Energy efficient adaptation engines for android applications

Angel Cafete *, Jose-Miguel Horcas, Inmaculada Ayala, Lidia Fuentes

Universidad de Mdlaga, Andalucia Tech, Spain

ABSTRACT

Keywords:

Android

Dynamic adaptation
Energy efficiency
Mobile application

User behavior

Context The energy consumption of mobile devices is increasing due to the improvement in their components
(e.g., better processors, larger screens). Although the hardware consumes the energy, the software is responsible
for managing hardware resources such as the camera software and its functionality, and therefore, affects the
energy consumption. Energy consumption not only depends on the installed code, but also on the execution
context (environment, devices status) and how the user interacts with the application.

Objective In order to reduce the energy consumption based on user behavior, it is necessary to dynamically adapt
the application. However, the adaptation mechanism also consumes a certain amount of energy in itself, which
may lead to an important increase in the energy expenditure of the application in comparison with the benefits
of the adaptation. Therefore, this footprint must be measured and compared with the benefit obtained.

Method In this paper, we (1) determine the benefits, in terms of energy consumption, of dynamically adapting
mobile applications, based on user behavior; and (2) advocate the most energy-efficient adaptation mechanism.
We provide four different implementations of a proposed adaptation model and measure their energy consump-
tion.

Results The proposed adaptation engines do not increase the energy consumption when compared to the benefits
of the adaptation, which can reduce the energy consumption by up to 20%.

Conclusion The adaptation engines proposed in this paper can decrease the energy consumption of the mobile
devices based on user behavior. The overhead introduced by the adaptation engines is negligible in comparison

with the benefits obtained by the adaptation.

1. Introduction

The current smartphone market trend is the enhancement of the user
experience by means of more powerful processors, larger screens and
additional components like dual cameras. However, these
components are boosting the energy consumption of smartphones
[1]. Energy con- sumption directly affects user experience, forcing
users to charge their phones daily, sometimes leading to external
batteries being required to keep the device switched on throughout
the day. Although the hard- ware consumes the energy, the software
is responsible for managing the hardware resources (e.g., the camera
software and its functionality), and therefore, also affects the energy
consumption [2].

When a mobile application is running, the energy consumption not
only depends on the installed code, but also on how the user interacts
with the application [3]. Based on the user’s interaction, the
applica- tion functionality uses the available resources differently.
For instance, a messaging application loads and displays all the
friends’ chats when it starts, even though some of them have not
been contacted by the

user for a long time. The application could be more energy efficient if it
just displayed recent chats or most frequently contacted friends. Ideally,
when a specific resource is not being used it should not be consuming
energy (e.g., the screen, WiFi, GPS sensor or any other application ser-
vice) [4,5].

Most mobile applications are deployed using static configura-
tions [6]. These configurations are pre-planned to be energy efficient
for a generic user behavior and, normally, they are not prepared for
changes that may occur at runtime [7]. Therefore, when the user be-
havior changes, the energy efficiency of the application decreases [8].
In contrast, self-adaptive applications are able to self-adapt their be-
havior or structure at runtime in response to user behavior [9]. Exist-
ing self-adaptive mobile applications, whose goal is to decrease the en-
ergy consumption of the device, only take into account the device status
(e.g., battery level, CPU frequency) or the environment (e.g., location,
noise level) [6,10,11] to trigger the reconfiguration, and do not con-
sider the user interaction with the application as part of their solution.
Taking into account that the energy consumption of the mobile appli-
cations also depends on the user’s interactions, our question is: to what
extent is it possible to reduce the energy consumption of the applications
by adapting them to the user behavior? That is, what is the quantifiable

https://doi.org/10.1016/j.infsof.2019.106220
http://www.ScienceDirect.com
http://www.elsevier.com/locate/infsof
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2019.106220&domain=pdf
mailto:angelcv@lcc.uma.es
https://doi.org/10.1016/j.infsof.2019.106220

benefit to energy consumption of adapting the application to the user
behavior?

To reduce the energy consumption based on user behavior it is nec-
essary to dynamically adapt the applications. In this paper, we propose
an adaptation model based on user interactions for Android applica-
tions. In the literature, there are several context-aware dynamic adap-
tation solutions for mobile applications based on different mechanisms
such as polymorphic methods [10], reflection, dynamic components [6],
dynamic offloading of code with the OSGi platform [12], evolutionary
algorithms [11] and self-adaptive frameworks [13]. Each adaptation so-
lution consumes a certain amount of energy, which may lead to an im-
portant increase in the energy expenditure of the application. However,
there are no approaches that measure the energy consumption intro-
duced by the adaptation engine itself. Therefore, it would be interest-
ing to quantify the overhead introduced by the adaptation engine to
assess its benefit in terms of energy saving during application execu-
tion [13]. In addition, existing adaptation technologies for mobile ap-
plications depend strongly on the execution environment (e.g., version
of the Android system) and they become obsolete very quickly [10].
This is due to the continuous advancement in technologies made by
companies like Google, which makes it difficult to find generic adapta-
tion solutions that will not become obsolete in the next version of the
system.

In this paper we propose four different adaptation engines for An-
droid applications and evaluate the overhead in terms of energy con-
sumption introduced by those adaptation engines. Our implementations,
based on dynamic proxies and the Xposed framework[14], support all
current versions of the Android system. We demonstrate that it is pos-
sible to reduce the applications’ energy consumption by adapting the
functionality at runtime to the user behavior, while maintaining the ser-
vice quality levels required by the user. To summarize, in this paper we
aim to answer the following research questions:

RQ1: To what extent is it possible to reduce the energy consumption
of the applications by adapting them to the user behavior?

RQ2: What is the impact of the adaptation engine on the energy
consumption of the mobile device? Which adaptation engine is more
energy-efficient?

RQ3: Are the adaptation engines scalable? What scenarios could in-
crease their energy consumption?

The rest of the paper is organized as follows. Section 2 introduces the
background information to dynamic adaptation in Android applications
and motivates our approach. Section 3 presents our adaptation model
for mobile applications, while Section 4 details our four different imple-
mentations of the adaptation model. Section 5 evaluates our adaptation
approach and discusses the threats to validity. Section 6 discusses re-
lated work and exposes the limitations of existing reconfiguration and
energy optimization approaches in Android. Finally, Section 7 concludes
the paper and presents future work.

2. Background information and motivation

This section presents the necessary knowledge about the Android
architecture, and the existing approaches to dynamically adapt mobile
applications based on the user’s interactions.

2.1. Compilation and execution models in android

In Android, Java source code is compiled by the Standard Java Com-
piler to obtain Java bytecode (.class files) and then, this code under-
goes a second round of compilation to obtain DEX bytecode (Android-
specific). DEX files are signed and packaged to construct the Android
Application Package (APK). DEX bytecode is translated into native in-
structions and executed by the Android runtime environment: Android
Runtime (ART) or Dalvik. Fig. 1 summarizes the compilation and execu-
tion processes of an Android application.

ART is the current application runtime environment used by the An-
droid operating system, which was introduced with the release of An-
droid 4.4 (Kitkat). Prior to ART, the runtime environment for Android
apps was the Dalvik Virtual Machine (DVM), which was completely re-
placed by ART in Android 5.0 (Lollipop). The DVM has certain restric-
tions such as, it does not support custom classloaders, dynamic code
generation and bytecode manipulation at runtime [15]. While Dalvik
uses a Just-in-Time (JIT) compilation model, ART uses an Ahead-of-Time
(AOT) compiler. More recently, Android 7.0 (Nougat) introduced a hy-
brid runtime model including a runtime JIT compiler with code profiling
to ART.

2.2. Dynamic adaptation in mobile applications

This section presents existing solutions to dynamically adapt the be-
havior of mobile applications, and in particular, of Android applications.
Fig. 1 summarizes these approaches indicating the moment (compila-
tion, loading, execution) where they can be applied. For each approach,
we describe how it works and discuss its limitations. Note that these
approaches can be combined to benefit from their individual strengths.

2.2.1. OSGi platform

The OSGi platform' is a service and component-based platform
which offers a class-loading engine to dynamically load and unload
modules. OSGI is embedded within an Android APK, and the OSGi bun-
dles can be called from within Android activities and services. There
are some initiatives that propose OSGi for hosting applications in mo-
bile devices, such as the OSGi Mobile Specification (JSR-232)? or An-
drosgi [16].

The main limitation of the OSGI platform is that it implies an ad-
ditional application size, memory consumption, and start-up time, but
this can be minimized if the OSGI platform is started inside the device
and supports the needs of different application bundles [17,18]. Regard-
ing energy consumption, the OSGi bundles does not affect the device’s
energy autonomy significantly [17].

2.2.2. Virtual-method hooking

Virtual-Method Hooking is a technique for managing an array of
pointers to virtual functions that instances of the class may call (i.e., a
virtual method table). These functions can be intercepted (hooked) by
replacing the pointers to them within any virtual method table in which
they appear [19]. An example of a framework using virtual-method
hooking in Android is Xposed [14]. It extends the Android application
launcher (App launcher in Fig. 1) to load external modules (JAR
files) on startup without modifying the original APK.

However, this technique is not completely dynamic, since frame-
works require the new functionality to be introduced at load-time, and
thus, changes need to be predefined before the execution of the appli-
cation.

2.2.3. Reflection

The use of reflection gives applications the ability to examine, in-
trospect, and modify their own structure and behavior at runtime.

In Android, reflection is a powerful technique because it uses base
Java code without needing external modules. However, it requires more
effort from the application developers. Reflection also poses serious se-
curity problems in Android applications despite its widespread use [20].

2.2.4. Dynamic proxies
Dynamic proxies are wrappers that pass function invocation
through their own facilities and can potentially add new functionality

! http://www.osgi.org.
2 http://jep.org/en/jsr/detail?id=232.

http://www.osgi.org
http://jcp.org/en/jsr/detail?id=232

AOP (Aspect)) Code offloading COP (JCop)
v \\4 ad \\\\ d

Compilation time Loading time Execution time
Java application

source code

v
Java and DEX@% @
Compilers App

App

launch o | running
.dex files i
APKsigning I o

and packaging

N 1 =

Z
Bytecode
instrumentation

or modify the existing one. Dynamic proxies allow adapting the appli-
cation’s behavior by extending the original implementation of the ap-
plication’s functionality [21].

Dynamic proxies require a considerable planning effort on the part
of application developers, but these techniques are easy to adopt and the
overhead introduced in the system at runtime is very low [22]. More-
over, dynamic proxies, in contrast to reflection, do not represent a se-
curity vulnerability because developers can control the classes that can
be adapted or not [23].

Virtual-Method
ooking (Xposed

2.2.5. Bytecode instrumentation

Bytecode instrumentation is commonly used to modify the behav-
ior of Java applications [24]. It consists in modifying the binary code
generated by the compiler (e.g.,.class files). However, in Android, an
additional compilation step is performed to generate.dex bytecode. As
a consequence, bytecode modifications have to be applied to.dex files,
or to.class files before DEX compilation. Whatever the case, bytecode
instrumentation in Android is limited to compile-time because the final
APK file must be built and signed to verify its content [24].

