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Abstract. Data streaming classification has become an essential task in many fields where real-time decisions have to be made
based on incoming information. Neural networks are a particularly suitable technique for the streaming scenario due to their
incremental learning nature. However, the high computation cost of deep architectures limits their applicability to high-velocity
streams, hence they have not yet been fully explored in the literature. Therefore, in this work, we aim to evaluate the effectiveness
of complex deep neural networks for supervised classification in the streaming context. We propose an asynchronous deep
learning framework in which training and testing are performed simultaneously in two different processes. The data stream
entering the system is dual fed into both layers in order to concurrently provide quick predictions and update the deep learning
model. This separation reduces processing time while obtaining high accuracy on classification. Several time-series datasets
from the UCR repository have been simulated as streams to evaluate our proposal, which has been compared to other methods
such as Hoeffding trees, drift detectors, and ensemble models. The statistical analysis carried out verifies the improvement in
performance achieved with our dual-pipeline deep learning framework, that is also competitive in terms of computation time.

Keywords: Classification, Convolutional Neural Network, Data streaming, Deep Learning, Evaluation, Online Learning

1. Introduction

Knowledge discovery from data streams has re-
cently gained importance due to the enormous amount
of data that modern devices collect at high speed. Mod-
els that deal efficiently with streams of data to pro-
vide real-time predictions are necessary in many fields
such as machine fault detection [1], electricity demand
prediction [2], financial data prediction [3], computer
security [4], and health care [5]. An important chal-
lenge in the streaming scenario is performing online
classification since its specific characteristics prevent
from using traditional batch-learning techniques [6].
Data stream models learn incrementally using incom-
ing data that cannot be stored, and have to be ready to
assign a label whenever a new instance arrives.

*Corresponding author. E-mail: plbenitez@us.es.
**Corresponding author. E-mail: mcarranzag @us.es.

(© 2020 - IOS Press and the authors. All rights reserved

Over the last decades, many novel classification al-
gorithms have been proposed to improve the accu-
racy of traditional methods [7]. Promising results have
been obtained by adapting these existing techniques
for the streaming context. However, the recent advent
of deep neural networks (DNNs) as the state-of-the-art
for many problems opens an interesting research di-
rection to aim for a higher performance [8]. DNNs are
particularly suitable for data streaming due to their in-
cremental learning nature and their capacity for solv-
ing dynamic non-linear problems [9]. Nevertheless,
their application to high-velocity streams presents lim-
itations due to the high computational cost of their
learning procedure. Therefore, there is little research
on the use of DNNs for data streaming, which do not
usually appear as high-performing models in the liter-
ature [10].

Our aim in this study is to develop a framework
that can use complex DNNs for data streaming clas-
sification, in which maintaining a high processing
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rate is essential. This paper proposes a novel Asyn-
chronous dual-pipeline Deep Learning framework for
data streaming (ADLStream) that is designed to deal
with the specific requirements of this scenario. Train-
ing and classification processes work simultaneously
in two separated layers, hence the system is always
ready to provide predictions. At the same time, the
other process constantly updates the model in order to
adjust it to changes in the incoming data distribution.
This division allows reducing the computation time
needed to deal with the instances while maintaining a
high accuracy on classification. ADLStream is a gen-
eral framework that could be used with any kind of
deep learning (DL) model, regardless of its architec-
ture.

As a case study to validate the performance of
the proposed framework in a complex environment
we have used convolutional neural networks (CNNs),
which are especially indicated for dealing with data
that has spatial or temporal structure [11]. For the ex-
periments, we have simulated as streams a large num-
ber of time-series datasets from the UCR repository
[12]. The performance of our proposal is compared in
terms of accuracy and processing time to other popular
streaming techniques such as Hoeffding trees and en-
semble models. Furthermore, we have carried out sev-
eral experiments with artificial datasets to evaluate the
robustness of ADLStream when the properties of the
stream change significantly over time, which is known
as concept drift [13].

The main contributions of this work can be sum-
marised as follows:

— ADLStream, a novel deep learning framework for
data streaming classification.

— Asynchronous dual-pipeline architecture that re-
duces processing time of DL networks for data
streaming by splitting training and classification
tasks.

— A thorough experimental study, comparing ADL-
Stream to several streaming techniques over more
than 30 datasets.

— An analysis of the effects of different concept
drifts on the performance of ADLStream.

The rest of the paper is organised as follows: Sec-
tion 2 presents a review on related work; in Section
3 the materials used and the methods proposed in the
study are described; Section 4 presents the experimen-
tal setup designed; Section 5 reports and discusses the
results obtained; Section 6 presents the conclusions
and possible future work.

2. Related work

Learning from data streams presents several chal-
lenges that prevent from directly using traditional
data mining algorithms. Classifiers designed for static
datasets typically require to iterate several times over
the instances, hence they are not suitable for dealing
with data arriving at high speed. An effective data
stream classification model should be able to extract
the relevant information with just a single pass on
the instances, and using a limited amount of time and
memory, which increases the complexity of the learn-
ing procedure [14]. Another important aspect when
dealing with streams is the type of learning frame-
work, which depends on the availability of labels for
the incoming examples. In this work, we follow a com-
pletely supervised learning framework, where the true
class of all examples is always known posterior to clas-
sification. Therefore, the studies covered in this sec-
tion all work under the same assumption, which is very
common in the literature. However, there are also stud-
ies considering other scenarios, such as learning with
delayed labelling or semi-supervised learning (i.e. only
a fraction of incoming examples have labels) [15]. Re-
gardless of the framework considered, the classical di-
vision of batch learning techniques into training and
predicting phases has to be shifted to an online ap-
proach in which both tasks are interleaved, given that
the stream may be infinite. Furthermore, the update of
the models has to account for concept drifts since the
data distribution may change over time. These varia-
tions in the boundaries between classes need to be de-
tected in order to carry out efficient retraining of the
models [16].

