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Context The energy consumption of mobile devices is increasing due to the improvement in their components 
(e.g., better processors, larger screens). Although the hardware consumes the energy, the software is responsible 
for managing hardware resources such as the camera software and its functionality, and therefore, affects the 
energy consumption. Energy consumption not only depends on the installed code, but also on the execution 
context (environment, devices status) and how the user interacts with the application. 

Objective In order to reduce the energy consumption based on user behavior, it is necessary to dynamically adapt 
the application. However, the adaptation mechanism also consumes a certain amount of energy in itself, which 
may lead to an important increase in the energy expenditure of the application in comparison with the benefits 
of the adaptation. Therefore, this footprint must be measured and compared with the benefit obtained. 

Method In this paper, we (1) determine the benefits, in terms of energy consumption, of dynamically adapting 
mobile applications, based on user behavior; and (2) advocate the most energy-efficient adaptation mechanism. 
We provide four different implementations of a proposed adaptation model and measure their energy consump- 
tion. 

Results The proposed adaptation engines do not increase the energy consumption when compared to the benefits 
of the adaptation, which can reduce the energy consumption by up to 20%. 

Conclusion The adaptation engines proposed in this paper can decrease the energy consumption of the mobile 
devices based on user behavior. The overhead introduced by the adaptation engines is negligible in comparison 
with the benefits obtained by the adaptation. 
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. Introduction

The current smartphone market trend is the enhancement of the use
xperience by means of more powerful processors, larger screens and
dditional components like dual cameras. However, these
omponents are boosting the energy consumption of smartphone
1].  Energy con- sumption directly affects user experience, forcing
sers to charge their phones daily, sometimes leading to externa
atteries being required to keep the device switched on throughou
he day. Although the hard- ware consumes the energy, the software
s responsible for managing the hardware resources (e.g., the camera
oftware and its functionality), and therefore, also affects the energy
onsumption [2].  

When a mobile application is running, the energy consumption no
only depends on the installed code, but also on how the user interact

with the application [3].  Based on the user’s interaction, the 

applica- tion functionality uses the available resources differently. 
For instance, a messaging application loads and displays all the 

friends’ chats when it starts, even though some of them have not 
been contacted by the 

c  

e  

b  
ser for a long time. The application could be more energy efficient if it
ust displayed recent chats or most frequently contacted friends. Ideally,
hen a specific resource is not being used it should not be consuming
nergy (e.g., the screen, WiFi, GPS sensor or any other application ser-
ice) [4,5] . 

Most mobile applications are deployed using static configura-
ions [6] . These configurations are pre-planned to be energy efficient
or a generic user behavior and, normally, they are not prepared for
hanges that may occur at runtime [7] . Therefore, when the user be-
avior changes, the energy efficiency of the application decreases [8] .
n contrast, self-adaptive applications are able to self-adapt their be-
avior or structure at runtime in response to user behavior [9] . Exist-
ng self-adaptive mobile applications, whose goal is to decrease the en-
rgy consumption of the device, only take into account the device status
e.g., battery level, CPU frequency) or the environment (e.g., location,
oise level) [6,10,11] to trigger the reconfiguration, and do not con-
ider the user interaction with the application as part of their solution.
aking into account that the energy consumption of the mobile appli-
ations also depends on the user’s interactions, our question is: to what

xtent is it possible to reduce the energy consumption of the applications

y adapting them to the user behavior? That is, what is the quantifiable
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1 http://www.osgi.org . 
2 http://jcp.org/en/jsr/detail?id = 232 . 
enefit to energy consumption of adapting the application to the user
ehavior? 

To reduce the energy consumption based on user behavior it is nec-
ssary to dynamically adapt the applications. In this paper, we propose
n adaptation model based on user interactions for Android applica-
ions. In the literature, there are several context-aware dynamic adap-
ation solutions for mobile applications based on different mechanisms
uch as polymorphic methods [10],  reflection, dynamic components [6]
ynamic offloading of code with the OSGi platform [12],  evolutionary
lgorithms [11] and self-adaptive frameworks [13].  Each adaptation so
ution consumes a certain amount of energy, which may lead to an im-
ortant increase in the energy expenditure of the application. However,
here are no approaches that measure the energy consumption intro-
uced by the adaptation engine itself. Therefore, it would be interest-
ng to quantify the overhead introduced by the adaptation engine to
ssess its benefit in terms of energy saving during application execu-
ion [13].  In addition, existing adaptation technologies for mobile ap
lications depend strongly on the execution environment (e.g., version
f the Android system) and they become obsolete very quickly [10].
his is due to the continuous advancement in technologies made by
ompanies like Google, which makes it difficult to find generic adapta-
ion solutions that will not become obsolete in the next version of the
ystem. 

In this paper we propose four different adaptation engines for An-
roid applications and evaluate the overhead in terms of energy con-
umption introduced by those adaptation engines. Our implementations,
ased on dynamic proxies and the Xposed framework [14],  support al
urrent versions of the Android system. We demonstrate that it is pos-
ible to reduce the applications’ energy consumption by adapting the
unctionality at runtime to the user behavior, while maintaining the ser-
ice quality levels required by the user. To summarize, in this paper we
im to answer the following research questions: 

RQ1: To what extent is it possible to reduce the energy consumption
f the applications by adapting them to the user behavior? 

RQ2: What is the impact of the adaptation engine on the energy
onsumption of the mobile device? Which adaptation engine is more
nergy-efficient? 

RQ3: Are the adaptation engines scalable? What scenarios could in-
rease their energy consumption? 

The rest of the paper is organized as follows. Section 2 introduces the
ackground information to dynamic adaptation in Android applications
nd motivates our approach. Section 3 presents our adaptation model
or mobile applications, while Section 4 details our four different imple-
entations of the adaptation model. Section 5 evaluates our adaptation

pproach and discusses the threats to validity. Section 6 discusses re-
ated work and exposes the limitations of existing reconfiguration and
nergy optimization approaches in Android. Finally, Section 7 concludes
he paper and presents future work. 

. Background information and motivation

This section presents the necessary knowledge about the Android
rchitecture, and the existing approaches to dynamically adapt mobile
pplications based on the user’s interactions. 

.1. Compilation and execution models in android 

In Android, Java source code is compiled by the Standard Java Com-
iler to obtain Java bytecode (.class files) and then, this code under-
oes a second round of compilation to obtain DEX bytecode (Android-
pecific). DEX files are signed and packaged to construct the Android
pplication Package (APK). DEX bytecode is translated into native in-
tructions and executed by the Android runtime environment: Android

untime (ART) or Dalvik.  Fig. 1 summarizes the compilation and execu
ion processes of an Android application. 
ART is the current application runtime environment used by the An-
roid operating system, which was introduced with the release of An-
roid 4.4 (Kitkat). Prior to ART, the runtime environment for Android
pps was the Dalvik Virtual Machine (DVM) , which was completely re-
laced by ART in Android 5.0 (Lollipop). The DVM has certain restric-
ions such as, it does not support custom classloaders, dynamic code
eneration and bytecode manipulation at runtime [15] . While Dalvik
ses a Just-in-Time (JIT) compilation model, ART uses an Ahead-of-Time

AOT) compiler. More recently, Android 7.0 (Nougat) introduced a hy-
rid runtime model including a runtime JIT compiler with code profiling
o ART. 

.2. Dynamic adaptation in mobile applications 

This section presents existing solutions to dynamically adapt the be-
avior of mobile applications, and in particular, of Android applications.
ig. 1 summarizes these approaches indicating the moment (compila-
ion, loading, execution) where they can be applied. For each approach,
e describe how it works and discuss its limitations. Note that these
pproaches can be combined to benefit from their individual strengths.

