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ABSTRACT

The lack of mature tool support is one of the main reasons that make 
the industry to be reluctant to adopt Software Product Line (SPL) 
approaches. A number of systematic literature reviews exist that 
identify the main characteristics offered by existing tools and the 
SPL phases in which they can be applied. However, these reviews 
do not really help to understand if those tools are offering what is 
really needed to apply SPLs to complex projects. These studies are 
mainly based on information extracted from the tool documentation 
or published papers. In this paper, we follow a different approach, 
in which we firstly identify those characteristics that are currently 
essential for the development of an SPL, and secondly analyze 
whether the tools provide or not support for those characteristics. 
We focus on those tools that satisfy certain selection criteria (e.g., 
they can be downloaded and are ready to be used). The paper 
presents a state of practice with the availability and usability of the 
existing tools for SPL, and defines different roadmaps that allow 
carrying out a complete SPL process with the existing tool support.
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1 INTRODUCTION

An increasing number of software development companies are 
adopting Software Product Line (SPL) approaches [8, 47]. However, 
the field of SPL is quite broad and continuously changing [57]. 
Technical issues such as the development of the SPL infrastruc-
ture, including new practices, processes, and tool support require a 
great investment [8]. Thus, despite the amount of successful stories

about the use of SPL engineering1, industry has not yet solved the
variability and reuse management problem and continues to exper-
iment with their own solutions and approaches [13]. This is partly
due to the fact that companies are reluctant to adopt technically
sound academic approaches due to the lack of mature tool support.
Hence, the success of SPL depends on good tool support as much as
on complete SPL engineering processes [6].

Regarding the processes, SPL approaches typically cover the
domain and application engineering processes that include activities
such as variability modeling and artifact implementation (domain
engineering) and requirements analysis and product derivation
(application engineering) [4, 11], but set aside other activities that
are important for companies, such as the analysis of non-functional
properties (NFPs) or quality attributes and the evolution of SPL’s arti-
facts [41]. When considered, these activities are usually integrated
into the traditional SPL process by reusing existing mechanisms,
which were not specifically designed for that purpose (e.g., using
attributes of extended variability models to model NFPs [10]). The
most common is to find companies that only adopt a minor part of
an SPL methodology (e.g., implementing variability with annota-
tions) [30], which is sometime abandoned after a short period of
time because of the lack of integration among the SPL activities.
Only a few companies with enough financial resources have suc-
ceeded on using SPLs, due in most cases to the development of their
own tools or the use of commercial tools (e.g., pure::variants [12],
Gears [40]) that are not so accessible for smaller companies.

Besides, although tool support is of paramount importance for
the SPL management process [6], most existing tools only cover
specific phases of the SPL approach (e.g., variability modeling or ar-
tifacts implementation). Those few tools that support several phases
(e.g., FeatureIDE [64]) demand to fit an implementation technique
such as Feature-Oriented Programming (FOP) [53], Aspect-Oriented
Programming (AOP) [38] or annotations [37], depend on the develop-
ment IDE (e.g., Eclipse) or present some important limitations [20].
For instance, applying classical SPL approaches (e.g., FOP or AOP)
to web engineering is challenging because of the nature of web
applications that require the simultaneous use of several languages
(JavaScript, Python, Groovy,. . . ) in the same application [30]. In
addition, there are few works specifically focused on studying the
SPL tool support [6, 43, 51] and, they usually report information
that is extracted from the tool documentation or reference papers
without really testing the tool availability and usability.

This paper explores the existing tool support for SPL from a
practical point of view, although it does not pretend to be a system-
atic review. The objective is to check out the existence of enough
mature tool support for carrying out a complete SPL process. For
each activity in the domain and application engineering, we iden-
tify the desired requirements that tools should provide to deal with
complex SPL processes and application domains, and analyze the
1http://splc.net/hall-of-fame/
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possibilities and limitations of each tool. The paper answers the 
following Research Questions:
RQ1: What are the tools that provide some kind of support for SPLs?

Are they available, usable, and keep up to date? To answer to
this question, this paper presents a state of practice of the
SPL tools, focusing on their availability and usability and
selecting those that a company could use in its development
process to successfully adopt an SPL process (Section 4).

RQ2: How the tools behave when they are used to develop complex
SPLs? (Either because a specific SPL development approach is
required or because SPLs for complex application domains need
to be developed.) We answer to this question by empirically
analyzing the most usable tools. We use a running case study
based on an SPL process with demanding characteristics
such as clonable features [24, 60], variable features [21, 22],
attributes [10], huge feature models, and so on (Section 5).

RQ3: Is it possible to carry out a complete SPL process with the exist-
ing tool support? That is, is it possible to cover all activities of
complex approaches including dealing with NFPs, and man-
aging the evolution of SPLs? We answer to this question by
defining up to 12 different roadmaps of tools that partially or
completely support all phases of an SPL process (Section 6).

The paper is structured as follows. Section 2 discusses related
work. Section 3 motivates our study showing the requirements of
complex SPL approaches. Section 4 presents a state of practice of
the existing tools. Section 5 analyzes the most usable tools. Section 6
defines the tool roadmaps to carry out a complete SPL. Section 7
discusses threats to validity and Section 8 concludes the paper.

2 RELATED WORK
Existing works have investigated the SPL processes in great de-
tail [17, 56, 57], but has only surfaced its tool support [6, 43, 51].

2.1 Software Product Line processes
Multiple systematic literature reviews (SLRs) and surveys have been
published covering different aspects of SPL engineering [11, 16, 17,
48, 56, 57], such as the level of alignment in the topics covered by
academia and industry [11], the level of tool support [16] or the
most researched topics in SPL [56, 57]. From these studies the phases
and topics of SPL engineering in which academia and industry are
more interested or that deserve more attention can be identified.
These SLRs highlight some interesting conclusions. For instance,
architecting [15] is the dominating SPL activity, covered by 38% of
surveyed papers (56% of them are industry papers) [57].

