Context-aware energy-efficient applications for cyber-physical

systems

Jose-Miguel Horcas *, Ménica Pinto, Lidia Fuentes

Universidad de Mdlaga, AndalucAa Tech, Spain

Keywords:

Energy efficient cyber-physical systems
software sustainability

self-adaptive greenability

Dynamic Software Product Lines

ABSTRACT

Software systems have a strong impact on the energy consumption of the hardware they use. This is es-
pecially important for cyber-physical systems where power consumption strongly influences the battery
life. For this reason, software developers should be more aware of the energy consumed by their sys-
tems. Moreover, software systems should be developed to adapt their behavior to minimize the energy
consumed during their execution. This can be done by monitoring the usage context of the system and
having runtime support to react to those changes that impact the energy footprint negatively. Although
both the hardware and the software parts of cyber-physical systems can be adapted to reduce its energy
consumption, this paper focuses on software adaptation. Concretely, the paper illustrates how to address
the problem of developing context-aware energy-efficient applications using a Green Eco-Assistant that
makes use of advanced software engineering methods, such as Dynamic Software Product Lines and Sep-
aration of Concerns. The main steps of our approach are illustrated by applying them to a cyber-physical

system case study.

1. Introduction

The percentage of global emissions attributable to Information
Systems is expected to further increase in the coming years, due
to the proliferation of Internet-connected devices omnipresent in
our daily lives [1]. Software never consumes energy in itself, rather
its design, implementation and usage context strongly affect the
energy consumed by the hardware [2,3]. So developers should be
more aware of the energy consumed by these systems, and try to
build energy-efficient applications that self-adapt their behavior to
minimize the power consumed during their execution, i.e., develop
self-greening applications.

Regrettably, there is a narrow view of developers and users
about their responsibility for the energy consumed during appli-
cation execution. They rarely address energy efficiency as some
recent studies show [4,5]. Moreover, existing experimental re-
sults about how to optimize energy consumption at design
time [3,6,7] were not conceived as reusable solutions of runtime
energy optimizations. Therefore, although software energy effi-
ciency is becoming increasingly important, development processes
of self-greening systems supported by tools are still in their in-
fancy.

* Corresponding author. Tel.: +34625257121.
E-mail addresses: horcas@lcc.uma.es (J.-M. Horcas), pinto@lcc.uma.es (M. Pinto),
Iff@lcc.uma.es (L. Fuentes).

The energy consumption of an application depends on several
factors, such as the hardware resources, operating system, input
parameters, and workload [6]. Several works identify which parts
of an application’s code influence the energy consumption, for ex-
ample encryption and compression algorithms, communication, or
storage [8,9]. Indeed, once the application is deployed, these ap-
proaches evidence the strong influence that the usage context has
on the energy consumed by certain functionalities [10]. It depends,
for example, on the amount of data the system needs to store,
transfer or query, or on how the user interacts with the system.
This means that self-greening applications should not only be pre-
pared at design time to be energy-efficient; they also need to be
context sensitive in order to adapt their behavior to minimize the
energy consumed during their execution [4,5].

In our approach, the usage context is defined in the energy
scope as all aspects that vary under different usage conditions of a
functionality and affect product performance for the energy-efficiency
attribute. For example, the amount of data to be exchanged (e.g.,
the size of the objects to be sent from one device to another), the
communication frequency between the devices, or the communica-
tion protocol (e.g., WiFi, Bluetooth), are all aspects that affect the
energy consumption of a specific functionality. Identifying the us-
age context’s variables for each functionality and analyzing how
they affect the energy consumption is a complex task, since the
usage context has a high degree of variability. For instance, each
contextual variable (e.g., size of the object to be sent) can take

https://doi.org/10.1016/j.adhoc.2018.08.004
http://www.ScienceDirect.com
http://www.elsevier.com/locate/adhoc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.adhoc.2018.08.004&domain=pdf
mailto:horcas@lcc.uma.es
mailto:pinto@lcc.uma.es
mailto:lff@lcc.uma.es
https://doi.org/10.1016/j.adhoc.2018.08.004

different values (e.g., between 1 and 1000 MBytes) based on the
usage of the application.

This paper shows how advanced software engineering methods,
such as Dynamic Software Product Lines (DSPLs) [11] and Sepa-
ration of Concerns (SoC) [12], can help to develop self-greening
energy-efficient applications for cyber-physical systems. Concretely,
we present a Green Eco-Assistant for the development of context-
aware energy-efficient applications. We propose to collect energy-
related information at design time and use it at runtime to adapt
the application behavior to the real energy consumption. Our ap-
proach is illustrated through a running example in the domain of
Intelligent Transportation Cyber-Physical Systems (CPS). Although
in this example we focus on the monitoring, storing, communi-
cation and compression concerns, the Green Eco-Assistant could
include any other large consumer concern where several design
and implementation solutions can be identified. We demonstrate
that there are scenarios in which CPS applications can reduce their
energy-consumption up to 70%, depending on the current usage
context.

In summary, this paper renders the following contributions:

- A software engineering approach that assists developers during
the design and development of context-aware energy-efficient
applications.

A process for modeling the usage context and the configurable
implementations of recurrent functionalities that can affect the
energy efficiency of the applications. This includes a generic
schema or template to model the variability of the usage con-
text and the configurable parameters.

A non-intrusive design and implementation solution that en-
dows applications with self-greening capacities at a low energy
cost.

After this introduction, Section 2 discusses the background and
Section 3 the related work. Section 4 presents the CPS case study
used to illustrate our approach. Then, Section 5 presents the main
challenges and an overview of how our approach addresses these
challenges. Sections 6, 7, and 8 give the details of applying our ap-
proach to the CPS case study. Section 9 evaluates our approach and
discusses the threats to validity. Finally, Section 10 concludes the

paper.
2. Background

This section briefly presents background information about Dy-
namic Software Product Lines and Separation of Concerns.

2.1. Dynamic Software Product Lines

A Software Product Line (SPL) is “a set of software-intensive sys-
tems that share a common, managed set of features satisfying the
specific needs of a particular market segment or mission and that
are developed from a common set of core assets in a prescribed
way” [13]. A feature is a characteristic or end-user-visible behavior
of a software system. Features are used in SPL engineering to spec-
ify and documenting commonalities and differences of the prod-
ucts, and to guide structure, reuse, and variation across all phases
of the software life cycle. A Dynamic Software Product Line (DSPL)
brings this engineering process to runtime, where a single system
is able to adapt its behavior at runtime [11].

Variability modeling is the main activity of both SPLs and DSPLs,
where the common and variable features of the system are speci-
fied in a variability model or feature model. Then, the SPL engineer-
ing process generates products by selecting specific characteristics
specified in the variability model. In a DSPL, the variability model
describes the potential range of variations that can be produced at
runtime for a single system — i.e., the dynamic variation points.

Therefore, the software architecture supports all possible adapta-
tions defined by the set of dynamic variation points [11].

2.2. Separation of Concerns and Aspect-Orientation

Aspect-Oriented Software Development (AOSD)!~[14] promotes
the principle of separation of concerns throughout all the phases
of the software life cycle, by separating crosscutting concerns. In S.
Apel el al, Crosscutting is a structural relationship between the repre-
sentation of two concerns. Since crosscutting concerns are normally
hard to find, understand and work with, separating and specifying
them as aspects enhances the reconfiguration management of the
system.

Several techniques (e.g., design patterns, mixing classes) have
been developed for dealing with the problem of modularization of
crosscutting concerns. One of the most advanced and sophisticated
technique is Aspect-Oriented Programming (AOP) [15]. In AOP, im-
plementation of crosscutting concerns are encapsulated in a new
entity named aspect, and the code of the base application contains
only the main functionality of the system excluding any reference
to the crosscutting concerns. Modeling of crosscutting concerns as
a separate entity, such as an aspect, in which its implementation
appears encapsulated only in a part of the program, smooths cou-
pling between modules and increases cohesion of each of them.
Moreover, as a consequence of low coupling and a high cohesion,
the maintainability of the global system improves due to the fact
that changes in a module affect only that module; and thus, this
facilitates the reconfiguration of the system. Also the reusability
improves due to both base code and aspects that can be reused
easier in different systems. There are a lot of crosscutting concerns
that are usually useful to treat separately and so can be modeled
as examples of aspects: logging, authentication, trace, coordination,
synchronization, security, persistence, fail-over, error detection and
correction, memory management, internationalization, localization,
monitoring, data validation, transaction processing, caching, etc.

3. Related Work

The software developer community is starting to pay more and
more attention to the energy efficiency attribute. Here we sum-
marize some representative works (Table 1). For each considered
approach, we indicate the type of study, the main output, and the
knowledge that is derived from each work.

Empirical studies. Recent empirical studies [4,5] made at dif-
ferent stages of the software life cycle show that software devel-
opers do not have enough knowledge about how to reduce the en-
ergy consumption of their software solutions. Thus, the majority
of developers are not aware about how much energy their appli-
cations will consume and so, they rarely address energy efficiency.
Even practitioners that have experience with green software engi-
neering have significant misconceptions about how to reduce en-
ergy consumption [5]. These studies also evidence the lack of tool
support of green computing, not only at the code level, but also at
higher abstraction levels — i.e., requirements and software archi-
tecture levels [16].

Experimental works at code level. There are plenty of exper-
imental approaches that try to identify what parts of an applica-
tion influence more in the total energy footprint of an application
— i.e., to identify the energy hotspots [7,17,18]. These works pro-
pose to minimize energy consumption by focusing on code level
optimizations. A common goal to all of them is the definition of
energy profiles for different energy consuming concerns. They usu-
ally focus on one particular energy consuming concern and report
the energy consumption of different implementations [10].

T http://www.aosd.net/

http://www.aosd.net/

Table 1
Comparison of energy-aware approaches.

Type Appr. Output Knowledge
Empirical Studies [4] Qualitative study exploring the knowledge of Green software practitioners care and think about
practitioners interested on energy consumption from energy; however, they are not as successful as
different perspectives (requirements, design and expected because they lack necessary information and
construction). tool support.
[5] Qualitative study exploring the knowledge of Programmers rarely address energy. There are
practitioners about energy consumption. important misconceptions about software energy
consumption.
[16] Qualitative study exploring requirements engineering Lack of methodological support; lack of management
practitioners’ behavior towards sustainability. support; requirements trade-off and risks.
Experimental works [7] Empirical evaluation of 21 design patterns. Compiler The energy consumption of design patterns highly
transformations to detect and transform patterns depend on the running environment; several studies
during compilation for better energy efficiency with no identified both patterns and anti-patterns regarding
impact on coding practices. energy consumption.
[10] Energy profiles of operations on Java Collections. It claims that a per-method analysis of energy
consumption must be made.
[17] Quantitative information about the energy More than 60% of energy consumed in idle states; the
consumption of 405 Android apps. network is the most energy consuming component;
developers should focus on code optimization.
[18] Define the SEED framework for the automatic Support is needed to integrate the insights gained by

Reasoning about energy efficiency [2]

optimization of energy usage of applications by making
code level changes.

Architecture Description Language and tool set with
support for the specification, calculation and analysis
of energy consumption.

existing experimental studies to help identifying the
more energy-efficient alternatives.