.2.1. OSGi platform 

The OSGi platform 

1 is a service and component-based platform
hich offers a class-loading engine to dynamically load and unload
odules. OSGI is embedded within an Android APK, and the OSGi bun-
les can be called from within Android activities and services. There
re some initiatives that propose OSGi for hosting applications in mo-
ile devices, such as the OSGi Mobile Specification (JSR-232) 2 or An-
rosgi [16] . 

The main limitation of the OSGI platform is that it implies an ad-
itional application size, memory consumption, and start-up time, but
his can be minimized if the OSGI platform is started inside the device
nd supports the needs of different application bundles [17,18] . Regard-
ng energy consumption, the OSGi bundles does not affect the device’s
nergy autonomy significantly [17] . 

.2.2. Virtual-method hooking 

Virtual-Method Hooking is a technique for managing an array of
ointers to virtual functions that instances of the class may call (i.e., a
irtual method table). These functions can be intercepted (hooked) by
eplacing the pointers to them within any virtual method table in which
hey appear [19] . An example of a framework using virtual-method
ooking in Android is Xposed [14] . It extends the Android application
auncher ( App launcher in Fig. 1 ) to load external modules (JAR
les) on startup without modifying the original APK. 

However, this technique is not completely dynamic, since frame-
orks require the new functionality to be introduced at load-time, and

hus, changes need to be predefined before the execution of the appli-
ation. 

.2.3. Reflection 

The use of reflection gives applications the ability to examine, in-
rospect, and modify their own structure and behavior at runtime. 

In Android, reflection is a powerful technique because it uses base
ava code without needing external modules. However, it requires more
ffort from the application developers. Reflection also poses serious se-
urity problems in Android applications despite its widespread use [20] .

.2.4. Dynamic proxies 

Dynamic proxies are wrappers that pass function invocation
hrough their own facilities and can potentially add new functionality

http://www.osgi.org
http://jcp.org/en/jsr/detail?id=232


Fig. 1. Adaptation approaches in Android compilation and ex- 
ecution processes. 
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r modify the existing one. Dynamic proxies allow adapting the appli-
ation’s behavior by extending the original implementation of the ap-
lication’s functionality [21] . 

Dynamic proxies require a considerable planning effort on the part
f application developers, but these techniques are easy to adopt and the
verhead introduced in the system at runtime is very low [22] . More-
ver, dynamic proxies, in contrast to reflection, do not represent a se-
urity vulnerability because developers can control the classes that can
e adapted or not [23] . 

.2.5. Bytecode instrumentation 

Bytecode instrumentation is commonly used to modify the behav-
or of Java applications [24] . It consists in modifying the binary code
enerated by the compiler (e.g.,.class files). However, in Android, an
dditional compilation step is performed to generate.dex bytecode. As
 consequence, bytecode modifications have to be applied to.dex files,
r to.class files before DEX compilation. Whatever the case, bytecode
nstrumentation in Android is limited to compile-time because the final
PK file must be built and signed to verify its content [24] . 

.2.6. Dynamic offloading 

Dynamic offloading is a technique that extends the capabilities
f mobile devices, as well as their battery life, by migrating hard-
omputation tasks to resource-rich devices such as remote servers or
loud platforms (e.g., Google Awareness) [25,26] . Consequently, code
ffloading solutions require a set of surrogate devices on to which the
lient can offload tasks, as well as connectivity to the internet. Indeed,
he rate increase of the mobile data traffic can become a cost issue when
o WiFi (free) connection is available [27] . 

.2.7. Aspect-oriented programming 

Aspect-Oriented Programming (AOP) can be used to construct dy-
amically reconfigurable systems by providing an instrumentation en-
ine that allows for the change of execution flows [28] . Aspects can
ntercept or change the behaviors of target components, without modi-
ying their source code, by replacing the implementation of the compo-
ents at runtime. However, components need to be introduced (woven)
t compile or load-time. AspectJ is certainly the most successful lan-
uage and compiler for implementing AOP, and can be used in Android
or instrumenting mobile applications [29] . 

The main issue with AOP is that developers need to know the ap-
lication’s code to implement the appropriate aspects, and moreover,
OP requires having to learn a new programming paradigm. It also in-
roduces an additional step, to test whether or not aspects will work
ithout problems with the application code, complicating the develop-
ent of the mobile applications. 

.2.8. Context-oriented programming 

In Context-Oriented Programming (COP) [30] , context-dependent
ehaviors are represented as partial method definitions and encapsu-
ated inside layers [31] . Depending on the context, a method call can
e dynamically redirected to a partial method by layer activation. An
xample of a COP language is JCop [15] , a Java extension that can be
pplied to Android. 

.2.9. Ad-hoc solutions 

Finally, there are ad-hoc solutions that build their own adaptation
olution based on custom self-adaptive frameworks [10,13] , function
apping [32] or evolutionary algorithms [11] . In general, these ad-hoc

olutions are difficult for software developers to reuse, and require the
pecific solution to be studied in detail to adapt it to the developers’
eeds. 

. Our approach

This section presents our approach to adapt mobile applications
ased on user interactions. Adapting applications according to user be-
avior adjusts the number of tasks performed by the applications to the
nes that are relevant to the user in a certain moment. Among the bene-
ts that our approach provides compared with other adaptation engines
re: (1) the QoS perceived by the user is not affected because adapta-
ions are transparent to him/her; (2) our adaptation engine can be ap-
lied irrespective of the device’s architecture in which applications are
unning; (3) our approach can be easily combined with other kinds of
daptation engines (e.g., screen off after a minute of inactivity); (4) user
rofiles and preferences that can vary a lot and change very often, offer
any more opportunities to save energy compared with the device con-

ext, which is highly limited to signal strength, supported graphic mode,
evel of battery, or the status of any other device’s resource, etc. 

First, we propose a generic adaptation schema inspired by the MAPE-
 loop [33] . Then, we present four different implementations following

his adaptation schema. As described by Elmalaki et al. [10] , a context-
ware system can be divided into three parts: (1) a set of replaceable



Fig. 2. Our dynamic adaptation approach. 
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olymorphic methods ; (2) a context monitoring system ; and (3) an adap-

ation engine that switches between the different methods based on the
onitored context. Fig. 2 details our approach with these three parts

n which (1) the replaceable polymorphic methods are the alternative
mplementations ( Adaptation Alternatives ); (2) the context
onitoring system is managed through Handlers with access to sev-

ral Monitors that track the application for changes; and (3) the adap-
ation engine responsible for making adaptation decisions ( Analysis )
riven by a set of Adaptation Rules , and performing the changes
etween the available adaptation alternatives ( Weaver ).

The proposed adaptation approach aims to be as unintrusive as possi-
le within the application, therefore the application’s base functionality
 Android App ) is modified by external modules. Our approach con-
ains two kinds of modules: generic and specific. Generic modules (the
hite modules in Fig. 2 ) are integral parts of our adaptation engine and

an be directly reused with different applications without modification.
pecific modules (the shaded modules in Fig. 2 ) contain information
bout a particular application, and usually, this information is different
or each application. Note that, in this paper we are interested in re-
onfiguring the base functionality of the applications, and not just the
eusable functionality such as crosscutting-concerns (e.g., authentica-
ion methods, encryption algorithms). Using this approach, our adapta-
ion engine enables different implementation paradigms to be used such
s AOP, COP, Java reflections or the integration of the OSGi platform,
ust by modifying the weaver and handler modules and implementing
he adaptation alternatives in the chosen approach. Our approach works
s follows: Handlers The application objects to be modified are man-
ged by handlers. The handlers intercept the interactions (calls) to the
bjects and execute the appropriate behavior (method) configured by
he Weaver module.

