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Abstract

A two-layer shallow water type model is proposed to describe bedload sediment
transport. The upper layer is filled by water and the lower one by sediment. The key
point falls on the definition of the friction laws between the two layers, which are a
generalization of those introduced in Fernández-Nieto et al. (ESAIM: M2AN, 51:115-
145, 2017). This definition allows to apply properly the two-layer shallow water model
for the case of intense and slow bedload sediment transport. Moreover, we prove
that the two-layer model converges to a Saint-Venant-Exner system (SVE) including
gravitational effects when the ratio between the hydrodynamic and morphodynamic
time scales is small. The SVE with gravitational effects is a degenerated nonlinear
parabolic system. This means that its numerical approximation is very expensive
from a computational point of view, see for example T. Morales de Luna et al. (J. Sci.
Comp., 48(1): 258–273, 2011). In this work, gravitational effects are introduced into
the two-layer system without such extra computational cost. Finally, we also consider
a generalization of the model that includes a non-hydrostatic pressure correction for
the fluid layer and the boundary condition at the sediment surface. Numerical tests
show that the model provides promising results and behave well in low transport rate
regimes as well as in many other situations.
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(tomas.morales@uco.es)

1



1 Introduction

One of the difficulties to simulate bedload sediment transport is that the interaction be-
tween fluid and sediment is very small. Bedload is the type of transport where sediment
grains roll along the bed or single grains jump over the bed a length proportional to their
diameter, losing for instants the contact with the soil. This is opposed to transport in
suspension where particles are transported by the fluid without touching the bottom for
long period of times. For low Froude numbers, bedload is the dominating transport mech-
anism. In this case the characteristic velocities of fluid and sediment are very different.
The bedload transport rate is low and the characteristic velocity of the sediment is much
smaller than that of the fluid.

In [13], a multi-scale analysis is performed taking into account that the velocity of the
sediment layer is smaller than the one of the fluid layer. This leads to a shallow water type
system for the fluid layer and a lubrication Reynolds equation for the sediment one.

For the case of uniform flows the thickness of the moving sediment layer can be pre-
dicted, because erosion and deposition rates are equal in those situations. This is a general
hypothesis that is assumed when modeling bedload transport. The usual approach is to
consider a coupled system consisting of a Shallow Water system for the hydrodynamical
part combined with a morphodynamical part given by the so-called Exner equation. The
whole system is known as Saint Venant Exner (SVE) system [9]. Exner equation depends
on the definition of the solid transport discharge. Different classical definitions can be found
for the solid transport discharge, for instance the ones given by Meyer-Peter & Müller [21],
Van Rijn’s [35], Einstein [6], Nielsen [23], Fernández-Luque & Van Beek [10], Ashida &
Michiue [1], Engelund & Fredsoe [8], Kalinske [18], Charru [4], etc. A generalization of
these classical models was introduced in [13] where the morphodynamical component is
deduced from a Reynolds equation and includes gravitational effects in the sediment layer.
Classical models do not take into account in general such gravitational effects because in
their derivation the hypothesis of nearly horizontal sediment bed is used (see for example
[19]).
In general, classical definitions for solid transport discharge can be written as follows,

qb
Q

= sgn(τ)
k1

(1− ϕ)
θm1 (θ − k2 θc)

m2
+

(√
θ − k3

√
θc

)m3

+
, (1)

where Q represents the characteristic discharge, Q = ds
√
g(1/r − 1)ds, r = ρ1/ρ2 is the

density ratio, ρ1 being the fluid density and ρ2 the density of the sediment particles; ds the
mean diameter of the sediment particles, and ϕ is the averaged porosity. The coefficients
kl and ml, l = 1, 2, 3, are positive constants that depend on the model. We usually find
m2 = 0 or m3 = 0, for example, Meyer-Peter & Müller model takes m3 = 0 and Ashida &
Michiue’s model uses m2 = 0.
The Shields stress, θ, is defined as the ratio between the agitating and the stabilizing
forces, θ = |τ |d2

s/(g(ρ2 − ρ1)d3
s), τ being the shear stress at the bottom. For example, for

Manning’s law, we have τ = ρ1gh1n
2u1|u1|/h4/3

1 . Where h1 and u1 are the thickness and
the velocity of the fluid layer, respectively, and n is the Manning coefficient.
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Finally, θc is the critical Shields stress. The positive part, ( · )+, in the definition implies
that the solid transport discharge is not null only if θ > kθc (with k = k2 when m2 > 0 and
k =
√
k3 when m3 > 0). If the velocity of the fluid is zero, u1 = 0, we have θ = 0 < kθc,

and for any model that can be written under the structure (1) we obtain that qb = 0,
which means that there is no movement of the sediment layer. This is even true when the
sediment layer interface is not horizontal which is a consequence of the fact that classical
models do not take into account gravitational effects.

