 Input f
1 Conv. (k = 7) f × 64 maps
2 Max-Pool (k = 2) f /2 × 64 maps
3 Conv. (k = 5) f /2 × 128 maps
4 Max-Pool (k = 2) f /4 × 128 maps
5 Dense 64
6 Dense 32
7 Softmax c

Params f × 2048 + 43648 + c × 32

6 Deep Learning for Data Streams varying Speed and Drift

TABLE 5. LSTM network architecture.

LSTM

Layer Type Neurons

0 Input f
1 LSTM f × 64 units
2 LSTM f × 128 units
3 Dense 64
4 Dense 32
5 Softmax c

Params f × 8192 + 117760 + c × 32

TABLE 6. TCN architecture (k indicates the kernel size).

TCN

Layer Type Neurons

0 Input f
1 TCN (k = 5) f × 64 maps
2 Dense 64
3 Dense 32
4 Softmax c

Params f × 4096 + 372096 + c × 32

the short-term patterns using special gates [8]. On the other hand, CNNs are networks based on
the convolution operation, which creates features maps using sliding filters. They are also suitable
for one-dimensional time series data since they are able to automatically capture repeated patterns at
different scales [11]. Moreover, they have far less trainable parameters than recurrent networks due to
their weight sharing scheme [4]. More recently, TCNs have emerged as a specialized architecture that
can capture long-term dependencies more effectively by using dilated causal convolutions. With this
operation, the receptive field of neurons is increased without the need for pooling operations, hence
there is no loss of resolution [18]. Tables 3–6 provide a detailed description of the layers composing
the four DL models considered. In these tables, the values of f and c are the number of features of the
instances and the number of classes, respectively. The baseline MLP model (Table 3) is composed
of three dense layers with an increasing number of neurons. As can be seen, the other three models
have a similar architecture since the convolutional or recurrent layers have the same number of maps
or units and are followed by fully connected layers with the same number of neurons. In the CNN
(Table 4), two convolutional blocks with decreasing kernel size and max-pooling of stride 2 are
applied before the dense layers. In the LSTM and TCN layers, the complete sequences are returned
and connected to the next layers in order to use the information of all patterns extracted at different
scales. In the TCN (Table 6), only one stack of residual blocks is used, and the dilated convolution
is used with kernel (k = 5) and dilations (d = {1, 2, 4, 8, 16, 32, 64}). Another important element
to consider is the use of a dropout with rate 0.2 on all dense layers in all models, with the aim
of reducing over-fitting issues. The number of trainable parameters illustrates the computational
cost of each model. The TCN has the highest number, which can be 37 times greater than the
MLP model.

Deep Learning for Data Streams varying Speed and Drift 7

3.3.2 Evaluation For evaluating the results we use the prequential method with decaying factors,
which incrementally updates the accuracy by testing the model with unseen examples [7]. The
decaying factors are used as a forgetting mechanism to give more importance to recent instances
for estimating the error, given the evolving nature of the stream. In our study, we use a decaying
factor of α = 0.99. The process of calculating the prequential accuracy Pα at moment i can be
formulated as follows, where o and y are the real and expected output respectively and ni is the
number of examples used to compute the loss function Li.

Pα(i) =
∑i

k=1 αi−kL(yk , ok)
∑i

k=1 αi−k
= Sα(i)

Bα(i)
(1)

with

Sα(i) = L(yi, oi) + α × Sα(i − 1), Bα(i) = ni + α × Bα(i − 1)

The metric selected is the Kappa statistic, that is more suitable than standard accuracy in data
streaming due to the frequent changes in the class distribution of incoming instances [2]. The Kappa
value can be computed as shown in the following equation, where p0 is the prequential accuracy and
pc is the hypothetical probability of chance agreement.

k = p0 − pc

1 − pc
(2)

4 Experimental results

This section presents the Kappa accuracy results and the statistical analysis. The experiments have
been carried out with an Intel Core i9-10900X and two NVIDIA GeForce RTX 2080 Ti 12GB GPU.

4.1 Prequential Kappa

Table 7 presents the prequential Kappa accuracy results obtained with the different models for each
dataset at a stream speed of 5 instances per second. As can be seen, the CNN achieves the best
performance for almost all the datasets considered, obtaining the highest average Kappa accuracy
value. The second model on average is the TCN, but closely followed by the LSTM that shows a
similar performance. In general, the results prove that the ADLStream framework is able to achieve
reliable results regardless of the DL architecture chosen.

4.2 Statistical analysis

The ranking of the accuracy of the models obtained with the Friedman test is presented in Table 8.
The CNN model leads the ranking, with a high difference in score with respect to the rest of the
models. The TCN and LSTM obtain a similar score, while the MLP offers the worst performance.
The null hypothesis is rejected since the p-value obtained (<0.001) is less than the significance level
(α = 0.05).