At the architectural level the energy consumption can
be estimated based on resource consumption (CPU,
HDD, etc.) and usage models.

[19] Plug-in integrated with the AADL tool to support the It focuses in the energy overhead of inter-process
specification and analysis of energy consumption. communication, an important service of embedded
systems.
[20] Identify energy efficiency as a quality attribute and Energy efficiency addressed from a software
define green architectural tactics for cloud applications. architecture perspective. Software architects need
Identify relationships between different architectural reusable tactics for considering energy efficiency in
tactics. their application designs.
Energy-based reconfiguration [9] Maintain the energy consumption of the system within Monitor the consumption of previously identified
reasonable levels. energy hotspots at runtime.
[21] Build real-time profiles of energy consumption. Monitor and react to changes to update the behavior of
applications to their “energy usage profile”.
[22] A Dynamically Reconfigurable Energy Aware Modular Dynamic reconfiguration of energy aware software in
Software (DREAMS) architecture. sensor networks.
Energy-aware CPSs [23] A green energy powered CPS architecture for fog Formulate a energy-efficient CPS service composition
computing. problem and propose a heuristic algorithm.
[24] Context-aware sensing and collection data scheme Increase lifetime and data collection accuracy, and

with energy efficient in CPS.

decreasing data transmission in CPS.

Reasoning about energy efficiency at design level. There are
other works that demonstrate that changes at the design level tend
to have a larger impact in energy consumption [3,6]. These works
consider energy efficiency as a new quality attribute [6]. What is
important at this level is to be able to compare the energy con-
sumed by different design alternatives, and also to be able to per-
form a trade-off between energy efficiency and other quality at-
tributes such as performance. There are some relevant approaches
that focus on the design of catalogs of energy-aware design pat-
terns [7], as well as new architecture description languages that
incorporate an energy profile and analysis support [2,6]. The ex-
perimental part of these works consists of checking at the code
level the effects of applying specific design or architectural pat-
terns [6]. Also, some works [2,19] provide support to specify the
relationships between components modeling different energy con-
cerns. These relationships can then be used during the analysis
phase to see how a energy concern (e.g., compression) can influ-
ence in other energy concerns (e.g., communication or data stor-
age). But, the identification and specification of dependencies be-
tween energy concerns has to be done manually by the software
engineer.

Energy-based reconfiguration at runtime level. Here we focus
on proposals that are able to monitor changes on the user behav-
ioral patterns and react to the effects of those changes on the con-
sumption of energy. They should also be able to update the behav-
ior of applications to their “energy usage profile”. The final goal is
to maintain the energy consumption of the software system within

reasonable levels. Some proposals monitor the energy consump-
tion of previously identified energy hotspots at runtime [9], and
others build real-time profiles of energy consumption [21]. More-
over, there are examples of the dynamic reconfiguration of energy
aware software in different domains. For instance, DREAMS [22] is
a Dynamically Reconfigurable Energy Aware Modular Software ar-
chitecture for sensor networks. However, none of these work de-
fines a generic and reusable approach as we make.

Energy-aware cyber-physical systems. Energy efficiency is a
key factor in CPS since it determines the autonomy of the device.
However, few attention is paid to energy consumption of CPS at
the software level [23,24]. For instance, in [23] the authors pro-
pose a green energy powered CPS architecture based on a service
composition in the context of fog computing. But the usage con-
text and the corresponding reconfiguration of the deployed func-
tionality are omitted. In [24], the context is considered to increase
the lifetime by reducing the amount of data transmission in CPS
in the cloud. However, they solely focus on communication, while
our approach is more generic suitable for any energy consuming
concern.

Summarizing, there is a lack of methodological and tool support
that makes the reuse of the energy information collected by exist-
ing experimental works highly difficult. Moreover, the large vari-
ability of design and implementation solutions requires the use of
advanced software engineering methods in order to reason about
energy efficiency. Finally, despite the importance of controlling the
energy consumption of battery-powered devices in CPSs, there are

not too many works covering this topic from a software perspec-
tive in the context of CPSs.

4. Intelligent Transportation CPS case study

Our CPS is a road unit consisting of a Raspberry Pi (RPi) and
multiple sensors deployed in a highway that monitor contextual
information about the traffic, road status, weather, etc. The RPi col-
lects all that information, generates a file and sends it to a cloud
server to be processed. The functionality of the road unit can be
highly configured and the question is whether these changes af-
fect the energy consumption of the CPS.

For instance, we have identified several functionalities as en-
ergy consuming concerns that will influence more or less to the
energy consumption, according to how some of their parameters
vary. Additionally, developers can use different software solutions
to implement these functionalities (e.g. different compression al-
gorithms) and the energy consumption will vary depending on the
selected one. As an example, the road unit can be configured to
monitor a variable set of parameters every second (from 8 up to
128 parameters), so 86,400 samples per parameter are collected
by the end of the day. The size of the generated file depends on
the number of parameters to be monitored, e.g, monitoring 8 pa-
rameters generates a 10 MB file, while monitoring 128 parameters
generates a 160 MB file. The communication with the server can
also be configured with different frequencies. For instance, the file
can be sent every day, or can be archived to be sent once a week.
Due to the space limitation (the maximum storage capacity of the
RPi is 512 MB), the size of the managed files can be reduced using
several compression algorithms that are available in the RPi (e.g.,
LZ77, Burrow-Wheeler, LZMA2,...).

Let us suppose that, initially, the road unit has been deployed
with a basic configuration that monitors 16 parameters and gen-
erates a file of 20 MB by the end of the day. This file is archived
daily and it is sent to the server once a week that will generate
some statistics and a report about traffic density at different times
of the day for a week. Before sending the file, it is compressed
by using the LZ77 compression algorithm. Several questions arise
here, as for instance, what is the energy consumption of this system
configuration?, is there any other system configuration with similar
functionality but lower energy consumption?

Moreover, when a context change is detected (e.g., a traffic ac-
cident, rainy days, etc.) the functionality of the road unit should be
dynamically reconfigured to the new context. For example, during
high affluence of traffic (e.g., on summer), the road unit increases
the number of parameters to be monitored up to its maximum
(128). However, what is the impact of this runtime change on the
energy consumption? It is supposed that an increment on the file
size will also increase the energy consumption of the device, but
software developers need evidences of the energy consumption of
their decisions, as well as the possibility of performing a sustain-
ability analysis that helps them to decide among different system
configurations. Using this case study we will illustrate how our ap-
proach helps software developers to answer these questions.

5. The Green Eco-Assistant: Challenges and Overview
This section identifies the main challenges that arise in the de-
velopment of self-adaptive energy-efficient applications and pro-

vides an overview of how our Green Eco-Assistant copes with
these challenges.

5.1. Challenges

Five main challenges have been identified:

Challenge 1 (C1): Empirical studies [4,5] show that software
developers need help to identify runtime energy hotspots. A run-
time energy hotspot is a point in the application that when there
is a considerable increase in power consumption due to a change
in the usage context, it is possible to reduce it by modifying the
application software components that provoke this power rise. Re-
cent studies propose some green computing practices [10], how-
ever developers do not know how to apply them in their develop-
ments. The main conclusion is that software developers need more
precise evidence about how to tackle the energy efficiency prob-
lem, a methodology, and tool support to effectively address soft-
ware sustainability [4,5]. Thus, the first challenge is to provide
the means to identify the runtime energy hotspots. In the con-
text of our CPS case study, our approach will help software devel-
opers to identify monitoring, communication and compression as
runtime energy hotspots.

Challenge 2 (C2): Finding the most energy-efficient solution for
each runtime energy hotspot is not trivial since there is high vari-
ability of components that implement the functionality required by
the hotspot with different energy costs. For example, for the com-
munication energy hotspot, each protocol (e.g., WiFi, Bluetooth)
will consume a different amount of energy depending on the com-
munication frequency and the size of the data to be sent. Thus,
after identifying the energy hotspot, software developers need to
model the energy consuming concerns, being aware of the variabil-
ity of the existing solutions, including the parameters that could
affect the energy expenditure. The energy consuming concerns are
the concerns that model the runtime energy hotspots at design
time (e.g., privacy, caching, etc.). The challenge is to explicitly de-
fine the variability of design solutions that can mitigate the en-
ergy consumption according to current user interaction. Follow-
ing with the case study, the variability of the monitoring, commu-
nication and compression concerns are modeled in the Green Eco-
Assistant, ready to be reused by software developers.

Challenge 3 (C3): The energy consumption highly depends on
several factors, and some of them, such as the usage context, will
vary at runtime. So, the variability of the usage context should
be explicitly modeled and its impact on the power consumption
linked to the different application functionalities. Moreover, the
energy consumption of each variant of the energy hotspots and
their usage context should be provided for application develop-
ers in a format so that they can easily access, compare and an-
alyze its impact at runtime. Thus, the third challenge is to pro-
vide developers with tools that help them making a sensible
eco-efficiency analysis at design time, about the possibilities of
optimizing energy consumption at runtime for a given applica-
tion. In our example, software developers can use our approach to
know the energy consumption of their system initial configuration.
More interesting is the sustainability analysis that can be done to
check if there are other configurations with similar functionality
and lower energy footprint.

Challenge 4 (C4): The eco-efficiency analysis may result in
more than one design solution for a given energy hotspot, each
one fitting a different usage pattern. This means that the appli-
cation needs to be able to react to changes in the usage patterns
at runtime in order to self-adapt to the variant with least energy
expenditure. There are some related papers that perform dynamic
reconfiguration of energy aware software [21,22], but they are do-
main specific and do not provide a generic and reusable approach,
which we consider developers need. So, an important challenge is
to define energy reconfiguration rules to adapt the application
to the varying usage patterns by exploiting the energy saving
scenarios identified in the eco-efficiency analysis. By comparing
different usage contexts and their energy consumption the CPS can
be adapted at runtime not only for the context change identified

Green Eco-Assistant

Modelling Software Energy Consumers

Sustainability Analysis

Runtime | Energy Energy Energy Sustainability
Energy Consuming Efficiency Consumption Analysis @ Self_-
Hotspots Concerns Context 4 /W;;D - —_— g,—eelnmg
(rules
@ » B ob g lailablal S
@ HADAS Green Repository @ @
Design Time
Application
Context-Aware Reconfiguration Configuration Runtime

Modify the selected variants for
the Energy Consuming Concerns

Running ’
onfiguratio

Energy-Efficient
Configuration

@

Application Usage Observation

Changed Value for the Parameters

N7 Affecting the Energy Consumption

Context Change Reaction
Using self-greening rules

Fig. 1. The Green Eco-Assistant approach.

in the system specification, but also to other ones that save energy
without penalizing the system quality of service.

Challenge 5 (C5): The energy reconfiguration rules will drive
the application adaptation at runtime by replacing the modules
that implement the energy consuming concerns with others more
energy efficient for a new execution context. The last challenge is
to provide a non-intrusive design and implementation solution
that endows applications with self-greening capacities at a low
energy cost.

5.2. Overview

This section overviews how the Green Eco-Assistant copes with
the challenges presented. The details are provided in the rest of
the paper. Figure 1 presents the approach, where three main steps
are differentiated. Steps 1 and 2 occur at design time and step 3
at runtime: (1) modeling the software energy consumers; (2) per-
forming the sustainability analysis, and (3) the context-aware re-
configuration at runtime.