Monitors Monitors obtain context information from the application.
ach monitor is in charge of controlling a specific set of variables in the
pplication. The information collected by the monitors depends on the
daptation trigger. For instance, in a chat application that shows the top
ve people who the user chats with, a monitor will keep an eye on the
umber of input/output chat messages of each chat. This information is
sed by the Analysis module and helps us to create the user profile.

Context This module maintains the information about the current
pplication context. The contextual information is divided into three
ubmodules [3] : (1) Environment represents the external informa-
ion of the application (e.g.,location); (2) App Status maintains the
pplication state (user behavior) between executions by using the infor-
ation provided by Monitors ; and (3) Device Status gets the

tate about the mobile itself (e.g., battery level). 
Analysis This module makes decisions about the most appropriate

unctionality based on the application context, and especially on the user
rofile. The analysis module uses a set of adaptation rules that evaluate
he information provided by the Context module to decide which of
he alternative implementation classes and methods must be executed.
nother alternative could be to delegate the analysis to a server, which
llows the collection of users’ profile information, which can then be ex-
loited by techniques like machine learning to predict future user behav-
or based on the current one. In this paper we focus on decision-making
ased on adaptation rules. 

Adaptation rules This module contains a set of expressions (adapta-
ion rules) that define how the adaptation mechanism should act based
n the current context. The adaptation rules can be included in the ap-
lication using if/else statements or can be external and provided as a
icroservice. There are rules that can be applied to any application (e.g.,
ecreasing the screen brightness when battery level is low or reducing
ensor usage as far as possible). Other rules are specific to each applica-
ion, for example, the rules that depend on the user profile. Here, it is
ossible to define different adaptation profiles making the mechanism
ore or less aggressive according to the energy policy. A high energy-

aving policy can save more energy than a low energy-saving one, but
t could compromise the user experience. 

Weaver The Weaver is the module responsible for directly modi-
ying application code. It is executed when the Analysis module re-
uests an adaptation. How the code is modified depends on the Weaver
odule’s implementation and will be different for each proposed solu-

ion (e.g., dynamic proxies). 

. Adaptation engines

We have implemented four different adaptation engines following
he schema presented in the last section. Two of them are based exclu-
ively on dynamic proxies while the other two are based on the Xposed
ramework, and a combination of the Xposed framework with dynamic
roxies. 

We have chosen these approaches for several reasons. On the one
and, dynamic proxies represent a generic approach independent of the
latform and runtime environment, so it is completely compatible with
ny version of Android irrespective of its compilation and execution
odel. Dynamic proxies do not introduce a high overhead in compar-

son with other solutions such as the introduction of a middleware or
ramework. Additionally, we have chosen the Xposed framework be-
ause (1) it is a complementary solution to dynamic proxies (dynamic
roxies carry out the adaptation at runtime and Xposed acts at load-
ime); (2) it does not need to be embedded within the application being
econfigured; (3) it does not introduce overhead at runtime; and (4) it
an act over any component of the application functionality and even
ver aspects of the system such as the mobile screen. Finally, Xposed is
urrently maintained and up to date for the latest Android version. 

The adaptation process (see Fig. 3 ) is similar for all adaptation
ngines. The application functionality consists of a set of instanti-
ted classes C divided into two subsets: a set of fixed classes ( Non
daptable classes ) and a set of classes with functionality that
an be changed ( Adaptable classes , shaded in Figure 3 ). On
he other hand, there is a repository of classes A ( Adaptation
lternatives ) that provide alternative implementations to the
daptable classes. To make possible the use of the Adaptation Alterna-
ives, classes A (e.g., class C3') implement the same interfaces as classes
rom C (e.g., class C3 ). Finally, the set of adaptation rules R indicate
hich functionality or methods (e.g., method m2 of class C3 ) should be

hanged by the new functionality or methods (e.g., method m1 of class
3 ”), under a certain application context (e.g., context1 ).

The way the adaptable and the alternative adaptation classes are
anaged determines whether the adaptation engine is based on dy-
amic proxies or on Xposed. The four proposed adaptation engines are
E1: Internal Proxy, AE2: External Proxy, AE3: Xposed Proxy and
E4: Xposed . 



Fig. 3. Dynamic adaptation process. 
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.1. Adaptation engines based on dynamic proxies 

When adaptable classes are implemented as dynamic proxies, the
roxy works as a class handler, controlling the access to the class func-
ionality. In addition, the proxy facilitates the creation of the user profile
y controlling the usage of each class and method. 

When the context changes, the weaver modifies the class function-
lity with the most energy-efficient alternative. Alternative classes can
e located in the application code or in external files. Based on the lo-
ation of the adaptation alternatives, two different implementations of
ynamic proxies are possible, the AE1: Internal Proxy and AE2: Exter-

al Proxy . The code adaptation is produced at runtime, in both, and is
ransparent to the user. 

Using the AE1: Internal Proxy , adaptation alternative classes are
vailable with the application code. The weaver will instantiate the
lasses when needed. If a class is not being used during the application
xecution, it will not be instantiated, and therefore, it will not consume
esources. 

In contrast, when AE2: External Proxy is used, the application only
ontains the basic functionality of its APK file. Alternative classes are
ontained in external files, separate from the application code ( .dex files,
n Fig. 1 ). These files are located in the external memory of the mobile
evice and it can contain multiple alternative classes for any adaptable
lass. The weaver will load these files and instantiate the classes on
emand. If a class is not required during the application execution, its
ode will not be loaded nor instantiated in the application. 

.2. Adaptation engines based on the Xposed framework 

Using the Xposed framework, the application can be modified just
efore it starts (i.e., at loading time). At the beginning of the application
xecution, depending on the context and attending to the adaptation
ules, the functionality of the adaptable classes is changed by the most
nergy-efficient adaptation alternative. In this case, adaptation alterna-
ives are available when the application is launched. These alternatives
re contained in modules, which can be external to the APK. We can en-
ble and disable the modules using the Xposed Installer tool. There are
wo different types of adaptation mechanisms based on how the system
reates the user profile, AE3: Xposed Proxy and AE4: Xposed . 

When the AE3: Xposed Proxy is applied, we use dynamic proxies to
anage and monitor the access to the adaptable classes. Nevertheless,

he difference between this solution and AE1 and AE2 is that we use
he Xposed framework to adapt the application. In this case, adaptation
ules are evaluated when the application is launched, so the adaptation
s performed at loading time. Note that in this solution, dynamic prox-
es are only used to monitor the user behavior and not to perform the
daptation. 

The AE4: Xposed solution realizes the functionality adaptation like
E3, but the management and monitoring of the adaptable classes are
one by specific calls by means of the interception system of Xposed. 

In both cases, the advantage of using Xposed is that the changes
etween adaptable classes are managed by the framework, alleviating
he developer of the task of implementing reconfigurable interfaces for
he adaptable classes. This allows the focus to be on monitoring the user
ehavior to keep track of the application context information. Neverthe-
ess, the functionality adaptation is done at launch-time (loading time).

. Evaluation

In this section we evaluate our proposal. We measure the energy
onsumption of our adaptation solution in different scenarios to answer
ur research questions (RQs). 

