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Abstract

We propose a multi-layer approach to simulate hyperpycnal and hypopycnal plumes in flows
with free surface. The model allows to compute the vertical profile of the horizontal and the
vertical components of the velocity of the fluid flow. The model can describe as well the vertical
profile of the sediment concentration and the velocity components of each one of the sediment
species that form the turbidity current. To do so, it takes into account the settling velocity of
the particles and their interaction with the fluid. This allows to better describe the phenomena
than a single layer approach. It is in better agreement with the physics of the problem and gives
promising results. The numerical simulation is carried out by rewriting the multi-layer approach
in a compact formulation, which corresponds to a system with non-conservative products, and
using path-conservative numerical scheme. Numerical results are presented in order to show the
potential of the model.

1 Introduction

When a river that carries sediment in suspension enters into lake or the ocean, it can form a plume
that advects the sediment from the river mouth. Based on the difference of density [5, 30], these
particle-bearing flows are said to be ‘hypopycnal’ (or an ‘overflow’) if the combined density of the
sediment and interstitial fluid is lower than that of the ambient. If the combined density is higher
than that of the ambient, it is said to be ‘hyperpycnal’ (or an ‘underflow’). Hyperpycnal plumes are
a class of sediment-laden gravity current commonly referred to as turbidity currents [23, 27, 30].
Turbidity currents occur in many different circumstances in nature, for example, at the outflow of
rivers into the ocean [23, 22], where they may be generated by storm waves impacting the coast
[29], in regions of submarine landslides resulting for example from tectonic activity [18] and where
tidal activity acts on steep slopes [31]. They are responsible for the transportation of sediment on
a global scale, defining the main mechanism that allows sediment to be transported to the deeper
ocean [19, 26, 13, 15]. Because of their impacts in global sediment transport, their role in erosion and
deposition over continental slopes and submarine canyons, and the effects on marine constructions and
infrastructures near river mouths and continental shelves, understanding the evolution of turbidity
currents is of great importance.
Only limited observational records exist for the occurrence and flow of turbidity currents. This is due
to the difficulty in predicting the time and frequency of turbidity currents as well as the destructive
nature of such sediment-laden flows. As a result, most of our knowledge about these flows is derived
from small scale laboratory experiments like the ones described in [20, 13, 1, 17, 16]. Given the lack
of observations, numerical modeling is an excellent tool to gain an increased understanding of the
evolution of turbidity currents.
Some layer-averaged models have been previously developed on the basis of small-scale tank ex-
periments of particle-driven density currents in [8, 26, 6, 17, 17, 14]. Although this layer-averaged
approach gives a fast and valuable information, it has the disadvantage that the vertical distribution
of the sediment in suspension is lost.
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A recent technique based on a multilayer approach [2, 3, 11] has shown to be specially useful to
generalize shallow water type models in order to keep track of the vertical components of the averaged
variables in the classical shallow water equations. Thus, instead of averaging between the bottom and
the free surface, as in shallow water system, a partition of the water height is considered. The system
is then integrated inside of each layer defined by the partition, combined with a set of kinematic
conditions at each interface, defined in terms on the mass transference term.
In [11] another multilayer approach is proposed for the case of the Navier-Stokes equations with con-
stant density and viscosity. In that work, a multilayer model is obtained using a vertical discontinuous
Galerkin approach for which the vertical velocity is supposed to be piecewise linear and the horizon-
tal velocity is supposed to be piecewise constant. The mass and momentum transfer terms among
the layers are obtained from the jump conditions of the conserved principles. In the numerical tests
presented in [11] authors show that this discontinuous piecewise linear profile of the vertical profile
allows to approximate properly the vertical velocity of Navier-Stokes equations. The key point is to
compute the jump of the vertical velocity at each interface in terms of the jump condition associated
to the definition of the mass transference.
In [12] authors propose an application of the multilayer approach introduced in [2, 3] to study poly-
disperse sedimentation. Here the technique introduced in [11] is generalized to derive a model for
turbidity currents. As in [11], we also obtain a piecewise linear profile for the vertical velocity profile
of the fluid and each sediment species involved in the turbidity current. As it will be shown, this
model is really promising and allows to simulate hyperpycnal as well as hypopycnal plumes.
The paper is organized as follows: in Section 2 we describe the governing equations for the phenomena.
These equations are the starting point for Section 3 where a multilayer approach is used to develop
a new set of equations. In Section 4 the assumption of hydrostatic pressure is used and a particular
weak solution of the system is defined. The system needs some closure relations that are introduced in
Section 5 and a compact formulation of the system is shown. Then, in Section 6 a numerical scheme
is proposed and some numerical tests are shown in Section 7. The paper contains some Appendixes
with the technical details of the different sections.

2 Governing equations

Let us consider N ∈ N∗ species of spherical solid particles dispersed in a viscous fluid. For each solid
species j, j = 1, . . . , N , we denote by φj , ρj , dj , and ~vj = (~uj , wj), j = 1, . . . , N , its volumetric
concentration, density, particle diameter, and phase velocity, respectively. ~uj ∈ Rd−1 (d = 2, 3)
represents the horizontal component of the velocity and wj ∈ R the vertical one. The same notation
is used for the fluid indexed by j = 0. We assume that effects of sediment compressibility can be
neglected. The model is based on the continuity and linear momentum balance equations for the
N solid species and the fluid. The continuity equations are given by

∂tφj +∇ · (φj~vj) = 0, j = 0, . . . , N. (2.1)

Taking into account that φ = 1−φ0, where φ := φ1 + · · ·+φN denotes the total solids concentration,
we see by summing all equations in (2.1) that the volume average velocity of the mixture

~v := (~u, w) := φ0~v0 + φ1~v1 + · · ·+ φN~vN = (1− φ)~v0 + φ1~v1 + · · ·+ φN~vN

satisfies the simple mass balance of the mixture

∇ · ~v = 0. (2.2)

Here, we shall assume that the velocity of each sediment species is equal to the volume average velocity
of the mixture plus a vertical downwards component due to the sedimentation of the particles, that is

~vj = ~v + δwj~k, j = 1, . . . , N, (2.3)

where ~k is the upward-pointing unit vector and δwj is a negative velocity related to the settling
velocity of the j species which will be discussed in Section 2.1.
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Remark that this implies

φ0w0 = w −
N∑

j=1

φjwj = w −
N∑

j=1

φj(w + δwj) = φ0w −
N∑

j=1

δwjφj , (2.4)

and we shall denote

δw0 = − 1

φ0

N∑

j=1

δwjφj , (2.5)

and we have
~vj = ~v + δwj~k, j = 0, 1, . . . , N, (2.6)

The model also involves the sum up of the linear momentum balance equations for the solid phases:

ρj∂t(φj~vj) +∇ · (ρjφj~vj ⊗ ~vj) = −ρjφjg~k +∇ ·Σj . (2.7)

Here g is the gravity acceleration and the stress tensor is

Σj = −φjpI + T j . (2.8)

In what follows, let us denote by Φ = {φj}Nj=0 the set of concentrations corresponding to each species
and by ρ(Φ) the averaged density of the mixing,

ρ(Φ) =
N∑

j=0

ρjφj .

Let us also denote by Σ = Σ0 + Σ1 + . . .+ ΣN = −pI + T , with

T =
N∑

j=0

T j =

(
TH Txz
T ′xz Tzz

)
. (2.9)

The symbol I stands for the identity tensor. Then, by summing up, from j = 0 to j = N the equations
in (2.7) we obtain

∂t




N∑

j=0

ρjφj~vj


+∇ ·




n∑

j=0

ρjφj~vj ⊗ ~vj


 = −ρ(Φ)g~k +∇ ·Σ. (2.10)

And by using (2.3) we can write each one of the equations of previous system as follows:

∂t(ρ(Φ)~u) +∇x · (ρ(ρ)~u⊗ ~u) + ∂z




ρ(Φ)w +

N∑

j=0

ρjδwjφj


 ~u


 = ∇x · (−pI + TH) + ∂z(Txz),

(2.11)

∂t


ρ(Φ)w +

N∑

j=0

ρjδwjφj


+∇x ·




ρ(Φ)w +

N∑

j=0

ρjδwjφj


 ~u




+∂z





ρ(Φ)w +

N∑

j=0

ρjδwjφj




2

 = ∇x · (Txz) + ∂z(−p+ Tzz).

(2.12)

The generic space variable is (x, z) ∈ Rd such that the horizontal variable corresponds to x =
(x1, ..., xd−1) ∈ Rd−1.
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2.1 Settling velocity

As we said before, we assume that the velocity of sediment species differ from the volume average of
the mixture by a vertical downwards component due to the sedimentation of the particle. This vertical
component is related to the so-called settling velocity (−wsj ≤ 0). Settling velocity, also known as
fall velocity or terminal velocity of a sediment particle is defined as the rate at which the sediment
settles in still fluid. The factors influencing the settling velocity include the particle properties (i.e.
size, shape, structure) as well as the viscosity and density of the fluid.
For monodisperse particles settling at infinite dilution, discrete particles will settle within still, ho-
mogeneous fluid conditions at a terminal fall velocity determined by application of Stokes’ law, if the
particle Reynolds number Rep << 1 or by one of various empirically-derived formulae if Rep > 1 (see
[9]). Nevertheless, when the concentration of sediment particles increases, particles cease to behave
independently. Instead, their motions are correlated through hydrodynamic and particle-particle in-
teractions, often resulting in settling rates that are lower than that for individual, isolated particles,
i.e. hindered settling.
Hindered settling is often accounted for by estimating an actual settling velocity, δwj , given by

δwj = −wsjχ(Φ). (2.13)

χ(φ) is the so-called hindered settling factor, which may be described following [28] by:

χ(Φ) =






1−

N∑

j=1

φj



n

, for

N∑

j=1

φj < φmax,

0, otherwise,

(2.14)

where n is a parameter that depends on particle Reynolds number (typically between 2.5 and 5.5)
and φmax is a maximal solids concentration.
Nevertheless, other methods may be proposed for predicting the hindered settling conditions. We
refer the reader to [9, 4] and the references therein for this purpose.

3 A multilayer approach

Figure 1: Sketch of the multilayer approach
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We shall consider a d-dimensional space (d = 2, 3). For a given positive constant real number T,
and each time t ∈ [0, T ] we denote by ΩF (t), the fluid domain and by IF (t), its projection onto the
horizontal plane. In order to introduce a multilayer system, the fluid domain is divided along the
vertical direction into M ∈ N∗ pre-set layers of thickness hα(t, x) with M + 1 interfaces Γα+ 1

2
(t)

of equations z = zα+ 1
2
(t, x) for α = 0, 1, ...,M and x ∈ IF (t) (see Figure 1). We assume that the

interfaces Γα+ 1
2
(t) are smooth, concretely at least of class C1 in time and space. We shall denote

by zB = z 1
2

and zS = zM+ 1
2

the equations of the bottom and the free surface interfaces ΓB(t) and

ΓS(t), respectively. We have hα = zα+ 1
2
− zα− 1

2
and zα+ 1

2
= zB +

∑α
β=1 hβ for α = 1, ...,M . Then

the height of the fluid is given by h = zS − zB =
∑M
α=1 hα.