During the modeling of the software energy consumers the eco-
assistant copes with Challenges 1 and 2. Learning to recognize en-
ergy hotspots is absolutely essential and helpful in any energy-
aware development process. However, software developers still do
not have the skills to identify these energy hotspots. Addition-
ally, there are not catalogs of runtime energy hotspots, similar
to the existing catalogs of design patterns. Trying to cope with
this shortcoming, and after analyzing several approaches, we can
conclude that many energy hotspots are recurrent, and appear in
the majority of applications [22]. So, our approach helps devel-
opers in this task by providing a list of the most recurrent en-
ergy hotspots. Then, application developers can select those energy
hotspots identified as part of the application’s functionality (e.g.,
compression), and the variants they want to explore (e.g., to com-
press the data file in the CPS device or send it without compres-
sion to the server). This selection is done through a set of forms
provided by the assistant (label 1.1).

The concerns that model the runtime energy hotspots at design
time can be considered as energy consuming concerns (label 1.2),
which could be designed in different ways. For example, there are
different options to store data (in a data structure, cache memory,
etc.), each with a different energy consumption that depends on

some input parameters that can vary at runtime such as the size
or type of data. In addition, they are usually scattered or crosscut
several components (i.e., they are crosscutting concerns) [25], so it
is beneficial to model and implement them independently of the
system'’s functionality, to facilitate their replacement at runtime by
more eco-efficient designs or implementations. Moreover, the en-
ergy consumption of these consuming concerns will depend on the
usage context and, for this reason, the part of the usage context
with an impact on the energy consumption of a concern — i.e.,
the energy-efficiency context” needs to be identified and modeled
(label 1.3). Taking into account all these factors, our approach cal-
culates the energy consumption of all the concern variants (label
1.4). Since these concerns are common to many applications, we
propose storing them in the HADAS Green Repository [26] ready
to be reused (label 1.5).

Challenges 3 and 4 are satisfied by the step 2 (label 2). The key
to the success of self-greening applications is to fully exploit the
energy saving possibilities arising at runtime. So, the main role of
the Green Eco-Assistant is to provide the necessary means to make
a sustainability analysis (label 2.1), at design time, about the pos-
sibilities of optimizing energy consumption at runtime for a given
application. This means that our approach can be used to generate
an initial application configuration that satisfy our energy require-
ments (label 2.2), but also to see whether it is worthwhile specify-
ing a reconfiguration rule to replace, at runtime, a specific concern
implementation with another due to, for instance, a drastic change
in the usage context (label 2.3).

Finally, we cope with challenge 5 in the third step (label 3).
Once the initial system configuration has been deployed, the sys-
tem has to monitor (label 3.1) and reconfigure the current system
(label 3.2). The greatest challenge here is to define a self-greening
mechanism that wastes the least amount of energy. The context-
aware reconfiguration loop is an adaptation of the classic MAPE
(Monitoring, Analysis, Plan and Execution) reference model [27].
We mainly (M)onitor the application usage (Application usage ob-
servation), (A)nalyse the context in thecontext change reaction task
using the self-greening rules and generate the (P)lan, and finally

2 In the paper we use the terms energy-efficiency context and usage context in-
distinctly, understanding that the energy-efficiency context is the usage context that
affects the energy consumption of applications.

the (E)xecution of the plan is reflected in both changed value for
the parameters affecting the energy consumption and modify the se-
lected variants for the energy consuming concerns.

6. Modeling the Energy Consuming Concerns

We based on the concepts of “runtime energy hotspot”,
“energy-consuming concerns” and “usage context” previously in-
troduced. We argue that energy-aware software engineering solu-
tions should focus more on reusable concerns, and less in specific
systems. So, in our approach we will consider the energy influence
of recurrent concerns such as compression, encryption or com-
munication. Additionally, for each of these recurrent energy con-
suming concerns, there are several alternative designs, and each of
them could have different energy consumption, which mainly de-
pends on some input parameters, such as the size or data type. All
the alternative design solutions for every energy consuming con-
cern are modeled and their energy consumption is stored into a
Green repository, that contains a database with power consump-
tion measures [28]. In our approach, application developers can
use the Green Eco-Assistant at design time to perform a sustain-
ability analysis of the different variants. The Green Eco-Assistant
then generates the initial application configuration fulfilling the
developer needs. But, this sustainability analysis will also help to
identify those situations where the energy expenditure strongly
depends on some parameters of the usage context that can vary
at runtime. So, our solution aims to help designers to identify the
opportunities to save energy not only at design, but also at run-
time. This information will be used by the developer to specify the
self-greening rules that will trigger a reconfiguration at runtime of
the cyber-physical system.

Figure 2presents an schema of the process for modeling the en-
ergy consuming concerns, including the energy-efficiency context,
and for collecting the energy consumption measures. The result
of applying this process to our CPS is presented in Figure 3 and
Figure 4.

The first step to model the energy consuming concerns is the
identification of those functionalities that most influence the en-
ergy consumption (Step 1 in Figure 2). Our approach focuses on
those functionalities that are recurrent, which researchers iden-
tify as large energy consumers [8,9]. The functionalities imple-
mented by application independent frameworks, which are usually
required by many applications, are good candidates to be incorpo-
rated into our process. This is because the analysis of the energy
consumed by this kind of functionality can be conducted indepen-
dently of an application’s internal operation, for different imple-
mentation frameworks. Some examples of these functionalities are
storage, encryption, compression, and communication.

There are plenty of studies showing that there is a high vari-
ability of alternative implementations and design solutions to
many energy consuming concerns [6,7,10], and some of them per-
mit their replacement at runtime to achieve energy savings. For
this reason, we follow a DSPL approach [11] to explicitly model
the variability of the energy consuming concerns, using a vari-
ability model (e.g., feature models [29], CVL [30]), which de-
fines the configuration space — i.e. the possible allowed self-
adaptations triggered by different energy contexts. For instance,
top of Figure 3 shows an excerpt of the Green Eco-Assistant vari-
ability model (i.e., the feature model tree) in the Common Vari-
ability Language (CVL) [30], with some energy consuming con-
cerns like monitoring, security, caching, compression, code migra-
tion, archiving, synchronization and communication. In this paper
we focus on monitoring, data compression and communication,
three concerns present in our CPS case study. It can be seen that
for the compression concern we include several algorithms that
consume more or less energy depending on the file size (bottom

of Figure 3), which usually varies at runtime. For the communica-
tion concern, transmission of the data can be done with multiple
protocols (WiFi, Bluetooth, NFC), the energy consumption of which
also depends on the file size.

6.1. Modeling the usage context and the configurable parameters

Considering that the consumption of the energy consuming
concerns depends on the usage context, what are the variables that
affect the energy consumption, and so should be defined as part of
the usage context? [2] The complexity of identifying and modeling
the usage context is increased if we consider that the functional-
ity of each energy consuming concern provides many operations
and each of them may impact differently on the energy consump-
tion (e.g., compress and decompress a file). Additionally, each op-
eration can support different data types (e.g., text file, parameters
file, audio and video files) that may vary in size and need to be
managed differently. As can be seen in Figure 2 in our process the
Usage Context of an application is defined as the set of contex-
tual variables, operations, and data types that may affect the en-
ergy consumption of an energy consuming concern. Then, Step 2
in Figure 2 identifies all the variables and the values that they can
take, the operations, and the data types for each energy consuming
concern.

The energy consumption of an energy consuming concern di-
rectly depends on how efficient the functionality implementation
makes use of hardware resources. For example, different compres-
sion algorithms have different levels of energy consumption that
depend on the compression format and on the compression rate,
among other configurable parameters. We propose to extract the
information about the configurable parameters that the different
frameworks offer (Step 3). In this paper, we specify all the possi-
ble variants of the usage context and the implementations of the
functionality (Step 4), as part of the same variability model [31].
The relevance of modeling the variability of the energy consum-
ing concerns and their usage context is to be able to compare the
energy consumption of different configurations of the same func-
tionality (design variations, different frameworks and parameters),
independently of the execution environment (hardware, operating
system).

For each functionality (e.g., compression, encryption, commu-
nication,...) proposed in the variability model schema in Figure 2,
we differentiate the mandatory features of the usage con-
text (Contextual Variables, Contextual Operations,
and Contextual Data Types) from the mandatory features
of the implementations (Configurable Parameters and
Frameworks). This schema is fixed and is the same for all func-
tionalities, while the specific features of the usage context and
the implementations depend on each functionality. Restrictions be-
tween features (cross-tree constraints) are specified as OCL con-
straints, for example when a particular framework does not sup-
port a specific characteristic (e.g., a specific data type, operation or
configurable parameter).

Identifying the energy consuming concerns with their config-
urable parameters and with their usage context (i.e., contextual
variables, operations and data types) is not a trivial task for non
domain experts. For example, the encryption functionality has two
basic operations (encrypt and decrypt), and can operate over differ-
ent data types (string or objects in general). The logging function-
ality has only one operation (log a status message), and the type
is usually a string. However, identifying the contextual variables of
the usage context is even harder. In our experience contextual vari-
ables should fulfill the following properties:

Step 1. Identify energy
consuming concerns (ecc).

—

Green Eco-Assistant

"
"
"
"
"
"
"
"
"
"
.
.
.
'
'
.
'
.
.
'
'
.
.
.
.
'
.
.
'
.
g
—

@ncryptu@ @ompression

(eommion) ()

UsageContext

Context
Schema

Implementation

Contextual
Operations

Contextual
Variables

Step 2. Identify usage \
context of the ecc.
- contextual variables

- contextual operations
- contextual data types

Step 3. Extract the
configurable parameters of
implementation frameworks.

gy .

Y
.
.
'
.
.
'
.
'
'
.
'
'
.
'
'
.
'
.

Contextua Configurable Frameworks H

DataTypes Parameters H
'
.
'
'
L]
"
'
.
'
.
.
'
.
.
'
.
'
'

Functionality
dependent

Step 4. Variability modeling

of the usage context and / Usage Context

configurable parameters.

* Configurable

Usage Context

Implementation Energy

Step 5. Generate all possible

.] Contextual
configurations.

Operations

Contextual
Variables

Contextual
Data Types

Configurable Consumption

Frameworks
Parameters

Step 6. Define the

-

experiments corresponding
to the configurations.

Configurations

Step 7. Experimentation.

\

Energy
()

Step 8. Analyze the energy
consumption of the
configurations.

Operation and Data Type

Contextual |
ConfigN| |
N
Config3| [gN
Config2|g3
Configljg2jg3

ig1

Contextual Variable

N

Contextual Variable

Contextual Variable

Fig. 2. Schema of the process for modeling the energy consumer concerns.

« They can be attributes of the input parameters of the opera-
tions (e.g., size of the object to be compressed, length of the
string to be logged).

« They can represent states of the functionality (e.g., current ca-
pacity of a memory cache).

 Their values can change at runtime as a response to a user in-
teraction over different executions.

+ Their values are unknown a priori, but could be monitored to
find the values during execution.

+ A variation of their value may affect the quality attributes of
the application (e.g., energy consumption, performance).