2.2.6. Dynamic offloading

Dynamic offloading is a technique that extends the capabilities
of mobile devices, as well as their battery life, by migrating hard-
computation tasks to resource-rich devices such as remote servers or
cloud platforms (e.g., Google Awareness) [25,26]. Consequently, code
offloading solutions require a set of surrogate devices on to which the
client can offload tasks, as well as connectivity to the internet. Indeed,
the rate increase of the mobile data traffic can become a cost issue when
no WiFi (free) connection is available [27].

2.2.7. Aspect-oriented programming

Aspect-Oriented Programming (AOP) can be used to construct dy-
namically reconfigurable systems by providing an instrumentation en-
gine that allows for the change of execution flows [28]. Aspects can
intercept or change the behaviors of target components, without modi-
fying their source code, by replacing the implementation of the compo-
nents at runtime. However, components need to be introduced (woven)
at compile or load-time. AspectJ is certainly the most successful lan-
guage and compiler for implementing AOP, and can be used in Android
for instrumenting mobile applications [29].

The main issue with AOP is that developers need to know the ap-
plication’s code to implement the appropriate aspects, and moreover,

Fig. 1. Adaptation approaches in Android compilation and ex-
ecution processes.

AOP requires having to learn a new programming paradigm. It also in-
troduces an additional step, to test whether or not aspects will work
without problems with the application code, complicating the develop-
ment of the mobile applications.

2.2.8. Context-oriented programming

In Context-Oriented Programming (COP) [30], context-dependent
behaviors are represented as partial method definitions and encapsu-
lated inside layers [31]. Depending on the context, a method call can
be dynamically redirected to a partial method by layer activation. An
example of a COP language is JCop [15], a Java extension that can be
applied to Android.

2.2.9. Ad-hoc solutions

Finally, there are ad-hoc solutions that build their own adaptation
solution based on custom self-adaptive frameworks [10,13], function
mapping [32] or evolutionary algorithms [11]. In general, these ad-hoc
solutions are difficult for software developers to reuse, and require the
specific solution to be studied in detail to adapt it to the developers’
needs.

3. Our approach

This section presents our approach to adapt mobile applications
based on user interactions. Adapting applications according to user be-
havior adjusts the number of tasks performed by the applications to the
ones that are relevant to the user in a certain moment. Among the bene-
fits that our approach provides compared with other adaptation engines
are: (1) the QoS perceived by the user is not affected because adapta-
tions are transparent to him/her; (2) our adaptation engine can be ap-
plied irrespective of the device’s architecture in which applications are
running; (3) our approach can be easily combined with other kinds of
adaptation engines (e.g., screen off after a minute of inactivity); (4) user
profiles and preferences that can vary a lot and change very often, offer
many more opportunities to save energy compared with the device con-
text, which is highly limited to signal strength, supported graphic mode,
level of battery, or the status of any other device’s resource, etc.

First, we propose a generic adaptation schema inspired by the MAPE-
K loop [33]. Then, we present four different implementations following
this adaptation schema. As described by Elmalaki et al. [10], a context-
aware system can be divided into three parts: (1) a set of replaceable

Android App

r
Adaptation engine

Monitor 1

4

[}

I

[}

[}

I

I

|

|

' [
Adaptation !
|

I

[}

I

I

I

[}

I

|

!

|
|
|
:
]
I"| Monitor 2
]
]
]
[}
I
I

.
\ Alternatives '
Context
Environment App Status || Device

Fig. 2. Our dynamic adaptation approach.

polymorphic methods; (2) a context monitoring system; and (3) an adap-
tation engine that switches between the different methods based on the
monitored context. Fig. 2 details our approach with these three parts
in which (1) the replaceable polymorphic methods are the alternative
implementations (Adaptation Alternatives); (2) the context
monitoring system is managed through Handlers with access to sev-
eral Monitors that track the application for changes; and (3) the adap-
tation engine responsible for making adaptation decisions (Analysis)
driven by a set of Adaptation Rules, and performing the changes
between the available adaptation alternatives (Weaver).

The proposed adaptation approach aims to be as unintrusive as possi-
ble within the application, therefore the application’s base functionality
(Android App) is modified by external modules. Our approach con-
tains two kinds of modules: generic and specific. Generic modules (the
white modules in Fig. 2) are integral parts of our adaptation engine and
can be directly reused with different applications without modification.
Specific modules (the shaded modules in Fig. 2) contain information
about a particular application, and usually, this information is different
for each application. Note that, in this paper we are interested in re-
configuring the base functionality of the applications, and not just the
reusable functionality such as crosscutting-concerns (e.g., authentica-
tion methods, encryption algorithms). Using this approach, our adapta-
tion engine enables different implementation paradigms to be used such
as AOP, COP, Java reflections or the integration of the OSGi platform,
just by modifying the weaver and handler modules and implementing
the adaptation alternatives in the chosen approach. Our approach works
as follows: Handlers The application objects to be modified are man-
aged by handlers. The handlers intercept the interactions (calls) to the
objects and execute the appropriate behavior (method) configured by
the Weaver module.

Monitors Monitors obtain context information from the application.
Each monitor is in charge of controlling a specific set of variables in the
application. The information collected by the monitors depends on the
adaptation trigger. For instance, in a chat application that shows the top
five people who the user chats with, a monitor will keep an eye on the
number of input/output chat messages of each chat. This information is
used by the Analysis module and helps us to create the user profile.

Context This module maintains the information about the current
application context. The contextual information is divided into three
submodules [3]: (1) Environment represents the external informa-
tion of the application (e.g.,location); (2) App Status maintains the
application state (user behavior) between executions by using the infor-
mation provided by Monitors; and (3) Device Status gets the
state about the mobile itself (e.g., battery level).

Analysis This module makes decisions about the most appropriate
functionality based on the application context, and especially on the user

profile. The analysis module uses a set of adaptation rules that evaluate
the information provided by the Context module to decide which of
the alternative implementation classes and methods must be executed.
Another alternative could be to delegate the analysis to a server, which
allows the collection of users’ profile information, which can then be ex-
ploited by techniques like machine learning to predict future user behav-
ior based on the current one. In this paper we focus on decision-making
based on adaptation rules.

Adaptation rules This module contains a set of expressions (adapta-
tion rules) that define how the adaptation mechanism should act based
on the current context. The adaptation rules can be included in the ap-
plication using if/else statements or can be external and provided as a
microservice. There are rules that can be applied to any application (e.g.,
decreasing the screen brightness when battery level is low or reducing
sensor usage as far as possible). Other rules are specific to each applica-
tion, for example, the rules that depend on the user profile. Here, it is
possible to define different adaptation profiles making the mechanism
more or less aggressive according to the energy policy. A high energy-
saving policy can save more energy than a low energy-saving one, but
it could compromise the user experience.

Weaver The Weaver is the module responsible for directly modi-
fying application code. It is executed when the Analysis module re-
quests an adaptation. How the code is modified depends on the Weaver
module’s implementation and will be different for each proposed solu-
tion (e.g., dynamic proxies).

4. Adaptation engines

We have implemented four different adaptation engines following
the schema presented in the last section. Two of them are based exclu-
sively on dynamic proxies while the other two are based on the Xposed
framework, and a combination of the Xposed framework with dynamic
proxies.

We have chosen these approaches for several reasons. On the one
hand, dynamic proxies represent a generic approach independent of the
platform and runtime environment, so it is completely compatible with
any version of Android irrespective of its compilation and execution
model. Dynamic proxies do not introduce a high overhead in compar-
ison with other solutions such as the introduction of a middleware or
framework. Additionally, we have chosen the Xposed framework be-
cause (1) it is a complementary solution to dynamic proxies (dynamic
proxies carry out the adaptation at runtime and Xposed acts at load-
time); (2) it does not need to be embedded within the application being
reconfigured; (3) it does not introduce overhead at runtime; and (4) it
can act over any component of the application functionality and even
over aspects of the system such as the mobile screen. Finally, Xposed is
currently maintained and up to date for the latest Android version.

The adaptation process (see Fig. 3) is similar for all adaptation
engines. The application functionality consists of a set of instanti-
ated classes C divided into two subsets: a set of fixed classes (Non
adaptable classes) and a set of classes with functionality that
can be changed (Adaptable classes, shaded in Figure 3). On
the other hand, there is a repository of classes A (Adaptation
Alternatives) that provide alternative implementations to the
adaptable classes. To make possible the use of the Adaptation Alterna-
tives, classes A (e.g., class C3 ') implement the same interfaces as classes
from C (e.g., class C3). Finally, the set of adaptation rules R indicate
which functionality or methods (e.g., method m2 of class C3) should be
changed by the new functionality or methods (e.g., method m1 of class
C3”), under a certain application context (e.g., context1).

The way the adaptable and the alternative adaptation classes are
managed determines whether the adaptation engine is based on dy-
namic proxies or on Xposed. The four proposed adaptation engines are
AE1: Internal Proxy, AE2: External Proxy, AE3: Xposed Proxy and
AE4: Xposed.

; : - B Fig. 3. Dynamic adaptation process.
Instantiated classes in | Adaptation rules (R) Adaptation alternatives (A)
the app (C) m
—contextl: C3.m2 —>C3".m2—/——
i
-y | C3 Iy a'||a|[o
i im g m1 m1
""" m2 1 context2: C3.m1—>C3'm1—T | m2 m?2 2
I
,
c5 II C5'
E__(Z_E m2 contextl: C5.m2 —> C5'.m2 m2

==
[
_Jd

Adaptable classes |:| Non adaptable classes

! External integration

Internal integration

App App

AE1: Internal Proxy
AE3: Xposed Proxy
AE4: Xposed

AE2: External Proxy
AE3: Xposed Proxy
AE4: Xposed

4.1. Adaptation engines based on dynamic proxies

When adaptable classes are implemented as dynamic proxies, the
proxy works as a class handler, controlling the access to the class func-
tionality. In addition, the proxy facilitates the creation of the user profile
by controlling the usage of each class and method.

When the context changes, the weaver modifies the class function-
ality with the most energy-efficient alternative. Alternative classes can
be located in the application code or in external files. Based on the lo-
cation of the adaptation alternatives, two different implementations of
dynamic proxies are possible, the AE1: Internal Proxy and AE2: Exter-
nal Proxy. The code adaptation is produced at runtime, in both, and is
transparent to the user.

Using the AE1: Internal Proxy, adaptation alternative classes are
available with the application code. The weaver will instantiate the
classes when needed. If a class is not being used during the application
execution, it will not be instantiated, and therefore, it will not consume
resources.

In contrast, when AE2: External Proxy is used, the application only
contains the basic functionality of its APK file. Alternative classes are
contained in external files, separate from the application code (.dex files,
in Fig. 1). These files are located in the external memory of the mobile
device and it can contain multiple alternative classes for any adaptable
class. The weaver will load these files and instantiate the classes on
demand. If a class is not required during the application execution, its
code will not be loaded nor instantiated in the application.

