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Abstract: This paper investigates a chemostat model with wall growth and Haldane consumption
kinetics. In addition, bounded random fluctuations on the input flow, which are modeled by means
of the well-known Ornstein-Uhlenbeck process, are considered to obtain a much more realistic model
fitting in a better way the phenomena observed by practitioners in real devices. Once the existence
and uniqueness of global positive solution has been proved, as well as the existence of deterministic
absorbing and attracting sets, the random dynamics inside the attracting set is studied in detail to
provide conditions under which persistence of species is ensured, the main goal pursued from the
practical point of view. Finally, we support the theoretical results with several numerical simulations.
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1. Introduction

Chemostat refers to a laboratory device, invented at the same time in the 1950s by Monod (see [1])
and Novick and Szilard (see [2]), very used in practice for growing microorganisms in a cultured envi-
ronment. The chemostat has been regarded as an idealization of nature to study microbial ecosystems
at steady state, which is an important and interesting problem for researchers from many areas due to its
large number of applications, for instance, it can be used to study genetically altered microorganisms
(see e.g. [3, 4]), waste-water treatment process (see e.g. [5, 6]), models of mammalian large intestine
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(see e.g. [7, 8]) and plays an important role in theoretical ecology (see e.g. [9–20]).
It is worth mentioning that the chemostat has been subject to a large number of scientific publica-

tions, not only in applied sciences but also in Mathematics. It is due to the fact that it is very interesting
also as a mathematical object, in fact, it constitutes a very active branch of applied mathematics which,
in addition, proposes a recent formal framework called the theory of the chemostat centered around a
well-identified community of mathematicians.

The reputation of the chemostat is mainly due to the fact that it is a very simple device that allows
to develop many different works and reproduces the real experiments in a very loyal way. Those are
some of the reasons that encouraged us to consider this model as part of our research.

Concerning the biological aspects, the chemostat device consists of three tanks, the feed bottle, the
culture vessel and the collection vessel, that are interconnected by means of pumps. The substrate
stored in the feed bottle is pumped to the culture vessel, where the interactions between the substrate
and the species take place. In addition, another flow is pumped from the culture vessel to the collection
vessel in order to keep the volume of the culture vessel constant.

The classical mathematical model used to describe the dynamics into the culture vessel in the
chemostat device consists of a system of two ordinary differential equations (see e.g. [21,22]) given by

ds
dt

= D(sin − s) − µ(s)x, (1.1)

dx
dt

= −Dx + µ(s)x, (1.2)

where s = s(t) and x = x(t) denote the concentration of substrate (or nutrient) and species (or microor-
ganisms), respectively, sin is the input concentration of substrate, D is the removal rate, also called
input flow, and µ is a function describing the consumption kinetics of the consumer species.

Among the different assumptions made when dealing with the deterministic model (1.1)–(1.2), one
is to assume that the input flow D is fast enough such that species are removed to the collection vessel
before having the opportunity of sticking to the wall of the culture vessel. However, this phenomenon,
introduced by Pilyugin and Waltman (see [23]) and known as wall growth, is quite usual and it can
be easily observed in practice. In fact, these observations motivate us to go further from the classical
deterministic chemostat model (1.1)–(1.2) and consider the corresponding chemostat model with wall
growth given by the following differential system (see [22])

ds
dt

= D(sin − s) −
µ(s)

y
x1 −

µ(s)
y

x2 + bνx1, (1.3)

dx1

dt
= −(ν + D)x1 + µ(s)x1 − r1x1 + r2x2, (1.4)

dx2

dt
= −νx2 + µ(s)x2 + r1x1 − r2x2, (1.5)

where s = s(t) denotes again the concentration of the nutrient and we divide in this case the total
concentration of species x = x(t) as follows: on the one hand, x1 = x1(t) refers to the concentration of
the species in the liquid media (the also called planktonic biomass) and x2 = x2(t) is the concentration
of the species sticked on the wall of the culture vessel (the attached biomass).
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In addition, the rate b ∈ (0, 1) describes the fraction of dead biomass which is recycled and ν > 0
is the collective death rate coefficient of the microbial biomass representing factors such as diseases,
aging, etc. Apart from that, r1 > 0 and r2 > 0 represent the rates at which the species stick on to and
shear off from the walls of the culture vessel, respectively. Finally µ is, as in the classical chemostat, the
consumption function of the consumer species and y > 0 denotes the yield coefficient of transformation
of substrate into biomass.