In order to introduce gravitational effects in classical models, Fowler et al. proposed in
[14] a modification of the Meyer-Peter & Müller formula that consist in replacing θ by θeff,
where:

θeff = |sgn(u1)θ − ϑ∂x(b+ h2)| , (2)

with

ϑ =
θc

tan δ
, (3)

δ being the angle of repose of the sediment particles. The sediment surface is defined by
z = b+h2, where h2 is the thickness of the sediment layer and b the topography function or
bedrock layer. Then, θeff is defined in terms of the gradient of sediment surface. This is a
definition that can be also considered for 2D simulations, because in this case θeff is defined
as the norm of the vector θu1/‖u1‖−ϑ∇(b+h2). Other alternatives have been proposed in
the literature, namely consisting of a modification of θc, instead of a modification of θ. Both
approximations are equivalent only in some cases for 1D problems (see [13]). Moreover,
defining the modification of θc for arbitrarily sloping bed for 2D problems is not an easy
task (see [24], [29]).

As we mentioned previously, in [13] a SVE model is deduced from a multiscale analysis.
The model includes gravitational effects and the authors deduce that it can also be seen
as a modification of classical models by replacing θ by the proposed values θ

(L)
eff or θ

(Q)
eff

depending if we set a linear or a quadratic friction law respectively between the fluid and
the sediment layer. For the case of nearly uniform flows, the thickness of the sediment layer
which corresponds to moving particles, hm, is of order of ds/ϑ. Under this assumption, for
the case of a linear friction law, the definition of the effective shear stress proposed in [13]
can be written as follows:

θ
(L)
eff =

∣∣∣∣sgn(u1)θ − ϑ∂x(b+ h2)− ϑ ρ1

ρ2 − ρ1

∂x(b+ h1 + h2)

∣∣∣∣ . (4)

Let us remark that if the water free surface is horizontal, the definition of θ
(L)
eff coincides

with θeff (2), proposed by Fowler et al. in [14]. Otherwise, the main difference is that
this definition for the effective shear stress takes into account not only the gradient of the
sediment surface but also the gradient of the water free surface.

For the case of a quadratic friction law, although the definition is a combination of
the same components, it is rather different. In this case we can write the effective Shields
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parameter proposed in [13] as follows:

θ
(Q)
eff =

∣∣∣∣∣sgn(u1)
√
θ −

√
ϑρ1

ρ2 − ρ1

|∂x(
ρ1

ρ2

h1 + h2 + b)| sgn

(
∂x(

ρ1

ρ2

h1 + h2 + b)

)∣∣∣∣∣
2

. (5)

In the case of submerged bedload sediment transport, the drag term is defined by a
quadratic friction law. Thus, we should consider an effective Shields stress given by θ

(Q)
eff .

Nevertheless, in the bibliography it is θeff (2) which is usually considered, regardless the

fact that θeff is an approximation of θ
(L)
eff which is deduced from a linear friction law.

Although the quantities involved in the definitions of the effective Shields parameter
associated to linear or quadratic friction are the same, their values may be very different.
They verify

|θ(L)
eff − θ

(Q)
eff | = O

(
|∂x(

ρ1

ρ2

h1 + h2 + b)|

(
√
θ −

√
ϑρ1

ρ2 − ρ1

|∂x(
ρ1

ρ2

h1 + h2 + b)|

))
.

For instance, if we consider a initial condition with water at rest and a high gradient in
the sediment surface, the difference between θ

(L)
eff and θ

(Q)
eff is of order of the gradient of

the sediment surface. Thus, in the framework of SVE model, the definition θ
(Q)
eff should be

considered in order to be consistent with the quadratic friction law usually considered for
the drag force between the fluid and the sediment.

In any case, considering the definitions θeff (2), θ
(L)
eff (4), or θ

(Q)
eff (5), means that the

corresponding SVE system with gravitational effects is a parabolic degenerated partial
differential system with non linear diffusion. Moreover, the system cannot be written as
combination of a hyperbolic part plus a diffusion term.

Let us remark that in the literature a linearized version can be found, where gravita-
tional effects are included by considering a classical SVE model with an additional viscous
term, see for example [33] and references therein. The drawback of this approach is that
the diffusive term should not be present in stationary situations, for instance when the ve-
locity is not high enough and sediment slopes are under the one given by the repose angle.
In such situations it is necessary to include some external criteria that controls whether
the diffusion term is applied or not. This is not the case in definitions (4) or (5) where the
effective Shields stress is automatically limited by the effect of the Coulomb friction angle.

From the computational point of view, any of previous strategies for gravitational effects
are expensive. Due to the parabolic nature of the equation, explicit methods have a very
restrictive CFL condition, and implicit methods need to incorporate a fixed point algorithm
for its resolution (cf. [22]).

Another approach used to study bedload sediment transport is to consider two-layer
shallow water type model, see for example [30], [32], [28]. Nevertheless they are usually
proposed in the case of high bedload transport rate, such as in dam break situations. This
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differs from classical SVE system where low transport rates with small Froude number is
assumed.

In this paper we propose a two-layer shallow water model that behaves as a SVE model
when the bedload regime holds. It has the advantage that it converges to a generalization of
SVE model with gravitational effects for low transport regimes while being valid for higher
transport regimes as well. Moreover, it has the advantage that the inclusion of gravitational
effects does not imply any extra computational effort, opposed to what happens for classical
SVE systems with gravity effects.