However, there are other activities that are becoming important
in the context of SPL with the emerging of new application do-
mains, such as the Internet of Things (IoT) [55] or Cyber-Physical
Systems [35], and that are not receiving the required attention.
Examples of these activities are the optimization of large-scale
variability models [48, 49], the variability modeling of quality at-
tributes [31, 68], themanagement of NFPs [34, 48], and the evolution
of the SPL models [32, 41]. This imposes new challenges to the ex-
isting development and analyses processes, as well as to the tool
support. Even so, as exposed by those SLRs [11, 57], the variability
in quality attributes is a concern only in 6% of the papers, and NFPs
are discussed only in 5% of all the papers [57].

2.2 Software Product Line tools
Few works study the tool support for the SPL processes specifi-
cally [6, 16, 43, 51]. They are SLRs or surveys that are normally
done only from the perspective of the documentation found for
each tool, and the characteristics listed and discussed in that docu-
mentation. Moreover, most of the details about tools are covered in
gray literature, thesis, and websites, that are not usually considered
as primary studies in SLRs. Commercial tools (e.g., Gears [40] and
pure::variants [12]) present the additional problem of the intellec-
tual property protection of their technical details [6]. Concretely,
in [12], a demonstration of pure::variants across the product line
lifecycle is described, but it only surfaces the tool without providing
further technical details. The same occurs with Gears in [40].

One of the most recent systematic studies [6] covers tools docu-
mented in research papers from 1997 until 2015 (although the study
was published in 2017). This is an interesting study to know the
general characteristics of these tools (e.g., technology used in its
implementation, if it has a graphical or textual notation, etc.). Oth-
ers similar, but older studies are [51] (published in 2014) and [43]
(published in 2010). However, the most recent tools reported by
these studies date from 2013 and 2005, respectively.

The conclusion is that these kinds of studies are not enough
to select the most appropriate tool to provide support for an SPL
process. This is basically because only information about the high-
level phases covered by each tool is provided, omitting the details
about the specific topics covered for each phase. In addition, the
information is extracted from the tool documentation or a reference
paper, and thus, these studies stay outdated very soon because, in
most of the cases, they are not trying and striving directly with
the tools, downloading, installing, and executing the tools or even
checking their online availability — i.e., many of the tools included
in existing studies are not available at all. There are even tools
referenced in these papers that have never been implemented [51].

3 MOTIVATION AND CASE STUDY
An SPL approach should cover at least the domain engineering and
the application engineering processes with their typical phases and
activities (Figure 1): (1) variability and dependency modeling in
the Domain Analysis (DA) phase; (2) feature selection and product
configuration in the Requirements Analysis (RA) phase; (3) the
development of reusable software artifacts in the Domain Imple-
mentation (DI) phase; and (4) variability resolution and product
generation in the Product Derivation (PD) phase [4]. However, de-
manding requirements of real SPL projects expose the needs of
additional activities that are present in any software engineering
process and that are essentials for the successful adoption of SPLs
in industry. Some examples are the analysis of NFPs or quality
attributes, or the evolution of the SPL’s artifacts, among others.

To illustrate those points, we presentWeaFQAs [29, 31, 34], an
example of an SPL process that extends the engineering framework
for SPL [52] and demands specific needs in each of the SPL phases
according to the current applications and domains where WeaFQAs
may be used. In this section, we describe the particular needs that
WeaFQAs imposes in each phase of the classical SPL framework
and enumerate the requirements that tools should satisfy.



3.1 Case Study: the WeaFQAs SPL process 
WeaFQAs [29, 31, 34] is an SPL process to manage the operational-
izations of quality attributes. The operationalization of a quality 
attribute (e.g., security) is the association of a function (e.g., the en-
cryption of a message) to a goal (e.g., providing security). WeaFQAs 
introduces the concept of Functional Quality Attribute (FQA) as the 
specific functionality that is incorporated into the applications to 
fulfill the desired quality attribute. WeaFQAs promotes the vari-
ability modeling and customization of FQAs separately from the 
applications, and their later incorporation into them, exploiting the 
benefits of SPLs (e.g., reusability, adaptability,. . . ). WeaFQAs follows 
the classic framework for SPL engineering [52] (Figure 1) — i.e., 
DA, RA, DI, and PD., but needs to extend it to take into account the 
specific problematic of FQAs, which requires additional activities 
in each of those phases (see activities in bold in Figure 1).

3.2 Requirements of complex SPLs
Domain Analysis (DA). Modeling a family of FQAs starts with 

the characterization of the FQAs and their variability modeling (Fig-
ure 2). For each quality attribute (e.g., security) the FQAs that are 
required to satisfy it are modeled (e.g, encryption, authentication). 
For instance, characterizing the encryption FQA includes the identi-
fication of the different encryption algorithms, the available security 
frameworks that implement it, along with their variables and pa-
rameters such as the key length, block cipher mode of operation, 
and padding; the dependency relationships between encryption 
and others FQAs (e.g., hashing); as well as the usage context [34].

Nevertheless, modeling the FQAs variability is more complex 
that only considering their high degree of variability. Since each 
FQA (e.g., encryption) can be applied in several points of the appli-
cation with different configurations (e.g., RSA or AES algorithms), 
each FQA needs to be modeled as a clonable feature [24, 60] (see 
Encryption[1..*] in Figure 2). Moreover, some FQAs include vari-
ables that require to provide specific values (e.g., 512 kB as the av-
erage size of the messages to be encrypted). This requires to model 
them as variable features [21, 22] (see MessageSize in Figure 2). 
Here, it is worthy to differentiate between variable features [21, 22] 
that are those that require to provide a value (e.g., integer, string, 
float) during configuration; and features with attributes [10], which 
can be used to model NFPs such as the performance or price of 
features (see Execution time and Energy consumption attributes 
of the RSA feature in Figure 2). The incorporation of clonable and 
variable features brings into play the definition of complex cross-
tree constraints. Examples are modeling the dependency between 
features that are children of different clonable features, or a depen-
dency involving a numerical value (see cross-tree constraints in 
Figure 2). Thus, a requirement about variability modeling is:
DA.Req1. Support for complex variability modeling including clon-

able features, variable features, features with attributes, and
complex constraints.