Considering the above-mentioned characteristics of
data streaming, there have been efforts to adapt for
this context many existing techniques such as support
vector machines [17], k-nearest-neighbors [18], rule-
based classification [19], and Bayesian classification
[20]. However, due to their simplicity and fast process-
ing rate, one of the most popular approaches has been
to develop adaptive algorithms based on decision-tree
methods [21]. The Very Fast Decision Tree (VFDT)
method, based on the Hoeffding tree principle, was the
earliest to be designed specifically for stream classi-
fication [22]. Hoeffding bounds help to incrementally
build a model similar to what a batch learner would
produce. They split a node only when there is sta-
tistical significance between the current best attribute
and the others. Following this concept, new propos-
als such as Hoeffding Option Trees (HOT) were de-
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signed. In HOT, each example can update a set of op-
tion nodes instead of a single leaf, leading to a rep-
resentation of multiple trees as separate paths [23].
Other algorithms more suitable for time-changing data
streams were later developed, such as Hoeffding Adap-
tive Trees (HAT) [24], that reduce the effect of past
data by using sliding windows and replacing branches.
Furthermore, an important area of research on data
streams has been the development of real-time mon-
itoring techniques that detect concept drifts over in-
coming data [25]. There exist a wide variety of con-
cept drifts, that are usually simplified in four types
[26]: abrupt drift, when there is a sudden shift from
one concept to another; incremental drift, which im-
plies going through many different intermediate con-
cepts while drifting to a new concept; gradual drift,
when the stream oscillates between two concepts be-
fore drifting completely; and recurrent drift, that hap-
pens when the stream drifts to a previously seen con-
cept. Additionally, in real-world streams the distribu-
tion of classes may change over time, leading to an im-
balance that increases the difficulty of classification.
To deal with these problems, the concept drift de-
tection method (DDM) was presented in [27], which
helps control the accuracy of predictions of the learn-
ing model. DDM can be used with a wrapper on a clas-
sifier by creating a new model with recent examples
whenever a significant change in the class distribution
is detected. This technique proved to be independent
of the underlying classification algorithm used, and
other studies have developed similar proposals, such as
Early Drift Detection Method (EDDM) [28] or a non-
parametric method based on Hoeffding’s bounds [29].
Although drift detection methods would allow using
batch algorithms as the base learner, their combination
still faces the computational cost of rebuilding mod-
els from scratch many times. Therefore, alternative ap-
proaches to handle concept drifts have considered us-
ing classifiers that are adaptable to change on data.
This behaviour can be implemented by using a sliding
window or using incremental or online learners, such
as neural networks, which can keep their weights up-
dated by processing each instance only once [30].
More recently, ensemble methods have gained rel-
evance since they can improve the robustness of sin-
gle classification models and allow an easier adapta-
tion to variations in the distribution of the data [15].
Online approaches to traditional bagging and boosting
algorithms were designed in [31], in which the incom-
ing samples are weighted using the Poisson distribu-
tion for carrying out the model updating. Later, several

studies have proposed modifications to these methods
in order to improve randomization, such as: Adaptive-
Size Hoeffding Trees (ASHT), that builds an ensemble
of trees of different sizes [24]; ADWIN Bagging, that
uses adaptative windows to detect concept drifts and
eliminate ensemble members with poor performance
[24]; and Leveraging Bagging, which increases resam-
pling and uses output detection codes [32].

The latest studies on data stream classification have
followed the approach of combining the ideas of en-
semble models and concept drift detection. The Adap-
tive Random Forest (ARF) algorithm for classifica-
tion of evolving data streams was proposed in [33].
ARF improves resampling methods to add diversity
and uses adaptive operators to cope with concept drifts.
Furthermore, the independence of its components al-
lows for a parallel implementation that reduces pro-
cessing time without degrading performance.

In [34] the authors propose an improvement appli-
cable to any online ensemble that adds possible absten-
tions in the voting process. Only classifiers that per-
form above a certain confidence level are allowed to
vote, which proved to be particularly useful in noisy
data streams. The same authors of this work devel-
oped later the Kappa Updated Ensemble (KUE) [16].
This algorithm is driven by the Kappa statistic and uses
weighted voting from a pool of classifiers to provide
predictions. In KUE, each component deals with a ran-
dom dimensionality, as opposed to ARF in which the
subspace size is fixed.

Other studies have recently proposed novel drift de-
tection methods: [35] presents a methodology to de-
tect different concept drifts by selecting dynamically
the most competent ensemble member to classify each
incoming example; and [36] develops the Enhanced
Concept Profiling Framework (ECPF), which focuses
on improving speed by reusing previously trained clas-
sifiers when recurrent concept drifts are detected.

With regard to the application of DL techniques to
data stream classification, few studies have presented
deep neural network models for this context. Exist-
ing work is limited to the use of MultiLayer Percep-
tron (MLP) [37] and ensemble methods using them
as the base classifiers [38]. Other proposals have con-
sidered placing traditional classifiers on top of simple
Deep Belief Networks (DBNs) [10]. Although more
sophisticated DL models are currently state-of-the-art
for many problems in the batch setting, they have not
been explored in the data streaming literature. Their
high computational complexity has so far been a severe
restriction to make them suitable for a high-velocity
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stream scenario. In particular, architectures such as re-
current or convolutional networks have provided bet-
ter performance than MLPs or ensemble models with
grid-like data such as images or time series [39]. The
above mentioned related works mostly validate their
proposals using data without an inner temporal or spa-
tial dependence. Therefore, building DL models that
deal efficiently with this kind of data in the streaming
context is a research area that has yet to be addressed.

Furthermore, there are recent proposals that develop
asynchronous frameworks to reduce processing time in
several domains: in [40] a system using coupled deep
neural networks is proposed for reinforcement learn-
ing; and a genetic programming rule-based classifier
for data streaming that can run asynchronously is pre-
sented in [41]. This trend calls for the development of
similar proposals using deep learning, since the per-
formance of popular streaming ensemble models can
be enhanced by complex DL models if they have an
adequate processing rate.

3. Materials and methods
3.1. Description of datasets

A total of 29 different time-series datasets have been
used for this study, which have been obtained from the
public UCR repository [12]. These datasets have al-
ready been used in the literature to simulate streams for
different applications such as stream clustering [42],
anomaly detection [43] or density estimation of data
streams [44]. All the datasets considered are com-
posed of instances that are one-dimensional time se-
ries, hence they have an inner grid-like structure. The
length indicates the number of points that each indi-
vidual instance arriving at the stream has. The particu-
lar characteristics of each dataset are presented in Ta-
ble 1. Only those that have a minimum of 1000 in-
stances have been used, in order to reproduce a real-
istic streaming scenario. As can be seen, the datasets
are different in terms of the length of the series and the
number of classes considered. They cover six different
domains that are the following:

— Sensor: Readings from sensors in areas such as
process control measurement (Wafer), weather
monitoring (MoteStrain), car engines (Ford), hu-
man voice recognition (Phoneme), or animal
sounds (InsectWingBeat).

— ECG: Electrocardiogram records for tasks such as
detecting heart problems (TwoLeadECG) or iden-
tifying different people (CinCEGTorso).

— Motion: Captures of gestures generated from ac-
celerometers (UWaveGestureLibrary) and digital
pen traces (Pendigits).

— Image: Outlines of images that are mapped onto
a one-dimensional series, such as faces (FaceAll),
hands (HandOutlines) or shapes (ShapesAll).

— Device: Data from daily electrical power con-
sumption (ElectricDevices).

— Simulated: Artificially generated time series for
problems such as signal processing (Mallat) or
pattern recognition (TwoPatterns).

A more detailed explanation of each type with fig-
ures can be found at [12]. The use of time-series data
allows us to evaluate the behaviour of complex and
time-consuming models in our framework, such as
CNNs. Moreover, the variability of the datasets se-
lected is essential in order to prove the capacity of gen-
eralisation of our proposal.

Table 1
Datasets used for the study.