These properties allow identifying and differentiating the vari-
ables or parameters that should be modeled under the usage con-
text from the configurable parameters of a particular implementa-
tion [31]. For example, the maximum capacity of a cache memory
is something that we can configure in the framework, and will not
change unless the developer or the application decides to change
it. The same is true for the encryption algorithm, or with the com-
pression format.

Coming back to Figure 3, for compression, the contextual vari-
ables of the usage context is the current size of the file to be com-
pressed (the FileSize feature). Compression offers the classical
operations for Compress and Decompress a file. The data types
supported by the compression algorithms, in this example, are bi-

nary files (BIN), text files (TXT), and files of parameters like float
numbers (CSV).

In addition, some implementation characteristics that usually
have every implementations of the compression concern are the
encoding algorithm and the level or ratio of compression (the
Level feature). We have included several algorithms (LZ77,
Burrows-Wheeler and LZMA2); and implementations (gzip,
bzip2, and xz) that are usually available in the CPS devices
considered (e.g., in the RPi of our case study). Note that not all
compression implementations support every algorithm along with
its implementation characteristics. For instance, in this case, each
compression tool supports one of the algorithm specified. This is
expressed in our variability model in CVL as constrains between
features, which are usually specified as OCL restrictions and at-
tached to the affected features (e.g., gzip < LZ77).

6.2. Generating different configurations

Using an SPL approach and its tool support [32,33], once we
have modeled all the variability of the energy-efficiency context
and the implementations, we can automatically generate different
configurations and define the experiments to estimate the energy
consumption of each concern for each of the CPS devices (Steps 5
and 6 in Figure 2).

In particular, in our Green Eco-Assistant, we mapped the vari-
ability models to logical constraints in a Constraint Satisfaction

Green Eco-Assistant

) O

EnergyEfficienc
[(g;(y)mext ﬁ(lmplementalion)@nergyEfﬁciencyConlexD

[
Contextual Contextual Contextual
Variables Operations FileTypes

FileSize = [1..512] MB @@ LZMA2
Bumrow-Wheeler

(EnergyEfficiencyConte@

(Implementation)
Contextual) (" Contextual

VariablesD [Operations) [Features)[Frameworks)
requencyDays = D, AN

({FileSize =[1..512] MB / N

gzip <-> LZ77
bzip2 <-> Burrow-Wheeler :
gzip <-> LZMA2 m

\

FrequencyDays > 1 -> Archiving

Energy Consumption
(Compression)

700

600

500

400

300

Energy (J)

200

100

1 2 4 8 16 32 64

Filesize (MB)

e DEFLATE (LZ7 7, Lempel-Ziv 1977)
Burrows-Wheeler

LZMA2

128 256 512

Fig. 3. Our approach applied to our cyber-physical system.

Problem (CSP). This formalization allows us to resolve the CSP
problem using a CSP solver to guarantee that we generate valid
configurations. Here, we have used Clafer?, a general-purpose
lightweight modeling language, and CHOCO*, a Java library for
constraints programming, to implement the variability models and
configurations as CSP problems, and resolve them.

6.3. Estimating the energy consumption

What the developer needs to know at design time are the op-
tions that exist to address a specific runtime energy consuming
concern, and the expected energy consumption of each of them
at runtime. Energy consumption mainly depends on the resources
that each application component is expected to consume (e.g., cpu
cycles, and disk access) and on the hardware characteristics (e.g.,
cpu cycles/s, and MB/s.). With this information, it is possible to
estimate the expected energy consumption by conducting exper-
imental studies, or by simulating energy models. Note that the

3 http://www.clafer.org/
4 http://www.choco-solver.org/

exact number of Joules consumed by different energy consuming
concerns considering specific hardware is not so important to iden-
tify energy consumption trends, although the relative energy is.
So, the intention is to store the energy consumption obtained fol-
lowing different approaches, and provide this information to the
developer. Certainly, we could gather results from many already
published experimental studies [10,34], store them in the HADAS
Green Repository and provide advice based on these results.

The energy consumption shown in this paper was experimen-
tally calculated from real products, but can also be predicted,
through simulation, by an architecture design [35], or bench-
marks [9]. Experiments to estimate the energy consumption of a
given functionality must cover the whole range of variations for
the possible values of the usage context variables and configurable
parameters (Step 7 in Figure 2). Otherwise the experimental pro-
file will be incomplete. A row in the table shown in Figure 2 rep-
resents one configuration of the variability model. The last column
Energy Consumption contains the experimentation results for
each configuration. Each contextual variable of the usage context
can be seen as a energy function F that depends on that variable,
like, F(FileSize) for the file size of the compression functionality.

http://www.clafer.org/
http://www.choco-solver.org/

USAGE CONTEXT IMPLEMENTATION ENERGY
Conte)ftuaI.VarlabIes) Contextual Configurable Parameters CONSUMPTION
File Size Frequency Contextual Operations Data Types Frameworks o
#Params (MB) (days) P Algorithm Level Protocol ...
Optimum —» configl 16 20 0 monitoring, communication Csv - 6 WiFi scp 13,27
configs. — config2 128 160 0 monitoring, communication CsV = 6 WiFi scp 117,29
config3 16 9 0 monitoring, compression, communication Ccsv Lz77 6 WiFi gzip, scp 20,47
configd 128 72 0 monitoring, compression, communication csv Lz77 6 WiFi gzip, scp 171,78
config5 16 60 3 monitoring, archiving, communication Csv - 6 WiFi tar, scp 28,79
configb 128 480 3 monitoring, archiving, communication Ccsv - 6 WiFi tar, scp 277,16
config7 16 27 3 monitoring, archiving, compression, communication csv Lz77 6 WiFi tar, gzip, scp 51,68
config8 128 215 3 monitoring, archiving, compression, communication Csv Lz77 6 WiFi tar, gzip, scp 467,74
config9 16 27 3 monitoring, compression, archiving, communication Csv Lz77 6 WiFi gzip, tar, scp 50,45
configl0 128 216 3 monitoring, compression, archiving, communication CSV Lz77 6 WiFi gzip, tar, scp 429,29
configll 16 140 7 monitoring, archiving, communication csv - 6 WiFi tar, scp 63,15
nitial configl2 128 1120 7 monitoring, archiving, communication Ccsv - 6 WiFi tar, scp 4790,41
config. ™ configl3 16 63 7 monitoring, archiving, compression, communication Ccsv Lz77 6 WiFi tar, gzip, scp 111,88
configld 128 384 7 monitoring, archiving, compression, communication csv Lz77 6 WiFi tar, gzip, scp 3155,78
configl5 16 63 7 monitoring, compression, archiving, communication csv Lz77 6 WiFi gzip, tar, scp 110,40
configl6 128 504 7 monitoring, compression, archiving, communication Csv Lz77 6 WiFi gzip, tar, scp 933,12
Energy Consumption
(Compression and Communication) .
B LZ77 compression +
700 1200 communication
600 1000 Burrows-Wheeler
compression +
500 communication
800 .
B [ZMA2 compression +
?; 400 communication
o 600
@
S 300 No compression
400
200
LZ77 only compression
4 200
100 .
= i
0 - G e 0 Burrows-Wheeler only
1 2 4 8 16 256 compression
File size (MB)

Fig. 4. Energy-efficiency configurations for compression and communication.

This function will be different for each contextual operation and
data type of the functionality. By varying the dependent variable
(e.g., file size) for each configuration of the implementation char-
acteristics (e.g., different compression algorithms), we can analyze
how each configuration influences energy consumption (Configl,
Config2,., ConfigN in the graph in Figure 2). When the en-
ergy efficiency context is composed by more than one variable, as
is the case of the monitoring or communication functionality, the
energy experiments are carried out by varying one variable while
maintaining the others fixed. Whatever the approach used to cal-
culate the expected energy consumption, the effort of measuring,
estimating and/or simulating the energy expenditure of each of
the possible energy consuming concerns would be an intractable
task for developers. So, the goal is to save time for application de-
velopers by automating as much as possible this manual and te-
dious job and storing the results in the HADAS Green Repository.
The Green Eco-Assistant then helps developers make informed de-
cisions about the energy consumption of the selected concerns,
through a sustainability analysis, as next section explains.

7. Analyzing and selecting energy-efficient configurations

The Green Eco-Assistant helps developers carry out a compara-
tive analysis of the power consumption of different solutions for a
given runtime energy hotspot. The developer is aware that the de-
cision of choosing a energy consuming concern (e.g., compression)
can only be made considering the expected use of the application
(i.e., the usage context). It becomes necessary to codify reconfigu-
ration rules (Figure 1, label 2.3) to replace a solution when the cur-
rent one is no longer the most energy-efficient, under the current
usage context. Reconfiguration rules may be described using Event
Condition Action (ECA) rules [36], a simple but efficient reconfig-
uration mechanism that consumes less than other computation-
ally more complex approaches like, for example, optimization al-
gorithms. The event will be a variation in the parameter value that
affects the energy expenditure of a given concern (e.g., file size for
the compression concern); the condition will be the specific value
that makes the current energy consuming concern implementation
no longer optimal (e.g., file size greater than a particular value);
and, the action will be to replace the current component config-

uration with a more eco-efficient solution (e.g., changing an algo-
rithm by a greener one).

However, the previous reasoning cannot be performed in iso-
lation for each energy-consuming concern, because reducing the
energy of one concern can have a collateral effect of increment-
ing the energy expenditure of others. This means that energy con-
suming concerns have interactions between them. Normally, inter-
actions occurs when an energy consuming concern (e.g., compres-
sion) affects the value of a usage context variable (e.g., file size) of
another energy consuming concern (e.g., communication). Our ap-
proach will help developers jointly reason over different concerns,
by showing the graphics with the energy consumption for the en-
tire configuration, as shown in the graph of Figure 4.

To illustrate all these analysis and the reconfiguration rules that
can be extracted of the analysis, let us consider the following
energy-saving scenarios in the context of the CPS case study:

« Scenario 1. Different energy-efficient implementations of an
energy consuming concern. In Figure 3 we can see that for a
file size less than 2 MB all compression algorithms consume
similar energy, so the developer can initially deploy, for ex-
ample, the Burrows-Wheeler algorithm. But, when this size in-
creases more than 16 MB, then the LZ77 algorithm is greener.
Since both the file size and compression ratio depend on what
the user needs at each moment, it is not enough to just gener-
ate an initial configuration of an energy-efficient application. It
becomes necessary to reconfigure the current deployed config-
uration by another one more energy-efficient (e.g., replace the
Burrows-Wheeler algorithm by LZ77). This reasoning can be de-
scribed with the following ECA rule:

ECA1: compressionnfilesize > 16 MB=>LZ77 algorithm

Scenario 2. Dependencies between energy-consuming con-
cerns due to the concerns’ usage context. When the commu-
nication frequency of the road unit is greater than a day, the
generated files need to be archived (i.e., the files are saved to-
gether into a single archive) to facilitate their management and
perform a unique sending when communication occurs. In this
case, the archiving concern needs to be deployed. On the other
hand, when the file is sent every day, the archiving concern is
not necessary and can be removed/deactivated from the appli-
cation. The following two ECA rules describe this situation:
ECA2: frequency > 1=sarchiving concern

ECA3: frequency = 1 = —archiving concern

Although the energy consumption of the archiving concern is
insignificant, its inclusion affect the energy consumption of
others concerns because of the modification of the file size
archived with every new file that is archived.