WeaFQAs also considers NFPs such as performance and energy
efficiency in the context of an FQA configuration. Although dealing
with NFPs in feature models as attributes [10] is a wide accepted ap-
proach [27], it presents some issues. Firstly, NFPs usually compete
and conflict with each other. For example, using the AES encryp-
tion algorithm has a high energy efficiency but provides a poor
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Figure 1: The WeaFQAs SPL process.

performance in execution time [34]. These relationships cannot be
handled with the basic constraints of feature models (e.g., includes
and/or excludes) and require more specific treatments (e.g., use of
the NFR+ Framework) [18]. Secondly, sometimes the management
of NFPs needs to be postponed until the requirements analysis or
even product derivation phase because the NFPs’ information about
a feature is not available until the product is completely generated
and tested, unless domain experts provide predictions and estima-
tions of them. For example, to obtain the real energy efficiency or
memory footprint of a product is necessary to evaluate it as a whole
configuration and not as an independent features.

DA.Req2. Support for dealing with and managing NFPs that can be
associated to individual features or complete configurations.

These two requirements appear in other current domains, such as
the IoT [35, 55], where clonables features are essential to model the
variability of the different devices, and NFPs need to be modeled
when deployments have to be generated according to the tradeoff
between different NFPs, such as latency and battery consumption.

Another challenge that WeaFQAs poses is the size of its vari-
ability model. Considering 20 FQAs modeled with a total of 178
features and 23 constraints, there are 5.72e24 configurations. Vari-
ability models of this size are unmanageable and thus is desirable
to modularize them, as for example, using composite variability
models as defined for the CVL language [22] (see Context feature
in Figure 2). Another solution to modularize an SPL that could fit
very well withWeaFQAs is the use of amulti product line (MultiPLs)
approach [58]. In a MultiPL approach, the FQAs for each quality
attribute (e.g., the encryption, authentication and hashing FQAs for
the security attribute) would be defined in separated SPLs. These
SPLs would then be composed when used in a specific application.

DA.Req3. Support for modeling/managing huge feature models.

Requirements Analysis (RA). WeaFQAs allows creating the
FQAs configurations according to the application requirements, but
also generating optimum configurations based on NFPs, such as
performance or energy efficiency. Generating optimum configura-
tions is an intractable problem when dealing with huge variability
models or models containing variable features. As discussed in
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Figure 2: Excerpt of the WeaFQAs’ variability model (complete model available in [36]).

DA.Req2, sometimes it is necessary to generate several configura-
tions (or even all) in order to evaluate them and finding the best
configuration before delivering the final product, or to reason about
the system’s variability. In those cases, specific formalizations of
variability models (e.g., CNF [10] or BDD [25]) and reasoners and
solvers (e.g., SAT [67], CPS [54]) need to be used depending on the
type of analysis (e.g., calculate number of configurations, finding
the optimum configuration, or generate all configurations).
RA.Req1. Support for analyzing and generating optimum config-

urations from huge space configurations, based on different
criteria (e.g., NFPs).

In this phase, another activity that WeaFQAs considers is as-
sisting application engineers when choosing a configuration. In
this sense, WeaFQAs provides advises about the most appropriate
selections based on the application engineers’ goals. For example,
to decide the most secure encryption algorithm or the most effi-
cient framework that implements the RSA algorithm. This kind
of assistant requires to manage partial configurations that will be
completed in a step-by-step process.
RA.Req2. Support for partial and step-by-step configurations.

Domain Implementation (DI). There are frameworks and third
party libraries that provide implementations of FQAs ready to be
used, such as the Java Security package, the Apache Commons
library, and the Spring Framework. So, implementing the FQAs’
artifacts from scratch using a specific variability mechanism such
as FOP or AOP is not an advisable option. Instead, the challenge
posed by WeaFQAs is to handle the variability of existing artifacts
in order to configure their functionality according to the selected
features during the RA phase. Furthermore, the recurrent nature
of the FQAs makes them suitable to be used in many different
domains. Domains like web engineering involve multiple types
of programming languages (e.g., JavaScript, Python, Groovy), and
markup languages (e.g., HTML, CSS, XML) where applying typical
variability development paradigms of SPL such as FOP or AOP is
extremely difficult or even impossible [30].
DI.Req1. Support for using and combining different variabilitymech-

anisms (FOP, AOP, annotations,. . . ) independently from the
language, and applying them to existing implementations.

Additionally, WeaFQAs supports the management of FQAs at
the architectural level. This means that WeaFQAs can handle archi-
tectural configurations of FQAs defined in any modeling language
based on MOF (Meta-Object Facility), by using Model-Driven Engi-
neering.
DI.Req2. Support for managing artifacts variability at different ab-

straction levels: from software architecture models to code.

Product Derivation (PD). In this phase, beyond the automatic
generation of the product (here FQAs configurations), WeaFQAs
has a specific need: the weaving of the FQAs into the final applica-
tion. Following the WeaFQAs approach, where FQAs are modeled
separately from the application, each generated configuration needs
to be incorporated (woven) in different places of the application.
In WeaFQAs this weaving activity can be performed together with
the product derivation or in an independent activity (e.g., follow-
ing a MultiPL [58]). In both cases, WeaFQAs supports the weaving
process at the architectural level (using MOF-compliant models) or
at the code level (by defining custom transformations) [29].
PD.Req1. Support for weaving products or multi product lines.

Finally, an important activity in an SPL process is the evolution
engineering. When the applications’ requirements change and/or
the technology of the FQAs evolves, domain knowledge and arti-
facts need to be updated and the changes need to be propagated
to the different deployed configurations. In some domains, as for
example multi-tenants applications [32], with hundreds of configu-
rations deployed, this activity should be performed automatically.
PD.Req2. Support for automatic propagation of evolving changes to

the deployed products.

In the rest of the paper we take into account these requirements
in order to answer our research questions.

4 STATE OF PRACTICE
This section answers our first research question:
RQ1: What are the tools that provide some kind of support for SPLs?

Are they available, usable, and keep up to date?

We analyze the current state of practice of SPL tools to identify
which ones are available online, and are really usable for industry,
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Figure 3: State of practice of SPL tools.
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practitioners, and the SPL community. The goal is to collect all pos-
sible tools related with SPL to check their status before considering

them to analysis. This does not pretend to be a systematic review
of tools, but an in-depth study to identify existing tools.