# Dataset Instances Length  Classes Type

1 TwoPatterns 5000 128 4 SIMULATED
2 CinCECGtorso 1420 1639 4 ECG

3 TwoLeadECG 1162 82 2 ECG

4 Wafer 7164 152 2 SENSOR

5 Pendigits 10992 16 10 MOTION
6 FacesUCR 2250 131 14 IMAGE

7 Mallat 2400 1024 8 SIMULATED
8 FaceAll 2250 131 14 IMAGE

9 Symbols 1020 398 6 IMAGE
10 ItalyPowerDemand 1096 24 2 SENSOR
11 ECG5000 5000 140 5 ECG

12 MoteStrain 1272 84 2 SENSOR
13 NonlnvasiveFetalECGThorax1 3765 750 42 ECG

14 NonlnvasiveFetal ECGThorax2 3765 750 42 ECG

15 SwedishLeaf 1125 128 15 IMAGE

16 FordA 4921 500 2 SENSOR
17 Yoga 3300 426 2 IMAGE

18 UWaveGestureLibraryX 4478 315 8 MOTION
19 FordB 4446 500 2 SENSOR
20 ElectricDevices 16637 96 7 DEVICE
21 UWaveGestureLibraryY 4478 315 8 MOTION
22 UWaveGestureLibraryZ 4478 315 8 MOTION
23 HandOutlines 1370 2709 2 IMAGE
24 InsectWingbeatSound 2200 256 11 SENSOR
25 ShapesAll 1200 512 60 IMAGE
26 Medicallmages 1141 99 10 IMAGE
27 PhalangesOutlinesCorrect 2658 80 2 IMAGE
28 ChlorineConcentration 4307 166 3 SIMULATED
29 Phoneme 2110 1024 39 SENSOR
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3.2. ADLStream framework

The asynchronous dual-pipeline framework pre-
sented in this section aims to provide a general deep
learning-based architecture to achieve high perfor-
mance in data streaming classification. This novel
framework improves processing rate and allows to use
efficiently deep learning models, such as convolutional
or recurrent networks, for data arriving at high speed.
Similarly to most of the existing literature on data
streaming, in this work we consider a fully supervised
scenario in which the labels are immediately available
for all processed examples and can be used to update
the model [15]. Accordingly, the data stream can be
defined as a sequence of labelled instances {x;,y,} for
t = 1,2,..,T. The task of the proposed framework is
to provide quick predictions y; for each incoming ex-
ample x, based on what it has learned from the data
that it has seen so far. Later, when the real labels are
available (immediately after the example has been pro-
cessed), they are used to update the model.

The design of the ADLStream system is fully il-
lustrated in Fig. 1, in which it can be seen that pre-
dicting and training phases are separated into two dif-
ferent layers. This split allows making predictions at
any time while keeping the DL model constantly up-
dated, and reduces the computation time compared to
the traditional sequential scheme. The logic behind the
complete system is described in Algorithm 24. Exam-
ples arriving online (i.e. instance by instance) from
the stream are sent to both processes that work asyn-
chronously. When the predicting process receives an
instance, it is instantly classified using a previously
trained model. Given that DNNGs are significantly faster
for predicting compared to the training procedure, the
prediction layer is always ready to immediately clas-
sify incoming data. In contrast, the training layer is
more time-consuming and works by saving the in-
stances received and grouping them in batches. Once
a specific number of batches are collected, they are
fed to the DL model in order to carry out the train-
ing procedure through back-propagation. The new set
of weights obtained when the training is completed is
passed to the predicting process to maintain both mod-
els updated. With this approach, it is assured that each
individual example is tested before it is used to train
the network. More specifically, at least s x b instances
are classified before updating the model with these in-
stances, where s is the batch size and b is the number
of batches fed in a training iteration.

TRAIN
BATCHES

TRAINING PROCESS

UPDATE WEIGHTS

5| Jop o recTeD | [EvmaTon)
CLASS

PREDICTION PROCESS

Fig. 1. ADLStream framework proposed in the study to perform
classification over data streams.

Although ideally both layers could deal concur-
rently with all received instances, the significant dif-
ference between training and predicting execution time
in DNN models poses problems given the high rate
of arrival of examples. The capacity of the system for
processing all data and re-training the model would
depend on several factors such as the stream speed,
data topology or computer specifications. However, the
optimal situation in which every instance is used for
training would imply that an increasingly larger queue
of awaiting instances would be formed in the training
layer. To solve this problem we propose to specify a
limited number of instances to train with, while the rest
are discarded in order not to overload the buffer. When
the number of examples in the queue reaches a certain
value m = s x b (batch size times number of batches
fed), the system uses a sampling technique to select the
training set for each iteration.

In the streaming scenario, the distribution of the in-
coming data tends to evolve over time, which implies
that recent instances are more relevant to describe the
state of the stream than older ones [45]. A first ap-
proach to deal with this issue could be to use a slid-
ing window with the most recent instances [46]. How-
ever, with this solution, useful information about the
distant historical behaviour of the stream can be lost.
For this reason, a common approach is to consider a
weighted sampling algorithm to regulate the choice of
instances from the stream. In our proposed framework,
a biased reservoir sampling method using the A-Chao
algorithm is implemented [47]. This technique main-
tains a reservoir of samples with associated weights
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Algorithm 1: ADLStream framework

Algorithm 2: Sampling

Arguments:

S tream: Stream to be analysed

M: Deep learning model

Q: Training sample sequence

W: Sequence of weights of the
training sample sequence

s: Batch size

b: Number of batches fed

e: Instance

A: Decay factor for weight update

1 Procedure Main (Stream) :

2 s < initialise batch size

3 b + initialise number of batches fed to
4 training model

5 m<—sxb

6 M < initialise deep learning model

7 QO < initialise empty sequence

8 W < initialise empty sequence

9 for e in the first s instances in S tream do
10 Q.append(e)

11 W.append(1)
12 end

13 M + M.train(Q)

14 Asynchronous P 1
15 for instance e in S tream do

16
17
18 end

0 < M predict(e)
Q < sampling(Q, W,e,m) [Alg. 2]

19 Asynchronous P2

20 while P/ is not finished do
21 if Q.size >= s then

2 | M « M.irain(Q)
23 end

24 end

and performs probabilistic insertions and deletions on
arrival of new stream points. As explained in Algo-
rithm 2, when a new item is examined, its relative
weight is used to randomly decide whether it will be
inserted into the reservoir. In case it is selected, one
random item inside the reservoir is deleted and the new

Input : Q : Training sample sequence
W : Sequence of weights of the
training sample sequence
e: Instance
m: Maximum size of sample sequence

Output: Q : Updated sample sequence
W : Updated sequence of weights

1w, 1

2 if Q.size < m then

3 Q.append(e)

W.append(w,)

else

Calculate probability p, = w,/(> i, wi)

Decide randomly if item e will be inserted
into the sample with a probability of p,

8 if Yes then

N S s

9 Delete a random item from the sample
10 Q.append(e)
11 W.append(w,)
12 end
13 end

14 Update sample weights with decaying factor
(W< Wx Q)

instance is added. The weights of the instances belong-
ing to the reservoir are updated each iteration with a
decaying factor, which is fixed to 4 = 0.98.

Maintaining a completely unbiased sample is not
practical given that the evolution of the stream may
lead to a reservoir filled with past irrelevant history.
Therefore, it is desirable to bias the sampling to repre-
sent more recent behaviour of the stream [48]. Accord-
ingly, newly arrived items are assigned more weight in
order to increase their probability of belonging to the
random sample.