Scenario 3. Dependencies between energy-consuming con-
cerns due to their functionality. Let us suppose that the de-
veloper has initially deployed the road unit to compress the
files, thinking that compressing the files reduces the energy
consumption of sending them to the server. In this case, we
need to know the total energy consumption of compressing the
file and sending it to the server. Note that different compres-
sion algorithms produce compressed files of different sizes, and
therefore the energy consumed by the communication concern
will be different, depending on the compression algorithm pre-
viously used. In this particular scenario (as shown in the bot-
tom graphic of Figure 4), the compression process always con-
sumes more energy than sending the file without compression.
This fact depends on the compression ratio of the file that in
turns depends on the file type. This means that for parameters
files (.csv files) as the considered in our case study, the com-
pressed file size is still too big and the energy wasted in the
compression concern cancels out the benefits of sending the
file compressed. Note that this situation depends on the type

of the file to be compressed, and that for text files instead of
parameters files, compression will often be worth it. Thus, the
compression concern seems to be dispensable in all configura-
tions when the content file is not text from the point of view
of the energy consumption:

ECA4: filetype = CSV v filetype = BIN = —compression concern
ECA5: filtetype = TXT = compression concern

The difference between Scenario 2 and 3 is that in the latter
the interacting concerns are high energy consumers and, con-
sequently, the global energy consumption of the configuration
has to take into account the energy consumption of both con-
cerns together.

Scenario 4. Mandatory energy consuming concerns. Under
some usage contexts, the presence of an energy consuming
concerns can be required despite the fact that its inclusion
increases the energy expenditure of the global system, other-
wise the behavior of the application will be inconsistent or not
working as expected. For instance, the road unit cannot store
more than 512 MB — i.e., this is the capacity of the RPi, so
compression is still needed when the files are archived during
several days before sending them to the server:

ECA6: frequency > 1Afrequency - filesize > MAXSTORAGE=>
compression concern

Scenario 5. Order of energy consuming concerns. The order
in which the concerns are applied can affect the energy con-
sumption of the global system. For example, archiving the files
during several days and then compressing a bigger archive is
not always possible because of the storage limitation of the
device, apart from the energy consumption of compressing a
huge file. In this kind of situations, compressing the files before
archiving them is the only and greener solution:

ECA7: frequency - filesize > MAXSTORAGE=precedence: compression,
archiving

In the following section, we show a possible implementation of
a self-greening application for the CPS and how the specified ECA
rules are integrated and use in the reconfiguration mechanism.

8. Energy-aware reconfiguration

How can we implement a self-greening application without over-
loading the system with heavy-energy monitoring and reconfiguration
mechanisms? What elements should be monitored at runtime? How
can we analyze the context to enforce a self-greening behavior with-
out complicating the resulting code?

As described in Section 5.1, the greatest challenge is to define a
self-greening mechanism that wastes the least amount of energy,
so applying burdensome, self-adaptation approaches (e.g., manip-
ulating models@runtime [35]) are not recommended. In addition,
since eco-efficient concerns crosscut several application compo-
nents it makes sense to follow an approach based on Separation
of Concerns [15] to implement energy-related concerns separately
from the application’s functional components, facilitating their re-
placement at runtime.

Since we need to observe the runtime variation of some pa-
rameters, the subject-observer design pattern could be a good op-
tion, and the use of events. We have found one solution, which
is not intrusive and also eco-efficient, which is Aspect-Oriented
Programming (AOP) [15]. With AOP, it is possible to define inter-
ception points in the application base code where we want to in-
ject an extra-functional property, like the energy consuming con-
cerns in our case. Before, around or after executing these intercep-
tion points we can inject code related to self-greening functionality
separately from the core application code. Moreover, the injected
code can be easily changed at runtime using the weaving and un-
weaving mechanisms provided by AOP.

1. @Aspect

2. public class MonitorFileSize extends ContextUsageMonitor {

3.

4 @Pointcut(“call(public void RPiService.collectData(..))
&& args(file)”)

5. public void monitorPoints(File file){}

6.

7. @after(“monitorPoints(file)”)

8. public void fileSize(File file) {

9. long filesize = file.length();

10. // send filesize to Analysis

1.}

12. }

// Reconfiguration of the energy consuming cogcerns:

. Aspects.aspectOf(Compression.class).setStatus\true);

. Aspects.aspectOf(Compression.class).setAlgorithy(algorithm);

. Aspects.aspectOf(Archiving.class).setStatus(true)

. Aspects.aspectOf(CoordinationECC.class).setPrecedeNgce(
“Compression, Archiving”);

BWN R

- RPiService L
. file = collectData(params); | | +collectData(p: params): File &7
file = archive(file);

. file = compress(file);
. send(file);

EEETEES

I
t

|
I

|
|

|
|

|
|

|
|

|
I
L

[

. @Aspect

. public class Compression {

public static final Compression DEFAULT_ALGORITHM =
new Burrow-Wheeler();

w N

private Compression algorithm;

public Compression() {
algorithm = DEFAULT_ALGORITHM;
}

POWVW®ONOUV N

B

@Pointcut (“execution(
public void RPiService.collecData(..))”)
12. public void compressionHotspot(){}

14. @Around (“compressionHotspot()”)
15. public Object compress(
ProceedingJoinPoint thisJoinPoint) {

16. File file = thisJoinPoint.proceed();

17. file = algorithm.compress(file);

18. return file;

19. }

20.

21. public void setAlgorithm(Compression algorithm) {
22. this.algorithm = algorithm;

23.)

24.

25. }

e — <<ece>>

// Reconfiguration rules

long MAX_MEMORY = 524288; // 512 MB

long filesize = ContextUsageMonitor.get(..);
int freq = ContextUsageMonitor.get(..);

. if (freq > 1) {
reconfiguration.reconfigure(“Archiving”, true);
.} else {

9. reconfiguration.reconfigure(“Archiving”, false);
10. }

0NV A WN R

12. if (filesize <= MAX_MEMORY / freq) {

13. reconfiguration.reconfigure(“Compression”, false);
14. } else {

15. reconfiguration.reconfigure(“Compression”, true);
16. if (filesize > 16384) { // 16 MB

17. algorithm = new LZ77();

}
19. if (filesize * freq >= MAX_MEMORY) {
20. reconfiguration.reconfigure(“precedence”,
“Compression, Archiving”);

Recon€iguration System | \

Monitor Monitor
FileSize SendingRate | — Parameters

LT ———————___——= T

Analysis

H

- ‘

Energy Consuming Concerns |

b <<eco>
Communication ———
+send(f: File, dest: URL)
Coordination
ECC

Monitoring
- params: int

<«ecco>
Archiving
+archive(: File)

<<ecos>
Compression
+compress(file: File): File

A
I

Burrow-Wheeler
+compress((ile: File)fFile

7
/

Lzt
+compress((ile: File): File

LzMA2
+compress(file: File): File
1. @Aspect

2. @DeclarePrecedence("Monitoring, Archiving,
Compression, Communication”)
3. public class CoordinationEnergyConsumingConcerns {

4.
5.}

Fig. 5. Reconfiguration using the Green Eco-Assistant.

Figure 5shows an example of an aspect-oriented design
solution for implementing self-greening applications in Java
and Aspect] [15] (an Aspect-Oriented extension of Java). Three
packages can be observed, one representing the application
(Application) that contains the base code, one repre-
senting the reconfiguration mechanism (Reconfiguration
System) and the last one representing the energy con-
suming concerns (Energy Consuming Concermns). In
the context of our CPS, the application code collects the
sensor data (RPiService.collectData() method),
archives the file (RPiService.archive()), compresses it
(RPiService.compress()) and finally sends the file through
the network (RPiService.send()).

The event monitoring is implemented as part of the
Reconfiguration System and as separated code, which
is then injected into the base code of the application. At runtime,
we only need to observe those parameters whose variation im-
plies that the current configuration is no longer the most energy
efficient — i.e., these parameters are the events that appeared in
the ECA rules defined in the previous step (the file size in our

case). So, we propose implementing a ContextUsageMonitor
aspect for each of the parameters to be observed. The value
captured by each monitoring class is sent to the Analysis
component that contains the ECA rules to decide whether or not
a reconfiguration is needed. If the rules determine that a new
configuration is greener, the Analysis component will send the
new configuration to the Reconfiguration component.

The Reconfiguration component directly interacts with the
energy consuming concerns by enabling/disabling them and re-
configuring their internal behavior. The runtime energy consum-
ing concerns (i.e.,, components with stereotype <<ecc>> in pack-
age Energy Consuming Concerns) are also implemented as
aspects and are non-intrusively injected into the application code.
This provides a light solution in terms of energy consumption (see
Section 9) and allows an easier reconfiguration of the energy con-
suming concerns. As shown in the code of Figure 5, the Aspect]
annotations (@Aspect) are interpreted at compile time by the as-
pect compiler that weaves the energy consuming concerns (imple-
mented as “aspects”) with the application classes at the bytecode
level, so there is no overhead at runtime.

Returning to our CPS, in Figure 5 we have defined the
MonitorFileSize aspect that monitors the size of the data files
collected by the RPiService.collectData() method (line 4
in the MonitorFileSize aspect). Each new parameter value is
sent (line 10) to the Analysis component, so the Analysis
component has information about the most recent activity of the
device and thereby makes more accurate decisions. In our example,
the Analysis considers the file size and the frequency of sending
the file to the server (line 2 and 3 in the Analysis component).
The rest of the code of this component shows the implementation
of the ECA rules defined in the previous section. Lines 7-11 corre-
spond to the ECA rule for archiving the files locally when the send-
ing frequency is higher than one day (ECA2 and ECA3). Lines 12-
15 implement ECA4 that activates the compression concern when
files to be archived exceed the maximum storage of the device. Fi-
nally, lines 16-21 implements ECA1 that sets the encryption algo-
rithm to the most eco-efficient alternative (line 17) and ECA7 that
changes the order of application (precedence) of the energy con-
suming concerns — i.e., first compressing and then archiving (line
20). ECA4 and ECA5 are omitted in the example for space limita-
tion but they are implemented similarly.

The Reconfiguration component will activate and/or deac-
tivate the appropriate concerns, and will change the precedence
of the different concerns (lines 1 to 4 in the Reconfiguration
component). In addition, the Reconfiguration component is
responsible for changing the current configuration of the activated
concern, for example, changing the compression algorithm (line 2).
The energy consuming concerns crosscut the base application to
inject the appropriate functionality in the correct place. For in-
stance, the Compression aspect crosscuts the base application
to compress the data file after collecting it (lines 16-18 in the
Compression component).

9. Evaluation and Threats to Validity

In this section we evaluate our proposal, and discuss the threats
to validity and lessons learnt.

9.1. Experimentation

In this section we first discuss the reliability of the experi-
ments conducted to estimate the energy consumption of the dif-
ferent configurations of the energy consuming concerns (Figure 4).
All resources are available, so experiments can be replicated with
the same results®. Then we discuss the internal and external valid-
ity of the experimentation. The internal validity examines whether
the experiment results are influenced or not by other factors apart
from those considered in the experiments. The external validity an-
alyzes whether the results obtained in the experimentation can be
generalized or not.