As explained before, we consider Haldane kinetics in this paper, a non-monotonic function intro-
duced by Haldane (see [24]) and defined by

µ(s) =
µ̄0s

s + ks +
1
ki

s2
, (1.6)

where µ̄0 corresponds to the growth rate coefficient of the species, ks denotes the so-called Monod
constant and ki is the inhibition constant modeling the inhibition of species to take substrate when it is at
high concentration. We would also like to highlight that, in industrial setup, large input concentrations
sin can be observed and it is also very well-known that microorganisms may suffer growth inhibition
under high concentrations of substrate. This is precisely what the non-monotonic consumption function
(1.6) models (see [25]).

There are many papers in the literature dedicated to investigate different versions of the determin-
istic classical chemostat model, either (1.1)–(1.2) or (1.3)–(1.5), even though a few of them take into
account the wall growth, see e.g. [14, 21, 22, 26–29]. Nevertheless, most of them need to assume re-
strictions that are quite strong from the biological point of view. For instance, a very representative
example of this is the case of the input flow D, that is typically considered to be constant in spite of the
fact that it is often subject to suffer bounded random fluctuations in real devices (see Figure 1 were we
display the evolution of the input flow in a real experiment).
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Figure 1. Evolution of input flow in real chemostat.

Motivated by the previous facts, our aim in this work consists in modeling and investigating the dy-
namics of the deterministic classical chemostat with wall growth (1.3)–(1.5) and Haldane consumption
kinetics where the input flow is subject to random disturbances. To this end, since the perturbed input
flow should be bounded (as observed in real devices) we propose to model the random fluctuations on

AIMS Mathematics Volume 6, Issue 4, 4025–4052.



4028

the input flow by means of the Ornstein-Uhlenbeck process, which has proved to be a useful tool when
modeling bounded noises (see [30–34] for more details about modeling bounded noises).

To this end, we replace the input flow D in the deterministic system (1.3)–(1.5) by D + Φ(z∗(θtω)),
where z∗(θtω) denotes the Ornstein-Uhlenbeck process (which will be introduced in the next section)
and Φ : R→ [−d, d], where d > 0, is a function given by

Φ(z) =
2d
π

arctan(z). (1.7)

Hence, the resulting random chemostat is given by the following random differential system

ds
dt

= (D + Φ(z∗(θtω)))(sin − s) −
µ0s

s + ks +
1
ki

s2
x1 −

µ0s

s + ks +
1
ki

s2
x2 + bνx1, (1.8)

dx1

dt
= −(ν + D + Φ(z∗(θtω)))x1 +

µ̄0s

s + ks +
1
ki

s2
x1 − r1x1 + r2x2, (1.9)

dx2

dt
= −νx2 +

µ̄0s

s + ks +
1
ki

s2
x2 + r1x1 − r2x2, (1.10)

where µ0 := µ̄0/y and µ0 ≥ µ̄0.
We recall that modeling bounded perturbations is a very interesting topic for most of researchers in

applied sciences when trying to find a way to model real noises, since they are random but bounded.
Apart from that, as it will be observed in this paper, such bounded perturbations will allow us to
ensure the persistence of the species, one of the most important goals pursued by practitioners. In fact,
persistence is the object of study in many papers (see [30–36]).

The rest of the paper is organized in the following way: in Section 2 we present some brief pre-
liminaries about the classical deterministic chemostat with Haldane kinetics, the Ornstein-Uhlenbeck
process, whose properties will be continually used in the paper, and the way in which bounded pertur-
bations are modeled in this work; in Section 3 we investigate the existence and uniqueness of global
positive solutions of the random chemostat (1.8)–(1.10), the existence of deterministic absorbing and
attracting sets and we provide conditions under which both extinction of species and persistence can be
ensured; in Section 4 we display several numerical simulations to support the theoretical work; finally,
in Section 5 we present some final comments.

2. Preliminaries

In this section we recall briefly some classical results concerning the deterministic chemostat model
(1.1)–(1.2) with non-monotonic growth and present the Ornstein-Uhlenbeck (OU) process, providing
some results about relevant properties that will be used further and will help us to set up the way to
model bounded random perturbations.
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2.1. The deterministic chemostat model with non-monotonic growth

The next proposition presents the classical results about the classical chemostat model (1.1)-(1.2)
with non-monotonic consumption function µ. We refer every interested reader to [21, 37] for proofs
and more details.