Actually we have ∂ΩF (t) = ΓB(t) ∪ ΓS(t) ∪ Θ(t), where Θ(t) is the inflow/outflow boundary which
we assume here to be vertical. The fluid domain is split as ΩF (t) = ∪Mα=1 Ωα(t) with the setting

Ωα(t) =
{

(x, z); x ∈ IF (t) and zα− 1
2
< z < zα+ 1

2

}
,

∂Ωα(t) = Γα− 1
2
(t) ∪ Γα+ 1

2
(t) ∪Θα(t), with

Θα(t) =
{

(x, z); x ∈ ∂IF (t) and zα− 1
2
< z < zα+ 1

2

}
.

(3.1)

Hence the inflow/outflow boundary is split as Θ(t) = ∪Mα=1 Θα(t).

Moreover, let us introduce the following notation:

(i) For two tensors a and b of sizes (n,m) and (n, p) respectively, we shall denote by (a; b) the
tensor of size (n,m+ p) which is the concatenation of a and b in this order.

(ii) Let consider the differential operator ∇ = (∂x1 , ..., ∂xd−1
, ∂z), then we set

∇ := (∂t; ∇) = (∂t, ∂x1
, ..., ∂xd−1

, ∂z) and ∇x := (∂x1
, ..., ∂xd−1

).

(iii) For α = 0, 1, ..., N and for a function f , we set

f−
α+ 1

2

:= (f|Ωα(t)
)|Γ

α+ 1
2

(t)
and f+

α+ 1
2

:= (f|Ωα+1(t)
)|Γ

α+ 1
2

(t)
.

When the function f is continuous, we will simply set

fα+ 1
2

:= f|Γ
α+ 1

2
(t)
.

We shall also use the notation

< f >α+ 1
2
=
f+
α+ 1

2

+ f−
α+ 1

2

2
.

(iv) We will denote by ~ηα+ 1
2

the space unit normal vector to the interface Γα(t) outward to the layer

Ωα(t) for a given time t and for α = 0, ...,M . It is defined by

~ηα+1/2 =

(
∇xzα+ 1

2
,−1

)′

√
1 +

∣∣∣∇xzα+ 1
2

∣∣∣
2
. (3.2)

(v) We will denote by ~nT,α+ 1
2

the (space-time) unit normal vector to the interface Γα(t) outward

to the layer Ωα(t) and for α = 0, ..., N ,

~nT,α+1/2 =

(
∂tzα+ 1

2
,∇xzα+ 1

2
,−1

)′

√
1 +

∣∣∣∇xzα+ 1
2

∣∣∣
2

+ (∂tzα− 1
2
)2

.
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Remark 3.1. Adding the time variable as one more dimension, the corresponding domain ΩT is actually
given by

ΩT =
{

(t, x, z); t ∈]0, T ] and (x, z) ∈ ΩF (t)
}
, with

∂ΩT = ΛT ∪ Λ1 ∪ Λ2, where

ΛT =
{

(t, x, z); t ∈]0, T ] and (x, z) ∈ ∂ΩF (t)
}
,

Λ1 =
{

(0, x, z); (x, z) ∈ ΩF (0)
}
,

Λ2 =
{

(T, x, z); (x, z) ∈ ΩF (T )
}
.

Since we integrate over ΩF (t), we retain here the boundary ΛT for the computations even if it means
cancelling the tests functions over the boundaries Λ1 and Λ2.

3.1 Weak solution with discontinuities

Let us recall the conditions to be verified by a piecewise smooth weak solution (~vj , φj , p) of (2.1)-
(2.10). More precisely, let us suppose that the velocity ~vj , the pressure p and the volume fractions φj
are smooth in each Ωα(t), but possibly discontinuous across the predetermined hypersurfaces Γα+ 1

2
(t)

for α = 1, ...,M − 1. Then the triplet (~vj , φj , p) for j = 0, 1, . . . , N is a weak solution of (2.1)-(2.10)
if the following conditions hold:

(i) (~vj , φj , p) is a standard weak solution of (2.1)-(2.10) in each layer Ωα(t).

(ii) (~vj , φj , p) satisfies the normal flux jump conditions at Γα+ 1
2
(t), for α = 0, . . . ,M :

• For the mass conservation law,

[(φj ; φj~vj)]|Γ
α+ 1

2
(t)
· ~nT,α+1/2 = 0, (3.3)

• For the momentum conservation law (2.10),

[


N∑

j=0

ρjφj~vj ;
N∑

j=0

ρjφj~vj ⊗ ~vj −Σ



]

|Γ
α+ 1

2
(t)

· ~nT,α+1/2 = 0, (3.4)

where [(a; b)]|Γ
α+ 1

2
(t)

denotes the the jump of the pair (a; b) across Γα+ 1
2
(t),

[(a; b)]|Γ
α+ 1

2
(t)

=
(

(a; b)|Ωα+1(t)
− (a; b)|Ωα(t)

)
|Γ
α+ 1

2
(t)

In order to develop the multilayer model, we adapt the preceding conditions to a particular class of
triplets velocity-concentration-pressure: we assume the layers thicknesses small enough to neglect the
dependence of the horizontal velocities, the concentrations and the pressure on the vertical variable
inside each layer. Moreover, we assume that the vertical velocity is piecewise linear in z, and possibly
discontinuous. Concretely, we set

(~vj)|Ωα(t)
:= ~vj,α := (~uα, wj,α)

′
, φj,α := (φj)|Ωα(t)

, pα := p|Ωα(t)
, for j = 0, 1, . . . , N,

where
~uα, wj,α = wα + δwj,α and φj,α,
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respectively stand for the horizontal and vertical velocities and volumetric concentration of the species
j on layer α. Let us also denote the averaged velocity at each lager by ~vα,

~vα =
N∑

j=0

φj,α~vj,α = (~uα, wα),

and to assume that

∂z~uα = 0, ∂zφj,α = 0, ∂zwj,α = dj,α(t, x), ∂zpα(t, x) = eα(t, x) (3.5)

for some smooth functions dj,α(t, x) and eα(t, x). That is, we suppose that:

• the horizontal velocity ~uα and the concentration of each of the species φj,α do not depends on
z inside each layer,

• wj,α and pα are linear in z inside each layer.

There is no hope for such a particular set
(

(~uα, wj,α)
′
, φj,α, pα

)
to be a solution of the complete

equations in the layer Ωα(t). Instead, we shall consider a reduced weak formulation with particular
test functions, that we describe in Section 4.
Let us also denote Φα = {φj,α}Nj=0 and

ρ(Φα) :=

N∑

j=0

ρjφj,α.

3.1.1 Mass conservation jump conditions

Remark that

~u+
α− 1

2
(t, x) = ~u−

α+ 1
2
(t, x) = ~uα(t, x), and φ+

j,α− 1
2

(t, x) = φ−
j,α+ 1

2

(t, x) = φj,α(t, x). (3.6)

Then mass conservation jump conditions are satisfied provided that

Gj,α+ 1
2

:= G−
j,α+ 1

2

= G+
j,α+ 1

2

, (3.7)

where 



G+
j,α+ 1

2

= φj,α+1

(
∂tzα+ 1

2
+ ~uα+1 · ∇xzα+ 1

2
− w+

j,α+ 1
2

)
,

G−
j,α+ 1

2

= φj,α

(
∂tzα+ 1

2
+ ~uα · ∇xzα+ 1

2
− w−

j,α+ 1
2

) (3.8)

for j = 0, 1, . . . , N.
Remark that Gj,α+ 1

2
is the normal mass flux for the species j at the interface Γα+ 1

2
(t).

Taking into account the structure of the vertical velocity (2.3), let us denote

w±
j,α+ 1

2

= w±
α+ 1

2

+ δw±
j,α+ 1

2

. (3.9)

where δw±
j,α+ 1

2

must verify that

N∑

j=0

φj,α+1δw
+
j,α+ 1

2

=
N∑

j=0

φj,αδw
−
j,α+ 1

2

= 0.
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It is now clear, adding up in j, that

Gα+ 1
2

:= G−
α+ 1

2

= G+
α+ 1

2

, where Gα+ 1
2

=

N∑

j=0

Gj,α+ 1
2

(3.10)

and 



G+
α+ 1

2

= ∂tzα+ 1
2

+ ~uα+1 · ∇xzα+ 1
2
− w+

α+ 1
2

,

G−
α+ 1

2

= ∂tzα+ 1
2

+ ~uα · ∇xzα+ 1
2
− w−

α+ 1
2

,
(3.11)

which corresponds to the jump condition for the equation ∇ · ~v = 0.
Then, from (3.8), (3.9) and (3.11) we have that

G+
j,α+ 1

2

= φj,α+1(Gα+ 1
2
− δw+

j,α+ 1
2

), G−
j,α+ 1

2

= φj,α(Gα+ 1
2
− δw−

j,α+ 1
2

). (3.12)

This gives
Gj,α+ 1

2
=< φj(G− δwj) >α+ 1

2

=
φj,α+1 + φj,α

2
Gα+ 1

2
−
φj,α+1δw

+
j,α+ 1

2

+ φj,αδw
−
j,α+ 1

2

2
.

(3.13)

As a consequence,

N∑

j=0

ρjGj,α+ 1
2

=< ρ(Φ)G+
N∑

j=0

ρjδwj >α+ 1
2

=
ρ(Φα+1) + ρ(Φα)

2
Gα+ 1

2
−

N∑

j=0

ρj
φj,α+1δw

+
j,α+ 1

2

+ φj,αδw
−
j,α+ 1

2

2
.

(3.14)

Let us also remark that condition (3.7) can be written as

φj,α+1δw
+
j,α+ 1

2

− φj,αδw−j,α+ 1
2

= Gα+ 1
2
(φj,α+1 − φj,α). (3.15)

3.1.2 Momentum conservation jump conditions

From the momentum jump condition (3.4) we have

[


N∑

j=0

ρjφj~vj ;
N∑

j=0

ρjφj~vj ⊗ ~vj −Σ



]

|Γ
α+ 1

2
(t)

·
(
∂tzα+ 1

2
,∇xzα+ 1

2
,−1

)
= 0.

Which can also be written as

[
Σ
]
|Γ
α+ 1

2
(t)

·
(
∇xzα+ 1

2
,−1

)
=

N∑

j=0

[
(ρjφj~vj ; ρjφj~vj ⊗ ~vj)

]

|Γ
α+ 1

2
(t)

·
(
∂tzα+ 1

2
,∇xzα+ 1

2
,−1

)
.

Moreover, using (3.7), we have

[
(ρjφj~vj ; ρjφj~vj ⊗ ~vj)

]
|Γ
α+ 1

2
(t)

·
(
∂tzα+ 1

2
,∇xzα+ 1

2
,−1

)
= ρj Gj,α+ 1

2
[~vj ]|Γ

α+ 1
2

(t)
.