In Bergmann–Hommel’s post-hoc analysis, we perform pair-wise comparisons for all models.
Table 9 reports the p-values and conclusions obtained. As can be seen, for the CNN all null
hypothesis can be rejected since the p-values are always below the significance level. Therefore,
it can be concluded that there is a statistical significance in the differences between the performance

8 Deep Learning for Data Streams varying Speed and Drift

TABLE 7. Prequential Kappa accuracy results

Dataset MLP LSTM CNN TCN

1 TwoPatterns 0.741 0.964 0.960 0.964
2 CinCECGtorso 0.381 0.875 0.930 0.805
3 TwoLeadECG 0.536 0.816 0.954 0.886
4 Wafer 0.926 0.964 0.965 0.954
5 pendigits 0.965 0.964 0.974 0.969
6 FacesUCR 0.716 0.842 0.850 0.819
7 Mallat 0.899 0.904 0.968 0.921
8 FaceAll 0.704 0.868 0.842 0.820
9 Symbols 0.857 0.876 0.919 0.895
10 ItalyPowerDemand 0.919 0.866 0.916 0.915
11 ECG5000 0.810 0.873 0.872 0.867
12 MoteStrain 0.742 0.768 0.794 0.767
13 NonInvasiveFetalECGThorax1 0.050 0.620 0.735 0.597
14 NonInvasiveFetalECGThorax2 0.038 0.618 0.809 0.706
15 SwedishLeaf 0.634 0.674 0.752 0.701
16 FordA 0.003 0.397 0.526 0.722
17 Yoga 0.051 0.686 0.671 0.671
18 UWaveGestureLibraryX 0.589 0.680 0.654 0.652
19 FordB 0.006 0.351 0.476 0.640
20 ElectricDevices 0.438 0.667 0.598 0.516
21 UWaveGestureLibraryY 0.574 0.593 0.566 0.545
22 UWaveGestureLibraryZ 0.551 0.614 0.570 0.574
23 HandOutlines 0.006 0.500 0.624 0.230
24 InsectWingbeatSound 0.552 0.572 0.533 0.504
25 ShapesAll 0.425 0.478 0.449 0.463
26 MedicalImages 0.403 0.417 0.432 0.399
27 PhalangesOutlinesCorrect 0.140 0.427 0.501 0.430
28 ChlorineConcentration 0.002 0.316 0.676 0.587
29 Phoneme 0.002 0.041 0.079 0.029

Average kappa 0.471 0.663 0.710 0.674

Average time per instance (ms) 20.595 43.832 22.075 27.820

of the CNN and the other architectures considered. Nevertheless, there are no significant differences
between the accuracy of LSTM and the TCN.

4.3 Computation time analysis

In a data streaming environment, it is fundamental to analyse the efficiency of the architectures
considered. The average processing rate of each model (average time to process each incoming
instance) is provided at the end of Table 7. Obviously, the MLP is the fastest model given its simple
architecture. The second fastest model is the CNN, which has a significantly smaller number of
parameters than the other two DL architectures. Due to the properties of parameter sharing, the
CNN is able to process instances two times faster than the LSTM. The TCN is a more complex

Deep Learning for Data Streams varying Speed and Drift 9

TABLE 8. Friedman Test Ranking

Friedman Test Ranking

CNN 1.517
TCN 2.368
LSTM 2.546
MLP 3.569

TABLE 9. Bergmann-Hommel’s analysis

PostHoc Analysis
Comparison p z Conclusion

MLP - CNN <0.001 10.5 !=
MLP - TCN <0.001 6.14 !=
LSTM - CNN <0.001 5.26.1 !=
MLP - LSTM <0.001 5.23 !=
TCN - CNN <0.001 4.35 !=
LSTM - TCN 0.363 0.91 ==

FIGURE 2. Kappa accuracy results for each model architecture at different stream speed. Points
represent the mean average and extend vertically showing the 90% confidence interval.

version of the CNN, with more convolutions, resulting in a processing speed considerably slower
than the CNN but still faster than the LSTM.

Due to the dual-pipeline architecture of ADLStream, the training time does not inf luence the
system response time. However, it may have an impact on the accuracy performance of the model,
as a faster model will be trained more often. Analogously, the speed of the input stream may affect
the accuracy of the model. Figure 2 shows a comparison of the performance of the different DL
architecture at different rates. We can appreciate how the slowest models (LSTM) are more sensitive
to the speed of the stream. However, faster models, such as CNN or TCN, can achieve good results
at high speed, and therefore there is almost no significant improvement when slowing down, or even
no improvement at all in the case of MLP.