With this reservoir approach, the framework keeps a
fixed-size window containing a representative sample
of the recent instances, which are fed to the training
layer whenever an iteration is completed. In the experi-
mental study, a grid search with different combinations
has been performed in order to find suitable values for
s and b, which are the parameters that define the size
of the reservoir sampling window.
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3.2.1. CNN Architecture

The ADLStream framework can be used with any
type of DL architecture, but as a case study for this
work we have used CNNs, which are particularly suit-
able for dealing with temporal data [49]. The objective
of the selected DL model is to perform 1D convolu-
tion over the time-series examples in order to automati-
cally extract abstract features that represent the internal
structure of the data [S0]. The proposed 1D-CNN ar-
chitecture, illustrated in Fig. 2, is inspired by the study
presented in [51]. As can be seen, the network is com-
posed of a block of several one-dimensional dilated
convolutional layers with pooling followed by a fully-
connected Multi-Layer Perceptron (MLP), which per-
forms the classification.

In the convolutional layers, the one-dimensional in-
put array is convolved with filters of kernel size k in
order to create several features maps that are passed
through a non-linear activation function. The use of di-
lation in the convolution by skipping certain elements
in the input allows expanding the receptive field of the
network exponentially. This expansion generally im-
proves performance since there is no loss of resolution,
while it maintains the same computation and memory
costs [52]. The complete convolution process can be
formulated as follows [53]:

K—1
a, =g (3> whaalt P o)
k=0

m

where aj, is the value of a neuron at position (x) of
the n-th feature map in the /-th layer; m indexes over
the set of features maps in the (I—1)-th layer connected
to the current feature map; K; is the width of the convo-
lutional kernel; wX = stands for the weight of position
(k) connected to the m-th feature map; d is the dilation
factor of the convolution; and by, is the bias term. Rec-
tified Linear Units (ReLU) layers are used to compute
the non-linear activation function (g(x) = max(0, x))
on the obtained feature maps in order to improve the
network convergence speed [54]. After the convolu-
tion, max-pooling layers are used to progressively re-
duce the spatial size of the feature maps. Input maps
are down-sampled by selecting the maximum activa-
tion value for each non-overlapping neighbourhood of
fixed size. The reduction of parameters achieved with
the pooling operation decreases the computation cost
of the network and controls over-fitting by selecting
superior invariant features [55]. The last block of the
network is composed of dense layers that have full

connections to all activations in the previous layer.
These layers combine all the convoluted feature maps
to create a flattened feature vector. Finally, the classi-
fication of the instances is performed according to the
softmax output probabilities of the last dense layer.

Table 2

CNN architecture. The values of f and ¢ are the number of features
of the instances and the number of classes respectively.

Layer Type Neurons & # Maps  Kernel

0 Input f neurons

1 Convolutional + ReLU fx32 7
2 Max-Pooling f12 x 32 2
3 Convolutional + ReLU f12 x 64 5
4 Max-Pooling fl4 x 64 2
5 Convolutional + ReLU fl4x 128 3
6 Max-Pooling f/8 x 128 2
7 Dense + ReLU 512 neurons

9 Dropout 512 neurons

10 Dense + ReLU 128 neurons

11 Dropout 128 neurons

12 Softmax ¢ neurons

Regarding the specific number of layers and feature
maps used in our model, a more detailed description of
the proposed architecture is presented in Table 2. Sim-
ilarly to well known CNN architectures such as VGG
[56], the number of filters in consecutive convolutional
layers is increased in order to extract more detailed fea-
tures from the richer representations obtained. There-
fore, the convolutional layers have 32, 64, and 128 fil-
ters respectively. Due to the decreasing spatial resolu-
tion of the max-pooled feature maps, the kernel size of
the convolutional layers are set to 7, 5 and 3 respec-
tively, and with dilation rate 3. The features extracted
from the convolutional block are then transferred to the
fully connected block that has two dense layers of 512
and 128 neurons, and a softmax layer that has as many
neurons as the number of classes considered. Further-
more, dropout layers with a small rate (0.2) are used
after the fully connected layers. Dropout has proven to
be an effective regularisation method since it enhances
the capacity of generalisation of the network by de-
activating different neurons on each training iteration
[57]. Moreover, another element that we have consid-
ered to prevent overfitting is not to use a very large
batch size. Deep networks converge to sharp minimiz-
ers when trained using large batches and they lose gen-
eralisation abilities [58]. For the implementation of the
proposed convolutional network, the Keras framework
has been used [59].
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Fig. 2. CNN Architecture for time-series data streaming classification.

4. Experimental setup

This section presents the comparative study carried
out to evaluate the performance of the ADLStream
framework. The experimental process is based on a
statistical analysis, with the results obtained for all
datasets, that compares our proposal with several state-
of-the-art algorithms for data stream classification. For
simulating the streaming, the Apache Kafka platform
has been used, since it has emerged as the best stream-
processing tool in terms of efficiency of data manage-
ment [60]. The Kafka server allows reproducing a real
data streaming scenario in which instances are con-
stantly arriving, hence the evolution over time of the
accuracy of the models can be analysed.

4.1. Models used for comparison

Numerous existing techniques have been considered
for the study, with the aim of fully covering all families
of algorithms that have been proposed in the literature
for this problem. Table 3 presents the different classi-
fiers that have been evaluated, grouped by family, and
with the abbreviations that would be used throughout
the paper. All selected models are implemented in pop-
ular open-source frameworks such as MOA [61] and
Scikit-learn [62].

4.2. Evaluation procedure

Unlike in traditional batch learning setup, cross-
validation cannot be used as the evaluation technique
in a streaming setup since unlimited data tends to make
it too expensive computationally. In the online stream-
ing setting, the objective is to capture how the accu-
racy evolves over time, hence one possible alternative
is to perform holdout evaluation over independent sets
periodically. Although ideally holdout could provide
the best estimation of the accuracy on recent data, it is
not practical for real scenarios where obtaining suffi-
cient recent data for testing may be challenging. There-
fore, the most extended solution is to maximise the use
of available data with an interleaved test-then-train ap-
proach [63]. With this method, every instance is used
to test the model before it is used for training. This im-
plies that the model is always tested with unseen exam-
ples, which allows to incrementally update the accu-
racy taking into account all incoming instances. How-
ever, since streaming learning algorithms are supposed
to evolve over time due to changes in the data distribu-
tion, more recent instances should be given more im-
portance in order to provide a reliable error estimation.
Accordingly, the predictive sequential (or prequential)
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Table 3

Classifiers used for the comparative study.

Classifier Abbreviation Family
Majority Class MC Baseline
Active Classifier AC .
. Bayesian
Naive Bayes NB R
R classifiers
Bernoulli Naive Bayes BNB
Decision Stump DST
Hoeffding Tree HT
Hoeffding Adaptive Tree HAT .
. K Decision
Hoeffding Option Tree HOT T
ree
Adaptive HOT ADHOT
Random Hoeffding Tree RHT
Adaptive-Size HT ASHT
Stochastic Gradient Descent SGD
Stochastic Pegasos SPEG Function
PassiveAggressiveClassifier PAC classifiers
Perceptron P
Single Classifier Drift SCD Drift classifiers
Incremental Online Bagging BA
Bagging Adaptive-Size HT B-ASHT
Bagging using Adwin BA-AD Meta classifiers
Leveraging Bagging LBAG Bagging
Adaptive Random Forest ARF
Kappa Updated Ensemble KUE
Incremental Online Boosting BO .
. . . Meta classifiers
Online Coordinate Boosting OCBO .
. . . Boosting
Boosting using Adwin BO-AD
Multi Layer Perceptron MLP
Neural Networks
Our proposal ADLStream

evaluation method implements this idea of decreasing
the relevance of past examples for the evaluation.