Then, we have that

[
Σ
]
|Γ
α+ 1

2
(t)

·
(
∇xzα+ 1

2
,−1

)
=

N∑

j=0

ρj Gj,α+ 1
2

[~vj ]|Γ
α+ 1

2
(t)
.
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As a consequence, condition (3.4) can be written as

[
Σ
]
|Γ
α+ 1

2
(t)

· ~ηα+ 1
2

=
1√

1 +
∣∣∣∇xzα+ 1

2

∣∣∣
2

N∑

j=0

ρj Gj,α+ 1
2

[~vj ]|Γ
α+ 1

2
(t)
. (3.16)

For α = 1, ..., N − 1, the total stress writes

Σ±
α+ 1

2

= −pα+ 1
2
I + T±

α+ 1
2

, (3.17)

where pα+ 1
2

is the kinematic pressure and T±
α+ 1

2

are the limit approximations of T (~v) at Γα+ 1
2
. This

means that T±
α+ 1

2

must verify

(
T+
α+ 1

2

− T−
α+ 1

2

)
· ~ηα+ 1

2
=

1√
1 +

∣∣∣∇xzα+ 1
2

∣∣∣
2

N∑

j=0

ρj Gj,α+ 1
2

[~vj ]|Γ
α+ 1

2
(t)
. (3.18)

where Gj,α+ 1
2

is defined by (3.13).

Moreover, by consistency, T±
α+ 1

2

should verify

1

2

(
T+
α+ 1

2

+ T−
α+ 1

2

)
= T̃α+ 1

2
=




T̃H,α+ 1
2

T̃xz,α+ 1
2

T̃ ′
xz,α+ 1

2

T̃zz,α+ 1
2


 , (3.19)

where T̃α+ 1
2

is an approximation of T (~v)|Γ
α+ 1

2

, to be defined.

Concretely, if we set T (~v) = µD(~v) = µ(∇~v + (∇~v)′), then we define

T̃α+ 1
2

= µD̃α+ 1
2

= µ




DH

(
~u+
H,α+ 1

2
+ ~u−

H,α+ 1
2

2

) (
∇x
(
w+

α+ 1
2

+w−
α+ 1

2

2

))′
+ ~QH,α+ 1

2

∇x
(
w+

α+ 1
2

+w−
α+ 1

2

2

)
+ (~QH,α+ 1

2
)′ 2Qv,α+ 1

2



,

(3.20)

where ~Qα+ 1
2

= ~Q(~̃u) at Γα+ 1
2

and ~Q satisfies the equation

~Q− ∂z~v = 0, with ~Q = (~QH , Qv). (3.21)

To approximate ~Q, solution of (3.21), we approximate ~v by ~̃u, that is a linear interpolation in z, such

that ~̃u|z= 1
2 (z

α− 1
2

+z
α+ 1

2
) = ~uα.

Finally, we can solve the system defined by (3.18) and the equation resulting to multiply scalarly
(3.19) by vector ~ηα+ 1

2
. This way, we obtain the expression of T±

α+ 1
2

, that verifies the jump condition

and the consistency condition on the interface. We can solve it easily and we obtain

T±
α+ 1

2

· ~ηα+ 1
2

= T̃α+ 1
2
· ~ηα+ 1

2
± 1

2

1√
1 +

∣∣∣∇xzα+ 1
2

∣∣∣
2

N∑

j=0

ρj Gj,α+ 1
2

[~vj ]|Γ
α+ 1

2
(t)
.

(3.22)

3.2 Vertical velocity

In this subsection we show how the vertical velocities wα and wj,α are defined for each layer.
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Fist, let us notice that, as ~uα is a classic solution of the equations in Ωα(t), for z ∈]zα− 1
2
, zα+ 1

2
[, the

vertical integration of the incompressibility equation leads to the equality

wα(t, x, z) = w+
α− 1

2

(t, x) − (z − zα− 1
2
)∇x · ~uα(t, x), for α = 1, ..., N.

In addition, from the condition (3.11) at the interfaces, we express the quantities

w+
α− 1

2

= (~uα − ~uα−1) · ∇xzα− 1
2

+ w−
α− 1

2

. (3.23)

where
w−
α− 1

2

= wα−1|Γ
α− 1

2
(t)

= w+
α− 3

2

− hα−1∇x · ~uH,α−1. (3.24)

Using the horizontal velocities drawn from the model, the averaged vertical velocities in the layers are
computed using the following algorithm:

• The quantity w+
1
2

is determined, from the given mass transference G 1
2
, through the condition

(3.7) at the bottom by
w+

1
2

= ~uH,1 · ∇xzB + ∂tzB −G 1
2
.

• Then, for α = 1, ..., N and z ∈]zα− 1
2
, zα+ 1

2
[, we set

wα(t, x, z) = w+
α− 1

2

(t, x) − (z − zα− 1
2
)∇x · ~uH,α(t, x),

w−
α+ 1

2

= wα|Γ
α+ 1

2
(t)

= w+
α− 1

2

− hα∇x · ~uH,α,

w+
α+ 1

2

= (~uα+1 − ~uα) · ∇xzα+ 1
2

+ w−
α+ 1

2

.

(3.25)

3.2.1 Vertical velocity of the sediment species

The vertical velocity of the sediment species j, for j = 1, . . . , N , inside the layer Ωα is defined by

wj,α(t, x, z) = wα(t, x, z) + δwj,α(z),
(3.26)

where wα is defined by (3.25). Moreover, by assuming a linear profile of δwj,α(z), it can be defined in
terms of the limits in the layer, that is, in terms of δw−

j,α+ 1
2

and δw+
j,α− 1

2

. Concretely,

δwj,α(z) = δw+
j,α− 1

2

+
δw−

j,α+ 1
2

− δw+
j,α− 1

2

hα
(z − zα− 1

2
).

Remember that δw−
j,α+ 1

2

and δw+
j,α+ 1

2

verifies (3.15). Then we have





φj,α+1δw
+
j,α+ 1

2

− φj,αδw−j,α+ 1
2

= (φj,α+1 − φj,α)Gα+ 1
2
,

φj,α+1δw
+
j,α+ 1

2

+ φj,αδw
−
j,α+ 1

2

= 2 < φjδwj >α+ 1
2
.

Thus, we obtain

φj,α+1δw
+
j,α+ 1

2

= < φjδwj >α+ 1
2

+
1

2
(φj,α+1 − φj,α)Gα+ 1

2
,

φj,α δw
−
j,α+ 1

2

= < φjδwj >α+ 1
2
−1

2
(φj,α+1 − φj,α)Gα+ 1

2
.

(3.27)

This means that assuming that some approximation of the term < φjδwj >α+ 1
2

is given, then the
vertical velocities of each sediment species in the layers can be computed using the following algorithm:
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• w+
j, 12

= w+
1
2

, that is δw+
j, 12

= 0. It corresponds to consider that the bottom z = z 1
2

determines

the limit of a saturated sediment bottom.

• Then, for α = 1, ..., N and z ∈]zα− 1
2
, zα+ 1

2
[, we set

wj,α(t, x, z) = wα(t, x, z) + δw+
j,α− 1

2

+
δw−

j,α+ 1
2

− δw+
j,α− 1

2

hα
(z − zα− 1

2
). (3.28)

where wα(t, x, z) is defined by (3.25), and δw+
j,α+ 1

2

, δw−
j,α+ 1

2

by (3.27).

4 A particular weak solution with hydrostatic pressure

In this Section we finish the construction of the model under the hypothesis of hydrostatic pressure.
This means that

pα(t, x, z) = pα+ 1
2
(t, x) + ρ(Φα)g(zα+ 1

2
− z), (4.1)

with

pα+ 1
2
(t, x) = pS(t, x) + g

M∑

β=α+1

ρ(Φβ)hβ(t, x). (4.2)

Here, the component pα+ 1
2

is the kinematic pressure at Γα+ 1
2
(t) and pS denotes the pressure at the

free surface. Then, the unknowns of the systems are the layer depths and the horizontal velocities.
As ~vj,α is a weak solution of the equations (2.1) - (2.10) in Ωα(t), let us begin by considering the
weak formulation of this system in Ωα(t) for α = 1, ..., N . Assuming ~vα ∈ L2(0, T ;H1(Ωα(t))3),
∂t~vα ∈ L2(0, T ;L2(Ωα(t))3) and pα ∈ L2(0, T ;L2(Ωα(t))), a weak solution of the original equations
in Ωα(t) should verify





∫

Ωα(t)

(∂tφj,α +∇ · (φj,α~vj,α)) ϕdΩ = 0,

∫

Ωα(t)

N∑

j=0

ρj∂t(φj,α~vjα) · ~ϑ dΩ +

∫

Ωα(t)

N∑

j=0

ρj∇ ·
(
φj,α~vj,α ⊗ ~vj,α

)
· ~ϑ dΩ

+

∫

Ωα(t)

TE : ∇~ϑ dΩ−
∫

Ωα(t)

p∇ · ~ϑ dΩ

+

∫

Γ
α+ 1

2
(t)

(Σ−
α+ 1

2

~ϑ) · ~ηα+ 1
2
dΓ

−
∫

Γ
α− 1

2
(t)

(Σ+
α− 1

2

~ϑ) · ~ηα− 1
2
dΓ

= −
∫

Ωα(t)

g ρ(Φα)~k · ~ϑ dΩ.

(4.3)

for all ϕ ∈ L2(Ωα(t)) and for all ~ϑ ∈ H1(Ωα(t))3 with ~ϑ|∂IF = 0.
We consider velocity-pressure pairs with the structure given by (3.5), that satisfy the previous system
with particular weak solutions that verify (4.3) for test functions such that ∂zϕ = 0 and

~ϑ(t, x, z) =
(
~ϑH(t, x), (z − zB)V (t, x)

)′
, (4.4)

where ϑ and V (t, x) are smooth functions that do no depend on z.
Following a similar approach as in [11], after some easy calculations we get

� Mass conservation law

∂t(φj,αhα) +∇x · (φj,αhα~uα) = Gj,α+ 1
2
−Gj,α− 1

2
, j = 0, 1, . . . , N, α = 0, ...,M, (4.5)

11



where Gj,α+ 1
2

is defined by (3.13).

Remark that taking into account
N∑

j=0

φj,α = 1, we get that

∂thα +∇x · (hα~uα) = Gα+ 1
2
−Gα− 1

2
, α = 0, ...,M. (4.6)

Moreover, combining (4.5) with (4.6) and using (3.12) we have

hα∂tφj,α + hα~uα∇xφj,α = −φj,α(δw−
j,α+ 1

2

+ δw+
j,α− 1

2

), α = 0, ...,M. (4.7)

� Momentum conservation.

∂t(ρ(Φα)hα~uα) +∇x ·
(
ρ(Φα)hα~uα ⊗ ~uα

)
+

∫ z
α+ 1

2

z
α− 1

2

∇xpαdz −∇x · (hαTH)

+(T̃H,α+ 1
2
(∇xzα+ 1

2
)′ − T̃xz,α+ 1

2
)− (T̃H,α− 1

2
(∇xzα− 1

2
)′ − T̃+

xz,α− 1
2

)

=
~uα+1 + ~uα

2

N∑

j=0

ρjGj,α+ 1
2
− ~uα + ~uα−1

2

N∑

j=0

ρjGj,α− 1
2

(4.8)

Let us introduce the following notation,

• pα = pS + g
M∑

β=α+1

ρ(Φβ)hβ + gρ(Φα)
hα
2
,

• z̄α = zb +

α−1∑

β=1

hb +
hα
2
.