Research method. We performed a manual search on different
sources. First, we identified SLRs [6, 51] and surveys [43] about SPL
tools. We also searched the proceedings of the demonstration and
tool track in some of the most relevant events about SPL and vari-
ability (e.g., SPLC, VaMoS), for the period not covered by the SLRs
and surveys (2015-2018). Second, for each reported tool we searched
for its availability (i.e., its website, code repository or executable).
When the information was not available in the paper we performed
a manual search on web search engines (e.g., Google) to localize
the tool by applying the following search strings: <<name of the
tool>>, tool, SPL, Software Product Line, and variability.



Finally, we glanced at the tool by downloading, installing, and 
launching it to check its correct functioning.

Data extraction form. We used Google Forms2 to capture the 
basic information about the availability of the tools: name, brief 
description, URL, main reference, SPL’s phases covered, type of 
tool (academic, commercial, prototype), first and last release date, 
availability, current status and integration with other tools. This 
data has been extracted from the information found in reference 
papers, the official website, and the code repository of the tool. The 
only inclusion criteria for this form is that the tool is directly related 
with SPL or is being used in the context of SPL.

Result. To illustrate the state of practice, we have built a timeline 
(Figure 3) with all SPL tools published until February 20193. We 
found 97 tools. As summarized in Figure 4, only 3% of them cover 
all phases of the SPL process. Moreover, there seem to be more 
interest in the problem space than in the solution space since the 
DA (37% of the tools) and the RA (36%) are the phases most covered 
by the tools. The DI and PD phases are only covered by 17% and 7%
of the tools respectively. The main problem with SPL tools is the 
fact that only 19% are available online to be downloaded and used, 
have an easy installation process or can be directly used online in 
a web browser (green timelines in Figure 3). Characteristics that 
make them attractive to be used in the community and industry. 
The other 81% are obsolete tools, have complex installation process, 
work with errors, or they are not available at all (red timelines in 
Figure 3). This evidences that there are lot of tools but most of them 
are academic or prototypes tools that are abandoned shortly when 
the associated research project ends.

The state of practice gives a wide vision of the current state of 
art of the SPL tools and helps practitioners to select appropriate 
tools. The main artifacts developed that allows replicating and/or 
improving this state of practice are available in [36].

5 TOOL SUPPORT FOR COMPLEX SPLS
This section answers our second research question, selecting first a 
subset of the tools identified in Section 4:

RQ2: How the tools behave when they are used in complex SPLs?

5.1 Tool selection
Four inclusion criteria (IC) are considered relevant to answer RQ2:
IC1: The tool is available online to be downloaded or used. 
IC2: The installation process is straightforward and does not re-

quire complicate settings, additional dependencies or third-
party plugins that can be obsolete.

IC3: The tool is under active development or the latest release is a
final stable version.

IC4: The tool covers at least one of the main phases of the SPL
process defined in Section 3 and in [4, 52].

Five exclusion criteria (EC) were used to exclude tools that we do 
not consider appropriate to be used in a professional environment:
EC1: The tool is a prototype or a preliminary or beta version. 
EC2: The tool does not work or works with errors.
2https://forms.gle/JfH9bKHHTgCLc31R7
3A .csv file with the tools information is available in [36].

EC3: The tool is commercial and the owner does not provide an
alternative free limited version.

EC4: The tool is a compilation of independent tools not related to
SPL (e.g., a CASE tool).

EC5: There is another similar, more actual or useful tool, or the
tool has been integrated within another.

By applying our inclusion and exclusion criteria we have chosen
the SPL tools to be analyzed in this section (Table 1). Note that there
are many other tools that are available and usable (e.g., Feature-
House [5], AHEAD [9],. . . ), but they have been excluded by EC5
since they are integrated within other tools like FeatureIDE [64].
Others are very updated (e.g., ProductlineRE [26]) but have so many
obstacles to be installed, so they do not pass IC2. Others are exclu-
sive for a specific domain (e.g., FMCAT [7] focusing on the analysis
of dynamic services product line). Others are generic tools that are
not specific of SPL, even if they are used as part of some SPL tools
in concrete phases of the SPL engineering process (e.g., AspectJ to
implement artifacts following an AOP approach).

5.2 Tool analysis
In this section we analyze the selected tools to check whether or
not they satisfy the requirements of a complex SPL process like the
WeaFQAs process presented in Section 3. All artifacts developed and
used throughout the different phases to test the tools are available to
repeat the experiments in [36]. This includes the variability models
in different formats and the implementation code of the artifacts.

5.2.1 Domain Analysis (DA) phase. Apart from variability and
dependency modeling, the DA process should take into account
requirements DA.Req1, DA.Req2, and DA.Req3.

Experiments. We have modeled the variability of the FQAs (Fig-
ure 2) with the selected tools. The WeaFQAs variability model
includes clonable features (Encryption [1..*]), variable features
(MessageSize: Integer), featureswith attributes (Execution time
and Energy consumption of the encryption algorithms), composite
units to modularize the variability model and to facilitate its man-
agement and configuration (Context), arbitrary group multiplicity
(1..*), and complex cross-tree constraints like those involving
variable features.

Analysis. Regarding DA.Req1., all tools support basic feature
models (mandatory and optional features, alternative (xor) and or
groups, requires and excludes constraints). However the support
for advanced characteristic is very limited (Table 2). Clonable fea-
tures is the most difficult characteristic to be implemented, and
thus, no tool provides support for them completely. Clafer allows
cloning any feature in the variability model and configuring each
instance, but this is done at the configuration step and deciding
whether a feature is clonable or not should be done at the do-
main analysis phase. FeatureIDE and pure::variants allow a similar
behaviour of clonable features by inserting subtrees in the variabil-
ity model. In FeatureIDE, this characteristic follows the VELVET
approach of MultiPLs [58], but it is still a prototype that only sup-
ports the FeatureHouse [5] composition approach when generating
code, it contains many errors and with not enough documentation.
Pure::variants introduces the concept of “variant instance” as a link
in the feature model to another configuration space. In contrast to

https://forms.gle/JfH9bKHHTgCLc31R7


Table 1: Description of the selected SPL tools.

