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Abstract

Many of the services a smart city can provide to
its citizens rely on the ability of its infrastructure
to collect and process in real time vast amounts of
continuous data that sensors deployed through the
city produce. In this paper we present the server
infrastructure we have designed in the context of
the HERMES project to collect the data from sen-
sors and aggregate it in streams for their use in
services of the smart city.

1 Introduction
Many of the services a smart city can provide to its citizens
rely on the ability of its infrastructure to collect and process
in real time vast amounts of continuous data that sensors
deployed through the city produce [PZCG14]. In this sce-
nario, building an infrastructure that scales as the number
of such sensors and their data rates increase is a challenging
task. Grouping the data in streams is a common approach
for this kind of scenarios. A data stream can be defined
as a real-time, continuous, ordered (implicitly by arrival
time or explicitly by timestamp) sequence of items [GO03].
Streams are different to stored data in several aspects: they
cannot normally be stored in their entirety, and the order in
which data is received cannot be controlled.

Real time stream processing solutions are required to
manage this kind of data streams. In fact, the generic
platform for big data applications proposed in [VLM+13]
assigns an important role to such a component. Build-
ing scalable stream processing solutions is far from triv-
ial [CBB+03]. In this paper we propose a system for scal-
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ably managing streams of sensor data in the context of the
HERMES (Healthy and Efficient Routes in Massive open-
data basEd Smart cities) [FAGAG+15] project, which aims
at helping its users, citizens of a smart city, keep healthy
habits. Other systems for health care in smart cities are re-
ported in [SPC+14]. The main sources of data in HERMES
are the citizens themselves, which contribute to the smart
city by letting it track their physical activities through activ-
ity bands or the SmartCitizen mobile application, and their
driving through the SmartDriver mobile application.

In order to understand the amount of data it supposes,
let us focus on one of the applications. The SmartDriver
application aims at reducing the stress levels and fuel con-
sumption of its users, as well as improving traffic safety,
by providing the user with real time driving recommenda-
tions [CMMO15a, CMMO15b]. In order to do that, the
application tracks its users while they drive and sends the
data to the infrastructure as soon as it captures it, so that
server-side services can perform real time computations
such as detection of congested roads and stressful road sec-
tions. The application should receive useful feedback back,
e.g. static road information, a recommended driving speed
and traffic alerts. In its current prototype, the application
track’s the vehicle’s movement as well as its driver’s heart
rate. It reports the vehicle’s location every 10 seconds. In
addition, it reports immediately abnormal situations such
as high accelerations or decelerations, excessive speeds or
abrupt increases in the driver’s heart rate. More detailed
data, such as second by second information about location,
speed and heart rate, are buffered in order to reduce re-
source consumption, and sent to the infrastructure every
time the driver completes a 500 meter road section. Be-
cause each driver produces at the least one data item ev-
ery 10s, only 10,000 drivers would suppose a load of more
than 1,000 requests/s for the infrastructure that collects
the data.

The rest of the paper is organized as follows. Section 2
proposes a system architecture for the real time processing
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of streams in the context of a smart city. Section 3 presents
a case study for this architecture, based on the SmartDriver
application of the HERMES project. Section 4 reports the
results of a performance of the system. Conclusions and
future lines of work are presented in section 5.

2 The Data Streaming Infrastructure
The server-side infrastructure was developed on top of the
Ztreamy middleware [AFFGSFFL14]. We have selected
Ztreamy because of its flexibility, scalability and the sim-
ple HTTP-based API it provides to data producers, which
improves compatibility and simplifies the development of
clients such as the SmartDriver mobile application. In
addition, Ztreamy provides useful out-of-the-box features
such as stream aggregation, filtering and replication, as
well as a persistency subsystem that prevents the lose of
data items once they have been accepted by the infrastruc-
ture, even in the case of temporal network disruptions or
failures of one or more components of the deployed sys-
tem. As our experiments in [AFFGSFFL14] show, other
publish-subscribe systems for sensor data like DataTur-
bine [FTS+09] would not provide the performance levels
we need in this scenario. The ZeroMQ middleware1 is
more or less similar in terms of performance to Ztreamy,
but Ztreamy provides us with a much more convenient high
level API and an HTTP-based interface. The more recent
Apache Kafka [KNR+11] publish-subscribe system could
be an alternative to Ztreamy, but we have not yet studied ei-
ther its suitability for this scenario or its performance, and
leave it for future work.