4.2. Adaptation engines based on the Xposed framework

Using the Xposed framework, the application can be modified just
before it starts (i.e., at loading time). At the beginning of the application
execution, depending on the context and attending to the adaptation
rules, the functionality of the adaptable classes is changed by the most
energy-efficient adaptation alternative. In this case, adaptation alterna-
tives are available when the application is launched. These alternatives
are contained in modules, which can be external to the APK. We can en-
able and disable the modules using the Xposed Installer tool. There are
two different types of adaptation mechanisms based on how the system
creates the user profile, AE3: Xposed Proxy and AE4: Xposed.

When the AE3: Xposed Proxy is applied, we use dynamic proxies to
manage and monitor the access to the adaptable classes. Nevertheless,
the difference between this solution and AE1 and AE2 is that we use
the Xposed framework to adapt the application. In this case, adaptation
rules are evaluated when the application is launched, so the adaptation

is performed at loading time. Note that in this solution, dynamic prox-
ies are only used to monitor the user behavior and not to perform the
adaptation.

The AE4: Xposed solution realizes the functionality adaptation like
AE3, but the management and monitoring of the adaptable classes are
done by specific calls by means of the interception system of Xposed.

In both cases, the advantage of using Xposed is that the changes
between adaptable classes are managed by the framework, alleviating
the developer of the task of implementing reconfigurable interfaces for
the adaptable classes. This allows the focus to be on monitoring the user
behavior to keep track of the application context information. Neverthe-
less, the functionality adaptation is done at launch-time (loading time).

5. Evaluation

In this section we evaluate our proposal. We measure the energy
consumption of our adaptation solution in different scenarios to answer
our research questions (RQs).

5.1. Experimentation setup

The evaluation has been carried out over two mobile devices and
different adaptation scenarios. The energy consumption has been esti-
mated using two different tools: GreenScaler [34,35] and Trepn Power
Profiler®. The results of these evaluations and the scripts to replicate
them are publicly available*.

5.1.1. Adaptation scenarios

Applications in which our adaptation engines can be applied are very
diverse, which makes it impossible to evaluate all of them. Nevertheless,
it is possible to evaluate the factors that can affect the amount of en-
ergy saving when using our energy-efficient adaptation engine. For this
reason, we have developed a lightweight benchmark application that
enables the applicable scenario features to be configured.

In addition, we have also developed two possible scenarios in which
adapting applications according to the user behavior make sense. First,
by adapting the number of data/functionality requests and amount of
information displayed on the screen according to the user profile. Exam-
ples of applications with this behavior are instant messaging apps (e.g.,
WhatsApp, Telegram), newspapers and weather apps, sport reports apps

3 https://developer.qualcomm.com/software/trepn-power-profiler.
4 http://caosd.lcc.uma.es/research/rsc/android-adaptation-results.zip.

https://developer.qualcomm.com/software/trepn-power-profiler
http://caosd.lcc.uma.es/research/rsc/android-adaptation-results.zip

GreenOracle Trepn Profiler Fig. .4. GreenScaler and Trepn Profiler energy
profiles.
i Galaxy LG Nexus
ADB scripts ADB
P Q Nexus scripts (Snapdragon
processor)
v y v .
roc/pid, IRt
[proc/stat foroclpid Profiler
stat
Screenshot
vy v o
Java Application Average RGB Color Java Appllcatl.on
(GreenOracle) values Summarizer .Csv > (Data processing)
o Energy Energy
.Csv > (Jsvta Appllcat{on) —® consumption consumption
- ata processing results results

(e.g., LiveScore, DAZN), and market places (e.g., Play Store). The energy
consumption of these kinds of applications can be reduced significantly
if they only request and show the information which is relevant to the
user. For instance, in the case of WhatsApp, it loads all the friends’ chats
when it starts. Since the user usually only texts his/her most popular
contacts, if it only displays and requests the information of these con-
tacts, it can save energy without affecting the user experience.

The second scenario for adapting user behavior consists in introduc-
ing a new functionality (or adapting an existing one) according to the
known user profile (e.g., data compression before sending) [36]. Exam-
ples of applications with this behavior are social apps (e.g., Facebook,
Instagram), e-mail clients (e.g., Gmail, Microsoft Outlook), videocon-
ference apps (e.g., Skype, Hangouts), or Google Photos. Normally, these
applications offer an interface where the user can select a video or photo
from the gallery and choose between sending it as it is or compressing
it. The adaptation in this case consists of selecting the compression algo-
rithm taking into account the device context. Specifically, we consider
the battery level, if the mobile phone is charging or not, and the avail-
able networks. The aim is to find the balance between the computational
cost of the compression and the cost of sending the media file using the
network on hand.

5.1.2. Energy profile

To estimate the energy consumption we use two different software-
based tools, GreenScaler and Trepn Profiler. We have chosen these tools
because they allow the energy consumption of mobile applications to
be estimated, with an upper error bound of less than 10% [34,37] and
they have been used in other studies on energy consumption [38-40].
Although hardware-based tools provide more precise results, it is not
easy to identify the part of the software responsible for this consumption
using them. In order to apply these tools, we use the framework depicted
in Fig. 4, which was presented in [38].

GreenScaler is an energy model generated by the processing
of hundreds of energy measurements obtained by the GreenMiner
model [41] using 472 real world Android applications. The general idea
of this tool is to estimate power consumption using information provided
by the operating system (e.g., number of CPU jiffies) and information
that can be extracted during the normal functioning of the app (e.g.,
screen color). This information is the input of the GreenScaler energy
model, which provides an estimation of the energy consumed by the
app at a given time. In order to collect this information, we have de-
veloped several scripts for Android ADB (Fig. 4) and a Java application
that automatically process the information and apply the energy model.
GreenScaler considers RGB values in its energy model, we obtain these
values using the API of Color Summarizer®.

5 http://mkweb.begsc.ca/color-summarizer/?home.

Trepn Profiler is a commercial measuring tool able to provide en-
ergy consumption information compatible with the majority of Android
devices (Android 4.0 and higher), but particularly intended for devices
with a Qualcomm Snapdragon processor. Trepn Profiler collects the
power readings from the power management integrated circuit and the
battery fuel gauge software. Using ADB commands, we set the measure
tool profile, launch the application to be measured, start the Trepn Pro-
filer service, and, finally, download the energy measurements informa-
tion (Fig. 4).

In order to compare our four adaptation engines®, we generate 10
random user behaviors and then we replicate them in each experiment.
This includes service requests and the application closures and launches.
For each experiment, we perform 20 executions, obtaining the average
and standard deviation of the energy consumption.

5.1.3. Mobile devices

We have used two mobile devices for the experiments: (1) Samsung
Galaxy Nexus with Android 4.3 and Dalvik VM, and (2) LG Nexus 5 with
Android 6.0 and ART.

All the energy measure tests have been carried out with the mobiles
in the same conditions: flight mode activated, WiFi turned on in order
to send commands through the ADB tool to execute each test, applica-
tions’ updates are deactivated and only the corresponding application
is executing in the foreground. To ensure the same operating system
behavior, we turn off the Android energy-saving mode.

5.2. Results

This section shows the experimentation results to answer our re-
search questions (RQs). For each RQ we explain the motivation, the
experiments performed, the analysis of the experimental data, and the
findings.

5.2.1. RQ1. Benefits of our adaptation engines

Research Question 1 To what extent is it possible to reduce the
energy consumption of the applications by adapting them to the user
behavior?

Motivation Self-adaptive applications are able to self-adapt their
functionality at runtime, in response to changes in the context. Existing
self-adaptive mobile applications whose goal is to decrease the device’s
energy consumption do not take into account the user behavior with
the application as part of the context, as they only consider the device
status as the reconfiguration trigger. This research question explores the
influence of the reconfiguration of the application functionality in the

6 Source code available at https://github.com/angelcvx/Adaptation-Engines.

http://mkweb.bcgsc.ca/color-summarizer/?home
https://github.com/angelcvx/Adaptation-Engines

global energy consumption of a mobile application based on the user
behavior.

Experiments To answer RQ1 we measure the energy consumption of
the base applications running with their default behavior (i.e., without
any adaptation or adaptation engine integrated). Then, for each adapta-
tion engine (see Section 4), we repeat the experiments but adapting the
application to the user’s interactions.

In the first scenario, the application has been adapted to reduce the
number of requests to the server and to show only the information the
user is interested in. We exemplify this scenario with a sport reports
consulting application. By default, this applications shows information
about 25 different football leagues. The adaptation engine collects the
number of user requests for each league and saves it as part of the con-
text. After five requests, the reconfiguration rule defines that only the
most consulted leagues by the user should be shown. So, the adaptation
engine modifies the functionality by changing the appropriate classes
and methods.

In the second scenario, we use an application that compresses and
sends a video selected by the user. The application has been adapted
to change the compression algorithm with different compression ratios
before sending the videos through the network. The user interface of
the application has also been adapted to reduce its energy consump-
tion while the compression takes place. By default, the application uses
light colors in its interface and an algorithm with a low compression
ratio (around 20% of video compression) in order to maintain the video
quality. The adaptation rules specify that the application reconfigure its
functionality in order to use an algorithm with a higher compression
ratio (around 75% of video compression) in two cases: (1) the battery
level of the mobile is lower than 25%, the device is not charging and the
user shares a video; (2) the user shares a video while the device is con-
nected to a low-band network. In addition, the user interface is adapted
by providing darker colors [8] when the device battery level is lower
than 25% and the device is not connected to power.

Analysis A Wilcoxon signed-rank test has been applied to evaluate
if there is a statistical difference between adapting the applications or
not (see Fig. 5). The null hypothesis is that the energy consumption is
the same in both cases: the base application ec,,, without adaptation

base

pp
and the application adapted ec,,,“/:

Hy :
H, :

CCapppase = €Cappadap)
€Capppose €Cappagap

To do so, first, we determine whether or not the measurements are
normally distributed by applying a Shapiro-Wilk normality test [42].
This test shows that not all measurements are normally distributed.
Hence, we apply a non-parametric test. Specifically, we use a Wilcoxon
Rank Sum test [43]. Using a confidence interval of 95%, p <0.05, re-
sults for the Wilcoxon test show that there are statistical differences
between the energy consumption of the non-adapted application and
the adapted-application. We repeat this test comparing the application
without any adaptation engine and the adapted version using each adap-
tation engine. The results show a statistical difference in all cases, with a
p-value around 0.001. Additionally, we run a statistical power analysis
to check that the size of the sample is enough to discard Type II error
(i.e., failure to reject a false null hypothesis or false negatives) with a
level of significance lower than 0.05. The observed power is 1 for both
case studies. So, we can conclude that the number of random behaviours
and repetitions of the experiments are enough to answer this research
question.