Then, we obtain the following system for α = 1, ...,M ,





∂t(φj,αhα) +∇x · (φj,αhα~uα) = < φj(G− δwj) >α+ 1
2
− < φj(G− δwj) >α− 1

2
for j = 0, . . . , N.

∂t(ρ(Φα)hα~uα) +∇x ·
(
ρ(Φα)hα~uα ⊗ ~uα

)
+ hα

(
∇xpα + gρ(Φα)∇xz̄α

)
−∇x · (hαTH)

+(T̃H,α+ 1
2
(∇xzα+ 1

2
)′ − T̃xz,α+ 1

2
)− (T̃H,α− 1

2
(∇xzα− 1

2
)′ − T̃xz,α− 1

2
)

=
~uα+1 + ~uα

2

N∑

j=0

ρj < φj(G− δwj) >α+ 1
2
−~uα + ~uα−1

2

N∑

j=0

ρj < φj(G− δwj) >α− 1
2
.

(4.9)

where T̃H,α+ 1
2

and T̃xz,α− 1
2

are defined by (3.19),

< φj(G− δwj) >α+ 1
2
=
φj,α+1 + φj,α

2
(Gα+ 1

2
− δwj,α+ 1

2
) (4.10)

and

~uα+1 + ~uα
2

N∑

j=0

ρj < φj(G− δwj) >α+ 1
2
=
~uα+1 + ~uα

2

( N∑

j=0

ρj
φj,α + φj,α+1

2
(Gα+ 1

2
− δwj,α+ 1

2
)

)
.

(4.11)
In Appendix A, we propose another definition of terms (4.10) and (4.11), that could be seen as an
upwind approximation of the ones given previously.
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5 Closure and reformulation of the model

For the sake of simplicity, we consider here only a one-dimensional horizontal space and, in the sequel,
we shall denote the horizontal velocities ~uα merely by uα.

Assumption 1. We consider layers having thickness proportional to the total height. That is for
α = 1, . . . ,M, hα = lα h with lα a positive constant. Hence we have

M∑

α=1

lα = 1. (5.1)

From Assumption 1, summing the equations (4.5) up to α = 1, ...,M , yields

Gα+ 1
2
−G 1

2
=

α∑

β=1

(∂thβ + ∂x(hβuβ)) (5.2)

and for the particular value α = M , we get the global continuity equation

∂th+ ∂x

(
h

M∑

β=1

lβuβ

)
= GM+1/2 − G 1

2
. (5.3)

Now, from (5.2), assuming GM+ 1
2

= 0, and using the global continuity equation we get

Gα+ 1
2

= G 1
2

+

α∑

β=1

lβ
(
∂th+ ∂x(huβ)

)

= G 1
2

+

α∑

β=1

lβ

(
∂x (huβ)−

M∑

γ=1

∂x (lγhuγ)− G 1
2

)
.

Therefore we can set

Gα+ 1
2

= (1− Lα) G 1
2

+
M∑

γ=1

ξα,γ∂x(huγ), α = 1, . . . ,M, (5.4)

where for α, γ ∈ {1, . . . ,M}, we define Lα := l1 + · · ·+ lα and

ξα,γ :=
α∑

β=1

(δβγ − lβ)lγ =





(
1− (l1 + · · ·+ lα)

)
lγ if γ ≤ α,

−(l1 + · · ·+ lα)lγ otherwise,

δβγ being the standard Kronecker symbol. Thus, we explicitly obtain the mass transference across
interfaces in terms of the velocities at each layer.

Remark 5.1. In light of (5.1) we have ξM,γ = 0 for all γ = 1, . . . ,M . In addition, setting ξ0,γ = 0 for
all γ = 1, . . . ,M , we notice that ξα,γ = ξα−1,γ + (δαγ − lα)lγ for all α, γ = 1, . . . ,M .

Let us introduce the notation

rj,α = φj,αh, qα = ρ(Φα)huα, for α = 1, . . . ,M, j = 1, . . . , N, (5.5)

and

mα ≡ mα(h, r1,α, . . . , rN,α) = ρ(Φα)h = ρ0


h+

N∑

j=1

(
ρj
ρ0
− 1

)
rj,α


 . (5.6)
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Then system (4.9) reduces to the equations for variables h, rj,α, qα given by

∂th+ ∂x




M∑

β=1

(
hlβ

qβ
mβ

)
 = GM+1/2 −G1/2 (5.7)

∂t(rj,α) + ∂x

(
rj,αqα
mα

)
=

1

lα

{
rj,α+1 + rj,α

2h
Gα+ 1

2
− rj,α + rj,α−1

2h
Gα− 1

2

}

− 1

lα

{
< φjδwj >α+ 1

2
− < φjδwj >α− 1

2

}
, for j = 1, . . . , N,

(5.8)

and

∂tqα + ∂x


 q2

α

mα
+ h


pS +

g

2
lαmα + g

M∑

β=α+1

lβmβ






=


pS + g

M∑

β=α+1

lβmβ


 ∂xh− gmα∂xzb − gmαLα−1∂xh

+
1

lα

{(
1

2

qα+1

mα+1
+

qα
mα

)
mα+1 +mα

2h
Gα+1/2 −

1

2

(
qα
mα

+
qα−1

mα−1

)
mα +mα−1

2h
Gα−1/2

}

− 1

lα

{
1

2

(
qα+1

ma+1
+
qα
ma

)
<

N∑

j=0

ρjφjδwj >α+ 1
2

+

(
qα
ma

+
qα−1

mα−1

)
<

N∑

j=0

ρjφjδwj >α− 1
2

}

− ∂x(h(TExx)α)

+
1

lα
< (TExx, T

E
zx) >α+ 1

2
·(∇xzα+ 1

2
,−1)t

− 1

lα
< (TExx, T

E
zx) >α− 1

2
·(∇xzα− 1

2
,−1)t

(5.9)

with Gα+1/2 given by (5.4).
The full system given by (5.4), (5.7), (5.8), (5.9) could be written under the structure of a hyperbolic
system with conservative flux, non-conservative products and source terms:

∂tw + ∂xF (w) = B(w)∂xw + S(w)∂xzb +E(w) + Ψ(w), (5.10)

where
w = (h, r1,1, . . . , r1,M , r2,1, . . . , rN,M , q1, . . . , qM ), (5.11)

and the definitions of F (w), B(w), S(w), E(w), and Ψ(w) are described in Appendix B.
The system (5.10) can be reformulated as

∂tw + A(w)∂xw = S(w)∂xzb +E(w) + Ψ(w), (5.12)

where A(w) = J(w)−B(w) with J(w) =
∂F (w)

∂w
the Jacobian matrix of F which is described in

Appendix B.

5.1 Compact formulation

Remark that the size of system (5.4), (5.7), (5.8), (5.9) is (N + 2)M which could be large, especially
if we consider several sediment species. In order to reduce the computational cost of the numerical
resolution of the system, we shall consider first a reduced system which, for one-dimensional horizontal
space, has size 2M + 1.
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Let us consider the variables

w̃ = (h,m1, . . . ,mM , q1, q2, ..., qM )
′
∈ R2M+1. (5.13)

From equation (5.8) and (5.6 ) one gets

∂tmα + ∂xqα =
1

lα

{(
mα+1 +mα

2h
Gα+ 1

2
− mα +mα−1

2h
Gα− 1

2

)}

− 1

lα

{
<

N∑

j=0

ρjφjδwj >α+ 1
2

+ <
N∑

j=0

ρjφjδwj >α− 1
2

}
.

(5.14)

Once w̃ is obtained , we can compute w by the procedure described in Section 6
System given by (5.4), (5.7), (5.9), (5.14) can be written under the structure of an hyperbolic system
with conservative flux, non-conservative products and source terms, more precisely,

∂tw̃ + ∂xF̃ (w̃) = B̃(w̃)∂xw̃ + S̃(w̃)∂xzb + Ẽ(w̃) + Ψ̃(w̃), (5.15)

where w̃ = (h,m1, . . . ,mM , q1, q2, ..., qM )
t ∈ R2M+1 is the unknown vector, F̃ : R2M+1 → R2M+1 is

a regular vector function, B̃ : R2M+1 →M2M+1(R) is a matrix function, where Mn(R) is the space

of real n × n matrices (n ∈ N∗), S̃, Ẽ, Ψ̃ : R2M+1 → R2M+1 are vectorial functions, and zb : R → R
is a real scalar function. The form (5.15) constitutes a classic simplified model type for multiphase
or multilayer flows in the literature. In Appendix C we exhibit the algebraic expressions of the terms
F̃ (w̃) = (F̃ α(w̃))α=0,1,...,2M , S̃(w̃), Ẽ(w̃) = (Ẽα(w̃))α=0,1,...,2M , Ψ̃(w̃) = (Ψ̃α(w̃))α=0,1,...,2M and

B̃(w̃) = (B̃α,β(w̃))α,β=0,1,...,2M involved in (5.15).
System (5.15) can also be reformulated as

∂tw̃ + Ã(w̃)∂xw̃ = S̃(w̃)∂xzb + Ẽ(w̃) + Ψ̃(w̃), (5.16)

where Ã(w̃) = J̃(w̃)− B̃(w̃) with J̃(w̃) =
∂F̃ (w̃)

∂w̃
the Jacobian matrix of F̃ . The matrix J̃(w̃) =

(J̃α,β(w̃))α,β=0,1,...,2M ∈M(2N+1)(R) is described in Appendix C.

6 Numerical approximation

6.1 Definition of the scheme

The numerical approximation of the model is based on a standard finite volume method combined
with a three-step splitting procedure. The procedure will be detailed afterwards, but the main idea
is the following. As usual in finite volume schemes, we subdivide the horizontal spatial domain into
standard computational cells Ii = [xi−1/2, xi+1/2], and assume an approximation at time tn in each
cell wn

i and the corresponding values w̃n
i .

• In the first step, we rule out the contribution of source terms Ẽ(w̃) and Ψ̃(w̃) in (5.15) and
perform a path-conservative scheme to obtain the approximations of this system at time tn+1

w̃
n+1/3
i . Then, the values values w

n+1/3
i are recovered from w̃

n+1/3
i by an upwind procedure.

• In the second step, we include the effects of the source term E(w) by an implicit Euler scheme,

obtaining the approximations w
n+2/3
i

• In the third step, we include the effects of the source term Ψ(w) by a semi-implicit approach,
obtaining the approximations wn+1

i at time tn+1. Finally, w̃n+1
i are updated from wn+1

i using
(5.6).