[64] proposes the use of a forgetting mechanism for
computing prequential accuracy by using sliding win-
dows or decaying factors. When using a sliding win-
dow of size w, the prequential accuracy is computed
over the w most recent instances. If a fading factor is
used instead, the previous errors are weighted using a
decay factor a. Both approaches present the problem
of selecting the optimal value for the parameters, but
using a decaying factor provides an advantage. While
sliding windows need to keep the last w instances in
memory, the fading factors are memory-less and allow
to update the prequential accuracy at time i by using
just the error at the previous step (i — 1). Therefore,
in our study, we have decided to use the decaying fac-
tor version with @ of 0.99, which is a commonly used

value [65]. The process of computing the prequential
accuracy can be formulated as shown in Equation 2,
where L is the loss function and o and y are the real
and expected output respectively.

Y @ L)
Z;(=1 a,i*k

1
= L(yi,0:) + &P"(i -1) 2

Pa(i)

With regard to the specific measure used for evalua-
tion, the standard accuracy is not the most appropriate
option for the streaming context, since the number of
instances for each class can change and lead to an im-
balanced distribution [66]. Therefore, the Kappa statis-
tic is a more reliable measure for estimating the per-
formance of data streaming classification algorithms.
Equation 3 presents how to compute the Kappa value,
where py is the prequential accuracy and p, is the hy-
pothetical probability of chance agreement.

k:PO—Pc (3)
]-_pc

Once the accuracy values for each method have been
obtained, it is necessary to carry out a statistical anal-
ysis in order to correctly compare the performance of
different classifiers. Since our study compares multi-
ple classifiers over multiple datasets, the Friedman test
is the recommended method [67]. This non-parametric
test allows to detect global differences and provides a
ranking of the algorithms. In the case of obtaining a p-
value below the significance level (0.05), the null hy-
pothesis (all algorithms are equivalent) can be rejected,
and we can proceed with a post-hoc analysis in order to
perform a pair-wise comparison. In the post-hoc step,
each technique is compared to the best method (con-
trol algorithm) in order to determine whether there is
statistical significance between their performance. In
our study, the Holm’s procedure will be used, with the
aim of rejecting the null hypothesis for each pair. Ob-
taining satisfactory p-values in this test would allow us
to verify the hypothesis of improved performance of
the ADLStream framework over the rest of the meth-
ods considered. The online STATService [68] tool has
been used for conducting the statistical analysis.
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5. Results

In this section, we present and discuss the results
obtained from the experiments carried out. The pre-
quential Kappa results of all methods considered are
reported, followed by the statistical evaluation per-
formed. Moreover, given the importance of the speed
in a data streaming scenario, the computation time of
all algorithms is also analysed. Finally, we present a
study on the effect of different concept drifts. For all
tests, we have used a computer with an Intel Core i7-
770K CPU and two NVIDIA GeForce GTX 1080 8GB
GPU.

5.1. Parameter optimisation

Instead of setting arbitrary values, a grid search has
been conducted to select the training hyper-parameters
of the ADLStream framework, as it was mentioned in
Section 3.2. Fig. 3 illustrates the grid search performed
with values ranging from 10 to 120 for both parame-
ters, the batch size (s) and the number of batches fed in
each training iteration (b). The highest average accu-
racy considering all the datasets studied has been ob-
tained with values s = 90 and b = 60, which has
been set as a general configuration for all experiments.
As can be seen, both accuracy and processing time
tend to stabilise for a batch size higher than 30, re-
gardless of the number of batches fed. Very similar re-
sults are obtained for all combinations with s above 30,
which shows that there is flexibility on the choice of
the parameters of the proposed framework. For values
of s below 30, the performance decreases significantly,
which indicates that a very small batch size could pre-
vent the model from adapting properly to the evolution
of the stream. Since instances are only used once, the
update could focus excessively on the specific charac-
teristics of just a few examples, being unable to learn
about the changes in the overall data distribution.

5.2. Prequential evaluation results

In order to examine the behaviour of each method
over each dataset, the prequential Kappa statistics us-
ing decaying factors are collected and analysed. Fig. 4
presents a heat map illustrating the results of all tech-
niques. In the map, the methods are ordered with re-
gard to their average overall accuracy, hence best mod-
els are at the left-hand side of the figure. As can be
seen, our ADLStream proposal achieves a high level of
accuracy for almost all the datasets considered. These

Kappa

16

14

12

Time (s)

10

Fig. 3. Kappa and processing time results obtained with the ADL-
Stream framework depending on batch size and the number of
batches fed. The white dot represents the chosen values for the pa-
rameters.

results demonstrate the suitability of the use of CNNs
for the time-series data streaming scenario. Moreover,
the high-quality results obtained by the Multi-Layer
Perceptron (MLP) also demonstrates the power of neu-
ral network-based techniques compared to the rest of
classifiers. The adaptive random forest method (ARF)
was the best ensemble model, obtaining the second
position in average performance. Other methods with
good results are those related to the Bayesian (NB) and
drift classifiers (SCD) families. Concerning the deci-
sion trees family, the adaptive version ASHT provides
the higher accuracy, closely followed by the standard
HT. Lastly, the rest of the ensemble models (bagging
and boosting) and the function classifiers are the clas-
sifiers with the poorest performance.

To provide a more detailed analysis, the results ob-
tained with a subset of the top-performing classifiers
of different families are reported in Table 4 and illus-
trated with a box-plot in Fig. 5. Our proposal outper-
forms the rest of the methods for almost all datasets,
and there are particular cases that are worth mention-
ing. In the last four datasets, the methods from the lit-
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Fig. 4. Heat map of the prequential Kappa results obtained for each
method over each dataset. The numbering of the datasets corre-
sponds to the ordering presented in Table 1.

erature struggle to achieve good performance. As an
example, for the ChlorineConcentration dataset, ADL-
Stream leads the ranking with an accuracy of 0.948
while the second method achieves just 0.149. On the
other hand, the tree-based ensemble ARF got a bet-
ter result than ADLStream in two datasets (Mallat and
HandOutline). However, the difference in accuracy be-
tween both methods in these datasets is not significant
as it is less than 0.02.

Another important aspect is that ADLStream us-
ing CNNs stands as the most reliable method since
it shows less variability of results, as can be seen in
the box-plot. A further visual comparison between the
top-performing techniques is shown in Fig. 6. The in-
crease in performance for all datasets achieved with the
novel proposed method proves its capacity of gener-
alisation. Using a constant architecture and parametri-
sation, ADLStream has achieved a high level of ac-
curacy for all cases, regardless of the different char-
acteristics of the streams in terms of length of the se-
ries and number of classes. In ADLStream, the CNN
is trained a lower number of times and with fewer in-
stances than the rest of methods, due to the grouping in
batches and the examples discarded. Nevertheless, this
fact does not have a detrimental effect on the perfor-
mance, since CNNs can rapidly converge to an optimal
set of weights even using fewer data.
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0.6
«
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Fig. 5. Box plot summarising the Kappa statistics results obtained
with the top-performing methods of each family.