An additional advantage of the model introduced here is that it will take into account
dispersive effects. When modelling and simulating geophysical shallow flows, the nonlinear
shallow water equations are often a good choice as an approximation of the Navier-Stokes
equations. Nevertheless, they are derived by assuming hydrostatic pressure and they do
not take into account non-hydrostatic effects or dispersive waves. In coastal areas, close to
the continental shelf, non-hydrostatic effects or equivalently, dispersive waves may become
important.

In recent years, effort has been done in the derivation of relatively simple mathematical
models for shallow water flows that include long nonlinear water waves. See for instance
the works in [17, 20, 26, 39] among others. The hypothesis is that this dispersive effects
will have an important impact on the sediment layer.

Following this idea, in this work we will consider a non-hydrostatic pressure for the fluid
layer. The non-hydrostatic pressure act on the sediment layer as a boundary condition on
the interface between the fluid and the sediment. As it will be shown, these non-hydrostatic
effects have an important impact when compared with the hydrostatic version.

The paper is organized as follows: The two-layer Shallow Water model that we propose
is introduced in Section 2. The energy balanced verified by the proposed model is also
stated. Section 3 is devoted to show the convergence of the model to the SVE model
with gravitational effect proposed in [13]. In Section 4 we present the generalization of the
proposed model by including non-hydrostatic pressure in the fluid layer and its influence on
the sediment layer as a modification of the gradient pressure at the interface. A numerical
method to approximate this model is described in Section 5. Three numerical tests are
shown in Section 6. Finally, conclusions are presented in Section 7.

2 Proposed model

We consider a domain with two immiscible layers corresponding to water (upper layer)
and sediment (lower layer). The sediment layer is in turn decomposed into a moving layer
of thickness hm and a sediment layer that does not move of thickness hf , adjacent to the
fixed bottom. These thicknesses are not fixed because there is an exchange of sediment
material between the layers. Particles are eroded from the lower sediment layer and come
into motion in the upper sediment layer. Conversely, particles from the upper layer are
deposited into the lower sediment layer and stop moving.
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Figure 1: Sketch of the domain for the fluid-sediment problem

We propose a 2D shallow water model that may be obtained by averaging on the
vertical direction the Navier-Stokes equations and taking into account suitable boundary
conditions. In particular, at the free surface we impose kinematic boundary conditions
and vanishing pressure; at the bottom a Coulomb friction law is considered. The friction
between water and sediment is introduced through the term F at the water/sediment in-
terface and the mass transference term in the internal sediment interface is denoted by T .
The general notation for the water layer corresponds to the subindex 1 and for the sediment
layer to the subindex 2. Thus, the water of layer has a thickness h1 and moves with hori-
zontal velocity u1. The thickness of the total sediment layer is denoted by h2 = hf + hm,
and the moving sediment layer hm flow with velocity um. The fixed bottom is denoted by
b. See Figure 1 for a sketch of the domain.
Note that the velocity of the sediment layer is defined as u2 = um in the moving layer and
u2 = 0 in the static layer. We assume first an hydrostatic pressure regime.

Then we propose the following two-layer shallow water model:

∂th1 + div(h1u1) = 0 (6a)

∂t(h1u1) + div(h1u1 ⊗ u1) + gh1∇x(b+ h1 + h2) = −F (6b)

∂th2 + div(hmum) = 0 (6c)

∂t(hmum)+div(hmum⊗um)+ghm∇x(b+rh1 +h2) = rF +
1

2
umT −(1−r)ghmsgn(um) tan δ

(6d)
∂thf = −T (6e)

where r = ρ1/ρ2 is the ratio between the densities of the water, ρ1, and the sediment par-
ticles, ρ2. δ is the internal Coulomb friction angle. In the next lines we give the closures
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for the friction term F and the mass transference T .

Following [13] we consider two types of friction laws: linear and quadratic. The friction
term for the linear friction law is defined as

FL = CL(u1 − um) with CL = g
(1

r
− 1
) h1hm

ϑ(h1 + hm)
√

(1
r
− 1)gds

(7)

and for the quadratic friction law,

FQ = CQ(u1 − um)|u1 − um| with CQ =
1

α

h1hm
ϑ(h1 + hm)

. (8)

ds being the mean diameter of the sediment particles. ϑ is defined by equation (3). This
definition of ϑ verifies the analysis of Seminara et al. [29], who concluded that the drag
coefficient is proportional to tan(δ)/θc.

Remark that the calibration coefficient α has units of length so that CQ is non-
dimensional. In [13], α = ds was assumed for the bedload in low transport situations.
In our case, given that we deal with a complete bilayer system, this value is not always
valid. In bedload framework, we can establish from experimental observations that the
region of particles moving at this level is at most 10-20 particle-diameter in height [11].
So we may assume that the thickness of the bed load layer is hm = k ds with k ∈ [0, kmax]
(kmax = 10 or 20). So that, when hm ≤ kmaxds we are in a bedload low rate regime and
it makes sense to consider the friction coefficient as in [13], that is, of the order of ds.
Conversely, when hm > kmaxds we are not in a bedload regime and then we must turn to
a more appropriate friction coefficient. Thus, to be consistent with our previous work, we
propose to take:

α =

{
hm if hm > kmaxds
ds if hm ≤ kmaxds

Another possibility for the second case, would be to define α = kmaxds when hm ≤ kmaxds.
The coefficient kmax can be then considered as a calibration constant for the friction law.