Figure 1 shows the system architecture we have de-
signed. It consists of the following main components:

• Data collectors: Ztreamy servers to which the Smart-
Driver and SmartCitizen mobile applications post
their data through HTTP. These servers validate the
data and orchestrate the interactions with other ser-
vices needed to handle it. They are also responsible
of responding mobile applications with feedback data
when required. Since most of the load of input data
handling is supported by these data collectors, they are
replicated behind an HTTP load balancer in order to
increase the number of clients they are able to handle.
We have chosen the well-known Nginx2 open-source
HTTP server for this task.

• Main stream: data items received by the collectors are
then aggregated into the main stream, which is man-
aged by a separate Ztreamy server.

• Storage stream: this stream filters the data items that
don’t need to be stored out of the main stream. The

1http://zeromq.org/ (Visited 2016-06-01)
2https://www.nginx.com/ (Visited 2016-11-23)

HERMES servers that manage data persistence con-
sume this stream in order to receive the data they have
to store.

• Public stream: this stream is derived from the main
stream. It is part of the public API HERMES provides
to third-party applications. It transports aggregated,
anonymized and semantically-annotated data that may
be useful to those applications.

• Short-term location-based services: the streaming in-
frastructure needs to perform some real-time compu-
tations and keep some short-term data. For example,
it needs to detect traffic incidents, retrieve the scores
of nearby drivers for the SmartDriver’s gamification
system, etc. This module serves the collectors and the
public stream server. In addition, it needs to use the
long-term location-based services in order to get car-
tography data and speed recommendations based on
historical data. This information is needed as input
for some of the short-term services, and part of it is
also returned to the SmartDriver application.

The other components of the architecture (mobile appli-
cations, long-term storage and location-based services and
third-party applications) lay without the scope of this paper.

Depending on the amount of simultaneous clients the
system needs to handle, this architecture can be deployed
on a single server or distributed across several ones. If dis-
tributed, a good network link between them is advisable.
Ideally, all the servers should share the same local network
in order to reduce end-to-end delays and bandwidth limita-
tions.

Additionally, because of the locality of the services the
infrastructure provides, the system as a whole can be easily
partitioned for different geographical areas, thus deploying
a replica of the whole system for each geographical area.
This eases the scaling of the system as the amount of users
of its services grows.

3 The SmartDriver Case Study
In order to illustrate the internals of the system, let us focus
on the SmartDriver mobile application. It tracks the driver
and posts the following types of events:

• Vehicle Location: it contains a timestamp, latitude and
longitude where the vehicle is located, an estimation
of the accuracy of that location, the instantaneous ve-
hicle speed and the current driving score assigned to
the driver by the gamification subsystem of the appli-
cation. These events are posted every 10s. They are
used mainly for the real-time services.

• Driving Section: it contains more detailed informa-
tion about a larger road section, including second by
second location and speed, heart rate measurements
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Figure 1: Data streaming infrastructure architecture
and aggregated computations associated to this sec-
tion (average and standard deviations of speed and
heart rate, as well as statistics about speed varia-
tions). These events are posted for every 500m the
user drives. They are intended for storage, but can
also be used in some real time services.

• Abnormal situations: they are posted every time
SmartDriver detects an abnormal situation (strong ac-
celerations and decelerations, too high speeds, too
high heart rates), immediately after its detection.

Because of their 10s periodicity, the system uses the Ve-
hicle Location posts to send feedback to the SmartDriver
application. Collector servers are responsible of gathering
the required information from the short-term and long-term
location-based services and sending it back to the applica-
tion in the body of their HTTP response. This feedback
includes:

• Type of road and its speed limit (to be obtained from
the long-term services).

• Recommended speed as computed by the speed rec-
ommendation service (to be obtained from the long-
term services and possibly adapted to current road
conditions by the short-term services).

• Traffic alerts in the vicinity (to be obtained from the
short-term services).