9.1.1. Experimentation Set-Up

The energy consumption results presented in this paper were
calculated through experimentation, by using a wattmeter, in par-
ticular the WattsUp? Pro meter. WattsUp? Pro monitors the electric
power in Watts of any given circuit. The experiments were per-
formed on a Raspberry Pi 3 Model B, with the Raspbian 8 (Jessie)
system (Figure 6). For the compression functionality, we have used
the tools gzip, bzip2, and xz, while for the communication concern
we have used the scp tool. Although the profiling is done at the
device level, we isolate the process functionality we are interested
in and build a controlled experiment. The RPi device continuously

5 http://www.caosd.lcc.uma.es/research/rsc/Horcas2018- AHN-exp.zip
6 https://www.raspberrypi.org/products/raspberry- pi-3-model-b/

consumes 0.9 W in the idle state, and 1.9 W with the sensors con-
nected. As result, WattsUp? Pro generates a CSV file with the esti-
mated power (in Watts) for each timestamps (1 s) of the execution
of the process, which is repeated 15 times. We have implemented
a Python script to automate the use of WattsUp? Pro and of our
experiments, which extracts the information from the CSV file and
calculates the energy consumption in Joules.”

9.1.2. Accuracy of the results

On the one hand, we choose the WattsUp? Pro because it al-
lows measuring the power consuming of different kinds of de-
vices at the hardware level, so we think it is a good choice to
measure the energy consumption of CPS. Taking the measurements
with hardware-based tools is more precise than estimating the en-
ergy consumption with software tools at the code level. Although
WattsUp? Pro provides measurement with one second of preci-
sion, it is enough for our approach. Note that energy consuming
concerns (e.g., compression, encryption) are usually expensive op-
erations, while simple operations that last less than one second
have an insignificant energy consumption. On the other hand, we
have performed 15 runs for each experiment taking the median of
the measurements as representative energy value [37]. Although
increasing the number of runs will improve the accuracy of the re-
sults, we consider that 15 runs is enough in our approach because
our goal is not to calculate the exact values obtained for each dif-
ferent configuration, but we are interested in identifying energy
consumption variations and tendencies when the usage context
varies. In any case, we consider to increase the number of exper-
iments and runs, including the study of more energy consuming
concerns as our ongoing work.

9.1.3. Generalization of results

Results from experimentation may vary due to many factors,
principally due to the hardware of the device, but also due to the
current usage context, the particular implementation of the energy
consuming concerns (e.g., programming language, frameworks), or
the connected sensors and peripherals. To mitigate the external
threats to validity we have performed a subset of the experiments
on a different device (Raspberry Pi with Raspian 9 - Stretch), and
have obtained similar results for the energy consumption of the
energy consuming concerns. In any case, our approach is indepen-
dent from the experimental values and can be applied using dif-
ferent sources of data with energy information.

9.14. Applicability

For each consuming concerns considered in this paper, Table 2
shows the number of contextual features, implementation (config-
urable) features, configurations and thus, number of experiments
performed, and the average of the execution time required to per-
form each experiment. Generating all the possible configurations
of the energy consuming concerns and performing all the required
experiments may sound an intractable task. However, it is demon-
strated [34] that the number of contextual features and config-
urable parameters of the energy consuming concerns that affect
the energy consumption is usually low and the total number of
configurations and experiments is manageable. For instance, as
shown in Table 2, for compression that is the more complicated
concern, there are only 6 contextual features and 7 implementa-
tion features that can affect the energy consumption. So, the max-
imum number of configurations, and therefore experiments to be
performed is 1620. Moreover, it is important to clarify that the ex-
perimentation is done only once, and the results can be reused by

7 The script and the experimental results are available in http://www.caosd.lcc.
uma.es/research/rsc/Horcas2018- AHN-exp.zip.

http://www.caosd.lcc.uma.es/research/rsc/Horcas2018-AHN-exp.zip
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
http://www.caosd.lcc.uma.es/research/rsc/Horcas2018-AHN-exp.zip

WattsUp?
Pro Meter

Road Unit -
Raspberry Pi
(RPi)

Monitoring
Sensors

Fig. 6. Experimentation set-up simulating the road unit of the CPS.

Energy Consumption of a GPS sensor

1460
1440
\
\ 1.76 %
= 1420 \
9 R et e - e on en an e e e e
5 .
2 3
g 1400 . 5.29%
g .'.. 3.59% GPS (freq: 1s)
§ 1380 ". = = GPS(freq: 30 s)
; '.. seesee GPS(freq: 60 s)
5 1360
1340
1320
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Time (Hours)
Fig. 7. Energy consumption of the GPS sensor with different configurations.
Table 2
Experimentations over the energy consuming concerns.
ECC Contextual features Impl. features Configurations/Experiments Avg. Time (s)
Monitoring 2 3 24 11.50
Archiving 2 1 70 5.16
Compression 6 7 1620 158.00
Communication 3 5 420 98.55

the Green Eco-Assistant in multiple applications that require those
energy consuming concerns.

9.2. Energy efficiency of the reconfiguration mechanism

As explained in Section 8, we tested our implementation of the
reconfiguration mechanism with Aspect], and the results showed
that the energy consumption of the proposed implementation is
insignificant compared to the total amount of energy wasted by
the energy consuming concerns. In fact, since aspects are woven
with the application code at compile time there is not overhead at
runtime. In addition, changing the status of an aspect from acti-

vated to deactivated or the other way around is an negligible op-
eration the execution time of which is less than one second, and
therefore, its energy consumption is practically insignificant. Even
though, we plan to perform a practical study, comparing different

reconfiguration mechanisms in terms of energy efficiency, as part
of our future work.

9.3. Self-adaptation in the context of CPS

Any software system can benefit from applying our approach,
including the software part of CPSs as demonstrated in the next

subsection. There are however two issues that need to be consid-
ered in the context of CPSs:

« The processing capability of the CPS nodes. The physical part of a
CPS is normally heterogeneous, with different types of physical
components that communicate among them. Not all of them
will have enough processing capability for a complex software
reconfiguration to make sense. For instance, in a sensor mote
that is only gathering sensory information the software part is
so simple that the reconfiguration suggested by the Green Eco-
Assistant could be only to change parameters’ values, e.g., the
sampling frequency. However, in nodes with higher processing
capability, such as a Raspberry Pi or a mobile phone, our ap-
proach can help the CPS to considerably reduce its energy con-
sumption by performing more complex adaptations.

The reconfiguration capability of the CPS nodes. Another thing
to be considered is where the reconfiguration mechanism can
be allocated at runtime. Firstly, the impossibility of deploying
any reconfiguration mechanism in a concrete node needs to be
taken into account. For instance, let us suppose a sensor mote
with some processing capability, although very limited. This
means that it will be possible, for instance, to choose between
different data compression algorithms, but without adapting
them at runtime. In these cases, our approach is still useful
because the design-time sustainability analysis can be done to
decide the algorithm with the lowest energy consumption. Ad-
ditionally, there will be nodes with enough processing capa-
bility as to receive a reconfiguration order (e.g. to change its
sampling frequency) but without enough resources to allocate
the reconfiguration mechanism. In this case the reconfiguration
mechanism needs to be running in another node of the CPS
(e.g. a Raspberry Pi) in charge of sending the reconfiguration
orders to nodes with lower resources. Finally, for those nodes
where the deployment of a runtime adaptation mechanism can
be afforded, for instance, a Raspberry Pi or a smartphone, there
is still the issue of the reconfiguration mechanism to be used
depending on the possibilities offered by the operating sys-
tem and the programming language used in each node. In this
sense, the use of Aspect] [15] in Section 8 is for illustrative pro-
cess and the same approach can be implemented using other
separation of concerns approaches such as AspectC [38] (for the
C programming language), or an implementation of the injec-
tion design pattern [39,40] (for other programming languages).

9.4. Benefits of using the Green Eco-Assistant

To evaluate the benefits to energy efficiency that a software de-
veloper can obtain we have applied our approach in two scenar-
ios. In the first one the device is a Raspberry Pi with enough pro-
cessing and reconfiguration capabilities and we evaluate the ben-
efits that can be obtained when different configurations are con-
sidered. In the second scenario we demonstrate how our approach
can be sucessfully applied also to improve the battery lifetime in
sensor motes without enough capability to deploy our reconfigura-
tion mechanism.

9.4.1. Benefits in CPS nodes with large processing capability

We have chosen a subset of all configurations for the energy
consuming concerns in our running example and have compared
them in order to check if it makes sense to use our approach to
advice developers in finding greener configurations.

Top of Figure 4 shows a set of configurations of the monitor-
ing, archiving, compression, and communication concerns of our
CPS case study. For the initial configuration described in Section 4,
the road unit is initially deployed with a configuration to moni-
tor 16 parameters, generating a file of 20 MB each day. The file is

archived every day, and it is sent to the server every seven days
after compressing it, by using the LZ77 compression algorithm —
i.e., the greenest according to Figure 3 (config. 13).

At some point the context will change (e.g., when an accident
occurs or on summer months) and the road unit will be reconfig-
ured to monitor 128 parameters. This generates a file of 160 MB
each day, so archiving the files during seven days after compress-
ing them is not possible because of the storage limitation of the
device (see config. 14). This requires to reconfigure the road unit
to compress the files before archiving them (see config. 16).

However, according to the results showed in Figure 4, the en-
ergy consumption of the new configuration (config. 16) is too high
(933.12 J), and thus, a greener solution should be deployed. The
sustainability analysis of the eco-assistant helps to realize that a
possibility is to change the frequency to send the file every three
days instead of seven days (config. 10 with a consumption of
429.29]). Moreover, there are different greener solutions because
the file size affects compression to a greater extent than it does
in communication. So, sending the uncompressed file to the server
drastically decreases the energy consumption of the global solution
(see config. 6 with a consumption of 277.16]). This means that we
need an additional reconfiguration rule that specifies that the com-
pression concern will apply only when the files are archived for
several days, to avoid surpassing the storage capacity of the de-
vice. Otherwise, sending a parameter file every day without com-
pression is the greenest solution (configs. 1 and 2).

As conclusions, in our CPS example, if the initial configuration
of the road unit is maintained when the context changes we miss
the opportunity to save around 54% of the energy consumption,
since more parameters are monitored and bigger files are pro-
duced. Just by reducing the sending frequency of the files from 7
to 3 days to considerably improve the energy-efficiency of the CPS.
In addition, deactivating the compression concerns when the ca-
pacity storage of the device is enough for the generated files saves
around 70% of the energy consumed by the CPS device.

9.4.2. Benefits in CPS nodes with limited procesing capability

To demonstrate the benefits of our approach in those cases
when the Green Eco-Assistant makes no sense to be deployed in a
CPS node with limited capabilities, we show how our approach can
reduce the energy consumption of such kind of devices by recon-
figuring them, despite that they do not have enough power to ex-
ecute the whole reconfiguration system by themselves. In particu-
lar, we reconfigure and evaluate the energy consumption of a geo-
location sensor (i.e.,, a GPS sensor) that continuously samples for
the location of a vehicle with a configurable sampling frequency.