The mass transference between the moving and the static sediment layers T is defined
in terms of the difference between the erosion rate, że, and the deposition rate żd. There
exists in the literature different forms to close the definition of the erosion and deposition
rates (see for example [4]). We consider in this work the following definition (see [12]):

T = że − żd with że = Ke(θe − θc)+

√
g(1/r − 1)ds

1− ϕ
, żd = Kdhm

√
g(1/r − 1)ds

ds
.

The coefficients Ke and Kd are erosion and deposition constants, respectively, ϕ is the
porosity. For the case of nearly flat sediment bed it is usually set θe = θ, which corresponds
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to the Bagnold’s relation (see [2]). Nevertheless, to take into account the gradient of the
sediment bed θe must be defined in terms of the effective Shields stress (see [13]). Then
we define θe in terms of the friction law between the fluid and the sediment layers:

θe =


θ

(L)
eff , defined in equation (4), for a linear friction law,

θ
(Q)
eff , defined in equation (5), for a quadratic friction law.

The proposed model has an exact dissipative energy balance, which is an easy conse-
quence of two-layer shallow water systems, opposed to classical SVE models which have
not. We obtain the following result.

Theorem 2.1 System (6) admits a dissipative energy balance that reads:

∂t

(
rh1
|u1|2

2
+ hm

|um|2

2
+

1

2
g(rh2

1 + h2
2) + g rh1h2 + gb(rh1 + h2)

)
+div

(
rh1u1

|u1|2

2
+ hmum

|um|2

2
+ g rh1u1(h1 + h2 + b) + ghmum(rh1 + h2 + b)

)
≤ −r(u1 − um)F − (1− r)ghm|um| tan δ;

where the friction term F is given by (7) or (8).

The proof of the previous result is straightforward and for the sake of brevity we omit
it. Notice that classical SVE model does not verify in general a dissipative energy balance.
In [13] a modification of a class of classical SVE models and a generalization, by including
gravitational effects, has been proposed that allows them to verify a dissipative energy
balance. In the following section we see that the proposed two-layer model converges to
the SVE model proposed in [13].

3 Convergence to the classical SVE system for small

morphodynamic time scale

In this section we prove the convergence of system (6) to the Saint-Venant-Exner model
presented in [13]. This model is obtained from an asymptotic approximation of the Navier-
Stokes equations. In particular, it has the following advantages:

• it preserves the mass conservation,

• the velocity (and hence, the discharge) of the bedload layer is explicitly deduced,

• it has a dissipative energy balance.
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The model introduced in [13] reads as follows:

∂th1 + divxq1 = 0,

∂tq1 + divx(h1(u1 ⊗ u1)) + gh1∇x(b+ h2 + h1) = −ghm
r
P ,

∂th2 + divx

(
hm vb

√
(1/r − 1)gds

)
= 0,

∂thf = −Tm.

(9)

with
P = ∇x(rh1 + h2 + b) + (1− r)sgn(u2) tan δ. (10)

The definition of the non-dimensional sediment velocity vb depends on the friction law.
When a linear friction law is considered, it reads:

v
(LF )
b =

u1√
(1/r − 1)gds

− ϑ

1− r
P , (11)

where

sgn(u2) = sgn

(
u1√

(1/r − 1)gds
− ϑ

1− r
∇x(rh1 + h2 + b)

)
.

For a quadratic friction law:

v
(QF )
b =

u1√
(1/r − 1)gds

−
( ϑ

1− r

)1/2

|P|1/2sgn(P), (12)

where sgn(u2) = sgn(Ψ) and

Ψ =
u1√

(1/r − 1)gds
−
∣∣∣∣ ϑ

1− r
∇x(rh1 + h2 + b)

∣∣∣∣1/2

sgn

(
ϑ

1− r
∇x(rh1 + h2 + b)

)
.

The convergence is obtained when we assume the adequate asymptotic regime in terms
of the time scales. As it is well known, for the bedload transport problem, the morphody-
namic time is much smaller than the hydrodynamic time, which makes the pressure effects
much more important than the convective ones. As a consequence, the behavior of the
sediment layer is just defined by the solid mass equation (Exner equation), omitting a mo-
mentum equation. This small morphodynamic time turn into an assumption of a smaller
velocity for the lower layer. In order to fall into the bedload transport regime we must also
assume that the thickness of the bottom layer is smaller, because it represents the layer of
moving sediment. Thus, we suppose:

um = εuũm; hm = εhh̃m; T = εuT̃ . (13)

9



Now we take these values into the momentum conservation equation for the lower layer in
(6):

∂t(εhεuh̃mũm) + div(εhε
2
uh̃mũm ⊗ ũm) + gεhh̃m∇x(b+ rh1 + h2)

= rF̃ + ε2
u

1

2
ũmT̃ − (1− r)gεhh̃msgn(ũm) tan δ

Then, if we neglect second order terms, we get

gεhh̃m∇x(b+ rh1 + h2) = rF̃ − (1− r)gεhh̃msgn(ũm) tan δ.