Findings A benefit of up to 20% can be observed using the adapta-
tion solution based on Internal Proxy (AE1) and External Proxy (AE2)
in the first application (34 Joules). Fig. 6 clearly shows the difference
in the energy consumption over time. We observe a benefit up to 20%
(from 168 Joules to 134 Joules) comparing it with the base application
without adaptation. This benefit corresponds to the adaptation engines
based on dynamic proxies, being smaller (10-12%) for the adaptation
engine based on the Xposed framework. The differences between the

Adaptation - Scenario 1

185 Base
app
ﬁ AE3: Xposed
Proxy

AE1: Internal *
Proxy
. AE4:
135 %Eﬁ Xposed

125 AE2: External
. Proxy .
Adaptation - Scenario 2
560 Base
app
&40
- 620
= AE1: Internal
s 600D
E Proxy AE3: Xposed
Z 580 T = Proxy
B
B 560 5 I
< 54p L
., 1 AE4: Xposed
520 AE2: External
Prox
500 y

Fig. 5. Box plot of the energy consumption before and after the adaptation.

solutions correspond to the time when adaptation is performed (run-
time for dynamic proxies based solution vs load-time for Xposed based
solutions).

In the second application, we obtain a benefit of 13% (from 638
Joules to 558 Joules), a decrease in energy consumption in more than 80
Joules (see Fig. 6). However, in this case, there is not a major difference
between the four adaptation engines because the user only interacts with
one functionality and then closes the application. The execution time is
smaller with no difference appreciated in adapting the application at
runtime or at load-time. Therefore, depending on the expected use of
our application, we can select one adaptation solution or another

5.2.2. RQ2. Energy consumption of the adaptation engines.

Research Question 2 What is the impact of the adaptation mecha-
nism in the energy consumption of the mobile device? Which adaptation
mechanism is more energy-efficient?

Motivation The energy benefit obtained by using the proposed adap-
tation engines will depend on the functionality changes carried out in
the application. In turn, the latter will depend on the application. All
adaptation engines have an associated computational cost. Adaptation
engines monitor the context, analyze the information, evaluate the adap-
tation rules and change the functionality of the application. The objec-
tive of RQ2 is to evaluate the overhead in energy consumption intro-
duced by each adaptation engine. This is sensible as (1) it allows the
viability of using our approach to be predicted according to the number
of functionalities fixed to the user behavior; and (2) they can be used not

Scenario 1l
175
170
= 165
5 . / \\ 10[00 %
= 160 adaptation .
E 155 \ 12,04 %
g 150 1
S \. . o X o o e
% 145 \ 2022 %
@ 140 \ 20|28 %
Ll .
135 @.-.?-—.ﬁ
130
Time
Scenario 2
660
= 640 . "
5
= 620 ;
CEL adaptation \ 1134%
2 600 %
s ; 11.53%
o 12/83%
z 580 \ 12/97%
QL) 1Y
S 560 \3”. .;m.-‘..ﬂk
540
Time

==CO== Base app eeede« AE1: Internal Proxy

- OQe= AE2: External Proxy AES3: Xposed Proxy

==X* AE4: Xposed

Fig. 6. Energy consumption before and after the adaptation.

only with the aim of reducing energy consumption, but also with other
objectives (e.g., improving the user experience, reducing the execution
time).

Experiments To evaluate just the energy consumed by the adapta-
tion engines, we integrate each adaptation engine with the base appli-
cations and check the normal operation of the application. Adaptation
engines monitor the application’s context, manage adaptable classes,
evaluate the adaptation rules, and load the external implementation al-
ternatives if needed. However, for these experiments, the behavior of
the application is unchanged. The energy consumption of the applica-
tion is measured without modifying its behavior to observe the energy
cost of the monitors, handlers, analysis, and weaving components of the
adaptation engines.

Analysis As for RQ1, we use a Shapiro-Wilk normality test to ver-
ify that the energy measurements are not normally distributed. Thus,
an hypothesis contrast (Wilcoxon signed-rank test) determines whether
there is a statistical difference between the energy consumption of the
base application (ec,,,,) and the energy consumption of the applica-
tion with each of the adaptation engines integrated (ecappad.,p,)' The null
hypothesis is that the energy consumption is the same in both cases:

Hy : ec
H, :ec

apPpase = ecappadapl (2)

apPpase # ecappadapl

Overhead - Scenario 1

150
185
= 180 E3: Xposed
o AE1L: Interna Proxy
o - Proxy
E‘_ 175
n 170 i
165
= Base AE4: Xposed
< 180 app AE2: External
Proxy
155
150
Overhead - Scenario 2
6BO
AE2: External
570 Prgxy
= 660 AE4: Xposed
= I
E 650
o 640
S
?) AE1: Internal
=t Proxy AE3: Xposed
* 620 Proxy
610
600

Fig. 7. Box plot of energy consumption overhead introduced by the adaptation
engines.

We select a confidence interval of 95%. A p — value < 0.05 means that
there is a statistical difference between the base application energy con-
sumption (no adaptation engines included) and each application with
a different adaptation solution (but without context-adaptation). As in
the previous research question, we have performed a statistical power
analysis for both case studies. The result is 1 for both for a significance
value lower than 0.05. This shows that the sample size (133 for case
study 1 and 120 for case study 2) is enough to discard a Type II error.
The hypothesis contrast results show there is no statistical difference
between the usage of a specific adaptation engine in 50% of the tests
(Fig. 7). We observe a 2.51% increment in the energy consumption in
the worst case. However, these values are negligible in comparison with
the benefits obtained from the adaptation (Section 5.2.1).

Findings Results show that the overhead introduced by the adapta-
tion engine is minimal (see Fig. 8). The overhead represents between
the 0.58% and 2.51% (an increase in 1 to 4 Joules) of the energy con-
sumption of the application in the first scenario, while the overhead in
the second scenario represents between 0.43% and 1.39% (an increment
between 3 and 9 Joules) of the energy consumption of the application.
This means an increase of just 8.87 Joules in the worst case.

The Xposed engine (AE4) shows a minor energy cost overhead. These
results can be explained due to the creation and management of the
proxy object for each adaptable class in those adaptation engines based

Overhead of the Adaptation Engines

Base app |

AE1: Internal Proxy i
AE2: External Proxy i
AE3: Xposed Proxy i
|

|

AE4: Xposed

Overhead:

[1-41 ()
Base app
AE1: Internal Proxy
AE2: External Proxy
AE3: Xposed Proxy
AE4: Xposed

0 100 200 300 400 500

Energy consumption (J)

on dynamic proxies (AE1, AE2 and AE3), but not AE4. Nevertheless,
comparing the adaptation system’s averages of the measures, no signif-
icant difference is found between the adaptation engines.

5.2.3. RQ3. Proposed engines scalability.

Research Question 3 Are the adaptation engines scalable? What
scenarios could increase their energy consumption?

Motivation Applicable scenarios of our reconfiguration engines are
very diverse, so it is impossible to evaluate all of them using single apps.
There are some critical points, like the number of adaptable classes,
adaptation alternatives or adaptation rules that can increase the energy
consumption of the adaptation engines. In order to study these aspects,
we evaluate the viability of using our solutions in different scenarios.

Experiments Each adaptation system has different critical points
that could increase its energy cost (e.g., number of adaptable classes,
adaptation alternatives, adaptation rules, methods, etc.), reducing the
benefit obtained in applications’ energy consumption. To evaluate the
scalability of our proposal, we evaluate the energy consumption of our
adaptation engines when the number of elements managed by adapta-
tion engine vary. To achieve that, we provide a set of benchmark ap-
plications” (according to the AE being evaluated) that provide a user
interface to configure the number of elements managed by the adap-
tation mechanisms. For solutions based on dynamic proxies (AE1 and
AE2), the benchmark application allows the configuration of the num-
ber of adaptable classes, adaptation rules and adaptation alternatives
because the adaptation is performed at runtime. For Xposed-based solu-
tions (AE3 and AE4), the benchmark application configures the number
of functionalities (methods) adapted by the framework because adapta-
tions are done at load-time and no additional energy cost is required at
runtime to perform the adaptation. All of them allow the generation of
random user behaviors and are based on our first scenario, simplifying
it in order to isolate the overhead caused by our adaptation engines,
as much as possible. In any case, the experiments depend on the mobile
devices’ capabilities because of the hardware differences and limitations
between devices.

Analysis A comparison between the averages of the energy con-
sumption measurements of each configuration gives us information
about the scalability and behavior of the adaptation engines. We use
a graphical representation of the energy consumption averages to show
the results.

Findings Number of adaptable classes Fig. 9 shows the result of in-
creasing the number of adaptable and instantiated classes managed by

7 Benchmark available at

Benchmarks-AE.

applications https://github.com/angelcvx/

Fig. 8. Energy consumption overhead introduced by
the adaptation engines.

Overload:
[3-91 ()

r's

600 700

w
©

Samsung Galaxy Nexus

Energy consumption (J)
w w w w w
> wv (<)) ~ [*5)

w
w

w
N

adaptableclasses

o
«©

LG Nexus 5

IS
~

N
vl
oo o

—m———

?——f‘\

1

N ~
ey w

© o o womaliame o

[
o

Energy consumption (J)

w
~

w
v

0 10 20 30 40 50

adaptableclasses
—x— AEl: Internal Proxy ===« AE2: External Proxy

Fig. 9. Energy consumption in relation to the number of adaptable classes.

the application up to 40 (more detailed information at Table 1). To do
this, the number of monitors and adaptable classes increases ina 1 to 1
relation. In the case of 40 adaptable classes managed by the application,
there are 40 monitors instantiated to control the user behavior with the
application. It is observed that the application energy consumption is
barely increased. In our case, there is no increase in the energy con-
sumption in the LG Nexus 5 device for the AE1 solution. In the case
of adaptation engine AE2 (External Proxy), loading 15 external classes
supposes around 1 Joule of overhead in the energy consumption of the
application. In the Samsung Galaxy Nexus, 15 adaptable classes sup-
pose an increment of around 1 Joule for the AE1 (Internal Proxy) and
1.5 Joules for the AE2 (External Proxy).

https://github.com/angelcvx/Benchmarks-AE

Table 1

Energy consumption in relation to the number of adaptable classes.

AE1 AE2
N° of adaptable classes Mean (J) Std Median (J) Duration (s) Mean (J) Std Median (J) Duration (s)
Samsung 10 32.6 06 326 19.4 34.0 0.6 339 20.0
Galaxy Nexus 25 335 04 336 19.7 35.5 0.8 35.5 20.5
40 34.6 0.6 345 20.2 371 0.6 37.0 21.1
LG Nexus 5 10 43.6 29 450 18.8 433 1.5 436 19.3
25 43.0 1.6 429 18.8 444 1.1 44.6 20.0
40 42.8 20 431 18.8 45.1 1.0 453 20.7
60 Samsung Galaxy Nexus 190 | Samsung Galaxy Nexus
50 'i
g 40 "'——‘———— g
27 g4 H
£ * : €
=] . =}
2 30 2
8 g
& 20 e
9] 9]
b S
10
0
0 200 400 600 800 1000 0 10000 20000 30000 40000 50000
adaptation alternatives # adaptationrules
160 | LG Nexus5 LG Nexus 5
1
140
= PPt =
z 120 ’/‘__.. . E
5 100 T ‘é
g —a*— =
2 80 " 2
60 pries
£ 40 B S
20
0
0 200 400 600 800 1000 0 20000 40000 60000 80000 100000

adaptation alternatives

—>¢— AE1:Internal Proxy =<)¢=- AE2: External Proxy

Fig. 10. Energy consumption in relation to the number of adaptation alterna-
tives.