Tool Year Last update SPL phases Description

S.P.L.O.T.
[45]

2009 Jan. 2015 DA, RA Online tool to edit, debug, analyze, configure, share and download feature models. It offers hundreds of feature
models from academics and practitioners. Available in: http://www.splot-research.org/

Glencoe
[2]

2018 Jan. 2019 DA Web application to work with variability models. Model importation from DIMACS or pure::variants [61].
Several solvers for the automated analysis of FMs. Available in: https://glencoe.hochschule-trier.de/

Clafer
[3]

2014 Feb. 2018 DA, RA General-purpose lightweight language for structural modeling: feature modeling and configuration, class and
object modeling, and metamodeling. Several solvers and model reasoners.Available in: https://www.clafer.org/

FeatureIDE
[42, 64]

2004 Nov. 2018 DA, RA,
DI, PD

Open-source Eclipse framework with plug-in based extension mechanism to integrate and test existing tools and
SPL approaches [39] (FeatureHouse, AHEAD, AspectJ, Antenna, etc.).Available in: http://www.featureide.com/

pure::variants
[61]

2003 Dec. 2018 DA, RA,
DI, PD

Commercial solution that supports all phases of the SPL process. Many extensions that connect pure::variants
with common systems and software engineering tools [12]. Available in: https://www.pure-systems.com/

vEXgine
[33]

2017 Jan. 2018 PD Customizable implementation of the CVL execution engine [69] that can be extended with custom transforma-
tion engines to support multiple variability approaches. Available in: http:// caosd.lcc.uma.es/vexgine/

Clafer, the number of instances for the clonable feature has to be
decided in the domain analysis phase and not at the configuration
step, where this decision is normally taken.

The support for variable features and for feature with attributes
is confused because of the thin difference between them. Clafer
allows defining variable features with a specific type (e.g., integer)
that behaves as a normal feature but allows providing a value during
the configuration step, and also specifying constraints about the
value of that feature. However, to support attributes in Clafer (as
for example to specify a utility value for each feature) we have to
rely in the Clafer Multi-Objective Optimizer (ClaferMOO [3]) that
is a specific reasoner for attributed-feature models, or modeling the
attributes as variable (numerical) features. This implies to define
an additional variable feature (e.g., integer) for each normal feature
in the variability model, and make sure those variable feature are
selected in the final configuration. Contrary, pure::variants offers
complete support for attributes but not for variable features that
in this case can be implemented as attributes. FeatureIDE supports
attributes only partially, because it requires selecting the composer
“Extended Feature Modeling” and then, no other composer can be
selected. Neither S.P.L.O.T. nor Glencoe support clonable features,
variable features, and feature with attributes.

Finally, each tool provides additional characteristics for vari-
ability modeling. For instance, Glencoe and pure::variants allow
mixing mandatory features within “or” groups. Glencoe, Clafer
and pure::variants support arbitrary multiplicity in group features
(e.g., x..y where x can be distinct from 1 and y distinct from *).
FeatureIDE and Clafer allow defining abstract features. Clafer (with
constraints involving variable features) and pure::variants (with
Prolog, and its own variant of OCL: pvSCL [61]) allow defining
complex constraints.

Concerning DA.Req2., no tool provides explicit support for deal-
ing with NFPs, relying on features with attributes to manage NFPs.

Respecting DA.Req3., first, huge feature models cannot be easily
modularized within existing tools. Clafer allows defining multiple
feature models as abstract classes but all of them in the same file.
FeatureIDE, as discussed for clonable features, supports MultiPLs
but it is in its infancy and the feature models itself cannot be di-
vided in multiple files. In pure::variants, the support is better since
it defines an Hierarchical Variant Composition to link a feature

Table 2: Tool support for the Problem Space: DA and RA.
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DA.Req1
Basic FMs
(optional, mandatory, or, xor, requires, excludes)

■ ■ ■ ■ ■

Cardinality-based FMs
(clonable features or features cloning/cardinalities)

□ □ l l l

Variable features
(variable features with type — i.e., integer, string,. . . )

□ □ ■ □ l

Extended FMs
(features with attributes)

□ □ l l ■

Other extensions
(complex constraints, arbitrary group multiplicity,
abstract features,. . . )

l l ■ l l

DA.Req2
Support for NFPs □ □ □ □ □

DA.Req3
Modularization of FMs
(composition units, multiple variability models)

□ □ l l ■

Evolution of FMs
(modification of features — e.g., change variability
type, move feature,. . . )

□ l ■ l ■

R
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A
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s
(R

A
) RA.Req1

Analysis of FMs
(statistics, validation,. . . )

■ ■ l ■ ■

Number of configurations
(model counting, independently of the FM’s size)

■ ■ l l ■

Generation of configurations
(enumerate all configurations)

l □ ■ ■ l

Optimization of configurations
(e.g., based on NFPs)

□ □ l □ □

RA.Req2
Partial configurations ■ □ ■ l l
Step-by-step configuration ■ □ l □ □

■ Full support. l Partial support. □ No support.

http://www.splot-research.org/
https://glencoe.hochschule-trier.de/
https://www.clafer.org/
http://www.featureide.com/
https://www.pure-systems.com/
http://caosd.lcc.uma.es/vexgine/


Table 3: Tool support for the Solution Space: DI and PD.
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I) DI.Req1

Different variability mechanism
(FOP, AOP, annotations,. . . )

■ ■ l

Multi-language / Language independent
(used in the same project)

l ■ ■

DI.Req2
Model abstraction level
(architecture, design, code,. . . )

l l l
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) PD.Req1

Product derivation (variability resolution) ■ ■ ■
Weaving products □ l ■
Multi Product Lines l □ □

PD.Req2
Evolution changes
(automatic propagation of changes)

□ l l

■ Full support. l Partial support. □ No support.

model inside another one. Second, modifications of the variability
models once created can be complex in some tools like S.P.L.O.T.
and Glencoe, where modifying a part of the feature model usually
can be only achieved by removing that part and adding it again.
Contrarily, Clafer and pure::variants allow even moving features
from a branch to another in a straightforward way.