In dimension variables, this equation reads:

rF = ghm∇x(b+ rh1 + h2) + (1− r)ghmsgn(um) tan δ = ghmP ,

where the last equality follows from the definition of P . Thus the expression of the friction
term is

rF = ghmP ; (14)

which coincides with the friction term in the momentum equation of layer 1, r.h.s. of (9).
Now, from this equation and using the expressions of F , for linear (7) and quadratic (8)
laws, we have to compute the value of um to check that it fits with (11) and (12) respectively.

◦ Linear friction law:

F̃ = g
(1

r
− 1
) εhh1h̃m

ϑ(h1 + εhh̃m)
√

(1
r
− 1)gds

(u1 − εuũm)

= g
(1

r
− 1
) 1

ϑ
√

(1
r
− 1)gds

εhh̃m

1 + εh
h̃m

h1

(u1 − εuũm)

= g
(1

r
− 1
) εhh̃m

ϑ
√

(1
r
− 1)gds

(u1 − εuũm) +O(ε2
h) (15)

where in the last equality we have used that
1

1 + εh
h̃m

h1

= 1− εh
h̃m
h1

+O(ε2
h).

So turning to the dimension variables and neglecting second order terms, the equation (14)
reads:

rg
(1

r
− 1
) hm

ϑ
√

(1
r
− 1)gds

(u1 − um) = ghmP .

From where we directly obtain that um = v
(LF )
b

√
(1
r
− 1)gds.

◦ Quadratic friction law:
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Note that in this case α reduces to ds and then

F̃ =
εhh1h̃m

ϑds(h1 + εhh̃m)
(u1 − εuũm)|u1 − εuũm|

=
εhh̃m
ϑds

(u1 − εuũm)|u1 − εuũm|+O(ε2
h). (16)

Following the same reasoning as above, the equation (14) reads:

r
hm
ϑds

(u1 − um)|u1 − um| = ghmP .

From where we obtain that

r
1

ϑds
(u1 − um)2 = gP sgn(P) and then um = v

(QF )
b

√(1

r
− 1
)
gds.

4 Non-hydrostatic pressure model

The hydrostatic hypothesis may be inaccurate and fails where non-hydrostatic pressure
can affect the mobility of sediment and hence the bedload transport. We present in this
section the two-layer shallow water model described in (6) with a correction in the total
pressure applying a similar approach to the one proposed by Yamazaki in [39], where the
non-hydrostatic effects are taken into account for the nonlinear shallow water equations,
hereinafter SWE.

The challenge is thus to improve nonlinear dispersive properties of the model by in-
cluding information on the vertical structure of the flow while designing fast and efficient
algorithms for its simulation. First we resume the development introduced by Yamazaki
in [39] to later apply it to our system. The idea is that in the depth averaging process, the
vertical velocity average is not neglected and the total pressure is decomposed into a sum
of hydrostatic and non-hydrostatic components.

In addition, during the process of depth averaging, vertical velocity is assumed to
have a linear vertical profile as well as as the non-hydrostatic pressure. Moreover, in the
vertical momentum equation, the vertical advective and dissipative terms, which are small
compared with their horizontal counterparts, are neglected. At the free surface we assume
that the pressure vanishes as boundary condition.

Then, for a single fluid layer of thickness h over a bottom b, the resulting x and z
momentum equations as well as the continuity equation described in [39] are
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

∂th+ div(hu) = 0,

∂t(hu) + div(hu⊗ u+ hp̃|b+h/2) + gh∇xh = −p̃|b∇xb,

∂t(hw)− p̃|b = 0,

divu+
w − w|b
h/2

= 0,

(17)

where u is the depth averaged velocity in the x direction and w is the depth averaged veloc-
ity component in the z direction. p̃|b denotes the non-hydrostatic pressure at the bottom.
The vertical velocity at the bottom is evaluated from the seabed boundary condition

w|b = u∇xb.

The value of the pressure at the middle of the layer comes from the linear profile assumed
for p̃ and the boundary condition p̃|b+h = 0, then

p̃|b+h/2 =
1

2
p̃|b.

Note that system (17) reduces to the SWE when total pressure is assumed to be hydro-
static, and therefore p̃|b = 0.

Now, using a similar procedure as in [39], the proposed model with non-hydrostatic ef-
fects reads:

• Water layer:

∂th1 + div(h1u1) = 0,

∂t(h1u1) + div(h1u1 ⊗ u1+h1p̃1|b+h2+h1/2)

+gh1∇x(b+ h1 + h2) = −p̃1|b+h2
∇x(b+ h2)− F,

∂t(h1w1)− p̃1|b+h2
= 0,

divu1 +
w1 − w1

+
|b+h2

h1/2
= 0.

(18)

The sediment layer will be also affected by the non-hydrostatic terms. This influence comes
from the boundary condition at the interface. Therefore we obtain:
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• Sediment layer:

∂th2 + div(hmum) = 0,

∂t(hmum)+div(hmum ⊗ um) + ghm∇x(b+ rh1 + h2)

+rhm∇x(p̃1|b+h2
) = rF +

1

2
umT − (1− r)ghmsgn(um) tan δ,

∂thf = −T,

(19)

The system is completed with closures relations on the pressure and vertical velocity of
the water layer:

p̃1|b+h2+h1/2 =
1

2
p̃1|b+h2

, w1
+
|b+h2

= ∂th2 + u1 · ∇x(b+ h2).