We proceed now to describe each step more precisely.
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6.1.1 First step: path-conservative scheme

In the first step, we rule out the contributions of the source terms Ẽ(w̃) and Ψ̃(w̃) in (5.15) and then
apply a finite volume scheme. The resulting system can be written as

∂tW̃ + Ã
(
W̃
)
· ∂xW̃ = 0, (6.1)

where W̃ is the concatenated vector W̃ := (w̃, zb)
t ∈ Ω̃ for some open convex domain Ω̃ ⊂ R2M+1

Solutions of (6.1) may develop discontinuities and, due to the non-divergence form of the equations,
the notion of weak solution in the sense of distributions cannot be used. The theory introduced by
Dal Maso, LeFloch, and Murat [10] is followed here to define weak solutions. This theory allows

one to define the non-conservative product A(W̃ ) · ∂xW̃ as a bounded measure provided a family of

Lipschitz continuous paths ψ : [0, 1] × Ω̃ × Ω̃ → Ω̃ is prescribed, which must satisfy certain natural
regularity conditions. We will consider here the family of straight segments. Then, a path-conservative
numerical scheme in the sense defined by Parés in [24] can be used to compute the approximations

w̃
n+1/3
i at time tn+1 of the considered system. The scheme may be written in the general form

w̃
n+1/3
i = w̃n

i −
∆t

∆x

(
F̃ni+1/2 − F̃ni−1/2 −

1

2

(
B̃ni+1/2 + B̃ni−1/2 + S̃ni+1/2 + S̃ni−1/2

))
, (6.2)

where the expressions Fni+1/2 and Bni+1/2 are defined as follows:

F̃ni+1/2 :=
1

2

(
F̃ (w̃n

i ) + F̃ (w̃n
i+1)

)

− 1

2
Qn
i+1/2

(
w̃n
i+1 − w̃n

i − Λ̃ni+1/2S̃
n

i+1/2

(
(zb)

n
i+1 − (zb)

n
i

))
,

(6.3)

B̃ni+1/2 = B̃
n

i+1/2

(
w̃n
i+1 − w̃n

i

)
, (6.4)

S̃ni+1/2 = S̃
n

i+1/2

(
(zb)

n
i+1 − (zb)

n
i

)
, (6.5)

with

B̃i+1/2 =

∫ 1

0

B̃(ψ(s, w̃i, w̃i+1))ds, (6.6)

S̃i+1/2 =

∫ 1

0

S̃(ψ(s, w̃i, w̃i+1))ds. (6.7)

(6.8)

The matrix Λ̃(w̃) represents an approximation of the inverse of Ã(w̃) = J̃(w̃)− B̃(w̃) given by (C.2)

- (C.7) In addition, Q̃
n

i+1/2 is the numerical viscosity matrix whose definition identifies the particular

finite volume method used. For example, the Roe method is defined by Q̃i+1/2 = |Ãi+1/2|, where

Ãi+1/2 is the Roe matrix defined in the sense of Toumi (see [25, 32]). An interesting alternative to
Roe method for system with a great number of unknowns are PVM (“polynomial viscosity matrix”)
methods (see [7]). At this step, we obtain from (6.2) the intermediate solution

w̃
n+1/3
i =

(
h
n+1/3
i , (m1)

n+1/3
i , . . . , (mM )

n+1/3
i , (q1)

n+1/3
i , . . . , (qM )

n+1/3
i

)t
.

In this paper we will use a HLL type PVM scheme. We refer the reader to [7] for the details.

Once the approximations w̃
n+1/3
i are computed, w

n+1/3
i are recovered from w̃

n+1/3
i , but to do that,

the values (rj,α)
n+1/3
i for j = 1, . . . , N and α = 1, . . . ,M should be computed. This is done using the

following upwind scheme:
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(rj,α)
n+1/3
i = (rj,α)ni −

∆t

∆x

(
(Frj,α)ni+1/2 − (Frj,α)ni−1/2 −

1

2
Πrj,α

(
Bni+1/2 + Bni−1/2

))
, (6.9)

where

Bni+1/2 = Bn
i+1/2

(
wn
i+1 −wn

i

)
, (6.10)

(Frj,α)ni+1/2 =





(rj,α)ni
(mα)ni

Fni+1/2, if ΠmαFni+1/2 ≥ 0

(rj,α)ni+1

(mα)ni+1

Fni+1/2, otherwise

(6.11)

and Πrj,α , Πmα , denotes respectively the canonical projection on the variables rj,α and mα.

Remark 6.1. The definition of (rj,α)
n+1/3
i is consistent with that of (mα)

n+1/3
i in the sense that

extending (6.9) for j = 0, then we have

(ρ(Φα)h)
n+1/3
i =

N∑

j=0

ρj(rj,α)
n+1/3
i = (mα)

n+1/3
i .

6.1.2 Second step: viscosity effects

In this second step we take into account the contribution of the source term E(w) in (5.10). As those
terms are related to friction at the interfaces and mass flux exchange at the bottom, we propose to
use an implicit update. Moreover, if we assume a non-penetrable bottom layer, the term G 1

2
vanishes

and only friction terms are retained. Finally, if friction terms are neglected, then E(w) vanishes and
this step is no longer needed.

w
n+2/3
i = w

n+1/3
i + ∆tE

(
w
n+2/3
i

)
. (6.12)

6.1.3 Third step: deposition effects

Finally, we have to apply the source term Ψ which stands for the transfer between the layers due to
deposition effects. To do so, following Section 3.2.1, we need to describe the terms < φjδwj >α+ 1

2
.

As it was mention in Section 2.1, we may assume that the hindered settling velocity of the sediment
species is given by

δwj = −χ(φ)wsj , for j = 1, . . . , N, (6.13)

where wsj is the terminal velocity of the species j and χ(φ) is the hindered settling factor given by
(2.14).
It is clear that the deposition at the interface α+ 1

2 depends on the sediment present on the upper
layer and on whether the lower layer α is saturated or not. We thus propose to define

< φjδwj >α+ 1
2
= −φj,α+1χ(Φα)wsj , for j = 1, . . . , N. (6.14)

Based on this definition, we set

< φjδwj >α+ 1
2
=

wsj
hn+2/3

(rj,α+1)n+1
i χ((φα)

n+2/3
i ), for j = 1, . . . , N (6.15)

and perform an update of rj,α by

lα(rj,α)n+1
i = lα(rj,α)

n+2/3
i +

wsj∆t

hn+2/3

(
(rj,α+1)n+1

i χ((φα)
n+2/3
i )− (rj,α)n+1

i χ((φα−1)
n+2/3
i )

)
, (6.16)
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where we are considering rj,M+1 = 0 and φ−1 = 0.
This can be solved explicitly by

(rj,α)n+1
i =

1

lα + (kj)
n+2/3
i χ((φα−1)

n+2/3
i )

(
lα(rj,α)

n+2/3
i + (kj)

n+2/3
i χ((φα)

n+2/3
i )(rj,α+1)n+1

i

)

(6.17)

with (kj)
n+2/3
i =

wsj∆t

hn+2/3
, rj,M+1 = 0 and φ−1 = 0.

Now, the variables mα and qα have to be updated by

lα(mα)n+1
i = lα(mα)

n+2/3
i

+

N∑

j=0

ρj
wsj∆t

hn+2/3

(
(rj,α+1)n+1

i χ((φα)
n+2/3
i )− (rj,α)n+1

i χ((φα−1)
n+2/3
i )

)
, (6.18)

lα(qα)n+1
i = lα(qα)

n+2/3
i

+

N∑

j=0

ρj
wsj∆t

hn+2/3

[
1

2

(
(qα+1)

n+2/3
i

(mα+1)
n+2/3
i

+
(qα)

n+2/3
i

(mα)
n+2/3
i

)
(rj,α+1)n+1

i χ((φα)
n+2/3
i )

−1

2

(
(qα)

n+2/3
i

(mα)
n+2/3
i

+
(qα−1)

n+2/3
i

(mα−1)
n+2/3
i

)
(rj,α)n+1

i χ((φα−1)
n+2/3
i )

]
, (6.19)

Remark 6.2. Definition (6.17) satisfies the following properties:

• (rj,α)n+1
i are non-negative provided that the approximations (rj,α)

n+2/3
i are non-negative.

• Sediment mass is preserved

M∑

α=1

lα(rj,α)n+1
i =

M∑

α=1

lα(rj,α)
n+2/3
i .

• Following (2.5), we can easily generalize (6.16) for freshwater volume fractions by

lα(r0,α)n+1
i = lα(r0,α)

n+2/3
i −

N∑

j=1

wsj∆t

hn+2/3

(
(rj,α+1)n+1

i χ((φα)
n+2/3
i )− (rj,α)n+1

i χ((φα−1)
n+2/3
i )

)
,

which grants that

M∑

α=1

lα(r0,α)n+1
i =

M∑

α=1

lα(r0,α)
n+2/3
i , and

N∑

j=0

(rj,α)n+1
i =

N∑

j=0

(rj,α)
n+2/3
i .

• If (φα)
n+2/3
i = φmax then

(rj,α)n+1
i =

lα

lα + (kj)
n+2/3
i χ((φα−1)

n+2/3
i )

(rj,α)
n+2/3
i

and we get (φα)
n+2/3
i ≤ φmax. This means that solid concentration does not increase in the cells

which are saturated.

7 Numerical simulations

The objective of this section is to show the potential of this model by showing two different tests:
the first one corresponds to the simulation of a hyperpycnal plume and the second one represents a
hypopycnal plume.
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Figure 2: Sediment distribution by layers at time t = 1
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Figure 3: Sediment distribution by layers at time t = 3

7.1 Simulation of a hyperpycnal plume

In this first test we consider a bottom given by

zB(x) =





0.2− 6

7
(x− 0.7), if x ≤ 0.7,

0.2, otherwise,

in the domain [0, 1] and we set initially clear water satisfying a lake-at-rest steady state, that is,
h(t = 0, x) + zB(x) = 0 and uα(t = 0, x) = 0 for each layer α = 1, . . . ,M . We have used here M = 30
layers and 200 points on the domain. We shall consider two sediment species of density 1150kg/m3

and 1250kg/m3 respectively. As boundary conditions we set open conditions on the right hand side
and we impose on the left hand side

uα(x, t = 0) = 0.2, for α = 1, . . . ,M, (7.1)

and
φ1,α = 0.01, for α ≥M/3 and φ2,α = 0.02, for α ≤ 2M/3. (7.2)

The settling velocity is set to 0.015 for the first species and 0.025 for the second one.
Figures 2, 3, and 4 show the evolution of the plume that plunges into the ambient water generating
a hyperpycnal plume. The first plot in each figure represents the relative density ρα(Φα)/ρ0, while
the second and third plots in each figure represents the volumetric concentration of each sediment
species by layer. We observe that the vertical distribution of sediment is obtained with detail. The
first specie, which is less dense, remains on top of the second one, more dense, as expected. The same
behaviour can be seen in Figures 5 and 6 where the vertical concentration of each sediment species
is shown at two points: x = 0.05, near the left boundary, and x = 0.3, in the mid-region of the
slope. We remark how particles tend to go down due to deposition effects. Again observe the great
detail on the vertical distribution obtained. Moreover, the model allows us to recover the vertical
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Figure 4: Sediment distribution by layers at time t = 5
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Figure 5: Vertical concentration distribution at x = 0.05. On the y-axis 0 corresponds to bottom
level and 1 to the surface.
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Figure 6: Vertical concentration distribution at x = 0.3. On the y-axis 0 corresponds to bottom level
and 1 to the surface.
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Figure 7: Average vertical velocity δwj,α+1/2 at x = 0.05. On the y-axis 0 corresponds to bottom
level and 1 to the surface.
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Figure 8: Average vertical velocity δwj,α+1/2 at x = 0.3. On the y-axis 0 corresponds to bottom level
and 1 to the surface.
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Figure 9: Velocity vector by layers
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velocities of each sediment species. In Figures 7 and 8 we show the average velocities at each interface
δwj,α+ 1

2
= 0.5(δw+

j,α+ 1
2

+ δw−
j,α+ 1

2

) given by (3.27). It is also interesting the formation at the head of

the plume in Figure 4 due to the change of slope in the bottom.
In Figures 9 we show the velocity field for different times. We can see that the hyperpycnal plume
forms a recirculation of the receiving ambient water.
All the effects described previously are recovered thanks to this multi-layer model. We remark again
that this could not be possible with a one layer model as the one introduced in [21].