• Driving scores assigned to nearby drivers by the gam-
ification system (to be obtained from the short-term
services).

In order to reduce the load of the long-term location-
based services with unnecessary requests due to stopped or
very slow vehicles, collectors assume the type of road and
speed limit did not change if the driver advanced less than
10m since the last time they determined those values. The
short-term services take similar measures to avoid some
computations such as retrieving or storing driver scores in
those situations.

The current prototype of the short-term location-based
services provides two main features:

• It tracks the latest location of each driver in order to
detect the way of the road the driver follows (both the
current location and a previous location are needed) as
well as detecting when the driver has advanced more
than the 10m threshold.

• It tracks the driving score and location of every driver
in order to provide the nearby drivers’ score service.

The first feature is implemented on top of a RAM-stored
two-tier dictionary in which every 30s the oldest dictionary
is dropped and a new one created. This structure allows the
system to keep just one location per driver and drop those
drivers that have not contacted the service for more than
30s.

The second feature is more complex because it re-
quires performing spatial queries on a rectangle around the
driver’s current location. We have implemented it with a
RAM-stored SQLite3 database using an R-tree-based in-
dex. The system periodically drops data older than 1 hour
because the gamification feature bases on recent data.

3https://www.sqlite.org/ (Visited 2016-06-01)



4 Evaluation
The current prototype of the streaming server infrastructure
was subjected to experiments with varied amounts of load
in order to evaluate its performance. Because of the unfea-
sibility of recruiting enough volunteers to simultaneously
use the application up to the loads the system is able to
handle, we developed a simulator that produces a synthetic
load.

4.1 The Simulator

The simulator was designed to produce data and send it
to the infrastructure in a way that, from the point of view
of measuring performance, is equivalent to having a given
amount of actual users, all of them using the SmartDriver
application and driving simultaneously a number of differ-
ent paths in the same city. The following parameters can be
configured in the simulator before starting a simulation:

• Number of simulated drivers: since each driver gener-
ates at least one Vehicle Location event every 10s, the
minimum number of requests per second the system
needs to handle is rmin = n/10, where n is the num-
ber of drivers. Data Section events make actual rates
slightly higher, especially when drivers reach higher
speeds. In order to introduce variability on the sys-
tem, each driver is assigned some random parameters
that influences her driver behavior (e.g. her inclina-
tion to drive fast or slow with respect to speed limits).
In addition, not all drivers start at the same time. Each
driver starts randomly within one minute of starting
the simulator.

• Paths: each simulated driver is assigned a path she
will traverse during the simulation. Paths are based on
the actual cartography of Seville, with random start-
ing and end points in the city and its surroundings.
Each path is created by choosing a pair of random start
and end points within a configurable distance from the
city center. The path itself will be the optimum path
for going in a private vehicle from the start to the end
point, as returned by a geographic information system.
The number of paths is configurable and drivers are
uniformly assigned to those paths. Therefore, many
drivers may follow the same path. Despite sharing a
path, because their behavior and the instant they begin
to drive are random, those drivers will not be synchro-
nized and therefore there will be enough randomness
on the system.

Once the simulation starts, the simulator makes every
driver advance on her path at a speed that depends on
the randomly assigned characteristics of the driver and the
speed limit of the current road, with a random bias. Accel-
eration and deceleration are also modeled by the simulator
(e.g. at turns or when speed limits change). Drivers send
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Figure 2: Evolution of event rate with respect to the num-
ber of clients.

the events they produce to the infrastructure by sending
HTTP requests that are similar to those the actual Smart-
Driver application would send. Despite coming all the
requests produced by the simulator from the same host,
drivers in the simulator are prevented from sharing their
underlying TCP connections with other drivers. This way
the simulator will produce a realistic traffic pattern, analo-
gous to the actual pattern SmartDriver produces.

4.2 Experimental Setup

The experiments were run by deploying the streaming
server infrastructure (load balancer, six collector instances,
one main stream instance, one storage stream instance and
one short-term location-based service instance) on a high-
end server with 12 Intel Xeon E5-2430 2.5GHz cores and
64 GB of RAM memory.