Number of adaptation alternatives The number of adaptation alterna-
tives may affect the application energy consumption. This number will
depend on the specific application size. This experiment is intended to
show whether or not is possible to include our adaptation engine in an
application with a high degree of variability.

The results show that in the case of the External Proxy solution
(AE2), loading and managing a higher number of adaptation alterna-
tives does not increase the energy consumption to a high degree (see
Fig. 10 and Table 2). The number of classes to be loaded externally is
limited by the device performance. In our case, this number is limited
to 500 for Galaxy Nexus and to 1000 for the LG Nexus 5 device. In the
case of the Internal Proxy solution (AE1), we even reach 1000 classes
without a significant increase in the energy consumption. The results
also show that the number of adaptation alternatives to be managed by
the solutions is not a handicap. Nevertheless, the Internal Proxy solution
allows the management of a higher number of adaptation alternatives
without a negative impact on the applications’ energy consumption.

Number of adaptation rules A critical point of a context-aware engine
is the number of adaptation rules. This number is conditioned by the
number of different configurations that an application can have. Fig. 11

adaptationrules

—>— AE1l: Internal Proxy ===« AE2: External Proxy

Fig. 11. Energy consumption in relation to the number of adaptation rules.

and Table 3 show the energy consumption of the solutions based on
Internal Proxy (AE1) and External Proxy (AE2) in relation to the num-
ber of adaptation rules they contain. It is observed that with more than
1000 adaptation rules, the system hardly increases its energy consump-
tion. This number means that an application is checking 1000 different
aspects to adapt itself to the context.

Number of methods changed in the same class with Xposed This test eval-
uates the number of methods modified in the same class by one Xposed
module class. This analysis gives us information about the Xposed frame-
work energy consumption associated with the number of functional-
ities (methods) changed. The number of adapted methods from the
same Xposed module class was increased up to 32 without resulting
in an increase in the application’s energy consumption (Fig. 12 and
Table 4).

5.3. Threats to validity
This section presents the threats to validity of the evaluation. The

four threats are conclusion, internal, construct, and external valid-
ity [44].

Table 2

Energy consumption in relation to the number of adaptation alternatives.

AE1 AE2
N° of adaptation alternatives Mean (J) Std Median (J) Duration (s) Mean (J) Std Median (J) Duration (s)
Samsung 10 35.2 0.9 35.0 19.3 37.6 0.8 37.6 20.6
Galaxy Nexus 100 34.9 0.9 35.0 19.3 38.8 0.9 39.0 223
500 - - - - 48.2 0.9 48.1 29.5
1000 334 0.9 333 19.7 - - - -
LG Nexus 5 10 429 2.3 424 18.7 43.1 1.2 433 18.9
100 42.7 0.9 42.5 18.5 50.5 1.0 50.4 22.2
500 - - - - 89.2 1.6 89.4 353
1000 44.0 0.8 44.0 18.6 133.9 7.8 136.6 60.6
Table 3
Energy consumption in relation to the number of adaptation rules.
AE1 AE2
N° of adaptation rules Mean (J) Std Median (J) Duration (s) Mean (J) Std Median (J) Duration (s)
Samsung 100 32.0 0.7 321 19.7 36.0 0.8 36.1 19.7
Galaxy Nexus 1000 334 1.6 333 19.6 35.8 0.8 36.0 19.6
10,000 48.7 6.0 49.0 26.2 50.8 4.8 53.0 26.2
50,000 172.9 5.9 1723 97.7 171.5 5.6 1721 97.2
LG Nexus 5 100 44.6 0.9 44.6 18.7 45.6 1.2 45.6 18.9
1000 45.2 1.2 45.4 18.9 454 2.6 46.0 18.9
10,000 63.6 1.2 63.7 25.6 65.4 1.0 65.5 26.0
50,000 1433 1.6 143.0 63.9 143.5 2.0 143.5 63.9
100,000 237.7 3.6 238.5 128.0 269.0 8.3 270.0 156.3

Table 4

Energy consumption in relation to the number of adapted methods by Xposed.

N° of Xposed methods Mean (J) Std Median (J) Duration (s)
Samsung 4 35.0 0.8 34.8 19.3
Galaxy 8 34.2 1.1 34.1 19.0
Nexus 16 34.6 1.2 34.6 19.6

32 35.0 1.6 34.6 193
LG Nexus 5 4 433 0.9 43.4 18.9

8 42.9 1.3 42.7 18.8

16 41.9 20 422 18.6

32 42.4 0.6 425 185

Samsung Galaxy Nexus

: i
35 H ﬁ*;
! H
=30
c
S
= 25
a
£
320
c
8
- 15
20
2 10
i
5
0
0 5 10 15 20 25 30 35
adapted methods using Xposed
50 | LG Nexus 5
45
— .

Energy consumption (J)

15 20 35

adapted methods using Xposed

Fig. 12. Energy consumption in relation to the number methods changed by
Xposed.

5.3.1. Conclusion validity

To evaluate the solutions presented, we have used two measurement
tools: GreenScaler and Trepn Profiler (see Section 5.1.2). GreenScaler
has been specifically designed for Samsung Galaxy devices. Trepn Pro-
filer has been designed by Qualcomm, and therefore works better on
devices with Qualcomm Snapdragon processors. The mobiles used here
have been specifically chosen to provide reliable results with these mea-
surement tools, and are accepted by the community as devices that re-
port accurate energy consumption results. In any case, the tools only
give us estimations of energy consumption, and to obtain more precise
measurements we need to use hardware-based tools. Notwithstanding,
although we performed only 20 measurements for each experiment and
a greater number of measurements would improve the accuracy of the
results, we are more concerned with comparing the results from differ-
ent solutions than in the exact values of energy consumption.

5.3.2. Internal validity

In mobile devices, replication of experiments under the same condi-
tions is not straightforward. Several system processes and applications
can be running in the background, making use of different resources. So,
the energy consumption of the application to be tested cannot be totally
isolated from the rest of the system processes. To mitigate the uncon-
trolled factors, we undertook the measurements with the devices in the
same conditions as explained in Section 5.1.3. Only the application to
be tested was in the foreground during the experiment. In addition, the
flight mode was enabled, and application updates were disabled.

5.3.3. Construct validity

In order to compare the solutions presented with each other, we de-
fined and replicated the same user behavior for all experiments. Nor-
mally, a user’s interactions with an application cannot be predicted.
A set of random interactions with the application, emulating different
users’ interactions could also be applied.

5.3.4. External validity

We used two mobile phones with different software and hardware
architectures to undertake the measurements. Although we observe the
same tendency in both mobiles, the results cannot be generalized from
these devices to others. The mobiles chosen confirm that our proposal
works in Dalvik and ART Android virtual machines.

We have used two representative scenarios which are followed by
hundreds of applications. However, there are other types of applications,
which could be interesting to evaluate and dynamically adapt.

6. Related work

This section discusses the related work on dynamic reconfiguration
and energy optimization in mobile devices, and concretely in Android.

In mobile applications, despite the fact that adaptations are fre-
quently driven by non-functional requirements such as improving
the application’s performance [10,12,15], increasing the failure toler-
ance [15], or improving the user experience [3,32,48], among oth-
ers; reducing the energy consumption is the most important objec-
tive [3,10,45,46,49,53], as the most recent energy optimization ap-
proaches focus on [10,50,53,54].

A dynamic adaptation system is characterized by different dimen-
sions or characteristics such as the primary reconfiguration goal (e.g.,
improving performance, energy saving), the type of adaptation engine
(application-oriented vs system-oriented) [10,13], or the context that
is monitored (e.g., device status, environment, user’s interactions) [3].
Here we have classified publications by their adaptation technique ac-
cording to the different approaches introduced in Section 2. Table 5
summarizes and compares the main characteristics of existing papers.

First, some approaches have investigated the reconfiguration based
on code offloading [12,45,46,48,53], which delegates complex decision
making and reconfiguration management to a server. For instance, MAs-
COT [12] uses static and dynamic Decision Networks (DNs) to determine
the best configuration. Code offloading is usually applied in combination
with other approaches such as dynamic proxies [46] or the use of the
OSGi platform [12,45,48]. All these approaches [12,45,46,48,53] have
in common that they monitor the device status (e.g., battery level, CPU
frequency) and the environment (e.g., location, noise level, lighting),
but they do not consider the user’s interactions with the application.
For instance, Dynamix [45] uses OSGi where context information is
provided using modules created by the community and accessible to the
user, who decides which of them he/she wants to use. Dynamix provides
a configurable context firewall that allows managing the contextual in-
formation available to each application. Another interesting approach
that runs on top of the OSGi platform is the MUSIC middleware of Rou-
voy et al. [48]. In MUSIC, a utility function, which refers to the user’s
overall satisfaction, is defined to decide which is the most appropriate
configuration for the current execution context (e.g., increase the sound
level if the user is in a noisy place). MUSIC takes into account a prede-
fined user profile with the user’s preferences, but it does not consider
the user’s behavior data as part of the monitored context.

There are other adaptation frameworks specific to Android, such
as the Xposed framework used in this paper, morphone.OS [3], ART-
Droid [19], or CRITiCAL [32]. Nacci et al. define morphone.OS [3], a
framework for monitoring the context of an Android smartphone. They
define three types of context aspects: environment (ambient light, noise,
etc), user behavior and the mobile (battery status, CPU frequency, etc).
In [3], the authors distinguish between configuration changes and ap-
plication changes. However, they do not determine how these changes

are carried out. Our approach takes into account the environment, de-
vice and user context, although in this paper we have focused on the
user’s interactions. ARTDroid is a framework for hooking virtual-method
calls like Xposed, but ARTDroid is oriented towards directly modifying
the app’s virtual-memory tampering with ART internal representation
of Java classes and methods, instead of code modifications of both ap-
plications and system. However, as Xposed, ARTDroid requires the new
functionality to be introduced at load-time, so changes need to be prede-
fined before the execution of the application. CRITiCAL [32] is based on
a model-driven middleware that includes a domain specific language for
modeling the contextual information and adaptation rules, transforming
them into executable code. The middleware provides the code required
to deal with sensors and to react and execute functionality according to
contextual rules.