.1. Experimentation setup 

The evaluation has been carried out over two mobile devices and
ifferent adaptation scenarios. The energy consumption has been esti-
ated using two different tools: GreenScaler [34,35] and Trepn Power
rofiler 3 . The results of these evaluations and the scripts to replicate
hem are publicly available 4 . 

.1.1. Adaptation scenarios 

Applications in which our adaptation engines can be applied are very
iverse, which makes it impossible to evaluate all of them. Nevertheless,
t is possible to evaluate the factors that can affect the amount of en-
rgy saving when using our energy-efficient adaptation engine. For this
eason, we have developed a lightweight benchmark application that
nables the applicable scenario features to be configured. 

In addition, we have also developed two possible scenarios in which
dapting applications according to the user behavior make sense. First,
y adapting the number of data/functionality requests and amount of
nformation displayed on the screen according to the user profile. Exam-
les of applications with this behavior are instant messaging apps (e.g.,
hatsApp, Telegram), newspapers and weather apps, sport reports apps

https://developer.qualcomm.com/software/trepn-power-profiler
http://caosd.lcc.uma.es/research/rsc/android-adaptation-results.zip


Fig. 4. GreenScaler and Trepn Profiler energy 
profiles. 
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e.g., LiveScore, DAZN), and market places (e.g., Play Store). The energy
onsumption of these kinds of applications can be reduced significantly
f they only request and show the information which is relevant to the
ser. For instance, in the case of WhatsApp, it loads all the friends’ chats
hen it starts. Since the user usually only texts his/her most popular

ontacts, if it only displays and requests the information of these con-
acts, it can save energy without affecting the user experience. 

The second scenario for adapting user behavior consists in introduc-
ng a new functionality (or adapting an existing one) according to the
nown user profile (e.g., data compression before sending) [36] . Exam-
les of applications with this behavior are social apps (e.g., Facebook,
nstagram), e-mail clients (e.g., Gmail, Microsoft Outlook), videocon-
erence apps (e.g., Skype, Hangouts), or Google Photos. Normally, these
pplications offer an interface where the user can select a video or photo
rom the gallery and choose between sending it as it is or compressing
t. The adaptation in this case consists of selecting the compression algo-
ithm taking into account the device context. Specifically, we consider
he battery level, if the mobile phone is charging or not, and the avail-
ble networks. The aim is to find the balance between the computational
ost of the compression and the cost of sending the media file using the
etwork on hand. 

.1.2. Energy profile 

To estimate the energy consumption we use two different software-
ased tools, GreenScaler and Trepn Profiler. We have chosen these tools
ecause they allow the energy consumption of mobile applications to
e estimated, with an upper error bound of less than 10% [34,37] and
hey have been used in other studies on energy consumption [38–40] .
lthough hardware-based tools provide more precise results, it is not
asy to identify the part of the software responsible for this consumption
sing them. In order to apply these tools, we use the framework depicted
n Fig. 4 , which was presented in [38] . 

GreenScaler is an energy model generated by the processing
f hundreds of energy measurements obtained by the GreenMiner
odel [41] using 472 real world Android applications. The general idea

f this tool is to estimate power consumption using information provided
y the operating system (e.g., number of CPU jiffies) and information
hat can be extracted during the normal functioning of the app (e.g.,
creen color). This information is the input of the GreenScaler energy
odel, which provides an estimation of the energy consumed by the

pp at a given time. In order to collect this information, we have de-
eloped several scripts for Android ADB ( Fig. 4 ) and a Java application
hat automatically process the information and apply the energy model.
reenScaler considers RGB values in its energy model, we obtain these
alues using the API of Color Summarizer 5 . 
5 http://mkweb.bcgsc.ca/color-summarizer/?home . 
Trepn Profiler is a commercial measuring tool able to provide en-
rgy consumption information compatible with the majority of Android
evices (Android 4.0 and higher), but particularly intended for devices
ith a Qualcomm Snapdragon processor. Trepn Profiler collects the
ower readings from the power management integrated circuit and the
attery fuel gauge software. Using ADB commands, we set the measure
ool profile, launch the application to be measured, start the Trepn Pro-
ler service, and, finally, download the energy measurements informa-
ion ( Fig. 4 ). 

In order to compare our four adaptation engines 6 , we generate 10
andom user behaviors and then we replicate them in each experiment.
his includes service requests and the application closures and launches.
or each experiment, we perform 20 executions, obtaining the average
nd standard deviation of the energy consumption. 

.1.3. Mobile devices 

We have used two mobile devices for the experiments: (1) Samsung
alaxy Nexus with Android 4.3 and Dalvik VM, and (2) LG Nexus 5 with
ndroid 6.0 and ART. 

All the energy measure tests have been carried out with the mobiles
n the same conditions: flight mode activated, WiFi turned on in order
o send commands through the ADB tool to execute each test, applica-
ions’ updates are deactivated and only the corresponding application
s executing in the foreground. To ensure the same operating system
ehavior, we turn off the Android energy-saving mode. 

.2. Results 

This section shows the experimentation results to answer our re-
earch questions (RQs). For each RQ we explain the motivation, the
xperiments performed, the analysis of the experimental data, and the
ndings. 

.2.1. RQ1. Benefits of our adaptation engines 

Research Question 1 To what extent is it possible to reduce the
nergy consumption of the applications by adapting them to the user
ehavior? 

Motivation Self-adaptive applications are able to self-adapt their
unctionality at runtime, in response to changes in the context. Existing
elf-adaptive mobile applications whose goal is to decrease the device’s
nergy consumption do not take into account the user behavior with
he application as part of the context, as they only consider the device
tatus as the reconfiguration trigger. This research question explores the
nfluence of the reconfiguration of the application functionality in the
6 Source code available at https://github.com/angelcvx/Adaptation-Engines . 

http://mkweb.bcgsc.ca/color-summarizer/?home
https://github.com/angelcvx/Adaptation-Engines
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Fig. 5. Box plot of the energy consumption before and after the adaptation. 
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lobal energy consumption of a mobile application based on the user
ehavior. 

Experiments To answer RQ1 we measure the energy consumption of
he base applications running with their default behavior (i.e., without
ny adaptation or adaptation engine integrated). Then, for each adapta-
ion engine (see Section 4 ), we repeat the experiments but adapting the
pplication to the user’s interactions. 

In the first scenario, the application has been adapted to reduce the
umber of requests to the server and to show only the information the
ser is interested in. We exemplify this scenario with a sport reports
onsulting application. By default, this applications shows information
bout 25 different football leagues. The adaptation engine collects the
umber of user requests for each league and saves it as part of the con-
ext. After five requests, the reconfiguration rule defines that only the
ost consulted leagues by the user should be shown. So, the adaptation

ngine modifies the functionality by changing the appropriate classes
nd methods. 

In the second scenario, we use an application that compresses and
ends a video selected by the user. The application has been adapted
o change the compression algorithm with different compression ratios
efore sending the videos through the network. The user interface of
he application has also been adapted to reduce its energy consump-
ion while the compression takes place. By default, the application uses
ight colors in its interface and an algorithm with a low compression
atio (around 20% of video compression) in order to maintain the video
uality. The adaptation rules specify that the application reconfigure its
unctionality in order to use an algorithm with a higher compression
atio (around 75% of video compression) in two cases: (1) the battery
evel of the mobile is lower than 25%, the device is not charging and the
ser shares a video; (2) the user shares a video while the device is con-
ected to a low-band network. In addition, the user interface is adapted
y providing darker colors [8] when the device battery level is lower
han 25% and the device is not connected to power. 