5.3. Statistical analysis

The Kappa statistic results obtained from the exper-
iments have to be analysed through a statistical test
to correctly verify the hypothesis of improved perfor-
mance of our proposal. The global ranking obtained
from applying the Friedman Test is presented in Table
5. As expected, the ADLStream model leads the rank-
ing with a high difference in score with respect to the
second method, which is ARF. MLP ranks in the third
position and has a similar behaviour compared to NB
and SCD. Finally, decision trees and ensembles obtain
a lower score given their poorer performance. The null
hypothesis can be rejected since the p-value obtained
(<0.001) is below the significance level (0.05). There-
fore, we can proceed with the post-hoc analysis to per-
form a pair-wise comparison.

For carrying out the Holm’s procedure, ADLStream
is set as the best method and compared to the rest of
the algorithms individually. The results obtained for
this step are displayed in Table 6, which reports the ad-
justed a and p-values for each method. As can be seen,
all null hypothesis can be rejected since the p-values
are always below the corresponding significance level.
Accordingly, it can be stated that there is a statisti-
cal significance in the differences between the perfor-
mance of ADLStream and the other methods consid-
ered. Therefore, we can confirm our initial hypothesis
that the proposed DL framework provides an impor-
tant increase in accuracy for our data streaming classi-
fication study.
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over all datasets.

Table 4

Prequential Kappa results for the best classifiers of different families

# Dataset ADLStream ARF MLP NB SCD ASHT LBAG BO-AD SGD
1 TwoPatterns 1.000 0.489 0.832 0290  0.290 0.290 0.380 0.304 0.615
2 CinCECGtorso 0.997 0.924 0.982 0237  0.237 0.234 0.225 0.000 0.222
3 TwoLeadECG 0.996 0.762  0.643  0.545  0.545 0.544 0.537 0.858 0.559
4 Wafer 0.997 0982 0991 0.194  0.192 0.356 0.963 0.960 0.542
5 pendigits 0.986 0950 0938 0824  0.784 0.850 0.867 0.909 0.800
6 FacesUCR 0.974 0.656 0.723  0.842  0.842 0.777 0.861 0.874 0.635
7 Mallat 0.970 0.990 0911  0.931 0.931 0.931 0.205 0.216 0.787
8 FaceAll 0.977 0.735 0.729  0.829  0.829 0.736 0.849 0.869 0.638
9 Symbols 0.950 0.893 0.831 0.890  0.890 0.889 0.887 0.890 0.709
10 ItalyPowerDemand 0.939 0.841 0.898 0.778  0.778 0.916 0.932 0.918 0.836
11 ECGS5000 0.895 0.856 0.877 0.750  0.772 0.750 0.752 0.843 0.833
12 MoteStrain 0.895 0.800 0.781  0.755  0.755 0.754 0.757 0.717 0.698
13 NonlnvasiveFetalECGThorax 1 0.893 0.668 0.399  0.650  0.650 0.650 0.191 0.215 0.215
14 NonlInvasiveFetalECGThorax2 0.888 0.763 0462  0.681 0.681 0.681 0.131 0.161 0.292
15 SwedishLeaf 0.897 0.731 0392 0.799  0.799 0.798 0.794 0.777 0.241
16 FordA 0.832 0.211 0429 -0.012 -0.012 0.104 0.058 0.045 0.050
17 Yoga 0.894 0.485 0407 0129  0.129 0.126 0.208 0.075 0.042
18 UWaveGestureLibraryX 0.798 0.626 0.644 0569  0.569 0.569 0.569 0.575 0.453
19 FordB 0.808 0.128 0.338  0.046  0.046 0.067 0.032 0.008 0.021
20 ElectricDevices 0.768 0.526 0526 0456  0.456 0.456 0.468 0.457 0.194
21 UWaveGestureLibrary’Y 0.752 0.542 0.582 0469  0.469 0.469 0.469 0.476 0.378
22 UWaveGestureLibraryZ 0.720 0.528 0.572  0.504  0.504 0.504 0.507 0.500 0.399
23 HandOutlines 0.717 0.720 0.634  0.533  0.533 0.533 0.530 -0.084 0475
24 InsectWingbeatSound 0.632 0.473 0.576  0.587  0.587 0.587 0.589 0.588 0.465
25 ShapesAll 0.696 0512 0372 0.566  0.566 0.565 0.499 0.456 0.120
26 Medicallmages 0.669 0.020 0.191 0307  0.307 0.020 0.020 0.020 0.199
27 PhalangesOutlinesCorrect 0.575 0377 0.060 0.134  0.134 0.133 0.245 0.277 0.072
28 ChlorineConcentration 0.948 0.149 0.082 0.122  0.122 0.001 0.063 0.001 0.099
29 Phoneme 0.190 0.032 0.029 0.003  0.003 0.000 0.000 0.000 0.015
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Fig. 6. Radar plot comparing the performance of different techniques with our proposed ADLStream framework.



P. Lara-Benitez, M. Carranza-Garcia et al. / Asynchronous dual-pipeline deep learning framework for online data stream classification 13

Table 5
Friedman Test Ranking.

Friedman Test Ranking
ADLStream 1.069

ARF 3.534
MLP 4414
NB 5.362
SCD 5.397
BO-AD 5.810
LBAG 5.845
ASHT 6.155
SGD 7.414
Table 6
Holm’s post-hoc analysis.
PostHoc Analysis
Classifier p z Holm’s @

SGD <0.001  8.822 0.006
ASHT <0.001  7.072 0.007
LBAG <0.001  6.641 0.008

BO-AD <0.001  6.593 0.010

SCD <0.001  6.017 0.013

NB <0.001  5.969 0.017
MLP <0.001  4.651 0.025
ARF 0.001  3.428 0.050

5.4. Computation time analysis

Given the high rate of arrival of instances in the
streaming scenario, analysing the average time that
each method takes to process an instance (hereinafter
referred as processing time) is essential. The process-
ing time for the set of best classifiers of each family
over each dataset is reported in Table 7. As can be seen
in the comparison shown in Fig. 7, the processing time
of the proposed ADLStream model is competitive with
respect to the rest of the algorithms considered. Logi-
cally, simpler models such as MLP, NB or HT have a
higher processing rate, but the small increase in pro-
cessing time is compensated with significantly higher
accuracy, as it was seen in Section 5.2. Furthermore,
the processing time of ADLStream is lower than other
ensemble methods such as LBAG and BO-AD, which
are considered state-of-the-art ensemble techniques in
the data streaming literature [69].