Specific programming techniques have been used to reconfigure
mobile applications, as for example reflection [6], polymorphic meth-
ods [10], dynamic proxies [46], Aspect-Oriented Programming [47],
and Context-Oriented Programming [15]. For example, Casquina et al.
propose Cosmapek [6], an adaptive deployment infrastructure to adapt
the applications, using reflection, in response to errors that may occur
in the context in which the application is located. CAreDroid is a frame-
work [10] in which context-aware methods are defined in application
source code, the mapping of methods to context is defined in config-
uration files and context-monitoring and method replacement are per-
formed at runtime. WeaveDroid [47] and JCop [15] are extensions of
Java that apply, respectively, Aspect-Oriented Programming (AOP) and
Context-Oriented Programming (COP) to the Android environment. A
disadvantage of these approaches [6,10,15,46,47] is that they have to
be integrated as part of the Dalvik VM, since they are relatively old ap-
proaches (prior to the ART VM release in 2015-2016).

Multiple ad-hoc solutions have also been proposed for reconfiguring
Android applications [3,10,49,53]. For instance, Pascual et al. [49] de-
fine MODAGAME, a multi-objective reconfiguration approach that uses
genetic algorithms. In this case, the algorithms modify the configura-
tion of the device, such as the network connectivity, Bluetooth status
or sound quality, but there is no code change in the applications them-
selves. GEMMA [53] also uses genetic algorithms in combination with
power models and color theory to optimize the colors used by Android
applications, and thereby, reduce the energy consumption of the dis-
plays. As shown in Table 5, our approach uses different adaptation meth-
ods: virtual-method hooking, and dynamic proxies, to modify the appli-
cation functionality at loadtime and runtime, respectively. Moreover,
our solution can also be used to modify the operating system’s resources
by encoding the operating system calls in polymorphic methods.

A general disadvantage of adaptation engines for Android is that they
are highly dependent on the Android version. Most of the existing ap-
proaches are tested only in one of Android’s runtime environments such
as Dalvik VM [3,6,10,15,32,45,46,48], and the adaptation engine needs
to be modified to be applied over a more recent execution environment
(e.g., ART). Our adaptation engines have been tested in both Dalvik and
ART VMs. In fact, one of our solutions, based on dynamic proxies, does
not depend on the Android environment, and thus, it can be applied to
other mobile operating systems.

Recently, current approaches [40,50-52,54] have tried to optimize
the energy consumption of the mobile applications following a refactor-
ing approach, without an explicit dynamic reconfiguration of the appli-
cation. In contrast to most of the classical reconfiguration approaches
that adapt the application at runtime, these approaches refactor the code
of the application at compile time.For example, Banerjee et al. [50] they
use a refactoring technique that relies on a set of energy-efficiency
guidelines to encode the optimal usage of energy-intensive hardware
resources in an Android application, reducing the energy consumption
of the applications by between 3% to 29%.

Refactoring can be applied to different level of abstraction: from
low level implementation details [51], to the design level [52,54] or to
the architectural level [40]. For instance, Sahin et al. [51] explore the

Table 5

Comparison of dynamic reconfiguration and energy optimization approaches in Android mobile devices.

Approach Year Adaptation approach Adaptation type® Monitoring context” Reconfiguration goal Runtime environment Dynamicity

Dynamix [45] 2011 0SGi platform APP DEV,ENV Energy saving Dalvik runtime

JCop [15] 2011 Context-Oriented APP DEV Performance, Dalvik compilation
Programming failure tolerance

Artail et al. [46] 2012 Dynamic proxies, code APP - Energy saving Dalvik runtime
offloading

WeaveDroid [47] 2012 Aspect-Oriented APP - - Dalvik compilation
Programming

MUSIC [48] 2013 0SGi platform SYS DEV,ENV User experience Dalvik runtime

morphone.OS [3] 2013 Ad-hoc solution SYS,APP DEV Energy saving, user Dalvik compilation
(custom framework) experience

CRITiCAL [32] 2015 Virtual-method APP DEV,ENV User experience Dalvik runtime
hooking

MODAGAME [49] 2015 Ad-hoc solution APP DEV Energy saving Dalvik, ART runtime
(genetic algorithms)

MAsCOT [12] 2016 0SGi platform, code APP DEV Performance Dalvik, ART runtime
offloading

ARTDroid [19] 2016 Virtual-method APP USER Malware analysis, ART loading
hooking policy enforcement

Cosmapek [6] 2016 Java reflection APP USER Failure tolerance Dalvik runtime

CAreDroid [10] 2016 Ad-hoc solution SYS,APP DEV,ENV, USER Reducing SLOC, Dalvik runtime
(polymorphic execution time,
methods) energy saving

Banerjee 2016 Ad-hoc solution APP DEV,USER Energy saving - compilation

et al. [50] (refactoring
framework)

Sahin et al. [51] 2016 Refactoring APP - Energy saving Dalvik, ART compilation
(performance tips)

Hasan et al. [52] 2016 Refactoring (Java APP - Energy saving Dalvik compilation
collections)

GEMMA [53] 2017 Ad-hoc solution APP DEV Energy saving, - loading
(genetic algorithms, increasing contrast,
code offloading) improving colors

EARMO [54] 2018 Ad-hoc solution APP DEV,USER Energy saving, Dalvik, ART compilation
(genetic algorithms) refactoring

recommendations

GreenBundle [40] 2019 Patterns refactoring APP - Energy saving Dalvik, ART compilation
(bundling and
dropping events)

Cruz et al. [55] 2019 Refactoring SYS,APP DEV,ENV, USER Energy saving - compilation,

runtime

Our approach 2019 Dynamic proxies, SYS,APP DEV,ENV, USER Energy saving Dalvik, ART loading,

Virtual-method runtime

hooking

a SYS: system-oriented (hardware resources: display, network, sensors,...). APP: application-oriented (software resources: functionality, code) [10,13].
b DEV: device status (battery level, CPU frequency). ENV: environment (location, noise level, lighting,...). USER: user behavior (interactions, user data,...) [3].

energy impacts of performance tips, and they demonstrate that those
changes in the code are unlikely to impact the energy usage in a sta-
tistically significant manner. However, Hasan et al. [52] measure the
energy consumption of the Java collections classes by creating energy
profiles, and demonstrate that choosing an energy efficient collection
can improve energy consumption of Android application by as much
as 38%. Similar analysis of energy impact have been performed over
other specific functionalities such as logging [39], compression [56], the
HTTP protocol [57], testing frameworks [58], or the operationalization
of quality attributes [7]. Raising the abstraction level of the refactoring,
Morales et al. [54] analyze the impact of anti-patterns on the design
of Android applications, and propose EARMO, an anti-pattern correc-
tion approach based on evolutionary multi-objective techniques that ac-
counts for energy consumption when refactoring mobile anti-patterns.
Chowdhury et al. presents GreenBundle [40], an empirical study on the
energy impact of bundling and dropping strategies applied over archi-
tectural patterns. They reduce the energy consumption of applications
by 30% when refactoring classical Model-View-Controller (MVC) archi-
tectures into bundled Model-View-Presenter (MVP) architectures. One
advantage of the refactoring approaches is that they can be applied in-
dependently of the execution environment or Android version because
they do not introduce new technology. Despite the great improvement in
energy efficiency shown by the refactoring techniques that can improve

the energy consumption up to 30% [40,50], a disadvantage of these
approaches is that they cannot consider the dynamic behaviour since
they are applied at compile time, and thus they waste energy saving
opportunities derived by a certain user behaviour with the application,
something that our approach does consider.

Finally, Cruz et al. [55] identify a catalog of design practices to im-
prove the energy efficiency of mobile applications where some of the
proposed refactoring can be applied at runtime and affect both the ap-
plication and the system. For example, they propose to increasing the
retry interval delay when the connection to a resource fails a number
of times; activate the power save mode; or using WiFi over Cellular,
among other solutions. However, authors have not yet implemented an
automated refactoring tool for these patterns.

7. Conclusions and future work

We have proposed four adaptation engines for dynamically adapting
Android applications with the goal of decreasing the energy consump-
tion based on users’ interactions with the application.

Through our results, we have demonstrated that the proposed adap-
tation engines do not increase the energy consumption in relation to the
benefits of the adaptation, which can reduce the energy consumption by

up to 20% in applications that follow our scenarios. Additionally, our
approach is compatible with all current Android versions.

As for future work, we will consider the evaluation and comparison
of other existing adaptation engines such as the OSGi platform, Aspect-
Oriented Programming, or Context-Oriented Programming, as the over-
head in energy consumption introduced by them is unknown.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgments

This work is supported by the projects Magic P12-TIC1814, HADAS
TIN2015-64841-R (co-financed by FEDER funds), TASOVA MCIU-AEIL
TIN2017-90644-REDT, MEDEA RTI2018-099213-B-I00 (co-funded by
FEDER funds) and LEIA UMA18-FEDERJA-157 (co-funded by FEDER
funds); and the post-doctoral plan of the University of Mélaga.

References

[1]

[2]

[3]

[4]

[5]

[6]

[71

[8]

[91]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

L. He, G. Meng, Y. Gu, C. Liu, J. Sun, T. Zhu, Y. Liu, K.G. Shin, Battery-
aware mobile data service, IEEE Trans. Mob. Comput. 16 (6) (2017) 1544-1558,
doi:10.1109/TMC.2016.2597842.

D. Li, S. Hao, J. Gui, W.G.J. Halfond, An empirical study of the energy consumption
of android applications, in: Software Maintenance and Evolution, 2014, pp. 121-
130, doi:10.1109/ICSME.2014.34.

A.A. Nacci, M. Mazzucchelli, M. Maggio, A. Bonetto, D. Sciuto, M.D. Santambrogio,
morphone.OS: context-awareness in everyday life, in: Digital System Design (DSD),
2013, pp. 779-786.

A. Rice, S. Hay, Measuring mobile phone energy consumption for 802.11
wireless networking, Pervasive Mob. Comput. 6 (6) (2010) 593-606,
doi:10.1016/§.pmc;j.2010.07.005.

H. Joe, J. Kim, J. Lee, H. Kim, Output-oriented power saving mode
for mobile devices, Futur. Gener. Comput. Syst. 72 (2017) 49-64,
doi:10.1016/j.future.2016.05.012.

J.C. Casquina, J.D.A.S. Eleuterio, C.M.F. Rubira, Adaptive deployment infrastruc-
ture for Android applications, in: 12th European Dependable Computing Conference
(EDCC), 2016, pp. 218-228, doi:10.1109/EDCC.2016.25.

J.-M. Horcas, M. Pinto, L. Fuentes, Variability models for generating efficient config-
urations of functional quality attributes, Inform. Softw. Technol. 95 (2018) 147-164,
doi:10.1016/j.infsof.2017.10.018.

Y. Choi, R. Ha, H. Cha, Fully automated OLED display power modeling for mobile de-
vices, Pervasive Mob. Comput. 50 (2018) 41-55, doi:10.1016/j.pmc;j.2018.07.006.
E. Lee, Y.-G. Kim, Y.-D. Seo, K. Seol, D.-K. Baik, Ringa: design and verification of
finite state machine for self-adaptive software at runtime, Inform. Softw. Technol.
93 (2018) 200-222, doi:10.1016/j.infsof.2017.09.008.