10 Deep Learning for Data Streams varying Speed and Drift

4.4 Concept drift analysis

Adaptability to concept drift is a key feature required for models that learn from evolving data
streams. ADLStream framework benefits from the incremental nature of DL training procedure
to handle concept drifts. However, unlike concept-drift detection methods, ADLStream’s ability to
adapt to change is highly dependent on the neural network used. For this reason, we consider it
essential to study how different architectures deal with evolving data streams.

Recurrent and convolutional architectures are not optimal for this datasets as, unlike time series,
these data do not have a sequential nature. Therefore, the aim of this analysis is not to determine
which model achieves the best performance in terms of accuracy, but to understand how the different
DL architectures behaves under the conceptual drifts.

Figure 3 shows the evolution of the prequential Kappa obtained by the different architectures over
the concept-drift streams. In general, all models can be adapted to the new concept reasonably fast,
achieving similar results. Comparing the performance of the different models, it is worth mentioning
that, although all of them achieve similar accuracy at the beginning of the stream, CNN struggles
more to adapt to the new distribution of the data stream. This behaviour is common for the different
types of concept drift, and it is clearly illustrated in the evolution of the prequential Kappa of the
most challenging dataset, such as RTGa3, RTGg and RBFi-fast.

From the abrupt datasets (Figure 3a), we can highlight that, except for the CNN, all models recover
considerably fast from the first drifts. However, as we can see in RTGa6, the models struggle after
undergoing multiple consecutive concept drifts. For ARGW and SEA data generator, all models
perform exceptionally well, achieving high prediction accuracy and recovering very quickly from
the concept drifts, or almost instantaneously in the case of SEA-F2F4.

As Figure 3b illustrates, the models behave similarly to the abrupt version. However, as during
the drift the data oscillates between the two distribution, the models do not recover until the drift
is finished. However, when the drift is subtler like in RTGg, the performance drop is less severe
than its abrupt version (RTGa). In addition, we must highlight the great performance of TCN,
compared to other architectures, when recovering from multiple concept drift like in RTGg6 dataset.
Moreover, we can observe that in the gradual version of ARGW and SEA generators, all models have
similar behaviour. The models’ accuracy bottoms out when the data oscillates evenly between the
two distributions and starts to improve reaching its best performance immediately after the concept
drift ends.

Regarding incremental drift datasets (Figure 3c), as we can see in RBFi-slow and LED-4, models
can be adapted to changes, maintaining or even increasing the accuracy of their predictions. However,
when the change in distribution is stronger, like in RBFi-fast, the models’ performance starts to
gradually decay, especially the CNN.

5 Conclusions

In this paper, the performance of several DL architectures for data streaming classification is
compared using the ADLStream framework. An extensive study over a large number of time series
dataset was conducted using MLP, recurrent and CNNs.

The results obtained, using 29 time series classification data streams, provide evidence that
CNNs outperform the other models in terms of accuracy, with a very high processing rate. These
characteristics present convolutional networks as a great alternative for processing data arriving at
high speed. However, when studying the behaviour of the models under a concept drift, convolutional
networks are the ones struggling the most to adapt to change. The other deep models, such as LSTM

Deep Learning for Data Streams varying Speed and Drift 11

FIGURE 3. Evolution of the prequential Kappa of each model over the concept-drift datasets.

or TCN, were not able to achieve such performance for time series classification in streaming; their
processing rate was slower, but they show a better ability to adapt to concept drift.

Future works should carry out a more in-depth sensitivity study to evaluate how the speed of the
stream affects the performance of the different DL models. Furthermore, a parameter optimization
process could provide more specific architectures for the models and improve the performance.
Future studies should also consider other DL models such as Echo State Networks or Stochastic
TCNs, as well as traditional models such as Leveraging Bag, ARF and KUE for comparison.

12 Deep Learning for Data Streams varying Speed and Drift

Acknowledgements

This research has been funded by FEDER/Ministerio de Ciencia, Innovación y Universidades
- Agencia Estatal de Investigación MICINN PID2020-117954RB-C22 and by the Andalusian
Regional Government under the projects BIDASGRI (Big Data Technologies for Smart Grids; US-
1263341) and adaptive hybrid models to predict solar and wind renewable energy production (P18-
RT-2778). We are grateful to NVIDIA for their GPU Grant Program that has provided us high-quality
GPU devices for carrying out the study.

References

[1] R. Anderson, Y. S. Koh, G. Dobbie and A. Bifet. Recurring concept meta-learning for evolving
data streams. Expert Systems with Applications, 138, 112832, 2019. https://doi.org/10.1016/j.
eswa.2019.112832.

[2] A. Bifet, G. de Francisci Morales, J. Read, G. Holmes and B. Pfahringer. Efficient online eval-
uation of big data stream classifiers. In Proceedings of the 21th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD‘15, pp. 59–68. ACM, New York,
NY, USA, 2015.