Analysis A Wilcoxon signed-rank test has been applied to evaluate
f there is a statistical difference between adapting the applications or
ot (see Fig. 5 ). The null hypothesis is that the energy consumption is
he same in both cases: the base application 𝑒𝑐 𝑎𝑝𝑝 

 

without adaptation 
𝑏𝑎𝑠𝑒

nd the application adapted 𝑒𝑐 𝑎𝑝𝑝 
 

: 
 0 ∶ 𝑒𝑐 𝑎𝑝𝑝 𝑏𝑎𝑠𝑒 = 𝑒𝑐 𝑎𝑝𝑝 𝑎𝑑𝑎𝑝
 1 ∶ 𝑒𝑐 𝑎𝑝𝑝 𝑏𝑎𝑠𝑒 ≠ 𝑒𝑐 𝑎𝑝𝑝 𝑎𝑑𝑎𝑝

(1)

To do so, first, we determine whether or not the measurements are
ormally distributed by applying a Shapiro-Wilk normality test [42] .
his test shows that not all measurements are normally distributed.
ence, we apply a non-parametric test. Specifically, we use a Wilcoxon
ank Sum test [43] . Using a confidence interval of 95%, p ≤ 0.05, re-
ults for the Wilcoxon test show that there are statistical differences
etween the energy consumption of the non-adapted application and
he adapted-application. We repeat this test comparing the application
ithout any adaptation engine and the adapted version using each adap-

ation engine. The results show a statistical difference in all cases, with a
-value around 0.001. Additionally, we run a statistical power analysis
o check that the size of the sample is enough to discard Type II error
i.e., failure to reject a false null hypothesis or false negatives) with a
evel of significance lower than 0.05. The observed power is 1 for both
ase studies. So, we can conclude that the number of random behaviours
nd repetitions of the experiments are enough to answer this research
uestion.

Findings A benefit of up to 20% can be observed using the adapta-
ion solution based on Internal Proxy (AE1) and External Proxy (AE2)
n the first application (34 Joules). Fig. 6 clearly shows the difference
n the energy consumption over time. We observe a benefit up to 20%
from 168 Joules to 134 Joules) comparing it with the base application
ithout adaptation. This benefit corresponds to the adaptation engines
ased on dynamic proxies, being smaller (10-12%) for the adaptation
ngine based on the Xposed framework. The differences between the
olutions correspond to the time when adaptation is performed (run-
ime for dynamic proxies based solution vs load-time for Xposed based
olutions). 

In the second application, we obtain a benefit of 13% (from 638
oules to 558 Joules), a decrease in energy consumption in more than 80
oules (see Fig. 6 ). However, in this case, there is not a major difference
etween the four adaptation engines because the user only interacts with
ne functionality and then closes the application. The execution time is
maller with no difference appreciated in adapting the application at
untime or at load-time. Therefore, depending on the expected use of
ur application, we can select one adaptation solution or another 

.2.2. RQ2. Energy consumption of the adaptation engines. 

Research Question 2 What is the impact of the adaptation mecha-
ism in the energy consumption of the mobile device? Which adaptation
echanism is more energy-efficient? 

Motivation The energy benefit obtained by using the proposed adap-
ation engines will depend on the functionality changes carried out in
he application. In turn, the latter will depend on the application. All
daptation engines have an associated computational cost. Adaptation
ngines monitor the context, analyze the information, evaluate the adap-
ation rules and change the functionality of the application. The objec-
ive of RQ2 is to evaluate the overhead in energy consumption intro-
uced by each adaptation engine. This is sensible as (1) it allows the
iability of using our approach to be predicted according to the number
f functionalities fixed to the user behavior; and (2) they can be used not



Fig. 6. Energy consumption before and after the adaptation. 
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Fig. 7. Box plot of energy consumption overhead introduced by the adaptation 
engines. 
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nly with the aim of reducing energy consumption, but also with other
bjectives (e.g., improving the user experience, reducing the execution
ime). 

Experiments To evaluate just the energy consumed by the adapta-
ion engines, we integrate each adaptation engine with the base appli-
ations and check the normal operation of the application. Adaptation
ngines monitor the application’s context, manage adaptable classes,
valuate the adaptation rules, and load the external implementation al-
ernatives if needed. However, for these experiments, the behavior of
he application is unchanged. The energy consumption of the applica-
ion is measured without modifying its behavior to observe the energy
ost of the monitors, handlers, analysis, and weaving components of the
daptation engines. 

Analysis As for RQ1, we use a Shapiro-Wilk normality test to ver-
fy that the energy measurements are not normally distributed. Thus,
n hypothesis contrast (Wilcoxon signed-rank test) determines whether
here is a statistical difference between the energy consumption of the
ase application ( 𝑒𝑐 𝑎𝑝𝑝 𝑏𝑎𝑠𝑒 ) and the energy consumption of the applica-
ion with each of the adaptation engines integrated ( 𝑒𝑐 𝑎𝑝𝑝 𝑎𝑑𝑎𝑝𝑡 ). The null
ypothesis is that the energy consumption is the same in both cases: 

 0 ∶ 𝑒𝑐 𝑎𝑝𝑝 𝑏𝑎𝑠𝑒 = 𝑒𝑐 𝑎𝑝𝑝 𝑎𝑑𝑎𝑝𝑡
 1 ∶ 𝑒𝑐 𝑎𝑝𝑝 𝑏𝑎𝑠𝑒 ≠ 𝑒𝑐 𝑎𝑝𝑝 𝑎𝑑𝑎𝑝𝑡

(2)
p  
We select a confidence interval of 95%. A 𝑝 − 𝑣𝑎𝑙𝑢𝑒 ⩽ 0 . 05 means that
here is a statistical difference between the base application energy con-
umption (no adaptation engines included) and each application with
 different adaptation solution (but without context-adaptation). As in
he previous research question, we have performed a statistical power
nalysis for both case studies. The result is 1 for both for a significance
alue lower than 0.05. This shows that the sample size (133 for case
tudy 1 and 120 for case study 2) is enough to discard a Type II error.
he hypothesis contrast results show there is no statistical difference
etween the usage of a specific adaptation engine in 50% of the tests
 Fig. 7 ). We observe a 2.51% increment in the energy consumption in
he worst case. However, these values are negligible in comparison with
he benefits obtained from the adaptation ( Section 5.2.1 ). 

Findings Results show that the overhead introduced by the adapta-
ion engine is minimal (see Fig. 8 ). The overhead represents between
he 0.58% and 2.51% (an increase in 1 to 4 Joules) of the energy con-
umption of the application in the first scenario, while the overhead in
he second scenario represents between 0.43% and 1.39% (an increment
etween 3 and 9 Joules) of the energy consumption of the application.
his means an increase of just 8.87 Joules in the worst case. 

The Xposed engine (AE4) shows a minor energy cost overhead. These
esults can be explained due to the creation and management of the
roxy object for each adaptable class in those adaptation engines based



Fig. 8. Energy consumption overhead introduced by 
the adaptation engines. 
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Fig. 9. Energy consumption in relation to the number of adaptable classes. 
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n dynamic proxies (AE1, AE2 and AE3), but not AE4. Nevertheless,
omparing the adaptation system’s averages of the measures, no signif-
cant difference is found between the adaptation engines. 

.2.3. RQ3. Proposed engines scalability. 

Research Question 3 Are the adaptation engines scalable? What
cenarios could increase their energy consumption? 