Figure 7shows the energy consumption of the GPS sensor be-
fore and after the Green Eco-Assistant reconfigures it. The Green
Eco-Assistant (running in other CPS node with enough capabilities,
such as the road unit of our case study) determines the most ap-
propriate configuration for the GPS sensor. In this case, the GPS
sensor is checking for the location every second, consuming 1441
J/h. At some point, the context will change (e.g., the traffic flow
decreases) and the road unit decides to reconfigure the GPS sen-
sor by changing its sampling frequency every 30 seconds. The new
configuration consumes 1415 J/h (1.76% less). When the traffic flow
continues decreasing, the GPS sensor will be reconfigured to sam-
ple every 60 seconds, reducing its energy consumption to 1364 J/h
(3.59% less).

10. Conclusions and Future Work

We have presented a self-greening approach that aims to opti-
mize the energy consumption of applications at runtime. We have
focused on those concerns whose consumption depends on pa-
rameters that can vary at runtime, according to the usage context

and other contextual information (e.g., available memory, battery
level, file size). In order to specify the self-greening rules, we have
developed a runtime energy consuming concerns repository with
information about relative energy consumption of some recurrent
functionalities. The graphics generated by the HADAS Green Repos-
itory are used to analyze the possibilities of optimizing energy con-
sumption at runtime. Indeed, we have shown that there are valu-
able opportunities to optimize the energy consumption at runtime
that should not be neglected by developers.

The approach presented in this paper puts the basis to build
a dynamic reconfiguration approach for self-greening applications.
The approach has been instantiated with 3 different functionalities
(monitoring, compression, and communication) and different real
implementations with multiple contextual variables. Taking into
account the variability of the usage context in cyber-physical sys-
tems allows obtaining improvements greeter than 50% in energy
consumption. In particular, we have demonstrated that for our CPS
system the energy consumption can be reduced up to 70%, de-
pending on the current usage context.

As future work, we plan to complete the evaluation of the
Green Eco-Assistant to demonstrate its usage and benefits in real
CPS systems, with hundreds of sensors and different kinds of de-
vices. To do so, we will provide a proof of concept with different
scenarios of an Intelligent Transportation System (ITS) with mul-
tiple sensors whose parameters can be reconfigured with our ap-
proach. We also plan to evaluate the energy consumption of differ-
ent reconfiguration mechanisms for mobile phones, such as differ-
ent proxy patterns and the Xposed® framework for modifying code
of Android applications at runtime.

Acknowledgments

This work is supported by the projects Magic P12-TIC1814 and
HADAS TIN2015-64841-R (co-financed by FEDER funds).

References

[1] Q. Li, M. Zhou, The survey and future evolution of green computing, in: 2011
IEEE/ACM International Conference on Green Computing and Communications,
2011, pp. 230-233, doi:10.1109/GreenCom.2011.47.

[2] C. Stier, A. Koziolek, H. Groenda, R.H. Reussner, Model-based energy efficiency
analysis of software architectures, in: European Conference on Software Archi-
tecture, ECSA, 2015, pp. 221-238.

[3] K. Grosskop,]J. Visser, Identification of application-level energy optimizations,
in: 2013 International Conference on ICT for Sustainability, 2013, pp. 101-107,
doi:10.3929/ethz-a-007337628.

[4] 1. Manotas, C. Bird, R. Zhang, D. Shepherd, C. Jaspan, C. Sadowski, L. Pollock,

J. Clause, An empirical study of practitioners’ perspectives on green software

engineering, in: International Conference on Software Engineering - ICSE, 2016,

pp. 237-248.

C. Pang, A. Hindle, B. Adams, A.E. Hassan, What do programmers know about

software energy consumption? IEEE Software 33 (3) (2016) 83-89, doi:10.1109/

MS.2015.83.

E. Jagroep, J.M. van der Werf, S. Brinkkemper, L. Blom, R. van Vliet, Extending

software architecture views with an energy consumption perspective, Comput-

ing (2016) 1-21, doi:10.1007/s00607-016-0502-0.

[7] A. Noureddine, A. Rajan, Optimising energy consumption of design pat-

terns, in: International Conference on Software Engineering - ICSE, 2015,

pp. 623-626.

D. Kim, J.-Y. Choi, J.-E. Hong, Evaluating energy efficiency of internet of

things software architecture based on reusable software components, Inter-

national Journal of Distributed Sensor Networks 13 (1) (2017), doi:10.1177/

1550147716682738. 1550147716682738

A. Noureddine, R. Rouvoy, L. Seinturier, Monitoring energy hotspots in

software, Automated Software Engg. 22 (3) (2015) 291-332, doi:10.1007/

s10515-014-0171-1.

[10] S. Hasan, Z. King, M. Hafiz, M. Sayagh, B. Adams, A. Hindle, Energy profiles of

java collections classes, in: Proceedings of the 38th International Conference
on Software Engineering, ICSE '16, ACM, New York, NY, USA, 2016, pp. 225-
236, doi:10.1145/2884781.2884869.

[11] S. Hallsteinsen, M. Hinchey, S. Park, K. Schmid, Dynamic software product

lines, Computer 41 (4) (2008) 93-95, doi:10.1109/MC.2008.123.

(5

[6

(8

[9

8 http://www.repo.xposed.info/

[12] W.L. Hiirsch, C.V. Lopes, Separation of Concerns, Technical Report, 1995.

[13] K. Pohl, G. Bockle, FJ.v.d. Linden, Software Product Line Engineering: Founda-
tions, Principles and Techniques, Springer-Verlag New York, Inc., Secaucus, NJ,
USA, 2005.

[14] R.E. Filman, T. Elrad, S. Clarke, M. Aksit, et al., Aspect-oriented software devel-
opment, Addison Wesley, 2004.

[15] G. Kiczales,]J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M. Loingtier, J. Ir-
win, Aspect-oriented programming, in: M. Aksit, S. Matsuoka (Eds.), ECOOP'97
— Object-Oriented Programming, Springer Berlin Heidelberg, Berlin, Heidel-
berg, 1997, pp. 220-242.

[16] R. Chitchyan, C. Becker, S. Betz, L. Duboc, B. Penzenstadler, N. Seyff, C.C. Ven-
ters, Sustainability design in requirements engineering: State of practice, in:
Proceedings of the 38th International Conference on Software Engineering
Companion, ICSE 16, ACM, New York, NY, USA, 2016, pp. 533-542, doi:10.1145/
2889160.2889217.

[17] D. Li, S. Hao, J. Gui, W.G.]. Halfond, An empirical study of the energy consump-
tion of android applications, in: 2014 IEEE International Conference on Soft-
ware Maintenance and Evolution, 2014, pp. 121-130, doi:10.1109/ICSME.2014.
34,

[18] I. Manotas, L. Pollock, J. Clause, Seeds: A software engineer's energy-
optimization decision support framework, in: Proceedings of the 36th Inter-
national Conference on Software Engineering, ICSE 2014, ACM, New York, NY,
USA, 2014, pp. 503-514, doi:10.1145/2568225.2568297.

[19] B. Ouni, H. Ben Rekhissa, C. Belleudy, Inter-process communication energy es-
timation through AADL modeling, in: International Conference on Synthesis,
Modeling, Analysis and Simulation Methods and Applications to Circuit Design
(SMACD), 2012, pp. 225-228.

[20] G. Procaccianti, P. Lago, G.A. Lewis, Green architectural tactics for the cloud, in:
IEEE/IFIP Conference on Software Architecture - WICSA, 2014, pp. 41-44.

[21] S. Gotz, C. Wilke, S. Cech, U. ABmann, Runtime variability management for en-
ergy-efficient software by contract negotiation, in: Proceedings of the Interna-
tional Workshop on Models@ run. time, 2011.

[22] A.E. Kouche, L. Al-Awami, H. Hassanein, Dynamically reconfigurable energy
aware modular software (dreams) architecture for wsns in industrial environ-
ments, Procedia Computer Science 5 (2011) 264-271, doi:10.1016/j.procs.2011.
07.035. The 2nd International Conference on Ambient Systems, Networks and
Technologies (ANT-2011) / The 8th International Conference on Mobile Web
Information Systems (MobiWIS 2011)

[23] D. Zeng, L. Gu, H. Yao, Towards energy efficient service composition in green
energy powered cyber-physical fog systems, Future Generation Computer Sys-
tems (2018), doi:10.1016/j.future.2018.01.060.

[24] Y. Liu, A. Liu, S. Guo, Z. Li, Y.-]. Choi, H. Sekiya, Context-aware collect data with
energy efficient in cyber-physical cloud systems, Future Generation Computer
Systems (2017), doi:10.1016/j.future.2017.05.029.

[25] S. Chinenyeze, X. Liu, A.Y. Al-Dubai, An aspect oriented model for software en-
ergy efficiency in decentralised servers, in: ICT for Sustainability 2014 (ICT4S-
14), 2014, doi:10.2991/ict4s-14.2014.14.

[26] D.-J. Munoz, M. Pinto, L. Fuentes, Green software development and research
with the hadas toolkit, in: Proceedings of the 11th European Conference on
Software Architecture: Companion Proceedings, ECSA '17, ACM, New York, NY,
USA, 2017, pp. 205-211, doi:10.1145/3129790.3129818.

[27] J.O. Kephart, D.M. Chess, The vision of autonomic computing, Computer 36 (1)
(2003) 41-50, doi:10.1109/MC.2003.1160055.

[28] D.J. Munoz, M. Pinto, L. Fuentes, HADAS and web services: Eco-efficiency as-
sistant and repository use case evaluation, in: 2017 International Conference in
Energy and Sustainability in Small Developing Economies (ES2DE), 2017, pp. 1-
6, doi:10.1109/ES2DE.2017.8015334.

[29] K. Kang, S. Cohen, J. Hess, W. Novak, A. Peterson, Feature-Oriented Domain
Analysis (FODA) Feasibility Study, Technical Report, Software Engineering In-
stitute, Carnegie Mellon University, Pittsburgh, Pennsylvania, 1990.

[30] @. Haugen, B. Mgller-Pedersen, J. Oldevik, G.K. Olsen, A. Svendsen, Adding stan-
dardized variability to domain specific languages, in: International Software
Product Line Conference, SPLC, 2008, pp. 139-148.

[31] A. Murguzur, R. Capilla, S. Trujillo, O. Ortiz, R.E. Lopez-Herrejon, Context vari-
ability modeling for runtime configuration of service-based dynamic software
product lines, in: Proceedings of the 18th International Software Product Line
Conference: Companion Volume for Workshops, Demonstrations and Tools -
Volume 2, SPLC '14, ACM, New York, NY, USA, 2014, pp. 2-9, doi:10.1145/
2647908.2655957.

[32] M. Mendonca, M. Branco, D. Cowan, S.p.l.o.t.: Software product lines online
tools, in: Proceedings of the 24th ACM SIGPLAN Conference Companion on Ob-
ject Oriented Programming Systems Languages and Applications, OOPSLA '09,
ACM, New York, NY, USA, 2009, pp. 761-762, doi:10.1145/1639950.1640002.

[33] D. Benavides, S. Segura, P. Trinidad, A.R. Cortés, FAMA: tooling a framework
for the automated analysis of feature models, in: First International Workshop
on Variability Modelling of Software-Intensive Systems, VaMoS 2007, Limerick,
Ireland, January 16-18, 2007. Proceedings, 2007, pp. 129-134.