Note that system (18)-(19) reduces to (6) when total pressure is hydrostatic.
In Section 6 we will present a numerical test to show the importance of taking into account
the non-hydrostatic effects in suitable cases.

5 Numerical scheme

The model is solved numerically using a two-step algorithm following ideas described in [7]:
first the hyperbolic two-layer shallow water system is solved and then, in a second step,
non-hydrostatic terms will be taken into account. The source terms corresponding to
friction terms are discretized semi-implicitly afterwards.

System (18–19) can be written in the compact form

∂tU + ∂xF (U )+B(U)∂xU = G(U)∂xb̃

+T NH(U , ∂xU , b̃, ∂xb̃, p̃1|b+h2
, ∂xp̃1|b+h2

) + τ ,

∂thf = −T,

∂t(h1w1) = p̃1|b+h2
,

B(U , ∂xU , b̃, ∂xb̃, w1) = 0,

(20)

where
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U =


h1

q1

hm
qm

 , F (U ) =


q1

q21
h1

+ 1
2
gh2

1

qm
q2m
hm

+ 1
2
gh2

m

 , G(U) =


0
−gh1

0
−ghm

 , b̃ = b+ hf ,

B(U) =


0 0 0 0
0 0 gh1 0
0 0 0 0

rghm 0 0 0

 , τ =


0
−F
T

rF + 1
2
umT − (1− r)ghmsgn(um) tan δ

 .
Finally,

T NH(U , ∂xU , b̃, ∂xb̃, p̃1|b+h2
, ∂xp̃1|b+h2

) =


0

−1

2

(
h1∂xp̃1|b+h2

+ p̃1|b+h2
∂x

(
h1 + 2(b̃+ hm)

))
0

−rhm∂xp̃1|b+h2

 ,
(21)

and

B(U , ∂xU , b̃, ∂xb̃, w1) = h1∂xq1 − q1∂x

(
h1 + 2(b̃+ hm)

)
+ 2h1w1 + 2h1∂xqm. (22)

Note that last equation in (18), corresponding to free-divergence equation, has been mul-
tiplied by h1, giving equation (22).

We describe now the numerical scheme used to discretize the 1D system (20). We shall
omit the discretization of the friction and mass-transference terms and it will be applied
in a semi-implicit manner. In a first step, we shall solve the hyperbolic problem. Then, in
a second step, non-hydrostatic terms will be taken into account.

5.1 Finite volume discretization for the two-layer SWE

The two-layer SWE written in vector conservative form is given by

∂tU + ∂xF (U) +B(U)∂xU = G(U)∂xb̃. (23)

The system is solved numerically by using a finite volume method. As usual, we sub-
divide the horizontal spatial domain into standard computational cells Ii = [xi−1/2, xi+1/2]
with length ∆xi and define

U i(t) =
1

∆xi

∫
Ii

U(x, t)dx,

14



Ui−1
hf ,i−1

b̃i−1

Ui
hf ,i

b̃i

Ui+1
hf ,i+1

b̃i+1

Figure 2: Numerical scheme stencil. Up: finite volume mesh. Down: staggered mesh for
finite differences.

the cell average of the function U(x, t) on cell Ii at time t. We shall also denote by xi the
center of the cell Ii. For the sake of simplicity, let us assume that all cells have the same
length ∆x.

In [5] authors introduce a first order path-conservative numerical scheme, named IFCP,
which is constructed by using a suitable decomposition of a Roe matrix of system (23) by
means of a parabolic viscosity matrix, that captures information of the intermediate fields.
IFCP is a path-conservative scheme in the sense defined in [25]. IFCP numerical scheme
can be written as follows

Un+1
i = Un

i −
∆t

∆x

(
D+

i−1/2 +D−i+1/2

)
,

being D±i−1/2 = D±i−1/2(U i,U i+1, b̃i, b̃i+1) defined by

D±i+1/2 =
1

2

(
F (Un

i+1)− F (Un
i ) +Bi+1/2(Un

i+1 −Un
i )

−Gi+1/2(b̃i+1 − b̃i)
± Qi+1/2

(
Un

i+1 −Un
i − A−1

i+1/2Gi+1/2(b̃i+1 − b̃i)
))

,

(24)

where

Bi+1/2 =


0 0 0 0
0 0 gh1,i+1/2 0
0 0 0 0

rghm,i+1/2 0 0 0

 , Gi+1/2 =


0

−gh1,i+1/2

0
−ghm,i+1/2

 ,
Ai+1/2 = Ji+1/2 +Bi+1/2,

being Ji+1/2 a Roe linearization of the Jacobian of the flux F in the usual sense:

Ai+1/2 =


0 1 0 0

−u2
1,i+1/2 + gh1,i+1/2 2u1,i+1/2 gh1,i+1/2 0

0 0 0 1
rghm,i+1/2 0 −u2

m,i+1/2 + ghm,i+1/2 2um,i+1/2

 ,
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and

h∗,i+1/2 =
h∗,i + h∗,i+1

2
, u∗,i+1/2 =

u∗,i
√
h∗,i + u∗,i+1

√
h∗,i+1√

h∗,i +
√
h∗,i+1

, ∗ ∈ {1, 2}.