S. Elmalaki, L.F. Wanner, M.B. Srivastava, CAreDroid: adaptation frame-
work for android context-aware applications, GetMobile 20 (2) (2016) 35-38,
doi:10.1145/3009808.3009820.

G.G. Pascual, R.E. Lopez-Herrejon, M. Pinto, L. Fuentes, A. Egyed, Apply-
ing multiobjective evolutionary algorithms to dynamic software product lines
for reconfiguring mobile applications, J. Syst. Softw. 103 (2015) 392-411,
doi:10.1016/j.js5.2014.12.041.

N.Z. Naqvi, J. Devlieghere, D. Preuveneers, Y. Berbers, Mascot: Self-adaptive oppor-
tunistic offloading for cloud-enabled smart mobile applications with probabilistic
graphical models at runtime, in: 49th Hawaii International Conference on System
Sciences (HICSS), 2016, pp. 5701-5710, doi:10.1109/HICSS.2016.705.

S.K. Datta, C. Bonnet, N. Nikaein, Self-adaptive battery and context aware
mobile application development, in: 2014 International Wireless Communi-
cations and Mobile Computing Conference (IWCMC), 2014, pp. 761-766,
doi:10.1109/IWCMC.2014.6906452.

rovo89, Xposed framework, (http://repo.xposed.info/). Online; accessed 13
May2019.

C. Schuster, M. Appeltauer, R. Hirschfeld, Context-oriented programming for mo-
bile devices: JCop on Android, in: 3rd International Workshop on Context-Oriented
Programming, in: COP, 2011, pp. 5:1-5:5, doi:10.1145/2068736.2068741.

S. Bohez, E. De Coninck, T. Verbelen, B. Dhoedt, Androsgi: bringing the power of
OSGi to Android, in: Proceedings of the on Eclipse Technology eXchange, 2015,
pp. 1-6.

M. Kuna, H. Kolaric, I. Bojic, M. Kusek, G. Jezic, Android/OSGi-based machine-to—
machine context-aware system, in: 11th International Conference on Telecommuni-
cations, 2011, pp. 95-102.

M.-C. Chen, J.-L. Chen, T.-W. Chang, Android/osgi-based vehicular network man-
agement system, Comput. Commun. 34 (2) (2011) 169-183. Special Issue: Open
network service technologies and applications doi: 10.1016/j.comcom.2010.03.032.
V. Costamagna, C. Zheng, Artdroid: A virtual-method hooking framework on android
art runtime., in: IMPS@ ESSoS, 2016, pp. 20-28.

[20]

[21]
[22]

[23]

[24]

[25]

[26]

[27]

[28]
[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

371

[38]

[39]

[40]

[41]

[42]

[43]
[44]

[45]

[46]

[47]

Y. Zhang, Y. Li, T. Tan, J. Xue, RIPPLE: reflection analysis for android apps in in-
complete information environments, Softw. Pract. Exper. 48 (8) (2018) 1419-1437,
doi:10.1002/spe.2577.

Y. Hassoun, R. Johnson, S. Counsell, Applications of dynamic proxies in distributed
environments, Softw. Pract. Exper. 35 (1) (2004) 75-99, doi:10.1002/spe.629.

T. Van Cutsem, M.S. Miller, Proxies: design principles for robust object-oriented
intercession apis, in: ACM Sigplan Notices, 45, ACM, 2010, pp. 59-72.

G. Fourtounis, G. Kastrinis, Y. Smaragdakis, Static analysis of java dynamic proxies,
in: Proceedings of the 27th ACM SIGSOFT International Symposium on Software
Testing and Analysis, in: ISSTA 2018, ACM, New York, NY, USA, 2018, pp. 209-
220, doi:10.1145/3213846.3213864.

A. Bartel, J. Klein, Y. Le Traon, M. Monperrus, Dexpler: Converting Android
Dalvik bytecode to Jimple for static analysis with Soot, in: International Work-
shop on State of the Art in Java Program Analysis, in: SOAP, 2012, pp. 27-38,
doi:10.1145/2259051.2259056.

A.G. de Prado, G. Ortiz, J. Boubeta-Puig, D. Corral-Plaza, Air4people: a smart air
quality monitoring and context-aware notification system, J. UCS 24 (7) (2018)
846-863.

J. Gedeon, N. Himmelmann, P. Felka, F. Herrlich, M. Stein, M. Miihlhduser, vstore:
A context-aware framework for mobile micro-storage at the edge, in: Mobile Com-
puting, Applications, and Services, Springer International Publishing, Cham, 2018,
pp. 165-182.

K. Lee, J. Lee, Y. Yi, L
much can wifi deliver? IEEE/ACM Trans.
doi:10.1109/TNET.2012.2218122.

D.K. Kim, S. Bohner, Dynamic reconfiguration for java applications using AOP, in:
IEEE SoutheastCon, 2008, pp. 210-215, doi:10.1109/SECON.2008.4494287.

S. Arzt, S. Rasthofer, E. Bodden, Instrumenting android and java applications as easy
as abc, in: Runtime Verification, 2013, pp. 364-381.

S. Gonzalez, K. Mens, M. Colacioiu, W. Cazzola, Context traits: Dynamic be-
haviour adaptation through run-time trait recomposition, in: International Con-
ference on Aspect-oriented Software Development, in: AOSD, 2013, pp. 209-220,
doi:10.1145/2451436.2451461.

B. Han, Y. Zhao, C. Zhu, Q. Zeng, Towards runtime adaptation in context-
oriented programming, in: International Conference on Electrical Engineer-
ing, Computing Science and Automatic Control (CCE), 2013, pp. 201-208,
doi:10.1109/ICEEE.2013.6676051.

P.A. d. S. Duarte, F.M. Barreto, F.A. d. A. Gomes, W.V. d. Carvalho, F.A.M. Trinta,
CRITiCAL: A configuration tool for context aware and mobile applications,
in: Computer Software and Applications Conference, 2, 2015, pp. 159-168,
doi:10.1109/COMPSAC.2015.91.

P. Arcaini, E. Riccobene, P. Scandurra, Modeling and analyzing MAPE-K feedback
loops for self-adaptation, in: Software Engineering for Adaptive and Self-Managing
Systems, in: SEAMS, 2015, pp. 13-23.

S.A. Chowdhury, S. Borle, S. Romansky, A. Hindle, Greenscaler: training software
energy models with automatic test generation, Empiri. Softw. Eng. 24 (4) (2019)
1649-1692, doi:10.1007/s10664-018-9640-7.

S.A. Chowdhury, A. Hindle, Greenoracle: Estimating software energy consumption
with energy measurement corpora, in: Proceedings of the 13th International Con-
ference on Mining Software Repositories, in: MSR "16, ACM, New York, NY, USA,
2016, pp. 49-60, doi:10.1145/2901739.2901763.

L. Li, J. Gao, M. Hurier, P. Kong, T.F. Bissyandé, A. Bartel, J. Klein, Y.L. Traon, An-
drozoo + +: collecting millions of android apps and their metadata for the research
community, CoRR abs/1709.05281 (2017).

M.A. Hoque, M. Siekkinen, K.N. Khan, Y. Xiao, S. Tarkoma, Modeling, profiling, and
debugging the energy consumption of mobile devices, ACM Comput. Surv. 48 (3)
(2015) 39:1-39:40, doi:10.1145/2840723.

I. Ayala, M. Amor, L. Fuentes, An energy efficiency study of web-based communica-
tion in android phones, Scientific Programming 2019 (2019).

S.A. Chowdhury, S.D. Nardo, A. Hindle, Z.M.J. Jiang, An exploratory study on as-
sessing the energy impact of logging on android applications, Empiri. Softw. Eng.
23 (3) (2018) 1422-1456, doi:10.1007/510664-017-9545-x.

S.A. Chowdhury, A. Hindle, R. Kazman, T. Shuto, K. Matsui, Y. Kamei, Greenbundle:
An empirical study on the energy impact of bundled processing, in: 2019 IEEE/ACM
41st International Conference on Software Engineering (ICSE), 2019, pp. 1107-
1118, doi:10.1109/ICSE.2019.00114.

A. Hindle, A. Wilson, K. Rasmussen, E.J. Barlow, J.C. Campbell, S. Romansky, Green-
Miner: A hardware based mining software repositories software energy consumption
framework, in: Working Conference on Mining Software Repositories, in: MSR, 2014,
pp. 12-21, doi:10.1145/2597073.2597097.

S.S. Shapiro, M.B. Wilk, M.H.J. Chen, A comparative study of various
tests for normality, J. Am. Stat. Assoc. 63 (324) (1968) 1343-1372,
doi:10.1080/01621459.1968.10480932.

D. Rey, M. Neuhduser, Wilcoxon-Signed-Rank Test, Springer Berlin Heidelberg,
Berlin, Heidelberg, pp. 1658-1659. 10.1007/978-3-642-04898-2_616.

D.T. Campbell, J.C. Stanley, Experimental and quasi-experimental designs for re-
search, Ravenio Books, 2015.

D. Carlson, A. Schrader, A wide-area context-awareness approach for Android, in:
Information Integration and Web-based Applications and Services, in: iiWAS, 2011,
pp. 383-386, doi:10.1145/2095536.2095610.

H. Artail, K. Fawaz, A. Ghandour, A proxy-based architecture for dynamic discovery
and invocation of web services from mobile devices, IEEE Trans. Serv. Comput. 5
(1) (2012) 99-115, doi:10.1109/TSC.2010.49.

Y. Falcone, S. Currea, Weave droid: Aspect-oriented programming on Android de-
vices: Fully embedded or in the cloud, in: International Conference on Automated
Software Engineering, in: ASE, 2012, pp. 350-353, doi:10.1145/2351676.2351744.