Motivation Applicable scenarios of our reconfiguration engines are
ery diverse, so it is impossible to evaluate all of them using single apps.
here are some critical points, like the number of adaptable classes,
daptation alternatives or adaptation rules that can increase the energy
onsumption of the adaptation engines. In order to study these aspects,
e evaluate the viability of using our solutions in different scenarios. 

Experiments Each adaptation system has different critical points
hat could increase its energy cost (e.g., number of adaptable classes,
daptation alternatives, adaptation rules, methods, etc.), reducing the
enefit obtained in applications’ energy consumption. To evaluate the
calability of our proposal, we evaluate the energy consumption of our
daptation engines when the number of elements managed by adapta-
ion engine vary. To achieve that, we provide a set of benchmark ap-
lications 7 (according to the AE being evaluated) that provide a user
nterface to configure the number of elements managed by the adap-
ation mechanisms. For solutions based on dynamic proxies (AE1 and
E2), the benchmark application allows the configuration of the num-
er of adaptable classes, adaptation rules and adaptation alternatives
ecause the adaptation is performed at runtime. For Xposed-based solu-
ions (AE3 and AE4), the benchmark application configures the number
f functionalities (methods) adapted by the framework because adapta-
ions are done at load-time and no additional energy cost is required at
untime to perform the adaptation. All of them allow the generation of
andom user behaviors and are based on our first scenario, simplifying
t in order to isolate the overhead caused by our adaptation engines,
s much as possible. In any case, the experiments depend on the mobile
evices’ capabilities because of the hardware differences and limitations
etween devices. 

Analysis A comparison between the averages of the energy con-
umption measurements of each configuration gives us information
bout the scalability and behavior of the adaptation engines. We use
 graphical representation of the energy consumption averages to show
he results. 

Findings Number of adaptable classes Fig. 9 shows the result of in-
reasing the number of adaptable and instantiated classes managed by
7 Benchmark applications available at https://github.com/angelcvx/ 
enchmarks-AE . 

s  

a  

p  

1

he application up to 40 (more detailed information at Table 1 ). To do
his, the number of monitors and adaptable classes increases in a 1 to 1
elation. In the case of 40 adaptable classes managed by the application,
here are 40 monitors instantiated to control the user behavior with the
pplication. It is observed that the application energy consumption is
arely increased. In our case, there is no increase in the energy con-
umption in the LG Nexus 5 device for the AE1 solution. In the case
f adaptation engine AE2 (External Proxy), loading 15 external classes
upposes around 1 Joule of overhead in the energy consumption of the
pplication. In the Samsung Galaxy Nexus, 15 adaptable classes sup-
ose an increment of around 1 Joule for the AE1 (Internal Proxy) and
.5 Joules for the AE2 (External Proxy). 

https://github.com/angelcvx/Benchmarks-AE


Table 1

Energy consumption in relation to the number of adaptable classes. 

AE1 AE2

N ∘ of adaptable classes Mean (J) Std Median (J) Duration (s) Mean (J) Std Median (J) Duration (s)

Samsung

Galaxy Nexus

10 32.6 0.6 32.6 19.4 34.0 0.6 33.9 20.0

25 33.5 0.4 33.6 19.7 35.5 0.8 35.5 20.5

40 34.6 0.6 34.5 20.2 37.1 0.6 37.0 21.1

LG Nexus 5 10 43.6 2.9 45.0 18.8 43.3 1.5 43.6 19.3

25 43.0 1.6 42.9 18.8 44.4 1.1 44.6 20.0

40 42.8 2.0 43.1 18.8 45.1 1.0 45.3 20.7

Fig. 10. Energy consumption in relation to the number of adaptation alterna- 
tives. 
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Fig. 11. Energy consumption in relation to the number of adaptation rules. 
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Number of adaptation alternatives The number of adaptation alterna-
ives may affect the application energy consumption. This number will
epend on the specific application size. This experiment is intended to
how whether or not is possible to include our adaptation engine in an
pplication with a high degree of variability. 

The results show that in the case of the External Proxy solution
AE2), loading and managing a higher number of adaptation alterna-
ives does not increase the energy consumption to a high degree (see
ig. 10 and Table 2 ). The number of classes to be loaded externally is
imited by the device performance. In our case, this number is limited
o 500 for Galaxy Nexus and to 1000 for the LG Nexus 5 device. In the
ase of the Internal Proxy solution (AE1), we even reach 1000 classes
ithout a significant increase in the energy consumption. The results
lso show that the number of adaptation alternatives to be managed by
he solutions is not a handicap. Nevertheless, the Internal Proxy solution
llows the management of a higher number of adaptation alternatives
ithout a negative impact on the applications’ energy consumption. 

Number of adaptation rules A critical point of a context-aware engine
s the number of adaptation rules. This number is conditioned by the
umber of different configurations that an application can have. Fig. 11
nd Table 3 show the energy consumption of the solutions based on
nternal Proxy (AE1) and External Proxy (AE2) in relation to the num-
er of adaptation rules they contain. It is observed that with more than
000 adaptation rules, the system hardly increases its energy consump-
ion. This number means that an application is checking 1000 different
spects to adapt itself to the context. 

Number of methods changed in the same class with Xposed This test eval-
ates the number of methods modified in the same class by one Xposed
odule class. This analysis gives us information about the Xposed frame-
ork energy consumption associated with the number of functional-

ties (methods) changed. The number of adapted methods from the
ame Xposed module class was increased up to 32 without resulting
n an increase in the application’s energy consumption ( Fig. 12 and
able 4 ). 

.3. Threats to validity 

This section presents the threats to validity of the evaluation. The
our threats are conclusion, internal, construct, and external valid-
ty [44] . 



Table 2

Energy consumption in relation to the number of adaptation alternatives. 

AE1 AE2

N ∘ of adaptation alternatives Mean (J) Std Median (J) Duration (s) Mean (J) Std Median (J) Duration (s)

Samsung

Galaxy Nexus

10 35.2 0.9 35.0 19.3 37.6 0.8 37.6 20.6

100 34.9 0.9 35.0 19.3 38.8 0.9 39.0 22.3

500 - - - - 48.2 0.9 48.1 29.5

1000 33.4 0.9 33.3 19.7 - - - -

LG Nexus 5 10 42.9 2.3 42.4 18.7 43.1 1.2 43.3 18.9

100 42.7 0.9 42.5 18.5 50.5 1.0 50.4 22.2

500 - - - - 89.2 1.6 89.4 35.3

1000 44.0 0.8 44.0 18.6 133.9 7.8 136.6 60.6

Table 3

Energy consumption in relation to the number of adaptation rules. 

AE1 AE2

N ∘ of adaptation rules Mean (J) Std Median (J) Duration (s) Mean (J) Std Median (J) Duration (s)

Samsung

Galaxy Nexus

100 32.0 0.7 32.1 19.7 36.0 0.8 36.1 19.7

1000 33.4 1.6 33.3 19.6 35.8 0.8 36.0 19.6

10,000 48.7 6.0 49.0 26.2 50.8 4.8 53.0 26.2

50,000 172.9 5.9 172.3 97.7 171.5 5.6 172.1 97.2

LG Nexus 5 100 44.6 0.9 44.6 18.7 45.6 1.2 45.6 18.9

1000 45.2 1.2 45.4 18.9 45.4 2.6 46.0 18.9

10,000 63.6 1.2 63.7 25.6 65.4 1.0 65.5 26.0

50,000 143.3 1.6 143.0 63.9 143.5 2.0 143.5 63.9

100,000 237.7 3.6 238.5 128.0 269.0 8.3 270.0 156.3

Table 4

Energy consumption in relation to the number of adapted methods by Xposed. 