The key point is the definition of the matrix Qi+1/2 ,that in the case of the IFCP is defined
by:

Qi+1/2 = α0Id+ α1Ai+1/2 + α2A
2
i+1/2,

where αj, j = 0, 1, 2 are defined by:1 λ1 λ2
1

1 λ4 λ2
4

1 χint χ2
int

α0

α1

α2

 =

 |λ1|
|λ4|
|χint|

 ,
where

χint = Sext max(|λ2|, |λ3|),
with

Sext =


sgn(λ1 + λ4), if (λ1 + λ4) 6= 0,

1, otherwise.

It can be proved that the numerical scheme is linearly L∞ –stable under the usual CFL
condition.

5.2 Treatment of the non-hydrostatic terms

Regarding non-hydrostatic terms, we consider a staggered-grid (see Figure 2) formed by
the points xi−1/2, xi+1/2 of the interfaces for each cell Ii, and denote the point values of
the functions p̃1|b+h2

and w1 on point xi+1/2 at time t by

pi+1/2(t) = p̃1|b+h2
(xi+1/2, t), wi+1/2(t) = w1(xi+1/2, t).

Following [7], p̃1|b+h2
and w1 will be discretized using second order compact finite dif-

ferences. In order to obtain point value approximations for the non-hydrostatic variables
pi+1/2 and wi+1/2, operator B(U , ∂xU , b̃, ∂xb̃, w1) will be approximated for every point
xi+1/2 of the staggered-grid (Figure (2)). Then, a second order compact finite-difference
scheme is applied to

∂tU = T NH(U , ∂xU , b̃, ∂xb̃, p̃1|b+h2
, ∂xp̃1|b+h2

),

∂t(hw1) = p̃1|b+h2
,

B(U , ∂xU , b̃, ∂xb̃, w1) = 0,

(25)

where the values obtained in previous step are used as initial condition for the system. The
resulting linear system is solved using an efficient Thomas algorithm.
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Figure 3: Test 1: Initial condition

6 Numerical tests

In this section we present three numerical tests, for the model proposed in section 4 with
the quadratic friction law proposed in (8). The first one corresponds to the evolution of a
dune, where the computed velocity of the two-layer model and the one deduced for the SVE
model are compared. The second test is a dam break problem over an erodible sediment
layer where laboratory data is used to validate the model. The test proves as well its
validity for regions where the interaction between the fluid and the sediment is strong. In
those situations the velocities computed by the two-layer model and the SVE one are not
close. The last test shows the difference between the hydrostatic and the non-hydrostatic
model on shape of the bed surface.

The numerical results follow from a combination of the scheme described in Section 5
with a discrete approximation of bottom and surface derivatives. The numerical simula-
tions are done with a CFL number equal to 0.9.

6.1 Test 1: bedload transport

In this test we would like to show the ability of the proposed model to reproduce the
bedload transport. In particular we study the formation and evolution of a dune. To do
so, let us consider the following initial condition over a domain of 25m, (see Figure 3):

h2(0, x) =

{
0.2 m, if x ∈ [5, 10],
0.1 m, otherwise.

h1(0, x) + h2(0, x) = 1 m, q1(0, x) = 1 m2/s2.

The fixed bottom is set to b(x) = 0. We set left boundary condition q1(t, 0) = 1m2/s2, and
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Figure 4: Test 1: (a) Surface and (b) bottom, at times t = 0, 500, 1000, 1500 s

open boundary condition on the right hand side. The parameters for the model in this aca-
demic test have been set as follows: r = 0.34, ds = 0.01m, θc = 0.047, δ = 25o. Ad-
ditionally for the transference term we introduce: Ke = 0.1, Kd = 0.01, ϕ = 0.4, n =
0.01. We use a discretization of 5000 points for the computational domain.

In Figure 4 we show the free surface and the sediment bottom surface at different times.
We can see the dune profile that is transported by the flow.
In Figure 5 we show the difference between the velocities um obtained by the model and
v

(QF )
b , the velocity deduced in [13] for the Saint Venant Exner model given in equation (12).

The difference is of order 10−2 at last computed time t = 1500s. In Figure 6 we show the
evolution in time of the relative error between v

(QF )
b and um. We remark that it remains

constant in time and the difference is small. The results show that the model behaves well
in low bedload transport regimes and behaves in a similar way as a SVE would.

Figure 5: Test 1: Comparison between um and v
(QF )
b at time t = 1500 s
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Figure 6: Test 1: Evolution in time of the relative error between um and v
(QF )
b in L1, L2

and L∞ norm.