7.2 Simulation of a hypopycnal plume

The objective of this test is to show the versatility of the model. It allows to study many physical
situations even the case of an hypopycnal plume. Let us assume a river with freshwater density
ρw, carrying sediment in suspension, comes into the ocean with a given density ρo, greater than the
freshwater density ρw. When the sediment of the mixture is less than the sediment of the ocean,
the river will form a plume that floats and go up to the surface of the ocean. The model derived
here assumes that water has density ρ0 and we have N sediment species in suspension of density ρj ,
j = 1, . . . , N. So a priori this model would not be suitable to simulate hypopycnal plumes because
the water density is always the same. Nevertheless, we may assume that ρ0 ≡ ρo corresponds to the
ambient water and we may assimilate one of the species to the freshwater of the river, that is, ρ1 = ρw
which will give the desired results.
For instance, consider the following topography

zB(x) =





0.2− 3

7
(x− 0.7), if x ≤ 0.7,

0.2, otherwise,

in the domain [0, 1]. Assume that ambient water has density higher than freshwater density ρ0 =
1020kg/m3. We set initially the ambient water satisfying a lake-at-rest steady state, that is, h(t =
0, x) + zB(x) = 0 and uα(t = 0, x) = 0 for each layer α = 1, . . . ,M . We have used here M = 30 layers
and 200 points on the domain.
Now, consider two different species: the first one, assimilated to freshwater of the river, with density
ρ1 = 1000kg/m3 and the second one, assimilated to the sediment in suspension, with density ρ2 =
1150kg/m3. As boundary conditions we set open conditions on the right hand side and we impose on
the left hand side

uα(x, t = 0) = 0.01, for α = 1, . . . ,M, (7.3)

and
φ1,α = 0.95, for α ≥M/3 and φ2,α = 0.05, for α ≤ 2M/3. (7.4)

The settling velocity is set to 0.0005 for the sediment species.
Figures 10, 11, and 12 show the evolution of the plume. In the first plot of each of the Figures
we remark that density of the mixture ρ(Φα) is smaller than the one of ambient water ρ0. This
will originate the hypopycnal plume. Again we observe that the vertical distribution of sediment is
obtained with detail. In Figures 13, 14, and 15 we show the vertical distribution of freshwater φ1 and
sediment φ2 at three points: x = 0.1, x = 0.35, and x = 0.8. In Figures 16, 17, and 18 we show, again
at those points, the average velocities at each interface δwj,α+ 1

2
= 0.5(δw+

j,α+ 1
2

+ δw−
j,α+ 1

2

) given by

(3.27).
Moreover, the velocity field in Figure 19 shows some interesting profiles. While the river goes up and
to the right, it interacts with the ambient water forming some kind of turbulence. As a consequence
the ambient water will flow to the left under the plume.
We remark that the model reproduces the desired results and that the numerical scheme can handle
such situations.
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Figure 10: Sediment distribution by layers at time t = 0.5
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Figure 11: Sediment distribution by layers at time t = 1
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Figure 12: Sediment distribution by layers at time t = 2
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Figure 13: Vertical concentration distribution at x = 0.1. On the y-axis 0 corresponds to bottom
level and 1 to the surface.
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Figure 14: Vertical concentration distribution at x = 0.35. On the y-axis 0 corresponds to bottom
level and 1 to the surface.

25



0.0 0.2 0.4 0.6 0.8
Concentration

0.0

0.2

0.4

0.6

0.8

1.0

Ve
rti

ca
l d

is
tri

bu
tio

n

t = 2.000

φ1

φ2

(a)

0.0 0.2 0.4 0.6 0.8
Concentration

0.0

0.2

0.4

0.6

0.8

1.0

Ve
rti

ca
l d

is
tri

bu
tio

n

t = 3.000

φ1

φ2

(b)

Figure 15: Vertical concentration distribution at x = 0.8. On the y-axis 0 corresponds to bottom
level and 1 to the surface.
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Figure 16: Average vertical velocity δwj,α+1/2 at x = 0.1. On the y-axis 0 corresponds to bottom
level and 1 to the surface.
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Figure 17: Average vertical velocity δwj,α+1/2 at x = 0.35. On the y-axis 0 corresponds to bottom
level and 1 to the surface.
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Figure 18: Average vertical velocity δwj,α+1/2 at x = 0.8. On the y-axis 0 corresponds to bottom
level and 1 to the surface.
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Figure 19: Velocity vector by layers

8 Conclusion

In this work, we have proposed a multi-layer shallow-water type model for the simulation of parti-
cle driven gravity currents.The model allows to simulate hyperpycnal and hypopycnal plumes. This
technique allows to describe the vertical distribution of sediment overcoming the lack of information
given by some more simple models. The numerical approximation of the model is based on a path-
conservative finite volume method combined with a three-step splitting procedure. Two numerical
experiments consisting on the simulation of a hyperpycnal and hypopycnal plume on a simplify geome-
try have been performed. The results are promising and this model could help to better understanding
these phenomena.
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A Upwind approximation of the transfer terms

Remember that the transfer terms (4.10) and (4.11) present in (4.9) are defined in a ’centered’ way
at each interface. Nevertheless, transfer terms also admit another definition that could be seen as an
’upwind’ approximation see for example [3] and [11]. Thus, in the case of the multilayer shallow water
system without sediments, the momentum transfer term (4.11) reduces to

~uα+1 + ~uα
2

Gα+1/2. (A.1)

According to [3] and [11], (A.1) could be replaced by

uupwindGα+1/2

where

uupwind =

{
uα if Gα+1/2 < 0,
uα+1 if Gα+1/2 > 0.

In [11], it has been proved that this definition is equivalent to introducing a numerical vertical diffusion
term in the model, proportional to (lα + lα+1)/2, what improves its stability and tends to zero when
the number of layers tends to infinity.
Nevertheless, here it is not so simple, because ρ is not constant. In what follows we propose an upwind
definition of the transfer terms (4.10) and (4.11) in terms of the sign of the mass transfer for each
species

ρj(Gα+ 1
2
− δwj,α+ 1

2
).
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Let us first consider an upwind definition of the term (4.10). If we denote by

(A)α+ 1
2

=
φj,α+1 + φj,α

2
(Gα+ 1

2
− δwj,α+ 1

2
),

then we could define an upwind approximation of (A)α+ 1
2

as follows:

(A)up
α+ 1

2

=

(
φj,α+1 + φj,α

2
+

1

2
sgn(Gα+ 1

2
− δwj,α+ 1

2
)(φj,α+1 − φj,α)

)
(Gα+ 1

2
− δwj,α+ 1

2
).

Note that

(A)up
α+ 1

2

= (A)α+ 1
2

+
1

2
|Gα+ 1

2
− δwj,α+ 1

2
|(φj,α+1 − φj,α).

If we replace the term (4.10) by (A)up
α+ 1

2

in the N + 1 continuity equations of (4.9), we obtain the

following

∂t(φj,αhα) +∇x · (φj,αhα~uα)+

−1

2
|Gα+ 1

2
− δwj,α+ 1

2
|(φj,α+1 − φj,α) +

1

2
|Gα− 1

2
− δwj,α− 1

2
|(φj,α − φj,α−1) =

φj,α+1 + φj,α
2

(Gα+ 1
2
− δwj,α+ 1

2
)− φj,α + φj,α−1

2
(Gα− 1

2
− δwj,α− 1

2
).

for j = 0, . . . , N . Finally, note that these equations could be seen as an approximation of (4.9) plus
the vertical diffusion term:

−∂z
(

∆z̃

2
|G− δwj |∂zφj

)
,

being G− δwj a function such that G− δwj |z
α+ 1

2

= Gα+ 1
2
− δwj,α+ 1

2
and ∆z̃|z

α+ 1
2

= (hα + hα+1)/2.

We analogously proceed with term (4.11). If we denote by

(B)α+ 1
2

=
~uα+1 + ~uα

2

( N∑

j=0

ρj
φj,α + φj,α+1

2
(Gα+ 1

2
− δwj,α+ 1

2
)

)
,

then we could define an upwind approximation of (B)α+ 1
2

as follows:

(B)up
α+ 1

2

=
∑N
j=0 ρj

{ (
~uα+1 + ~uα

2
+

1

2
sgn(Gα+ 1

2
− δwj,α+ 1

2
)(~uα+1 − ~uα)

)
φj,α + φj,α+1

2

+
1

2
sgn(Gα+ 1

2
− δwj,α+ 1

2
)(φj,α+1 − φj,α)

~uα+1 + ~uα
2

}
(Gα+ 1

2
− δwj,α+ 1

2
).

The first term inside the brackets corresponds to an upwind approximation of the velocity times the
centered approximation of sediment concentration. The second one corresponds to a centered approx-
imation of the velocity times the diffusive term appearing in the concentration equation previously
defined. Note that the following equality holds:

(B)up
α+ 1

2

= (B)α+ 1
2

+
1

2

N∑

j=0

ρj |Gα+ 1
2
− δwj,α+ 1

2
|(φj,α+1uα+1 − φj,αuα).

Finally, we could conclude that (B)up
α+ 1

2

corresponds to approximating the original momentum equa-

tions plus a vertical diffusion term:

−∂z
(

∆z̃

2
|G− δwj |∂z(φju)

)
.
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B Description of the terms appearing in the full formulation

We describe now the terms appearing in (5.10):

• F (w) = (F 0(w)|F (j−1)·M+α−1(w)|FN ·M+α(w)) ∈ R(N+1)·M+1

F 0(w) = h
M∑

β=1

lβ
qβ
mβ

,

F (j−1)·M+α−1(w) = rj,α
qα
mα

, for j = 1, . . . , N, α = 1, . . . ,M

FN ·M+α(w) =
q2
α

ma
+ h


pS +

g

2
lαmα + g

M∑

β=α+1

lβmβ


 , for α = 1, . . . ,M.