Findings. Table 2 summarizes the characteristics supported by
the analyzed tools. S.P.L.O.T. and Glencoe are the most usable tools
for the DA phase since they are available online, intuitive and easy
to use and even their models can be exported to FeatureIDE and
pure::variants, respectively. However, they do not provide any sup-
port for advanced characteristics. Only Glencoe and FeatureIDE use
the notation proposed by Czarnecki [23] that is the most compre-
hensible and flexible by now (and the most used) [10]. The notation
of Clafer can be tedious for variability modeling although it pro-
vides good support for variable features and acceptable support
for clonable features. S.P.L.O.T. and pure::variants share a similar
interface to build the feature model, following a tree structure but
each of them with its own notation. It is worthy to mention that
there are other tools that provide explicit support for clonable and
variable features such as the tools that provide support to the CVL
language [69] (e.g., MoSIS CVL Tool [63] and BVR Tool Bundle [65]).
However, those tools do not meet our inclusion/exclusion criteria
because they are not currently available or are not in a usable state.

5.2.2 Requirements Analysis (RA) phase. The goal of this pro-
cess is to select a desired combination of FQAs according to the
application requirements. This phase should also consider the op-
timization of the FQA configurations based on NFPs, as well as
assisting application engineers when generating the configurations.

Experiments. By using the selected tools, we analyze the possible
configurations of the FQA’s variability model, generating different
(or all possible) configurations, and finding optimum configura-
tions based on the NFPs (e.g., performance and energy efficiency
in WeaFQAs) when possible. The challenge in this step is dealing
with huge variability models such as the FQAs feature model.

Analysis. Regarding RA.Req1., almost all tools provide some kind
of support for analyzing the variability model. This means statistics
and metrics about the variability model (core features, optional
features, number of constraints,. . . ), model validation (consistency,
void feature model,. . . ), and anomalies detection (dead features,
false-optional features, redundancy constraints,. . . ). Clafer can only
validate the model syntactically since it is a text plain modeling
language with a formal grammar, but no further analysis about
variability is carried out by default.

Depending on the requested analysis, each tool uses an specific
feature model formalization and/or solver to perform the analysis.
For example, to calculate the number of configurations or variabil-
ity degree of the feature model, S.P.L.O.T. uses a Binary Decision
Diagrams (BDD) engine [25] for which counting the number of
valid configurations is straightforward. Glencoe uses a Sentential
Decision diagram (SDD) [50] engine that enables to determine the
total number of configurations within very short times. Within
pure::variants is also possible to calculate the number of configu-
rations for each subtree under a selected feature. However, these
tools calculate the number of configurations without taking into
account variable features, which considerably increments the total
number of configurations. The other tools (Clafer and FeatureIDE)
require to generate all configurations in order to enumerate them,
and thus, with these tools is not possible to calculate the number
of configurations for huge models, like the FQAs feature model, in
a reasonable time. For instance, using the Choco solver [54] inte-
grated in Clafer, it takes 1 hour to generate 13e6 configurations
from a total of 5.72e24 (calculated with S.P.L.O.T.), requiring more
than a billion of years to generate all configurations. FeatureIDE,
in addition, generates the associated code, so it requires more time.

Additionally, none of the selected tools provide support for find-
ing optimum configurations in feature models. Only Clafer, with its
ClaferMOO module, provides a multi-objective optimization mode,
but this implies to use another kind of model not related with the
Clafer’s variability model. Even so, with Clafer and FeatureIDE,
we could generate all configurations (for small models), evaluate
them based on the NFPs (e.g., performance and energy efficiency)
and then finding the optimum configurations by using an specific
optimization tool [34]. Other techniques such as random sampling
applied to SPL [49] and formalizations of the feature models such
as CNF or the use of advanced SAT solvers [14, 67] will allow rea-
soning about these aspects or help to solve these issues with huge
models, but this is out of scope of this paper.

With respect to RA.Req2., only S.P.L.O.T. and Clafer provide
a reasonable good support to manage partial configurations and
step-by-step configuration. S.P.L.O.T. provides validation and sta-
tistics of the partial configuration, but also auto-completion of the
configuration with less features or the configuration with more
features. This is done through an online step-by-step configuration
assistant. Clafer allows generating configurations from a partial one



thanks to its instantiation process based on constraint definition. 
FeatureIDE and pure::variants allow generating partial configura-
tions and calculate the number of valid configurations from that 
partial configurations, but they do not incorporate a guided process 
like S.P.L.O.T. to assist the user.

Findings. No tool allows generating all configurations efficiently 
for huge variability models like the required in WeaFQAs. Tools 
are able to calculate that the complete FQAs’ feature model has 
5.72e24 different configurations, but without taking into account 
variable features (e.g., numerical values). In fact, nowadays, with the 
existing tool support for SPL it is not possible to generate optimum 
configurations of products based on some criteria like NFPs [34, 49].

5.2.3 Domain Implementation (DI) phase. This phase focuses 
on the implementation of the variable artifacts (e.g., models, code).

Experiments. We have implemented some of the FQAs using 
different variability mechanisms, concretely AOP, FOP, and anno-
tations. We have reused third party libraries like the Java Security 
package for the Hashing FQA, the BouncyCastle library for Encryp-
tion, and the SLF4J API for Logging.

Analysis. Regarding DI.Req1., FeatureIDE is the tool that pro-
vides best support for different variability mechanisms. Concretely, 
it supports FOP using the FeatureHouse approach or AHEAD, AOP 
with AspectJ, and annotations with Antenna (Java comments), Col-
ligens (C preprocessor) or Munge (Android), among others [44]. 
However, it is not possible to combine different approaches in dif-
ferent parts of the application (e.g., annotations and AHEAD) or to 
use different languages (e.g., Java and JavaScript). Actually, only the 
combination of FeatureHouse with Java and AspectJ is supported.