[3] A. Bifet and R. Gavaldà. Adaptive learning from evolving data streams. In Advances in
Intelligent Data Analysis VIII , N. M. Adams, C. Robardet, A. Siebes and J.-F. Boulicaut.,
eds, pp. 249–260. Springer Berlin Heidelberg, Berlin, Heidelberg, 2009.

[4] A. Borovykh, S. Bohte and C. W. Oosterlee. Dilated convolutional neural networks for time
series forecasting. Journal of Computational Finance, 22, 73–101, 2019.

[5] A. Cano and B. Krawczyk. Kappa updated ensemble for drifting data stream mining. Machine
Learning, 109, 109–218, 2019.

[6] H. A. Dau, A. J. Bagnall, K. Kamgar, C.-C. M. Yeh, Y. Zhu, S. Gharghabi, C. A. Ratanama-
hatana and E. J. Keogh. The UCR time series archive. CoRR, abs/1810.07758, 2018.

[7] J. Gama, R. Sebastião and P. P. Rodrigues. On evaluating stream learning algorithms. Machine
Learning, 90, 317–346, 2013.

[8] F. A. Gers, J. Schmidhuber and F. Cummins. Learning to forget: continual prediction with
LSTM. Neural Computation, 12, 2451–2471, 2000.

[9] A. Ghazikhani, R. Monsefi and H. Sadoghi Yazdi. Online neural network model for non-
stationary and imbalanced data stream classification. International Journal of Machine
Learning and Cybernetics, 5, 51–62, 2014.

[10] H. M. Gomes, A. Bifet, J. Read, J. P. Barddal, F. Enembreck, B. Pfharinger, G. Holmes and
T. Abdessalem. Adaptive random forests for evolving data stream classification. Machine
Learning, 106, 1469–1495, 2017.

[11] A. Krizhevsky, I. Sutskever and G. E. Hinton. Imagenet classification with deep convolutional
neural networks. In Proceedings of the 25th International Conference on Neural Information
Processing Systems, Volume 1, NIPS’12, pp. 1097–1105. Curran Associates Inc., USA, 2012.

[12] P. Lara-Benitez, M. Carranza-Garcia and J. C. Riquelme. An experimental review on deep
learning architectures for time series forecasting. International Journal of Neural Systems, 31,
2130001, 2021.

[13] P. Lara-Benítez and M. Carranza-García. ADLStream: asynchronous dual-pipeline deep learn-
ing framework for online data stream mining. Available online: https://github.com/pedrolarben/
ADLStream. (access date: 15 March 2021).

https://doi.org/10.1016/j.eswa.2019.112832
https://doi.org/10.1016/j.eswa.2019.112832
https://github.com/pedrolarben/ADLStream
https://github.com/pedrolarben/ADLStream

Deep Learning for Data Streams varying Speed and Drift 13

[14] P. Lara-Benítez and M. Carranza-García. Time series classification with deep learn-
ing in streaming. Available online: https://github.com/pedrolarben/deep-learning-online-
classification. (access date: 15 March 2021).

[15] P. Lara-Benítez, M. Carranza-García, J. García-Gutiérrez and J. Riquelme. Asynchronous dual-
pipeline deep learning framework for online data stream classification. Integrated Computer-
Aided Engineering, 27, 1–19, 01 2020.

[16] J. Montiel, M. Halford, S. M. Mastelini, G. Bolmier, R. Sourty, R. Vaysse, A. Zouitine, H. M.
Gomes, J. Read, T. Abdessalem and A. Bifet. River: machine learning for streaming data in
python. Journal Of Machine Learning Research, 22, 1–8, 2021.

[17] J. F. Torres, D. Hadjout, A. Sebaa, F. Martínez-Álvarez and A. Troncoso. Deep learning for
time series forecasting: a survey. Big Data, 9, 3–21, 2021.

[18] F. Yu and V. Koltun. Multi-scale context aggregation by dilated convolutions. In The 4th Inter-
national Conference on Learning Representations, ICLR 2016. Conference Track Proceedings,
San Juan, Puerto Rico, May 2–4, 2016, 2016.

[19] Y. Zhang, Y. Jiaxin, W. Liu and K. Ota. Ensemble classification for skewed data streams based
on neural network. International Journal of Uncertainty, Fuzziness and Knowledge-Based
Systems, 26, 839–853, 2018.

Received 20 February 2021

View publication statsView publication stats

https://github.com/pedrolarben/deep-learning-online-classification
https://github.com/pedrolarben/deep-learning-online-classification
https://www.researchgate.net/publication/358897725

	 Data streams classification using deep learning under different speeds and drifts
	1 Introduction
	2 Related work
	3 Materials and methods
	4 Experimental results
	5 Conclusions