Rhee, S. Chong, Mobile data offloading: how
Netw. 21 (2) (2013) 536-550,

https://doi.org/10.13039/100009473
https://doi.org/10.1109/TMC.2016.2597842
https://doi.org/10.1109/ICSME.2014.34
http://refhub.elsevier.com/S0950-5849(19)30230-7/sbref0003
http://refhub.elsevier.com/S0950-5849(19)30230-7/sbref0003
http://refhub.elsevier.com/S0950-5849(19)30230-7/sbref0003
http://refhub.elsevier.com/S0950-5849(19)30230-7/sbref0003
http://refhub.elsevier.com/S0950-5849(19)30230-7/sbref0003
http://refhub.elsevier.com/S0950-5849(19)30230-7/sbref0003
http://refhub.elsevier.com/S0950-5849(19)30230-7/sbref0003
https://doi.org/10.1016/j.pmcj.2010.07.005
https://doi.org/10.1016/j.future.2016.05.012
https://doi.org/10.1109/EDCC.2016.25
https://doi.org/10.1016/j.infsof.2017.10.018
https://doi.org/10.1016/j.pmcj.2018.07.006
https://doi.org/10.1016/j.infsof.2017.09.008
https://doi.org/10.1145/3009808.3009820
https://doi.org/10.1016/j.jss.2014.12.041
https://doi.org/10.1109/HICSS.2016.705
https://doi.org/10.1109/IWCMC.2014.6906452
http://repo.xposed.info/
https://doi.org/10.1145/2068736.2068741
http://refhub.elsevier.com/S0950-5849(19)30230-7/sbref0015
http://refhub.elsevier.com/S0950-5849(19)30230-7/sbref0015
http://refhub.elsevier.com/S0950-5849(19)30230-7/sbref0015
http://refhub.elsevier.com/S0950-5849(19)30230-7/sbref0015
http://refhub.elsevier.com/S0950-5849(19)30230-7/sbref0015
http://refhub.elsevier.com/S0950-5849(19)30230-7/sbref0016
http://refhub.elsevier.com/S0950-5849(19)30230-7/sbref0016
http://refhub.elsevier.com/S0950-5849(19)30230-7/sbref0016
http://refhub.elsevier.com/S0950-5849(19)30230-7/sbref0016
http://refhub.elsevier.com/S0950-5849(19)30230-7/sbref0016
http://refhub.elsevier.com/S0950-5849(19)30230-7/sbref0016
https://doi.org/10.1016/j.comcom.2010.03.032
http://refhub.elsevier.com/S0950-5849(19)30230-7/sbref0018
http://refhub.elsevier.com/S0950-5849(19)30230-7/sbref0018
http://refhub.elsevier.com/S0950-5849(19)30230-7/sbref0018
https://doi.org/10.1002/spe.2577
https://doi.org/10.1002/spe.629
http://refhub.elsevier.com/S0950-5849(19)30230-7/sbref0021
http://refhub.elsevier.com/S0950-5849(19)30230-7/sbref0021
http://refhub.elsevier.com/S0950-5849(19)30230-7/sbref0021
https://doi.org/10.1145/3213846.3213864
https://doi.org/10.1145/2259051.2259056
http://refhub.elsevier.com/S0950-5849(19)30230-7/sbref0024
http://refhub.elsevier.com/S0950-5849(19)30230-7/sbref0024
http://refhub.elsevier.com/S0950-5849(19)30230-7/sbref0024
http://refhub.elsevier.com/S0950-5849(19)30230-7/sbref0024
http://refhub.elsevier.com/S0950-5849(19)30230-7/sbref0024
http://refhub.elsevier.com/S0950-5849(19)30230-7/sbref0025
http://refhub.elsevier.com/S0950-5849(19)30230-7/sbref0025
http://refhub.elsevier.com/S0950-5849(19)30230-7/sbref0025
http://refhub.elsevier.com/S0950-5849(19)30230-7/sbref0025
http://refhub.elsevier.com/S0950-5849(19)30230-7/sbref0025
http://refhub.elsevier.com/S0950-5849(19)30230-7/sbref0025
http://refhub.elsevier.com/S0950-5849(19)30230-7/sbref0025
https://doi.org/10.1109/TNET.2012.2218122
https://doi.org/10.1109/SECON.2008.4494287
http://refhub.elsevier.com/S0950-5849(19)30230-7/sbref0028
http://refhub.elsevier.com/S0950-5849(19)30230-7/sbref0028
http://refhub.elsevier.com/S0950-5849(19)30230-7/sbref0028
http://refhub.elsevier.com/S0950-5849(19)30230-7/sbref0028
https://doi.org/10.1145/2451436.2451461
https://doi.org/10.1109/ICEEE.2013.6676051
https://doi.org/10.1109/COMPSAC.2015.91
http://refhub.elsevier.com/S0950-5849(19)30230-7/sbref0032
http://refhub.elsevier.com/S0950-5849(19)30230-7/sbref0032
http://refhub.elsevier.com/S0950-5849(19)30230-7/sbref0032
http://refhub.elsevier.com/S0950-5849(19)30230-7/sbref0032
https://doi.org/10.1007/s10664-018-9640-7
https://doi.org/10.1145/2901739.2901763
http://refhub.elsevier.com/S0950-5849(19)30230-7/sbref0035
http://refhub.elsevier.com/S0950-5849(19)30230-7/sbref0035
http://refhub.elsevier.com/S0950-5849(19)30230-7/sbref0035
http://refhub.elsevier.com/S0950-5849(19)30230-7/sbref0035
http://refhub.elsevier.com/S0950-5849(19)30230-7/sbref0035
http://refhub.elsevier.com/S0950-5849(19)30230-7/sbref0035
http://refhub.elsevier.com/S0950-5849(19)30230-7/sbref0035
http://refhub.elsevier.com/S0950-5849(19)30230-7/sbref0035
http://refhub.elsevier.com/S0950-5849(19)30230-7/sbref0035
https://doi.org/10.1145/2840723
http://refhub.elsevier.com/S0950-5849(19)30230-7/sbref0037
http://refhub.elsevier.com/S0950-5849(19)30230-7/sbref0037
http://refhub.elsevier.com/S0950-5849(19)30230-7/sbref0037
http://refhub.elsevier.com/S0950-5849(19)30230-7/sbref0037
https://doi.org/10.1007/s10664-017-9545-x
https://doi.org/10.1109/ICSE.2019.00114
https://doi.org/10.1145/2597073.2597097
https://doi.org/10.1080/01621459.1968.10480932
https://doi.org/10.1007/978-3-642-04898-2_616
http://refhub.elsevier.com/S0950-5849(19)30230-7/sbref0042
http://refhub.elsevier.com/S0950-5849(19)30230-7/sbref0042
http://refhub.elsevier.com/S0950-5849(19)30230-7/sbref0042
https://doi.org/10.1145/2095536.2095610
https://doi.org/10.1109/TSC.2010.49
https://doi.org/10.1145/2351676.2351744

[48]

[49]

[501

[51]

[52]

[53]

J. Floch, C. FrA, R. Fricke, K. Geihs, M. Wagner, J. Lorenzo, E. Soladana, S. Mehlhase,
N. Paspallis, H. Rahnama, P. Ruiz, U. Scholz, Playing MUSIC building context-aware
and self-adaptive mobile applications, Softw. Pract. Exper. 43 (3) (2013) 359-388,
doi:10.1002/spe.2116.

G.G. Pascual, M. Pinto, L. Fuentes, Self-adaptation of mobile systems driven by the
common variability language, Futur. Gener. Comput. Syst. 47 (2015) 127-144.

A. Banerjee, A. Roychoudhury, Automated re-factoring of android apps to enhance
energy-efficiency, in: International Conference on Mobile Software Engineering and
Systems (MOBILESoft), 2016, pp. 139-150, doi:10.1109/MobileSoft.2016.038.

C. Sahin, L. Pollock, J. Clause, From benchmarks to real apps: exploring the en-
ergy impacts of performance-directed changes, J. Syst. Softw. 117 (2016) 307-316,
doi:10.1016/j.js5.2016.03.031.

S. Hasan, Z. King, M. Hafiz, M. Sayagh, B. Adams, A. Hindle, Energy profiles of
java collections classes, in: Proceedings of the 38th International Conference on
Software Engineering, in: ICSE ’16, ACM, New York, NY, USA, 2016, pp. 225-236,
doi:10.1145/2884781.2884869.

M. Linares-Vasquez, C. Bernal-Cirdenas, G. Bavota, R. Oliveto, M. Di Penta,
D. Poshyvanyk, Gemma: Multi-objective optimization of energy consumption of guis

[54]

[55]

[56]

[57]

[58]

in android apps, in: International Conference on Software Engineering Companion
(ICSE-C), 2017, pp. 11-14, doi:10.1109/ICSE-C.2017.10.

R. Morales, R. Saborido, F. Khomh, F. Chicano, G. Antoniol, Earmo: an energy-aware
refactoring approach for mobile apps, IEEE Transactions on Software Engineering
44 (12) (2018) 1176-1206, doi:10.1109/TSE.2017.2757486.

L. Cruz, R. Abreu, Catalog of energy patterns for mobile applications, Empiri. Softw.
Eng. 24 (4) (2019) 2209-2235, doi:10.1007/510664-019-09682-0.

JM. Horcas, M. Pinto, L. Fuentes, Context-aware energy-efficient ap-
plications for cyber-physical systems, Ad Hoc Netw. 82 (2019) 15-30,
doi:10.1016/j.adhoc.2018.08.004.

S.A. Chowdhury, V. Sapra, A. Hindle, Client-side energy efficiency of http/2 for
web and mobile app developers, in: 2016 IEEE 23rd International Conference on
Software Analysis, Evolution, and Reengineering (SANER), 1, 2016, pp. 529-540,
doi:10.1109/SANER.2016.77.

L. Cruz, R. Abreu, Measuring the energy footprint of mobile testing frameworks, in:
Proceedings of the 40th International Conference on Software Engineering: Com-
panion Proceeedings, in: ICSE ’18, ACM, New York, NY, USA, 2018, pp. 400-401,
doi:10.1145/3183440.3195027.

https://doi.org/10.1002/spe.2116
http://refhub.elsevier.com/S0950-5849(19)30230-7/sbref0047
http://refhub.elsevier.com/S0950-5849(19)30230-7/sbref0047
http://refhub.elsevier.com/S0950-5849(19)30230-7/sbref0047
http://refhub.elsevier.com/S0950-5849(19)30230-7/sbref0047
https://doi.org/10.1109/MobileSoft.2016.038
https://doi.org/10.1016/j.jss.2016.03.031
https://doi.org/10.1145/2884781.2884869
https://doi.org/10.1109/ICSE-C.2017.10
https://doi.org/10.1109/TSE.2017.2757486
https://doi.org/10.1007/s10664-019-09682-0
https://doi.org/10.1016/j.adhoc.2018.08.004
https://doi.org/10.1109/SANER.2016.77
https://doi.org/10.1145/3183440.3195027

	Energy efficient adaptation engines for android applications
	1 Introduction
	2 Background information and motivation
	2.1 Compilation and execution models in android
	2.2 Dynamic adaptation in mobile applications
	2.2.1 OSGi platform
	2.2.2 Virtual-method hooking
	2.2.3 Reflection
	2.2.4 Dynamic proxies
	2.2.5 Bytecode instrumentation
	2.2.6 Dynamic offloading
	2.2.7 Aspect-oriented programming
	2.2.8 Context-oriented programming
	2.2.9 Ad-hoc solutions

	3 Our approach
	4 Adaptation engines
	4.1 Adaptation engines based on dynamic proxies
	4.2 Adaptation engines based on the Xposed framework

	5 Evaluation
	5.1 Experimentation setup
	5.1.1 Adaptation scenarios
	5.1.2 Energy profile
	5.1.3 Mobile devices

	5.2 Results
	5.2.1 RQ1. Benefits of our adaptation engines
	5.2.2 RQ2. Energy consumption of the adaptation engines.
	5.2.3 RQ3. Proposed engines scalability.

	5.3 Threats to validity
	5.3.1 Conclusion validity
	5.3.2 Internal validity
	5.3.3 Construct validity
	5.3.4 External validity

	6 Related work
	7 Conclusions and future work
	Declaration of Competing Interest
	Acknowledgments
	References

