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Abstract—The modeling of physiological control systems 
via mathematical equations reflects the calculation procedure 
more than the structure of the real system modeled, and sev-
eral simulation environment have been used so far for this 
task. Nevertheless, object-oriented modeling is spreading in 
current simulation environments through the use of the indi-
vidual components of the model and its interconnections to 
define the underlying dynamic equations. In this paper we 
describe the use of the MODELICATM simulation environ-
ment in the object-oriented modeling of the cardiovascular 
control system. The performance of the controlled system has 
been analyzed by object-oriented simulation in the light of 
existing hypothesis and physiological data used here for  
validation purposes. 
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I. INTRODUCTION 

There are a considerable number of specialized and gen-
eral-purpose modeling software applications available for 
biomedical studies, which are commonly divided into struc-
ture-oriented and equation-oriented. Most of them follow a 
causal modeling approach and require explicit coding of 
mathematical model equations or representation of systems 
in a graphical notation such as block diagrams, which is 
quite different from common representation of physiologi-
cal knowledge. 

The object-oriented approach can offer many advantages 
in biomedical research both for the building of complex 
multidisciplinary models when dynamics are given by a set 
of differential algebraic equations [1]. The object-oriented 
approach has been made possible by using the modeling 
environment MODELICATM [2] among others, which al-
lows the system, subsystem, or component levels of a whole 
physiological system to be described in increasing detail. 
While the MODELICATM environment has been used for a 
long time in different fields of engineering [3] there are few 
results in biomedical system modeling [4-5] particularly in 
cardiovascular modeling and control.   

Cardiovascular modeling and control present a particular 
challenge and require both a multi-scale and a multi-physics 
approach [6-7]. Several mathematical models of the closed 

loop cardiovascular system have been developed [8-9] and 
software tools based on hierarchical block diagrams have 
also been applied to the description of cardiovascular  
systems [10-11].  

The regulatory control of the cardiovascular system has 
been studied intensively, more than any other physiological 
system. In fact, the high rate of cardiovascular diseases is 
certainly one of the main reasons for its analysis. The con-
trol mechanisms responsible for maintaining arterial blood 
pressure may be divided into short-term processes, which 
are effective over a period of seconds to hours, and long-
term processes that operate over days to weeks. The former 
are largely neural based, utilizing receptors in the heart and 
blood vessels to sense blood pressure and the autonomic 
nervous system (ANS) to regulate the cardiac function and 
diameter of resistance vessels.  The mid-term control is 
basically hormonal while the renal system plays the central 
role at long-term [6]. 

In this paper we describe the use of the MODELICATM 
simulation environment in the object-oriented modeling of 
the cardiovascular regulatory system considering the short, 
medium and long-term mechanisms. For this task we have 
followed an acausal hierarchical structure whose validity 
has been previously assessed to represent the cardiovascular 
dynamics as a multi-compartmental system. The results 
have been obtained under both physiological and pathologi-
cal conditions, namely, hypertension due to either increased 
values of peripheral resistance, heart rate or intravascular 
volume, and hypotension due to either decreased heart  
rate or severe hemorrhage, assuming the validation tests 
previously performed with physiological data. 

II. MODELING THE CARDIOVASCULAR  
CONTROL SYSTEM 

The cardiovascular model here used can be represented 
with a set of nonlinear equations describing its dynamics 
[8]. Nevertheless, the present paper focuses on the multi-
compartmental acausal approach so that the whole system 
will be described by eight compartments, namely, the four 
cardiac chambers (auricles and ventricles), the pulmonary 
circulation (arterial and venous) and the systemic circula-
tion (arterial and venous) (Fig. 1). 
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and connected. MODELICATM is an object-oriented  
language whose basic construct is class (model, block,  
function, type,…), which facilitates reuse of components 
and evolution of models.  

The most important difference with regard to the tradi-
tional block-oriented simulation tools is in the different way 
of connecting components. So, a special-purpose class con-
nector as an interface defines the variables of the model 
shared with other sub-models, without prejudicing any kind 
of computational order. In this way the connections can be, 
besides inheritance concepts, thought of as one of the key 
features of oriented-object modeling, enabling effective 
model reuse. 

The basic idea of implementation in MODELICATM is to 
decompose the described system into components that are 
as simple as possible and then to start from the bottom up, 
connecting basic components (classes) into more compli-
cated classes, until the top-level model is achieved. The 
default integration method is the DASSL code as defined by 
[14], nevertheless some other methods are available as 
Runge-Kutta and BDF based.  

 

Fig. 3 MODELICATM Block Diagram of the Systemic Circulation 

The arterial pressure control system was simulated using 
MODELICATM including each of the circulatory compart-
ments above mentioned together with the control mechan-
isms. The MODELICATM block diagrams of any of the 
compartments are illustrated in Fig. 3, while the barorecep-
tor control system and the renal control system program-
ming are also depicted in Fig. 4 and Fig. 5. 

 

 

Fig. 4 MODELICATM Block Diagram of the Baroreceptor Mechanism 

 

Fig. 5 MODELICATM Block Diagram of the Renal Control Mechanism 

IV. RESULTS 

In order to test the performance of the pressure control 
system several experiences have been accomplished, both 
under physiologic conditions by varying resis-
tance,elastance or heart rate reference values in the barore-
ceptor control module and by considering liquid intake, 
hemorrhage and blood transfusion as external flowrates 
entering the circulatory system. The results have been  
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