The pure::variants tool also provides good support for AOP (e.g., 
AspectJ and AspectC++), and annotations (e.g., for Java, JavaScript, 
C++) with its own variation points system, but not for FOP. The 
family model [61] of pure::variants allows describing the variable ar-
chitecture/code and to connect it via appropriate rules to the feature 
model. Nevertheless, most of the advanced options of pure::variants 
are only available in the commercial version. In the case of vEXgine, 
it is possible to use and combine different variability mechanisms 
but the resolution of that variability needs to be delegated to an 
external engine [33].

Concerning DI.Req2., FeatureIDE and pure::variants offer very 
good support for implementing the variability at the code level as 
discussed in DI.Req1, while vEXgine needs specific extensions to 
work at code level [30]. At a high abstraction level (architecture 
and design), both pure::variants and vEXgine offer the best sup-
port. However, pure::variants requires the commercial version to 
manage high abstract models (e.g., UML), and vEXgine requires to 
define the appropriate model transformations despite it supports 
any MOF-compliant model [33]. FeatureIDE offers the possibility 
to combine FeatureHouse and UML, but actually, this integration is 
not completely operable.

Findings. With existing tools, it is very difficult to apply the vari-
ability mechanisms (e.g., AOP, FOP) to third party libraries like 
those that implement FQAs, and the solution is usually encapsu-
lating the behaviour of those libraries in entities of the specific 
approach (e.g., aspects or features) or implementing the FQAs from

scratch using a specific variability mechanism. Moreover, no tool
supports an effective variability mechanism to be applied over sev-
eral languages (Java, Python, JavaScript) in the same project.

5.2.4 Product Derivation (PD) phase. The product derivation
phase is in charge of generating the final product (configurations of
FQAs) by resolving the variability of the artifacts (FQAs) according
to the selection of features made in the RA phase. Then, those
configurations of the FQAs needs to be incorporated into the final
application by some combination mechanism (weaving, or MultiPL).
Also, the propagation of changes in the final products when the
requirements changes or the domain artifacts evolve needs to be
considered in this phase.

Experiments. We have generated the final products by resolving
the variability of the FQAs with different configurations based on
the configuration models specified in the RA phase. When possible,
we have incorporated those configurations to existing applications.
For example, weaving the FQAs’ configurations to an electronic
voting (e-voting) application [31]. Then, we have evolved the FQAs’
variability model and try to update the generated configurations.

Analysis. Variability resolution and product derivation is achieved
by all analyzed tools. A limitation in FeatureIDE is that only one
composer (e.g., FeatureHouse, annotations) can be selected for an
SPL application and thus the combination of different approaches re-
quires to build and integrate a custom composer within FeatureIDE.

Apart from resolving the variability, PD.Req1. cannot be com-
pletely satisfied. In fact, only vEXgine provides complete support
for weaving FQAs by defining custom model transformations [29].
The flexibility of pure::variants allows integrating other tools like
Git to partially support mixing variants [59]. FeatureIDE integrates
the VELVET approach [58] for MultiPL, but this is a prototype and
in this case the product derivation is not fully operable.

Regarding PD.Req2. the support for propagating changes in the
variability model to the existing configurations exists but is limited.
In pure::variants, the source code of the product variants can be
evolved by using merge operations from Git [28, 59]. Also, with the
help of specificmodel transformations and evolution algorithms [31,
32], vEXgine can evolve the deployed artifacts, but the effort of
defining those transformations is considerable.

Findings. Apart from the basic activity in this phase existing tools
have not paid attention to advanced characteristics (e.g., weaving,
MultiPL, evolution). However, those characteristic could be incor-
porate in some tools thanks to their extension mechanisms such as
the possibility to define new composers in FeatureIDE [39] or the
custom engines and model transformations of vEXgine [33].

6 SPL TOOLS ROADMAP
This section answers our third research question:
RQ3: Is it possible to carry out a complete SPL process with the

existing tool support?

To answer RQ3, based on the analysis in the previous section,
we define some practical roadmaps to completely carry out an SPL
process with the existing tool support (Figure 5). The answer for
RQ3 is that existing tools do support the complete process of SPL,
but with many limitations. As shown in Figure 5, Roadmap 1 with
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Figure 5: Roadmaps with the selected tools for an SPL process.

FeatureIDE and Roadmap 12 with pure::variants allows carrying
out a complete SPL approach, covering the basic activities of an SPL
process (variability modeling and artifacts implementation), and
generating a final product. However, the limitations of these tools,
as evidenced in Section 5, make them not suitable for complex SPL
approaches like the WeaFQAs process that demands advanced SPL
characteristics such as clonable features, managing huge models,
or dealing with NFPs.

To partly solve these issues, SPL practitioners can combine some
of the tools or integrate them. Following with our roadmaps (Fig-
ure 5), existing combinations are represented as solid lines, while
possible combinations are represented as dashed lines. For instance,
we can combine S.P.L.O.T. with FeatureIDE (Roadmaps 2 and 6)
or Glencoe with pure::variants (Roadmap 11) to get the benefits
of specifying the variability model in an online and easy to use
web application like the offered by S.P.L.O.T. or Glencoe, and then
loading the model in FeatureIDE or pure::variants, respectively.
Since no standardized modeling format has been accepted after
almost 30 years working with feature models, and the proposals
for standardization (e.g., CVL [22], EMF [62]) have not jelled, each
tool has defined its own format and notation, resulting in a high
diversity of formats (e.g., SXFM, GUIDSL, Velvet, DIMACS,. . . ). So,
the roadmaps defined in this section will allow engineers and SPL
practitioners to be aware about which tools can be used indepen-
dently and in combination when a single tool does not support the
complete SPL process.

In addition, when we are only interesting in analyzing the SPL
variability, we can opt to use only Glencoe (Roadmap 9) that is the
tool with best support for modeling and analyzing variability. When
we need to generate an specific configuration (or a partial one) based
on the requirements of the application, S.P.L.O.T. (Roadmap 3) offers
an excellent feature-based interactive configuration module. When
all configurations need to be generated at the RA phase, we can use
Clafer (Roadmap 4). Note that we do not include a specific roadmap
for Clafer because modeling the variability model in Clafer is a
hard and tedious task that requires to learn a complex notation.