5.5. Comparison between sequential and
dual-pipeline approach

In this subsection, we present a comparison with a
sequential approach, in order to illustrate the impor-
tance of the asynchronous dual-pipeline architecture
designed for the DL model. The novel ADLStream
framework introduced in this study aims to tackle the
processing time problem of complex DNNs models in
the data streaming context. Table 8 presents a compar-
ison in terms of time and performance between a se-
quential CNN and the proposed ADLStream. In the se-
quential scheme, which is significantly slower, every
instance is used to train the model after it has been
given a prediction. Therefore, all examples are classi-
fied with a model recently updated with all instances
seen so far. In contrast, in the dual-pipeline framework,
train and test phases work concurrently, obtaining an
average speed-up of 42 times faster than the sequen-
tial model. Thanks to the parallelisation, the time to
process an instance corresponds just to the prediction
time, while the model is trained in a separate layer as
many times as possible. Depending on the speed of
the data stream and the available computing resources,
ADLStream may classify more instances with a non-
updated model. Theoretically, this fact could produce
a great difference in performance between both ap-
proaches. However, the results presented in Table 8 do
not show that the sequential approach, in which the
model is re-trained more times, outperforms signifi-
cantly the proposed ADLStream system.

5.6. Concept drift analysis

Given the evolving nature of data streams, we also
consider important to carry out experiments that eval-
uate the effect of concept drifts on the performance of
ADLStream. For this purpose, we have created a set
of 15 data streams, with a million instances each, us-
ing different generators (RBF, RandomTree, Agrawal,
SEA, LED) from MOA [63]. These streams cover the
main types of concept drifts (gradual, abrupt, incre-
mental and recurrent drift) with different speeds and
class-imbalance drifts. Table 9 provides a more de-
tailed description regarding the number of attributes,
number of classes, imbalance rate (IR) and type of drift
of each dataset.

As stated in previous sections, the ADLStream
framework can be used with any DL model. The model
should be selected depending on the characteristics of
the data so that maximal accuracy can be obtained.
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Table 7

Processing time in milliseconds for the best methods of different
families over all datasets.

# Dataset ADLStream ARF MLP NB SCD ASHT LBAG BO-AD SGD
1 TwoPatterns 1.587 0.258 0.094 0.029 0.049 0.065 1.309 0.520 0.056
2 CinCECGtorso 2.296 1.287 0.867 0380 0.700  0.851 15.543 7.299 0.242
3 TwoLeadECG 1.903 0.155 0.079 0.010 0.017 0.023 0.468 0.362 0.024
4 Wafer 1.459 0.087 0.109 0.052 0.035 0.034 0.754 0.591 0.033
5 pendigits 1.241 0326 0.071 0.009 0.017 0.017 0.332 0.236 0.080
6 FacesUCR 1.749 0.817 0.097 0.092 0.175 0.206 3.334 2.820 0.112
7 Mallat 1.938 1.073  0.629 0482 0932 1.068  19.527 11.152  0.235
8 FaceAll 1.640 0.687 0.095 0.098 0.182 0.213 3.370 2.816 0.113
9 Symbols 1.940 0.654 0402 0.129 0246 0315 6.623 3.278 0.170
10 ItalyPowerDemand 1.971 0.095 0.084 0.003 0.005 0.009 0.149 0.154 0.025
11 ECGS5000 1.401 0.194 0.096 0.037 0.070 0.079 1.431 1.045 0.062
12 MoteStrain 2.037 0.139  0.079 0.009 0.017 0.025 0.443 0.400 0.024
13 NonlnvasiveFetalECGThorax 1 1.890 6312 059 2497 3972 4852 80.896  59.052  0.820
14 NonlnvasiveFetalECGThorax2 1.911 6.116 0551 2418 4571 4760 85372  59.077  0.740
15 SwedishLeaf 2.048 0.729  0.094 0.095 0.186 0.230 4.464 2.546 0.123
16 FordA 1.975 0.616 0.668 0.111 0214 0.106 4.156 2.036 0.106
17 Yoga 1.705 0.335 0430 0.051 0.090 0.096 1.925 1.183 0.073
18 UWaveGestureLibraryX 1.580 0.735 0440 0.147 0.263  0.305 6.929 3.004 0.183
19 FordB 1.648 0.613 0496 0.129 0214 0.163 4.141 1.248 0.088
20 ElectricDevices 1.403 0296 0.095 0.033 0.064 0.073 1.320 1.053 0.076
21 UWaveGestureLibrary Y 1.650 0.749 0339 0.150 0.281 0.307 6.797 2.875 0.158
22 UWaveGestureLibraryZ 1.556 0.713 0550 0.133 0265 0.311 6.626 2.860 0.198
23 HandOutlines 3.323 1.606  1.480 0331 0.641 0.882 15734 12670 0.254
24 InsectWingbeatSound 1.651 0.839 0.130 0.148 0293  0.339 5.909 3.988 0.115
25 ShapesAll 2.191 6.715 0383 2444 4223 4826 86.712 58505  0.741
26 Medicallmages 1.887 0.228 0.127 0.049 0.099 0.062 0.992 0.693 0.119
27 PhalangesOutlinesCorrect 1.791 0220 0.079 0.009 0.019 0.022 0.493 0.541 0.023
28 ChlorineConcentration 1.409 0.183  0.099 0.027 0.053 0.037 0.679 0.324 0.050
29 Phoneme 1.821 5531 0581 2905 5937 3.098 52.109 20.749  0.753
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Fig. 7. Bar plot comparing the performance in terms of processing time of different techniques with the proposed ADLStream framework.
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Table 8

Accuracy and processing time results of the ADLStream framework and a sequential CNN model.

4 Dataset Time (ms) Kappa
ADLStream CNN ADLStream CNN
1 TwoPatterns 1.587 34.131 1.000 0.998
2 CinCECGtorso 2.296 292.087 0.997 0.721
3 TwoLeadECG 1.903 22.876 0.996 0.996
4 Wafer 1.459 38.484 0.997 0.874
5 pendigits 1.241 11.657 0.986 0.952
6 FacesUCR 1.749 31.201 0.974 0.958
7 Mallat 1.938 189.533 0.970 0.973
8 FaceAll 1.640 31.147 0.977 0.954
9 Symbols 2.128 70.166 0.950 0.961
10 ItalyPowerDemand 1.971 12.262 0.939 0.943
11 ECG5000 1.401 34.379 0.895 0.885
12 MoteStrain 2.037 22.152 0.895 0.911
13 NonlnvasiveFetalECGThorax1 1.890 144.901 0.893 0.831
14 NonlnvasiveFetalECGThorax2 1.911 144.751 0.888 0.884
15 SwedishLeaf 2.048 28.329 0.897 0.908
16 FordA 1.975 99.979 0.832 0.806
17 Yoga 1.705 85.625 0.894 0.813
18 UWaveGestureLibraryX 1.580 66.484 0.798 0.742
19 FordB 1.648 100.459 0.808 0.732
20 ElectricDevices 1.403 27.304 0.768 0.808
21 UWaveGestureLibrary’Y 1.650 66.501 0.752 0.672
22 UWaveGestureLibraryZ 1.556 66.488 0.720 0.664
23 HandOutlines 3.323 453.426 0.717 0.814
24 InsectWingbeatSound 1.651 53.232 0.632 0.591
25 ShapesAll 2.191 90.354 0.696 0.653
26 Medicallmages 1.887 23.932 0.669 0.610
27 PhalangesOutlinesCorrect 1.791 23.419 0.575 0.662
28 ChlorineConcentration 1.409 39.228 0.948 0.942
29 Phoneme 1.821 186.394 0.190 0.150