N ∘ of Xposed methods Mean (J) Std Median (J) Duration (s)

Samsung

Galaxy

Nexus

4 35.0 0.8 34.8 19.3

8 34.2 1.1 34.1 19.0

16 34.6 1.2 34.6 19.6

32 35.0 1.6 34.6 19.3

LG Nexus 5 4 43.3 0.9 43.4 18.9

8 42.9 1.3 42.7 18.8

16 41.9 2.0 42.2 18.6

32 42.4 0.6 42.5 18.5

Fig. 12. Energy consumption in relation to the number methods changed by 
Xposed. 
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.3.1. Conclusion validity 

To evaluate the solutions presented, we have used two measurement
ools: GreenScaler and Trepn Profiler (see Section 5.1.2 ). GreenScaler
as been specifically designed for Samsung Galaxy devices. Trepn Pro-
ler has been designed by Qualcomm, and therefore works better on
evices with Qualcomm Snapdragon processors. The mobiles used here
ave been specifically chosen to provide reliable results with these mea-
urement tools, and are accepted by the community as devices that re-
ort accurate energy consumption results. In any case, the tools only
ive us estimations of energy consumption, and to obtain more precise
easurements we need to use hardware-based tools. Notwithstanding,

lthough we performed only 20 measurements for each experiment and
 greater number of measurements would improve the accuracy of the
esults, we are more concerned with comparing the results from differ-
nt solutions than in the exact values of energy consumption. 

.3.2. Internal validity 

In mobile devices, replication of experiments under the same condi-
ions is not straightforward. Several system processes and applications
an be running in the background, making use of different resources. So,
he energy consumption of the application to be tested cannot be totally
solated from the rest of the system processes. To mitigate the uncon-
rolled factors, we undertook the measurements with the devices in the
ame conditions as explained in Section 5.1.3 . Only the application to
e tested was in the foreground during the experiment. In addition, the
ight mode was enabled, and application updates were disabled. 
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.3.3. Construct validity 

In order to compare the solutions presented with each other, we de-
ned and replicated the same user behavior for all experiments. Nor-
ally, a user’s interactions with an application cannot be predicted.
 set of random interactions with the application, emulating different
sers’ interactions could also be applied. 

.3.4. External validity 

We used two mobile phones with different software and hardware
rchitectures to undertake the measurements. Although we observe the
ame tendency in both mobiles, the results cannot be generalized from
hese devices to others. The mobiles chosen confirm that our proposal
orks in Dalvik and ART Android virtual machines. 

We have used two representative scenarios which are followed by
undreds of applications. However, there are other types of applications,
hich could be interesting to evaluate and dynamically adapt. 

. Related work

This section discusses the related work on dynamic reconfiguration
nd energy optimization in mobile devices, and concretely in Android. 

In mobile applications, despite the fact that adaptations are fre-
uently driven by non-functional requirements such as improving
he application’s performance [10,12,15],  increasing the failure toler
nce [15],  or improving the user experience [3,32,48],  among oth
rs; reducing the energy consumption is the most important objec-
ive [3,10,45,46,49,53],  as the most recent energy optimization ap
roaches focus on [10,50,53,54].  

A dynamic adaptation system is characterized by different dimen-
ions or characteristics such as the primary reconfiguration goal (e.g.,
mproving performance, energy saving), the type of adaptation engine
application-oriented vs system-oriented) [10,13],  or the context tha
s monitored (e.g., device status, environment, user’s interactions) [3].
ere we have classified publications by their adaptation technique ac-
ording to the different approaches introduced in Section 2.  Table 5
ummarizes and compares the main characteristics of existing papers. 

First, some approaches have investigated the reconfiguration based
n code offloading [12,45,46,48,53],  which delegates complex decision
aking and reconfiguration management to a server. For instance, MAs-
OT [12] uses static and dynamic Decision Networks (DNs) to determine
he best configuration. Code offloading is usually applied in combination
ith other approaches such as dynamic proxies [46] or the use of the
SGi platform [12,45,48].  All these approaches [12,45,46,48,53] have

n common that they monitor the device status (e.g., battery level, CPU
requency) and the environment (e.g., location, noise level, lighting),
ut they do not consider the user’s interactions with the application.
or instance, Dynamix [45] uses OSGi where context information is
rovided using modules created by the community and accessible to the
ser, who decides which of them he/she wants to use. Dynamix provides
 configurable context firewall that allows managing the contextual in-
ormation available to each application. Another interesting approach
hat runs on top of the OSGi platform is the MUSIC middleware of Rou-
oy et al. [48].  In MUSIC, a utility function, which refers to the user’
verall satisfaction, is defined to decide which is the most appropriate
onfiguration for the current execution context (e.g., increase the sound
evel if the user is in a noisy place). MUSIC takes into account a prede-
ned user profile with the user’s preferences, but it does not consider
he user’s behavior data as part of the monitored context. 

There are other adaptation frameworks specific to Android, such
s the Xposed framework used in this paper, morphone.OS [3] , ART-
roid [19] , or CRITiCAL [32] . Nacci et al. define morphone.OS [3] , a

ramework for monitoring the context of an Android smartphone. They
efine three types of context aspects: environment (ambient light, noise,
tc), user behavior and the mobile (battery status, CPU frequency, etc).
n [3] , the authors distinguish between configuration changes and ap-
lication changes. However, they do not determine how these changes
re carried out. Our approach takes into account the environment, de-
ice and user context, although in this paper we have focused on the
ser’s interactions. ARTDroid is a framework for hooking virtual-method
alls like Xposed, but ARTDroid is oriented towards directly modifying
he app’s virtual-memory tampering with ART internal representation
f Java classes and methods, instead of code modifications of both ap-
lications and system. However, as Xposed, ARTDroid requires the new
unctionality to be introduced at load-time, so changes need to be prede-
ned before the execution of the application. CRITiCAL [32] is based on
 model-driven middleware that includes a domain specific language for
odeling the contextual information and adaptation rules, transforming

hem into executable code. The middleware provides the code required
o deal with sensors and to react and execute functionality according to
ontextual rules. 

Specific programming techniques have been used to reconfigure
obile applications, as for example reflection [6] , polymorphic meth-

ds [10] , dynamic proxies [46] , Aspect-Oriented Programming [47] ,
nd Context-Oriented Programming [15] . For example, Casquina et al.
ropose Cosmapek [6] , an adaptive deployment infrastructure to adapt
he applications, using reflection, in response to errors that may occur
n the context in which the application is located. CAreDroid is a frame-
ork [10] in which context-aware methods are defined in application

ource code, the mapping of methods to context is defined in config-
ration files and context-monitoring and method replacement are per-
ormed at runtime. WeaveDroid [47] and JCop [15] are extensions of
ava that apply, respectively, Aspect-Oriented Programming (AOP) and
ontext-Oriented Programming (COP) to the Android environment. A
isadvantage of these approaches [6,10,15,46,47] is that they have to
e integrated as part of the Dalvik VM, since they are relatively old ap-
roaches (prior to the ART VM release in 2015–2016). 