Instead, to cover Roadmaps 4 and 8 we have developed a feature
model converter from S.P.L.O.T. to Clafer. The implemented scripts
and algorithms to fill some of the possible connections between the
roadmaps are available in [36].

For implementing the variable artifacts from scratch (i.e., follow-
ing a proactive and/or a reactive approach to develop an SPL [19]),
FeatureIDE is the recommendable choice because it allows using
several variability approaches (FOP, AOP, annotations) despite the
fact that it does not allow directly combining those approaches
(except for AOP the combination of which is straightforward). For
those domains in which the applications require to combine more
than one different approach (e.g., web engineering), practitioners
will need to implement specific composers to allow the combination
work, like a new composer plugin for FeatureIDE (Roadmaps 5 and
6). In this sense, vEXgine (Roadmaps 7, 8 and 10) provides great
flexibility because it is design to be extensible by means of model
transformations. For an extractive approach where practitioners
start with a collection of existing products [19], pure::variants is a
good choice thanks to its family model that connects the existing
artifacts with the feature model.

Regarding NFPs, although there are specific tools to deal with
NFPs such as the NFR+ Framework [18], these tools are not intended
to be used in an SPL, and they have to be integratedwithin other SPL
tools. The same occurs with those approaches that manage NFPs
in an ad-hoc way by associating features and/or configurations
to NFPs stored in a database [34, 46]. Actually, no tool provides
even good support for modeling attributes in the feature model and
manage them through the SPL process, as for example to generate
optimum configurations based on these attributes.

Finally, to deal with variability models at the architectural level,
pure::variants is the most mature tool, with the only drawback that
the commercial version of the tool is required [12]. Also vEXgine
provides excellent support for resolving the variability of archi-
tectural models, but in this case the downside is that practitioners
need to have some expertise in Model-Driven Engineering.



7 THREATS TO VALIDITY
This section discusses the threats to validity of this study [66]:

Internal validity. An internal validity concern is the reliability 
of the experiments to check the functionality fulfillment of tools. 
The functionality and characteristics analyzed vary among the tools. 
For example, clonable features are implemented differently in each 
tool. Literature reviews about tools usually study the support of 
functionalities as a primary goal. However, the goal of this paper is 
verifying how the tools satisfy the requirements in which we are 
interesting to carry out a complex SPL process, instead of reviewing 
all available functionalities provided by the tools.

External validity. An external validity concerns the general-
ization/applicability of the results to others SPL processes, beyond 
WeaFQAs. WeaFQAs was chosen because it follows the classical 
framework for SPL and incorporates additional requirements that 
can be found in current complex projects. Results of this work en-
compass from simpler SPLs [4, 52] to complex SPL processes like 
WeaFQAs or the Concern-Oriented Reuse (CORE) approach [1].

Construct validity. Construct validity relates to the complete-
ness of our study, as well as any potential bias.

Missing important tools in the state of practice. The search for the 
tools information was conducted in several SLRs, proceedings of the 
most relevant conferences in SPL (e.g., SPLC) and variability (e.g., 
VaMoS), and in web search engines, and it was gathered through a 
data extraction form. We believe that we do not have omitted any 
relevant tool. However, since new tools are constantly appearing 
and evolving, we encourage practitioners to fill the information 
about any missed or new SPL tool in our form so that we can include 
them and continuously extend our study.

Tools selection for analysis. The defined inclusion and exclusion 
criteria to select the tools for our analysis can exclude some relevant 
tools (e.g., Gears). Our criteria focuses specially on the availability 
and usability of the tools that we consider the first obstacle for their 
adoption in small/medium organizations. Therefore, we omit those 
tools that are not available to be directly downloaded, require to 
pay a licence, or with inadequate documentation because those 
tools are not capable of being analyzed before acquiring them.

Biased judgment selection and analysis. Due to the researchers 
involved in this study are active in the SPL research area and pro-
duced related tools (e.g., vEXgine, HADAS, Hydra, AO-ADL), a 
validity problem could be author bias. Only vEXgine passed our 
inclusion/exclusion criteria. In addition, the decision to include 
vEXgine over other similar tools is threefold: (1) actually, it is the 
only available tool to provide support for CVL models [33]; (2) it is 
one of the few tools that work at the architectural level; and (3) it 
is very flexible to be extended or integrated within any other tool 
or approach. Despite those benefits, vEXgine also presents some 
limitations as discussed in Section 5.

Conclusion validity. Conclusion validity relates to the relia-
bility and robustness of our results. A potential threat to conclusion 
validity is the interpretation of the results extracted from the ana-
lyzed tools. It was not always obvious to state from the empirical 
experiments if the tools completely or partially satisfy the exposed

requirements. To ensure the validity of our results, apart from the
empirical experiments, we analyzed multiple data sources (e.g., tool
documentation, reference papers, technical reports,. . . ). Moreover,
experiments were carried out at least by two primary authors that
acted as reviewers of the results reported by the other.

8 CONCLUSIONS AND FUTUREWORK
We have presented a state of practice of the tools for SPL, focusing
on their availability and usability. Based on this study we have
later empirically analyzed the most usable tools in order to check
out the existence of enough mature tool support for carrying out
a complete SPL process with demanding requirements. We have
defined up to 12 different roadmaps of the recommended tools to
partially or completely support SPL activities, from the variability
modeling until the product derivation phase.

The conclusion is that we need an integrated approach with ap-
propriate tool support that covers all the activities/phases that are
normally performed in complex SPLs. The main characteristics that
tools should support are: (1) modeling variability of complex fea-
tures (e.g., clonable features, variable features, composite features);
(2) flexibility on the analysis of huge feature models considering
optimization of configurations (e.g., analysis of NFPs); and (3) com-
bination of multiple variability approaches (FOP, AOP, annotations),
since only a variability approach (e.g., FOP) is not enough for some
domains like web engineering that could greatly benefit from the
use of SPLs. Therefore, with the existing tool support is possible to
carry out a simple SPL process but tools present several limitations
when dealing with complex SPLs.

As future work, we plan to continue our study to incorporate
updated or new tools that could appear and that can be incorporated
to our roadmaps.
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