However, these experiments aim to evaluate how the
asynchronous approach of the framework recovers
from concept drifts. Therefore, we have decided to
keep using the model detailed in 3.2.1 even though
CNNs may not be optimal for these type of datasets.
Table 10 presents the Kappa accuracy obtained with
the top six techniques over the different concept drift
datasets. As can be seen, ADLStream obtains very
competitive results, similar to those obtained by the lit-
erature methods and even better in seven cases. This
implies that ADLStream also leads the performance
ranking for these experiments, as it is displayed in Ta-
ble 11. However, the subsequent post-hoc analysis (Ta-
ble 12) concludes that there is not a significant differ-

ence between the performance of ADLStream, KUE,
BA-AD and HAT. Taking into account that we have not
explicitly designed a concept drift detection method,
the performance obtained is comparable to other state-
of-the-art classifiers. These results demonstrate the ro-
bustness of ADLStream to deal with different types of
drifts in the incoming data distribution. The model can
adapt to changes by relying on the incremental learn-
ing nature of neural networks, which is found to be
very helpful for these situations. Furthermore, the fact
that we have used CNNs, which are not particularly
suitable for data without a grid-like structure, further
supports the strength of our proposal.
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Table 9

Datasets used for drift analysis.

Dataset Attrs  Classes IR Drift type
RBFi-slow 20 3 3
RBFi-fast 20 3 3 Incremental
LED-4 7 10
RTGa 20 3 4to2
RTGa3 20 3 4 to 30
ARGWa-F1F4 9 2 2to1 Abrupt
ARGWa-F2F5F8 9 2 1to 50
SEAa-F2F4 2 1
RTGg 20 3 4t02
RTGg3 20 3 4 t0 30
ARGWg-F1F4 9 2 2to 1 Gradual
ARGWg-F2F5F8 9 2 1to 50
SEAg-F2F4 3 2 1
ARGWa-F3F6F3F6 9 2 1 Recurrent
ARGWg-F3F6F3F6 9 2 1

Additionally, we provide a visual comparison of the
reaction of different classifiers to concept drifts. Figure
8 shows the evolution of the prequential Kappa met-
ric with the progress of the streams. In the particular
case of the fast incremental drift dataset (RBFi-fast),
the concept continuously changes faster than the adap-
tive capability of the CNN. However, it can be seen
that, for the rest of datasets, ADLStream is able to re-
cover satisfactorily from the drifts. In general, the fig-
ures show that our proposal offers a similar perfor-
mance, and even better in some cases, than other pop-
ular models without the need for any explicit drift de-
tection mechanism.

6. Conclusions

In this paper, a novel asynchronous dual-pipeline
deep learning framework for data stream classifica-
tion is presented. The proposed system has two sepa-
rate layers for training and testing that work simulta-
neously, in order to provide quick predictions and per-
form frequent updates of the model. This architecture
alleviates the computational cost problem of complex
deep learning models for the data streaming scenario,
in which speed is essential. The results obtained us-
ing a large number of time-series datasets showed that
the ADLStream framework outperforms other state-
of-the-art techniques in the literature, such as Hoeffd-
ing trees or ensemble methods. Furthermore, in terms
of processing time, our proposal was also found to be

competitive and even faster to other extensively used
bagging and boosting methods.

We also aimed to illustrate the importance of the
dual-pipeline architecture for a real-time environment
by comparing its performance and processing time
with a sequential approach. It was seen that the layers
working asynchronously provided a decisive time re-
duction to deal with data arriving at high speed, while
maintaining a very similar predictive accuracy. In ad-
dition, other aspects with regard to the training proce-
dure of the system were analysed, such as the impact
of the batch size and the maximum number of batches
used for updating the model. Furthermore, a study on
the behaviour of ADLStream over datasets that simu-
late different concept drifts was carried out. For these
experiments, our proposal showed a performance com-
parable to other state-of-the-art techniques. These re-
sults proved the capacity of our framework to adapt
to changes in the data, without the need for any ex-
plicit drift detection method. In conclusion, our study
demonstrated that deep learning is a very powerful so-
lution for performing online classification with data of
different characteristics. To the best of our knowledge,
there are no scientific papers that adapt complex deep
neural networks for data streaming. Therefore, the pos-
itive results of the experimental analysis carried out
could be helpful in order to give further importance to
the application of deep learning models in the stream-
ing literature.

Future work should study the suitability of the
framework when the label for each instance is not al-
ways immediately available. In many applications, ob-
taining the ground truth is a time-consuming process
that often has to be done manually. Therefore, it is
important to consider other scenarios such as semi-
supervised learning. Moreover, future studies should
consider the application of other deep learning archi-
tectures such as Long-Short Term Memory, Tempo-
ral Convolutional Networks, and others available in
the DeepLearning4] library, which can be used with
MOA. More powerful networks, together with a more
sophisticated hyper-parameter search and advanced
sampling techniques, could enhance the performance
of data stream classification. Furthermore, another in-
teresting research direction is to develop an ensemble
framework containing a pool of deep learning models
with different update criteria and abstaining mecha-
nisms.
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Table 10
Kappa accuracy of the top 6 classifiers for concept drift datasets.
Dataset ADLStream KUE BA-AD HAT ARF BO
RBFi-slow 0.955 0.881 0.888 0.792 0925 0.879
RBFi-fast 0.474 0.351 0.494 0423  0.779 0.399
LED-4 0.688 0.709 0.710 0.707  0.709  0.707
RTGa 0.848 0.912 0.816 0.872 0.820 0.854
RTGa3 0.766 0.820 0.791 0.826 0.703 0.594
ARGWa-F1F4 0.855 0.844 0.849 0.849 0.766  0.760
ARGWa-F2F5F8 0.796 0.713 0.704 0.584 0.504 0.511
SEAa-F2F4 0.789 0.784 0.779 0.779  0.790 0.774
RTGg 0.804 0.878 0.848 0.813 0.752  0.809
RTGg3 0.661 0.737 0.716 0.685 0492 0.526
ARGWg-F1F4 0.830 0.792 0.795 0.731  0.690 0.704
ARGWg-F2F5F8 0.693 0.582 0.481 0.392  0.294 0.444
SEAg-F2F4 0.786 0.782 0.777 0.777  0.788 0.774
ARGWa-F3F6F3F6 0.866 0.812 0.828 0.838 0.736  0.729
ARGWg-F3F6F3F6 0.770 0.712 0.695 0.601  0.599 0.607
Table 11 Table 12
Friedman Test Ranking for concept drift experiments. Holm’s post-hoc analysis for concept drift experiments.
Friedman Test Ranking PostHoc Analysis
ADLStream 2.467 Classifier p z Holm’s &
KUE 2.733 BO <0.001  3.708 0.010
BA-AD 3.067 ARF 0.011  2.537 0.013
HAT 3.533 HAT 0.118 1.561 0.017
ARF 4.200 BA-AD 0.380 0.878 0.025
BO 5.000 KUE 0.696  0.390 0.050
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