Multiple ad-hoc solutions have also been proposed for reconfiguring
ndroid applications [3,10,49,53] . For instance, Pascual et al. [49] de-
ne MODAGAME, a multi-objective reconfiguration approach that uses
enetic algorithms. In this case, the algorithms modify the configura-
ion of the device, such as the network connectivity, Bluetooth status
r sound quality, but there is no code change in the applications them-
elves.GEMMA [53] also uses genetic algorithms in combination with
ower models and color theory to optimize the colors used by Android
pplications, and thereby, reduce the energy consumption of the dis-
lays. As shown in Table 5 , our approach uses different adaptation meth-
ds: virtual-method hooking, and dynamic proxies, to modify the appli-
ation functionality at loadtime and runtime, respectively. Moreover,
ur solution can also be used to modify the operating system’s resources
y encoding the operating system calls in polymorphic methods. 

A general disadvantage of adaptation engines for Android is that they
re highly dependent on the Android version. Most of the existing ap-
roaches are tested only in one of Android’s runtime environments such
s Dalvik VM [3,6,10,15,32,45,46,48] , and the adaptation engine needs
o be modified to be applied over a more recent execution environment
e.g., ART). Our adaptation engines have been tested in both Dalvik and
RT VMs. In fact, one of our solutions, based on dynamic proxies, does
ot depend on the Android environment, and thus, it can be applied to
ther mobile operating systems. 

Recently, current approaches [40,50–52,54] have tried to optimize
he energy consumption of the mobile applications following a refactor-
ng approach, without an explicit dynamic reconfiguration of the appli-
ation. In contrast to most of the classical reconfiguration approaches
hat adapt the application at runtime, these approaches refactor the code
f the application at compile time.For example, Banerjee et al. [50] they
se a refactoring technique that relies on a set of energy-efficiency
uidelines to encode the optimal usage of energy-intensive hardware
esources in an Android application, reducing the energy consumption
f the applications by between 3% to 29%. 

Refactoring can be applied to different level of abstraction: from
ow level implementation details [51] , to the design level [52,54] or to
he architectural level [40] . For instance, Sahin et al. [51] explore the



Table 5

Comparison of dynamic reconfiguration and energy optimization approaches in Android mobile devices. 

Approach Year Adaptation approach Adaptation type a Monitoring context b Reconfiguration goal Runtime environment Dynamicity

Dynamix [45] 2011 OSGi platform APP DEV,ENV Energy saving Dalvik runtime

JCop [15] 2011 Context-Oriented

Programming

APP DEV Performance,

failure tolerance

Dalvik compilation

Artail et al. [46] 2012 Dynamic proxies, code

offloading

APP - Energy saving Dalvik runtime

WeaveDroid [47] 2012 Aspect-Oriented

Programming

APP - - Dalvik compilation

MUSIC [48] 2013 OSGi platform SYS DEV,ENV User experience Dalvik runtime

morphone.OS [3] 2013 Ad-hoc solution

(custom framework)

SYS,APP DEV Energy saving, user

experience

Dalvik compilation

CRITiCAL [32] 2015 Virtual-method

hooking

APP DEV,ENV User experience Dalvik runtime

MODAGAME [49] 2015 Ad-hoc solution

(genetic algorithms)

APP DEV Energy saving Dalvik, ART runtime

MAsCOT [12] 2016 OSGi platform, code

offloading

APP DEV Performance Dalvik, ART runtime

ARTDroid [19] 2016 Virtual-method

hooking

APP USER Malware analysis,

policy enforcement

ART loading

Cosmapek [6] 2016 Java reflection APP USER Failure tolerance Dalvik runtime

CAreDroid [10] 2016 Ad-hoc solution

(polymorphic

methods)

SYS,APP DEV,ENV, USER Reducing SLOC,

execution time,

energy saving

Dalvik runtime

Banerjee

et al. [50]

2016 Ad-hoc solution

(refactoring

framework)

APP DEV,USER Energy saving - compilation

Sahin et al. [51] 2016 Refactoring

(performance tips)

APP - Energy saving Dalvik, ART compilation

Hasan et al. [52] 2016 Refactoring (Java

collections)

APP - Energy saving Dalvik compilation

GEMMA [53] 2017 Ad-hoc solution

(genetic algorithms,

code offloading)

APP DEV Energy saving,

increasing contrast,

improving colors

- loading

EARMO [54] 2018 Ad-hoc solution

(genetic algorithms)

APP DEV,USER Energy saving,

refactoring

recommendations

Dalvik, ART compilation

GreenBundle [40] 2019 Patterns refactoring

(bundling and

dropping events)

APP - Energy saving Dalvik, ART compilation

Cruz et al. [55] 2019 Refactoring SYS,APP DEV,ENV, USER Energy saving - compilation,

runtime

Our approach 2019 Dynamic proxies,

Virtual-method

hooking

SYS,APP DEV,ENV, USER Energy saving Dalvik, ART loading,

runtime

a SYS: system-oriented (hardware resources: display, network, sensors,...). APP: application-oriented (software resources: functionality, code) [10,13] . 
b DEV: device status (battery level, CPU frequency). ENV: environment (location, noise level, lighting,...). USER: user behavior (interactions, user data,...) [3] . 
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nergy impacts of performance tips, and they demonstrate that those
hanges in the code are unlikely to impact the energy usage in a sta-
istically significant manner. However, Hasan et al. [52] measure the
nergy consumption of the Java collections classes by creating energy
rofiles, and demonstrate that choosing an energy efficient collection
an improve energy consumption of Android application by as much
s 38%. Similar analysis of energy impact have been performed over
ther specific functionalities such as logging [39] , compression [56] , the
TTP protocol [57] , testing frameworks [58] , or the operationalization
f quality attributes [7] . Raising the abstraction level of the refactoring,
orales et al. [54] analyze the impact of anti-patterns on the design

f Android applications, and propose EARMO, an anti-pattern correc-
ion approach based on evolutionary multi-objective techniques that ac-
ounts for energy consumption when refactoring mobile anti-patterns.
howdhury et al. presents GreenBundle [40] , an empirical study on the
nergy impact of bundling and dropping strategies applied over archi-
ectural patterns. They reduce the energy consumption of applications
y 30% when refactoring classical Model-View-Controller (MVC) archi-
ectures into bundled Model-View-Presenter (MVP) architectures. One
dvantage of the refactoring approaches is that they can be applied in-
ependently of the execution environment or Android version because
hey do not introduce new technology. Despite the great improvement in
nergy efficiency shown by the refactoring techniques that can improve
he energy consumption up to 30% [40,50] , a disadvantage of these
pproaches is that they cannot consider the dynamic behaviour since
hey are applied at compile time, and thus they waste energy saving
pportunities derived by a certain user behaviour with the application,
omething that our approach does consider. 

Finally, Cruz et al. [55] identify a catalog of design practices to im-
rove the energy efficiency of mobile applications where some of the
roposed refactoring can be applied at runtime and affect both the ap-
lication and the system. For example, they propose to increasing the
etry interval delay when the connection to a resource fails a number
f times; activate the power save mode; or using WiFi over Cellular,
mong other solutions. However, authors have not yet implemented an
utomated refactoring tool for these patterns. 

. Conclusions and future work

We have proposed four adaptation engines for dynamically adapting
ndroid applications with the goal of decreasing the energy consump-

ion based on users’ interactions with the application. 
Through our results, we have demonstrated that the proposed adap-

ation engines do not increase the energy consumption in relation to the
enefits of the adaptation, which can reduce the energy consumption by
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p to 20% in applications that follow our scenarios. Additionally, our
pproach is compatible with all current Android versions. 

As for future work, we will consider the evaluation and comparison
f other existing adaptation engines such as the OSGi platform, Aspect-
riented Programming, or Context-Oriented Programming, as the over-
ead in energy consumption introduced by them is unknown. 
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