The simulator was deployed on a laptop computer, con-
nected to the server through one intermediate IP router and
a 100Mbps connection. In order to accurately measure
event delivery delays, simulator and server used the NTP
service to synchronize their clocks.

4.3 Results

The combination of number of clients and event rate of
each client determines the load the system needs to handle.
Since in SmartDriver the event rate each client generates
is approximately the same, the aggregated event rate arriv-
ing the server infrastructure should grow linearly with the
number of clients. Figure 2 shows that, as expected, the
event rate at the main stream is proportional to the number
of clients up to 4,000 clients. At that point, with approx-
imately 28,000 events per minute, the infrastructure satu-
rates and begins to reject events, and therefore linearity is
lost.
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Figure 3: Global and per-component CPU utilization.

We’ve measured the performance of the server infras-
tructure for different loads in a series of experiments with
a growing number of clients. The main performance indi-
cators we measured were:

• CPU utilization: amount of time of CPU used during a
minute, divided by 60s. This measurement was taken
every minute. Its estimated mean and 95% confidence
intervals were computed and reported in the plots. A
component with an utilization close to 1 is in the limit
of the load it can handle. A component with an uti-
lization close to 0 is mainly free.

• Event admission delay: amount of time between the
creation of the event at the client side (the simula-
tor) and its admission at a front-end server and at the
database feed stream. Larger delays may signal con-
gestion situations in the server. Similarly to utiliza-
tion, mean delays with 95% confidence intervals were
estimated from the delays suffered by a random sam-
ple of the simulated events.

Figure 3 shows the overall utilization of the infrastruc-
ture as well as the individual utilization of each server com-
ponent. The six collector servers average a higher utiliza-
tion than the rest, thus being the bottleneck of the sys-
tem. However, their utilization may be reduced by adding
some more collector instances to the pool, assuming that
the server has cores enough. The next component in terms
of utilization is the short-term location-based server, fol-
lowed by the server that handles the main stream. The stor-
age stream server and the HTTP balancer can handle much
more load than the rest. Figure 4 shows clearly that utiliza-
tion at the main stream grows linearly with its event rate.

Finally, figure 5 shows the event delivery delay at two
points of the server infrastructure: collectors and storage
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Figure 4: Utilization versus event rate.

feed stream. As expected, delays increase with the load
of the system, especially from 3,500 clients on, where the
indicators show that the system is beginning to saturate. In
our experimental setup the network distance between the
simulator and the infrastructure is less than 1ms. In more
realistic scenarios, that distance would be higher, although
less than 0.5s in most of the situations.

As a conclusion, the infrastructure we have presented in
this paper is able to handle up to 4,000 simultaneous drivers
from a single server, which represent approximately 28,000
new events every minute. At larger data rates collectors
begin to reject some events due to saturation.

5 Conclusions and Future Work
We deployed the first working prototype of this infras-
tructure more than two years ago. It is still working and
has received frequent feature upgrades and bug fixes since
then. During this period, the system has been continu-
ously capturing data from our beta testers with no major
issues. Although the core of the architecture is already im-
plemented and deployed, some of its services are still work
in progress. More specifically, the public stream and the
speed recommendation and traffic incident detection ser-
vices are not yet part of the current prototype.

According to our experiments, the architecture we pro-
pose provides a reasonable level of performance in the
context of the HERMES project. The maximum amount
of simultaneous drivers a single server may handle is ap-
proximately 4,000, but the infrastructure can be scaled-
up by deploying it into more servers, especially the col-
lectors components. Distributing the short-term location
services component is challenging because of the need of
a shared spatial database, but techniques for efficiently
partitioning such data and their processing already ex-
ist [AWV+13, WAV15].

Future work includes rebuilding this infrastructure
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Figure 5: Event delivery delays at collectors and storage
stream. Delays measure the amount of time since an event
is created at the simulator until it is fully processed and
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on top of a big data framework such as Apache
Kafka [KNR+11] to try to increase the amount of clients
that may be served from a single server.
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Organero. Reducing stress on habitual

journeys. In 2015 IEEE 5th International
Conference on Consumer Electronics –
Berlin, pages 153–157, 2015.
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