(B.1)

• B(w) has the following block structure

B(w) =




0 0 0

Bµ,0(w) Bµ,ν(w) Bµ,N ·M+β(w)

BN ·M+α,0(w) BN ·M+α,ν(w) BN ·M+α,N ·M+β(w)



∈M(N+1)·M+1(R), (B.2)

where for every α ∈ {1, . . . ,M}, β ∈ {1, . . . ,M}, and j ∈ {1, . . . , N}, and the corresponding
values µ = (j − 1)M + α− 1, ν = (j − 1)M + β − 1 we have
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B0,0(w) = B0,ν(w) = B0,N ·M+β(w) = 0,

Bµ,0(w) =
1

lα

M∑

γ=1

[(
rj,α+1 + rj,α

2h
ξα,γ −

rj,α + rj,α−1

2h
ξα−1,γ

)(
qγ
mγ
− hqγ
m2
γ

ρ0

)]

Bµ,ν(w) =
1

lα

(
rj,α+1 + rj,α

2h
ξα,β −

rj,α + rj,α−1

2h
ξα−1,β

) −hqβ
m2
β

(ρj − ρ0)

Bµ,N ·M+β(w) =
1

lα

(
rj,α+1 + rj,α

2h
ξα,β −

rj,α + rj,α−1

2h
ξα−1,β

)
h

mβ

BN ·M+α,0(w̃) =


pS + g

M∑

β=α+1

lβmβ


− gmαLα−1

+
1

lα

{
M∑

γ=1

[(
1

2

(
qα+1

ma+1
+
qα
ma

)
mα+1 +mα

2h
ξα,γ

−1

2

(
qα
ma

+
qα−1

mα−1

)
mα +mα−1

2h
ξα−1,γ

)(
qγ
mγ
− hqγ
m2
γ

ρ0

)]}

BN ·M+α,ν(w) =
1

lα

(
1

2

(
qα+1

ma+1
+
qα
ma

)
mα+1 +mα

2h
ξα,β

−1

2

(
qα
ma

+
qα−1

mα−1

)
mα +mα−1

2h
ξα−1,β

) −hqβ
m2
β

(ρj − ρ0)

BN ·M+α,N ·M+β(w) =
1

lα

(
1

2

(
qα+1

ma+1
+
qα
ma

)
mα+1 +mα

2h
ξα,β

−1

2

(
qα
ma

+
qα−1

mα−1

)
mα +mα−1

2h
ξα−1,β

)
h

mβ

(B.3)

• E(w) = (E0(w)|(E(w))t|EN ·M+α(w)) ∈ R(N+1)M+1, α ∈ {1, . . . ,M}, with

E0(w) = −G 1
2
, (B.4)

EN ·M+α(w) =
1

lα

(
1

2

(
qα+1

mα+1
+

qα
mα

)
mα+1 +mα

2h
(1− Lα)

−1

2

(
qα
mα

+
qα−1

mα−1

)
mα +mα−1

2h
(1− Lα−1)

)
G 1

2

− ∂x(h(TExx)α)

+
1

lα
< (TExx, T

E
zx) >α+ 1

2
·(∇xzα+ 1

2
,−1)t

− 1

lα
< (TExx, T

E
zx) >α− 1

2
·(∇xzα− 1

2
,−1)t

(B.5)

E(w) = (Eµ(w))µ=1,...,N ·M

and for j = 1, . . . , N, α = 1, . . . ,M we set µ = (j − 1) ·M + α− 1 and

Eµ(w) =
1

lα

(
rj,α+1 + rj,α

2h
(1− Lα)− rj,α + rj,α−1

2h
(1− Lα−1)

)
G 1

2
, (B.6)

• Ψ(w) = (0|(	(w))t|ΨN ·M+α(w)) ∈ R(N+1)M+1,, α ∈ {1, · · · ,M} with

	(w) = (	µ(w))µ=1,...,N ·M
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and for j = 1, . . . , N, α = 1, . . . ,M we set µ = (j − 1) ·M + α− 1 and

	µ(w) = − 1

lα

{
< φjδwj >α+ 1

2
+ < φjδwj >α− 1

2

}
. (B.7)

ΨN ·M+α(w) = − 1

lα

{
1

2

(
qα+1

ma+1
+
qα
ma

)
<

N∑

j=0

ρjφjδwj >α+ 1
2

+

(
qα
ma

+
qα−1

mα−1

)
<

N∑

j=0

ρjφjδwj >α− 1
2

}
.

(B.8)

When the system is written in the form (5.12)

• J(w) has the following block structure:

J(w) =




J0,0(w) J0,ν(w) J0,N ·M+β(w)

Jµ,0(w) Jµ,ν(w) Jµ,N ·M+β(w)

JN ·M+α,0(w) JN ·M+α,ν(w) JN ·M+α,N ·M+β(w)



∈M(N+1)·M+1(R), (B.9)

where for every α ∈ {1, . . . ,M}, β ∈ {1, . . . ,M}, and j ∈ {1, . . . , N}, and corresponding µ = (j −
1)M + α− 1, ν = (j − 1)M + β − 1, the components of J(w) are written as follows:

J0,0(w) =

M∑

β=1

lβ
qβ
mβ

J0,ν(w) = −lβ
hqβ
m2
β

(ρj − ρ0)

J0,N ·M+β(w) = lβ
h

mβ

Jµ,0(w) = 0

Jµ,ν(w) =

(
qα
mα
− rj,α

qα
m2
α

)
δα,β

Jµ,N ·M+β(w) =
rj,α
mα

δα,β

JN ·M+α,0(w) = J̃M+α,0(w̃) + ρ0

M∑

γ=1

J̃M+α,γ(w̃),

JN ·M+α,ν(w) = (ρj − ρ0)J̃M+α,β(w̃),

JN ·M+α,N ·M+β(w) = J̃M+α,β(w̃),

(B.10)

where

J̃M+α,0(w̃) = pS + g

M∑

γ=α+1

lγmγ +
g

2
lamα,

J̃M+α,β(w̃) = − q2
α

m2
α

δα,β + h

(
M∑

γ=α+1

lγδγ,β +
g

2
lαδα,β

)

J̃M+α,M+β(w̃) = 2
qα
mα

δα,β .

(B.11)
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C Description of the terms appearing in the compact formu-
lation

We give here a detailed description of the different terms appearing in (5.15):

• F̃ (w̃) = (F 0(w)|F̃ α(w̃)|F̃M+α(w̃))t ∈ R2M+1, where the blocks are defined as follows

F̃ α(w̃) = qα, for α = 1, . . . ,M,

F̃M+α(w̃) = FN ·M+α(w), for α = 1, . . . ,M.
(C.1)

• B̃(w̃) is given by the following block structure

B̃(w̃) =




0 0 0

B̃α,0(w̃) B̃α,β(w̃) B̃α,M+β(w̃)

B̃M+α,0(w̃) B̃M+α,β(w̃) B̃M+α,M+β(w̃)



∈M2M+1(R) (C.2)

where for each α ∈ {1, . . . ,M}, and β ∈ {1, . . . ,M}

B̃0,0(w̃) = B̃0,β(w̃) = B̃0,M+β(w̃) = 0,

B̃α,0(w̃) =
1

lα

M∑

γ=1

[(
mα+1 +mα

2h
ξα,γ −

mα +mα−1

2h
ξα−1,γ

)
qγ
mγ

]

B̃α,β(w̃) =
1

lα

(
mα+1 +mα

2h
ξα,β −

mα +mα−1

2h
ξα−1,β

) −hqβ
m2
β

B̃α,M+β(w̃) =
1

lα

(
mα+1 +mα

2h
ξα,β −

mα +mα−1

2h
ξα−1,β

)
h

mβ

B̃M+α,0(w̃) =


pS + g

M∑

β=α+1

lβmβ


− gmαLα−1

+
1

lα

{
M∑

γ=1

[(
1

2

(
qα+1

ma+1
+
qα
ma

)
mα+1 +mα

2h
ξα,γ

−1

2

(
qα
ma

+
qα−1

mα−1

)
mα +mα−1

2h
ξα−1,γ

)
qγ
mγ

]}

B̃M+α,β(w̃) =
1

lα

(
1

2

(
qα+1

ma+1
+
qα
ma

)
mα+1 +mα

2h
ξα,β

−1

2

(
qα
ma

+
qα−1

mα−1

)
mα +mα−1

2h
ξα−1,β

) −hqB
m2
β

B̃M+α,M+β(w̃) =
1

lα

(
1

2

(
qα+1

ma+1
+
qα
ma

)
mα+1 +mα

2h
ξα,β

−1

2

(
qα
ma

+
qα−1

mα−1

)
mα +mα−1

2h
ξα−1,β

)
h

mβ

(C.3)

• S̃(w̃) = (S̃0 | S̃α | S̃M+α(w̃))t = (0 | 0 | S̃M+α(w̃))t ∈ R2M+1, where for each α ∈ {1, . . . ,M},

33



the block structure is given by:

S̃0(w) = S̃α(w) = 0, for α = 0, 1, . . . ,M,

S̃M+α(w) = gmα, for α = 1, . . . ,M,
(C.4)

• Ẽ(w̃) = (E0(w) | Ẽα(w̃) | ẼM+α(w̃))t ∈ R2M+1, where for each α ∈ {1, . . . ,M}, the block
structure is given by:

Ẽα(w̃) =
1

lα

(
mα+1 +mα

2h
(1− Lα)− mα +mα−1

2h
(1− Lα−1)

)
G 1

2

ẼM+α(w̃) = EN ·M+α(w)

(C.5)

• Ψ̃(w̃) = (0 | Ψ̃α(w̃) | Ψ̃M+α(w̃))t ∈ R2M+1, where for each α ∈ {1, . . . ,M}, the block structure
is given by:

Ψ̃α(w̃) = − 1

lα

{
<

N∑

j=0

ρjφjδwj >α+ 1
2

+ <

N∑

j=0

ρjφjδwj >α− 1
2

}

Ψ̃M+α(w̃) = ΨN ·M+α(w).

(C.6)

When (5.15) can also be reformulated as in (5.16), then we have:

• J̃(w̃) is given by the following block structure

J̃(w̃) =




J̃0,0(w̃) J̃0,β(w̃) J̃0,M+β(w̃)

J̃α,0(w̃) J̃α,β(w̃) J̃α,M+β(w̃)

J̃M+α,0(w̃) J̃M+α,β(w̃) J̃M+α,M+β(w̃)



∈M2M+1(R) (C.7)

where for each α ∈ {1, . . . ,M}, and β ∈ {1, . . . ,M}

J̃0,0(w̃) =
M∑

β=1

lβ
qβ
mβ

J̃0,β(w̃) = −lβ
hqβ
m2
β

J̃0,M+β(w̃) = lβ
h

mβ

J̃α,0(w̃) = J̃α,β(w̃) = 0

J̃α,M+β(w̃) = δα,β

(C.8)

and J̃M+α,0(w̃), J̃M+α,β(w̃), and J̃M+α,M+β(w̃) are defined in (B.11).

D A particular weak solution with hydrostatic pressure: De-
duction of equations

We detail here the calculations needed to obtain the system detailed in Section 4.

� Mass conservation.
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We choose a scalar test function ϕ = ϕ(t, x) independent of z. Then, in general for a weak solution
~vj the mass conservation equation yields for all α = 0, ...,M , j = 0, 1, . . . , N

0 =

∫

Ωα(t)

(∂tφj +∇ · (φj~vj))ϕdΩ

=

∫

IF (t)

ϕ(t, x)

{∫ z
α+ 1

2

z
α− 1

2

(
∂tφj +∇x · (φj~u) + ∂z(φjwj)

)
dz

}
dx

=

∫

IF (t)

ϕ(t, x)

{
∂t

∫ z
α+ 1

2

z
α− 1

2

φjdz +∇x ·
∫ z

α+ 1
2

z
α− 1

2

(φj~u) dz

− φj,α∂tzα+ 1
2
− φj,α~u−α+ 1

2
· ∇xzα+ 1

2
+ φj,αw

−
j,α+ 1

2

+ φj,α∂tzα− 1
2

+ φj,α~u
+
α− 1

2
· ∇xzα− 1

2
− φj,αw+

j,α− 1
2

}
dx.