6.2 Test 2: comparison with experimental data

The purpose of this second test is to validate the model with experimental data. This ex-
periment has been realized in the laboratory by Spinewine - Zech [31]. The same numerical
test has been performed in [34] using classical models. Nevertheless we remark again that
classical models make and assumption of low transport regime so that this test is not in
the range of their validity.
The experimental test takes place in a rectangular flume, the river bed is flat and at the
initial state, the retained water mass is released. To do so, let us consider the following
initial condition at the domain [−3 m, 3 m] (see Figure 7):

h1(0, x) =

{
10−12 m, if x > 0,
0.35 m, if x ≤ 0,

h2(0, x) = 0.05 m, q1(0, x) = q2(0, x) = 0 m2/s2.

The fixed bottom is set to zero and we set open boundary conditions. We choose the
parameters given in [34],

r = 0.63, ds = 0.0039 m, θc = 0.047, δ = 35o,

Ke = 0.1, Kd = 0.15, ϕ = 0.4, , n = 0.0039.

The computational domain used is discretized with 1000 points.
In Figure 8 we show the free surface and the sediment bottom surface at time t = 1.25 s
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Figure 7: Test 2: Initial condition

compared with experimental data. Both free surface and sediment bottom are captured
successfully. Comparing with the results provided in [34] with classical models, we observe
a better fit to the data for the advancing front of the sediment.
As expected, in this test the difference between the velocities um and v

(QF )
b is not so small

(see Figure 9). Thus, the hypothesis of sediment transport in a small morphodynamic time
is not suitable for this test. In Figure 10 we show the evolution in time of the relative error
between v

(QF )
b and um. We can observe that the error in norm L∞ remains constant until

the simulated time, where the error in norms L1 and L2 decrease. Nevertheless, during
all the simulation these errors are of a degree of magnitude bigger than for the case of
a dune evolution presented in previous test. The difference is specially relevant at the
advancing front, where the hypothesis of low transport rate is no longer valid. The new
model introduced here does not requires such assumption.
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Figure 8: Test 2: Comparison with experimental data at time t = 1.25 s

Figure 9: Test 2: Difference between um and v
(QF )
b at time t = 1.25 s
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6.3 Test 3: non-hydrostatic effects

The focus now is to study the influence of the non-hydrostatic effects on the sediment layer,
solving the model proposed in section 4. The computational domain is [0 m, 15 m]. Let us
consider the following initial condition

h1(0, x) = 0.8 m h2(0, x) = 0.2 m, q1(0, x) = q2(0, x) = 0 m2/s2.

An incoming wave train is simulated through the left boundary condition h1(t, 0) = 0.8 +
0.1 sin(5t), and open boundary condition on the right hand side is considered. The param-
eters for the model have been set as follows r = 0.63, ds = 0.1, θc = 0.047, δ = 35o,
Ke = 0.001, Kd = 0.01, ϕ = 0.4, n = 0.1. We take 1200 points to discretize the
domain.
In Figure 11 we show the evolution of the sediment bottom surface at times t = 500, 750, 1000 s
for the model with and without non-hydrostatic effects. A more detailed comparison of
the final bottom and free surface can be seen in Figure 12. Fredsøe and Deigaard [15]
described the behaviour of finite amplitude dunes under a unidirectional current. As it can
be seen, the pattern wave generated by taking into account the non-hydrostatic effects, is
much more similar to the pattern that can be observed in nature, close to coastal areas.

0 2 4 6 8 10 12 14

0.2

0.4

0.6

0.8

1.0

1.2

Free Surface
t = 500 s
t = 750 s
t = 1000 s

Bottom
t = 500 s
t = 750 s
t = 1000 s

(a) Non-hydrostatic pressure model

0 2 4 6 8 10 12 14
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1.2

Free Surface
t = 500 s
t = 750 s
t = 1000 s

Bottom
t = 500 s
t = 750 s
t = 1000 s

(b) Hydrostatic pressure model

Figure 11: Test 3. Evolution of the sediment bottom surface at times t =
250, 500, 750, 1000 s for the hydrostatic model (6) and non-hydrostatic model (18)-(19)
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(a) Free surface at time t = 1000 s
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Figure 12: Test 3. Comparison of the free surface (a) and the bottom (b) at time t = 1000 s
for the hydrostatic (SW) and non-hydrostatic (NH) model

7 Conclusions

A two-layer shallow water model has been presented that can deal with intense and slow
bedload sediment transport. A version that includes non-hydrostatic pressure in the fluid
layer and its influence on the gradient pressure of the sediment layer is also considered. In
the case that the velocity of the fluid and the sediment layer are very different we are in
a regime where SVE models can be considered. In this case we show that the proposed
two-layer model converges to the SVE with gravitational effects. In the numerical tests
we have shown that the velocities of the two-layer and the SVE models are very close in
the case of the evolution of a dune. Nevertheless, its difference can become relevant in the
case of a dam break problem. In that situation we have also compared with experimental
data with good results. Finally, in the numerical test section we have shown that the
non-hydrostatic effects become important in the bed form induced by sinusoidal waves.

From a computational point of view the main difference between considering a SVE
model or the two-layer system is the inclusion of gravitational effects without any extra
computational cost. In the SVE model it is commonly included by considering the effective
Shields parameter. Although we have shown in the introduction of the paper that the
usual definition of the effective Shields stress is not compatible with the fact to consider
a quadratic friction law between the fluid and the sediment interface. Another definition
must be set, as the one proposed in [13], presented in the introduction by equation (5).
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