[34] J.M. Horcas, M. Pinto, L. Fuentes, Variability models for generating efficient
configurations of functional quality attributes, Information & Software Tech-
nology 95 (2018) 147-164, doi:10.1016/j.infsof.2017.10.018.

[35] RH. Reussner, S. Becker,]. Happe, R. Heinrich, A. Koziolek, H. Koziolek,
M. Kramer, K. Krogmann, Modeling and simulating software architectures: the
Palladio approach, MIT Press, 2016.

[36] G. Blair, N. Bencomo, R.B. France, Models@ run.time, Computer 42 (10) (2009)
22-27, doi:10.1109/MC.2009.326.

[37] C. Wohlin, P. Runeson, M. Host, M.C. Ohlsson, B. Regnell, A. Wesslén, Exper-

https://doi.org/10.1109/GreenCom.2011.47
http://refhub.elsevier.com/S1570-8705(18)30557-2/sbref0002
http://refhub.elsevier.com/S1570-8705(18)30557-2/sbref0002
http://refhub.elsevier.com/S1570-8705(18)30557-2/sbref0002
http://refhub.elsevier.com/S1570-8705(18)30557-2/sbref0002
http://refhub.elsevier.com/S1570-8705(18)30557-2/sbref0002
https://doi.org/10.3929/ethz-a-007337628
http://refhub.elsevier.com/S1570-8705(18)30557-2/sbref0004
http://refhub.elsevier.com/S1570-8705(18)30557-2/sbref0004
http://refhub.elsevier.com/S1570-8705(18)30557-2/sbref0004
http://refhub.elsevier.com/S1570-8705(18)30557-2/sbref0004
http://refhub.elsevier.com/S1570-8705(18)30557-2/sbref0004
http://refhub.elsevier.com/S1570-8705(18)30557-2/sbref0004
http://refhub.elsevier.com/S1570-8705(18)30557-2/sbref0004
http://refhub.elsevier.com/S1570-8705(18)30557-2/sbref0004
http://refhub.elsevier.com/S1570-8705(18)30557-2/sbref0004
https://doi.org/10.1109/MS.2015.83
https://doi.org/10.1007/s00607-016-0502-0
http://refhub.elsevier.com/S1570-8705(18)30557-2/sbref0007
http://refhub.elsevier.com/S1570-8705(18)30557-2/sbref0007
http://refhub.elsevier.com/S1570-8705(18)30557-2/sbref0007
https://doi.org/10.1177/1550147716682738
https://doi.org/10.1007/s10515-014-0171-1
https://doi.org/10.1145/2884781.2884869
https://doi.org/10.1109/MC.2008.123
http://www.repo.xposed.info/
http://refhub.elsevier.com/S1570-8705(18)30557-2/sbref0012
http://refhub.elsevier.com/S1570-8705(18)30557-2/sbref0012
http://refhub.elsevier.com/S1570-8705(18)30557-2/sbref0012
http://refhub.elsevier.com/S1570-8705(18)30557-2/sbref0013
http://refhub.elsevier.com/S1570-8705(18)30557-2/sbref0013
http://refhub.elsevier.com/S1570-8705(18)30557-2/sbref0013
http://refhub.elsevier.com/S1570-8705(18)30557-2/sbref0013
http://refhub.elsevier.com/S1570-8705(18)30557-2/sbref0014
http://refhub.elsevier.com/S1570-8705(18)30557-2/sbref0014
http://refhub.elsevier.com/S1570-8705(18)30557-2/sbref0014
http://refhub.elsevier.com/S1570-8705(18)30557-2/sbref0014
http://refhub.elsevier.com/S1570-8705(18)30557-2/sbref0014
http://refhub.elsevier.com/S1570-8705(18)30557-2/sbref0014
http://refhub.elsevier.com/S1570-8705(18)30557-2/sbref0015
http://refhub.elsevier.com/S1570-8705(18)30557-2/sbref0015
http://refhub.elsevier.com/S1570-8705(18)30557-2/sbref0015
http://refhub.elsevier.com/S1570-8705(18)30557-2/sbref0015
http://refhub.elsevier.com/S1570-8705(18)30557-2/sbref0015
http://refhub.elsevier.com/S1570-8705(18)30557-2/sbref0015
http://refhub.elsevier.com/S1570-8705(18)30557-2/sbref0015
http://refhub.elsevier.com/S1570-8705(18)30557-2/sbref0015
https://doi.org/10.1145/2889160.2889217
https://doi.org/10.1109/ICSME.2014.34
https://doi.org/10.1145/2568225.2568297
http://refhub.elsevier.com/S1570-8705(18)30557-2/sbref0019
http://refhub.elsevier.com/S1570-8705(18)30557-2/sbref0019
http://refhub.elsevier.com/S1570-8705(18)30557-2/sbref0019
http://refhub.elsevier.com/S1570-8705(18)30557-2/sbref0019
http://refhub.elsevier.com/S1570-8705(18)30557-2/sbref0020
http://refhub.elsevier.com/S1570-8705(18)30557-2/sbref0020
http://refhub.elsevier.com/S1570-8705(18)30557-2/sbref0020
http://refhub.elsevier.com/S1570-8705(18)30557-2/sbref0020
http://refhub.elsevier.com/S1570-8705(18)30557-2/sbref0021
http://refhub.elsevier.com/S1570-8705(18)30557-2/sbref0021
http://refhub.elsevier.com/S1570-8705(18)30557-2/sbref0021
http://refhub.elsevier.com/S1570-8705(18)30557-2/sbref0021
http://refhub.elsevier.com/S1570-8705(18)30557-2/sbref0021
https://doi.org/10.1016/j.procs.2011.07.035
https://doi.org/10.1016/j.future.2018.01.060
https://doi.org/10.1016/j.future.2017.05.029
https://doi.org/10.2991/ict4s-14.2014.14
https://doi.org/10.1145/3129790.3129818
https://doi.org/10.1109/MC.2003.1160055
https://doi.org/10.1109/ES2DE.2017.8015334
http://refhub.elsevier.com/S1570-8705(18)30557-2/sbref0029
http://refhub.elsevier.com/S1570-8705(18)30557-2/sbref0029
http://refhub.elsevier.com/S1570-8705(18)30557-2/sbref0029
http://refhub.elsevier.com/S1570-8705(18)30557-2/sbref0029
http://refhub.elsevier.com/S1570-8705(18)30557-2/sbref0029
http://refhub.elsevier.com/S1570-8705(18)30557-2/sbref0029
http://refhub.elsevier.com/S1570-8705(18)30557-2/sbref0030
http://refhub.elsevier.com/S1570-8705(18)30557-2/sbref0030
http://refhub.elsevier.com/S1570-8705(18)30557-2/sbref0030
http://refhub.elsevier.com/S1570-8705(18)30557-2/sbref0030
http://refhub.elsevier.com/S1570-8705(18)30557-2/sbref0030
http://refhub.elsevier.com/S1570-8705(18)30557-2/sbref0030
https://doi.org/10.1145/2647908.2655957
https://doi.org/10.1145/1639950.1640002
http://refhub.elsevier.com/S1570-8705(18)30557-2/sbref0033
http://refhub.elsevier.com/S1570-8705(18)30557-2/sbref0033
http://refhub.elsevier.com/S1570-8705(18)30557-2/sbref0033
http://refhub.elsevier.com/S1570-8705(18)30557-2/sbref0033
http://refhub.elsevier.com/S1570-8705(18)30557-2/sbref0033
https://doi.org/10.1016/j.infsof.2017.10.018
http://refhub.elsevier.com/S1570-8705(18)30557-2/sbref0035
http://refhub.elsevier.com/S1570-8705(18)30557-2/sbref0035
http://refhub.elsevier.com/S1570-8705(18)30557-2/sbref0035
http://refhub.elsevier.com/S1570-8705(18)30557-2/sbref0035
http://refhub.elsevier.com/S1570-8705(18)30557-2/sbref0035
http://refhub.elsevier.com/S1570-8705(18)30557-2/sbref0035
http://refhub.elsevier.com/S1570-8705(18)30557-2/sbref0035
http://refhub.elsevier.com/S1570-8705(18)30557-2/sbref0035
http://refhub.elsevier.com/S1570-8705(18)30557-2/sbref0035
https://doi.org/10.1109/MC.2009.326
http://refhub.elsevier.com/S1570-8705(18)30557-2/sbref0037
http://refhub.elsevier.com/S1570-8705(18)30557-2/sbref0037
http://refhub.elsevier.com/S1570-8705(18)30557-2/sbref0037
http://refhub.elsevier.com/S1570-8705(18)30557-2/sbref0037
http://refhub.elsevier.com/S1570-8705(18)30557-2/sbref0037
http://refhub.elsevier.com/S1570-8705(18)30557-2/sbref0037
http://refhub.elsevier.com/S1570-8705(18)30557-2/sbref0037

imentation in Software Engineering: An Introduction, Kluwer Academic Pub-
lishers, Norwell, MA, USA, 2000.

[38] Y. Coady, G. Kiczales, M. Feeley, G. Smolyn, Using aspectc to improve the mod-
ularity of path-specific customization in operating system code, SIGSOFT Softw.
Eng. Notes 26 (5) (2001) 88-98, doi:10.1145/503271.503223.

[39] D.R. Prasanna, Dependency Injection, 1st, Manning Publications Co., Green-
wich, CT, USA, 2009.

[40] E. Gamma, Design patterns: elements of reusable object-oriented software,
Pearson Education India, 1995.

http://refhub.elsevier.com/S1570-8705(18)30557-2/sbref0037
https://doi.org/10.1145/503271.503223
http://refhub.elsevier.com/S1570-8705(18)30557-2/sbref0039
http://refhub.elsevier.com/S1570-8705(18)30557-2/sbref0039
http://refhub.elsevier.com/S1570-8705(18)30557-2/sbref0040
http://refhub.elsevier.com/S1570-8705(18)30557-2/sbref0040
http://www.caosd.lcc.uma.es/
http://www.aosdeurope.net

	Context-aware energy-efficient applications for cyber-physical systems
	1 Introduction
	2 Background
	2.1 Dynamic Software Product Lines
	2.2 Separation of Concerns and Aspect-Orientation

	3 Related Work
	4 Intelligent Transportation CPS case study
	5 The Green Eco-Assistant: Challenges and Overview
	5.1 Challenges
	5.2 Overview

	6 Modeling the Energy Consuming Concerns
	6.1 Modeling the usage context and the configurable parameters
	6.2 Generating different configurations
	6.3 Estimating the energy consumption

	7 Analyzing and selecting energy-efficient configurations
	8 Energy-aware reconfiguration
	9 Evaluation and Threats to Validity
	9.1 Experimentation
	9.1.1 Experimentation Set-Up
	9.1.2 Accuracy of the results
	9.1.3 Generalization of results
	9.1.4 Applicability

	9.2 Energy efficiency of the reconfiguration mechanism
	9.3 Self-adaptation in the context of CPS
	9.4 Benefits of using the Green Eco-Assistant
	9.4.1 Benefits in CPS nodes with large processing capability
	9.4.2 Benefits in CPS nodes with limited procesing capability

	10 Conclusions and Future Work
	 Acknowledgments
	 References