Moreover, noticing that ∂thα = ∂tzα+ 1
2
− ∂tzα− 1

2
, we obtain the equation

0 =

∫

IF (t)

ϕ(t, x)

{
∂t(φj,αhα) + ∇x · (φj,αhα ~uα )

− φj,α∂tzα+ 1
2
− φj,α~u−α+ 1

2
· ∇xzα+ 1

2
+ φj,αw

−
j,α+ 1

2

+ φj,α∂tzα− 1
2

+ φj,α~u
+
α− 1

2
· ∇xzα− 1

2
− φj,αw+

j,α− 1
2

}
dx,

(D.1)

for all φ(t, .) ∈ L2(IF (t)).
Applying the equation (D.1) to ~u, and taking into account (3.7) and (3.8), we obtain the mass
conservation laws (4.5)

� Momentum conservation.
We consider tests functions ~ϑ ∈ H1(Ωα) verifying (4.4). We can develop the weak formulation (4.3)
taking into account the structure of ~v, performing an integration with respect to the variable z and
identifying each of the two components of the vector test functions. However, the hydrostatic pressure
framework allows to drop the equations that correspond to the vertical component. That is equivalent
to identifying the weak formulation for test functions in the form (~ϑH , 0)′, with ~ϑH = ~ϑH(t, x)
independent of z, with ~vH |∂IF = 0. Then, from (4.3) and using these test functions, for the horizontal
momentum conservation equation we obtain,

∫

Ωα(t)

N∑

j=0

ρj∂t(φj,α~uα) · ~ϑH dΩ +

∫

Ωα(t)

N∑

j=0

ρj∇x ·
(
φj,α~uα ⊗ ~uα

)
· ~ϑH dΩ

+

∫

Ωα(t)

N∑

j=0

ρj∂z(φj,αwj,α~uα) · ~ϑH dΩ +

∫

Ωα(t)

TH,α : ∇x~ϑ dΩ−
∫

Ωα(t)

pα∇x · ~ϑH dΩ

+

∫

Γ
α+ 1

2
(t)

(Σ−
α+ 1

2

(~ϑH , 0)′) · ~ηα+ 1
2
dΓ−

∫

Γ
α− 1

2
(t)

(Σ+
α− 1

2

(~ϑH , 0)′) · ~ηα− 1
2
dΓ = 0,

(D.2)

for all α = 1, ...,M , where
TH,α = TH(~vα).

Taking into account that Ωα(t) = IF × [zα− 1
2
(t), zα+ 1

2
(t)] and the hypothesis on the independence in

z of ~uα and ~ϑH , we develop in what follows each one of the components of previous equation:
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•
∫

Ωα(t)

N∑

j=0

ρj∂t(φj,α~uα) · ~ϑH dΩ =

∫

IF

(∫ z
α+ 1

2

z
α− 1

2

∂t(ρ(Φα)~uα) · ~ϑHdx
)
dz

=

∫

IF

hα∂t(ρ(Φα)~uα) · ~ϑHdx.

•
∫

Ωα(t)

N∑

j=0

ρj∇x ·
(
φj,α~uα ⊗ ~uα

)
· ~ϑH dΩ =

∫

IF

hα∇x ·
(
ρ(Φα)~uα ⊗ ~uα

)
· ~ϑH dx.

•
∫

Ωα(t)

N∑

j=0

ρj∂z(φj,αwj,α~uα) · ~ϑH dΩ =

N∑

j=0

∫

IF

∫ z
α+ 1

2

z
α− 1

2

ρj∂z(φj,αwj,α~uα) · ~ϑHdzdx

=
N∑

j=0

∫

IF

ρjφj,α(w−
j,α+ 1

2

− w+
j,α− 1

2

)~uα · ~ϑHdx

•
∫

Ωα(t)

TH,α : ∇x~ϑH dΩ =

∫

IF

(∫ z
α+ 1

2

z
α− 1

2

TH,α : ∇x~ϑHdz
)
dx =

∫

IF

hαTH,α : ∇x~ϑHdx

= −
∫

IF

∇x · (hαTH,α) · ~ϑHdx.

•
∫

Ωα(t)

pα∇x · ~ϑH dΩ =

∫

IF

(∫ z
α+ 1

2

z
α− 1

2

pαdz

)
∇ · ~ϑHdx = −

∫

IF

~ϑH · ∇x
(∫ z

α+ 1
2

z
α− 1

2

pαdz

)
dx

= −
∫

IF

~ϑH ·
(∫ z

α+ 1
2

z
α− 1

2

∇xpαdz + pα+ 1
2
∇xzα+ 1

2
− pα− 1

2
∇xzα− 1

2

)
dx

= −
∫

IF

~ϑH ·
(∫ z

α+ 1
2

z
α− 1

2

∇xpαdz
)
dx−

∫

IF

pα+ 1
2
(~ϑH , 0)′ · ηα+ 1

2

√
1 +

∣∣∣∇xzα+ 1
2

∣∣∣
2

dx

+

∫

IF

pα− 1
2
(~ϑH , 0)′ · ηα− 1

2

√
1 +

∣∣∣∇xzα− 1
2

∣∣∣
2

dx.

•
∫

Γ
α+ 1

2
(t)

(Σ−
α+ 1

2

(~ϑH , 0)′) · ~ηα+ 1
2
dΓ =

∫

IF

(Σ−
α+ 1

2

(~ϑH , 0)′) · ~ηα+ 1
2

√
1 +

∣∣∣∇xzα+ 1
2

∣∣∣
2

dx.

Moreover, as Σ−
α+ 1

2

+ pα+ 1
2
I = T−

α+ 1
2

, we can do the following simplification,

∫

IF

(Σ−
α+ 1

2

(~ϑH , 0)′) · ~ηα+ 1
2

√
1 +

∣∣∣∇xzα+ 1
2

∣∣∣
2

dx+

∫

IF

pα+ 1
2
(~ϑH , 0)′ · ηα+ 1

2

√
1 +

∣∣∣∇xzα+ 1
2

∣∣∣
2

dx

=

∫

IF

(T−
α+ 1

2

(~ϑH , 0)′) · (∇xzα+ 1
2
,−1)′dx =

∫

IF

(T−
H,α+ 1

2

(∇xzα+ 1
2
)′ − T−

xz,α+ 1
2

) · ~ϑHdx.

Where we have used that as T−
α+ 1

2

is a symmetric matrix. Then

(T−
α+ 1

2

(~ϑH , 0)′) · (∇xzα+ 1
2
,−1)′ = (T−

α+ 1
2

(∇xzα+ 1
2
,−1)′) · (~ϑH , 0)′.

Then, the weak formulation (D.2), corresponding to the horizontal momentum equation for this set
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of tests functions, can be written as follows:

∫

IF

~ϑH ·
(

hα∂t(ρ(Φα)~uα) + hα∇x ·
(
ρ(Φα)~uα ⊗ ~uα

)
+

N∑

j=0

ρjφj,α(w−
j,α+ 1

2

− w+
j,α− 1

2

)~uα

+

∫ z
α+ 1

2

z
α− 1

2

∇xpαdz −∇x · (hαTEH )

+(T−
H,α+ 1

2

(∇xzα+ 1
2
)′ − T−

xz,α+ 1
2

)− (T+
H,α− 1

2

(∇xzα− 1
2
)′ − T+

xz,α− 1
2

)

)
dx = 0,

∀~ϑH .
(D.3)

Taking into account (3.22) we deduce,

hα∂t(ρ(Φα)~uα) + hα∇x ·
(
ρ(Φα)~uα ⊗ ~uα

)
+

N∑

j=0

ρjφj,α(w−
j,α+ 1

2

− w+
j,α− 1

2

)~uα

+

∫ z
α+ 1

2

z
α− 1

2

∇xpαdz −∇x · (hαTEH )

+(T̃H,α+ 1
2
(∇xzα+ 1

2
)′ − T̃xz,α+ 1

2
)− (T̃H,α− 1

2
(∇xzα− 1

2
)′ − T̃xz,α− 1

2
)

=
~uα+1 − ~uα

2

N∑

j=0

ρjGj,α+ 1
2
− ~uα − ~uα−1

2

N∑

j=0

ρjGj,α− 1
2

(D.4)

Using (4.7) we may write (D.4) in the form

hαρ(Φα)∂t~uα + hαρ(Φα)∇x ·
(
~uα ⊗ ~uα

)
+

∫ z
α+ 1

2

z
α− 1

2

∇xpαdz −∇x · (hαTEH )

+(T̃H,α+ 1
2
(∇xzα+ 1

2
)′ − T̃xz,α+ 1

2
)− (T̃H,α− 1

2
(∇xzα− 1

2
)′ − T̃xz,α− 1

2
)

=
~uα+1 − ~uα

2

N∑

j=0

ρjGj,α+ 1
2
− ~uα − ~uα−1

2

N∑

j=0

ρjGj,α− 1
2

−~uα
N∑

j=0

ρjφj,α(w−
α+ 1

2

− w+
α− 1

2

)

(D.5)

Finally, we can obtain the momentum equations by combining previous equation with (4.5). If we
multiply (4.5) by ρj , for j = 0, . . . , N and by summing up these equations we obtain

∂t(ρ(Φα)hα) +∇x · (ρ(Φα)hα~uα) =
N∑

j=0

ρjGj,α+ 1
2
−

N∑

j=0

ρjGj,α− 1
2
. (D.6)

Finally, if we sum up (D.5) with the result of multiplying (D.6) by ~uα, and taking into account (3.14),
we obtain the evolution equation for the momentum at each layer:
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∂t(ρ(Φα)hα~uα) +∇x ·
(
ρ(Φα)hα~uα ⊗ ~uα

)
+ hαρ(Φα)

(
∇x · ~uα

)
~uα +

∫ z
α+ 1

2

z
α− 1

2

∇xpαdz −∇x · (hαTH)

+(T̃H,α+ 1
2
(∇xzα+ 1

2
)′ − T̃xz,α+ 1

2
)− (T̃H,α− 1

2
(∇xzα− 1

2
)′ − T̃+

xz,α− 1
2

)

=
~uα+1 + ~uα

2

N∑

j=0

ρjGj,α+ 1
2
− ~uα + ~uα−1

2

N∑

j=0

ρjGj,α− 1
2

−~uα
N∑

j=0

ρjφj,α(w−
α+ 1

2

− w+
α− 1

2

).

(D.7)
Remark that ∇ · v = 0 which means:

hα∇x · ~uα + (w−
α+ 1

2

− w+
α− 1

2

) = 0, (D.8)

and (4.8) follows.
Now, by (4.1) and (4.2), we obtain

∫ z
α+ 1

2

z
α− 1

2

∇xpαdz = hα

(
∇x
(
pS + g

M∑

β=α+1

ρ(Φβ)hβ + gρ(Φα)
hα
2

)
+ gρ(Φα)∇x

(
zb +

α−1∑

β=1

hb +
hα
2

) )
.

(D.9)
Then, (D.9) can be rewritten as

∫ z
α+ 1

2

z
α− 1

2

∇xpαdz = hα

(
∇xpα + gρ(Φα)∇xz̄α

)
.

and (4.9) follows.
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