Proposition 2.1. Assume that there exists ŝ ∈ (0, sin) such that the function µ is increasing on (0, ŝ)
and decreasing on (ŝ, sin). Define the break-even concentrations λ−(D), λ+(D) as follows

λ−(D) = min{s ∈ [0, ŝ] ; µ(s) ≥ D}, D ∈ [0, µ(ŝ)]
λ+(D) = max{s ∈ [ŝ, sin] ; µ(s) ≥ D}, D ∈ [µ(sin), µ(ŝ)]

1. If D > µ(ŝ), the system (1.1)-(1.2) possesses a unique equilibrium E0 := (0, sin), which is globally
asymptotically stable on R2

+.
2. If D < µ(sin), the system (1.1)-(1.2) admits an unique positive equilibrium E− := (sin −

λ−(D), λ−(D)) which is globally asymptotically stable on R?+ × R+.
3. If D ∈ [µ(sin), µ(ŝ)], the system (1.1)-(1.2) presents a bi-stability between E− and E0. From any

initial condition in R?+ × R+ excepted on a set of null measure, the solution converges asymptoti-
cally to E− or E0.

Remark 1. In practice, only the second case is desirable because it guarantees that in any situation the
wash-out of the biomass is avoided.

Remark 2. For the Haldane expression (1.6), one has explicit expressions of the functions λ±

λ±(D) =
(µ0 − D)ki ±

√
(µ0 − D)2k2

i − 4D2kski

2D
.

Let us note that, even though the concept of break-even concentrations has been revisited in the
context of stochastic models of the chemostat [38, 39], we will not need it here. We keep the classical
deterministic definition.

In the rest of the paper, we shall consider that we are in conditions of Proposition 2.1, that is µ
non-monotonic on the interval [0, sin] (otherwise the analysis is similar to monotonic growth function
and cannot present bi-stability). Throughout the paper we shall consider the following hypothesis

Assumption 1. There exists sm ∈ (0, sin) such that the function µ is increasing on (0, sm) and decreasing
on (sm, sin).

2.2. The Ornstein-Uhlenbeck process

The OU process is a stationary mean-reverting Gaussian stochastic process defined as the following
random variable

z(t, ω) := z∗(θtω) = −βγ

0∫
−∞

eβsθtω(s)ds, t ∈ R, ω ∈ Ω, β, γ > 0, (2.1)
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where ω denotes a standard Wiener process in a probability space, namely (Ω,F ,P), β > 0 is the
mean reverting constant describing how our system reacts under perturbations, γ > 0 is the volatility
constant representing the variation of the noise and θt denotes the usual Wiener shift flow given by

θtω(·) = ω(· + t) − ω(t), t ∈ R.

We notice that the OU process (2.1) can be obtained as the stationary solution of the Langevin
equation

dz + βzdt = γdω. (2.2)

From now on, we consider β and γ fixed.
Once presented the OU process, we state in the following proposition some essential properties

which will be crucial to study this paper.

Proposition 2.2 (See [40]). There exists a θt-invariant subset Ω̃ ∈ F of Ω of full P−measure such that
for ω ∈ Ω̃ and β, γ > 0, we have

1. the random variable |z∗(ω)| is tempered with respect to {θt}t∈R, i.e., for a.e. ω ∈ Ω̃,

lim
t→∞

e−ηt sup
t∈R
|z∗(θ−tω)| = 0, for all η > 0.

.
2. the mapping

(t, ω)→ z(t, ω) := z∗(θtω) = −βγ

0∫
−∞

eβsω(t + s)ds + ω(t)

is a stationary solution of (2.2) with continuous trajectories;

3. for any ω ∈ Ω̃ one has

lim
t→±∞

|z∗(θtω)|
t

= 0;

lim
t→±∞

1
t

∫ t

0
z∗(θsω)ds = 0;

lim
t→±∞

1
t

∫ t

0
|z∗(θsω)|ds = E[|z∗|] < ∞;

From now on, we will denote Ω̃ by Ω.

2.3. Modeling bounded random perturbations

Once introduced the OU process, our aim in this section is to present a way to model mathematically
bounded random perturbations that fit the real disturbances observed in labs.

To this end, assume we are given an interval [Dl,Dr] (this interval is typically provided by practi-
tioners from observation), 0 < Dl < D < Dr < ∞ and let us define d = Dr −D = D−Dl > 0. Consider
now the function Φ : R→ [−d, d] defined by

Φ(z) =
2d
π

arctan(z),

AIMS Mathematics Volume 6, Issue 4, 4025–4052.



4031

as in (1.7). Thus,
Dl < D + Φ(z∗(θtω)) < Dr for all t ∈ R, (2.3)

whence the random perturbations in system (1.8)–(1.10) remain bounded (as the real ones) in the
desired interval.

In addition, the random perturbations in system (1.8)–(1.10) have the following ergodic property.

Proposition 2.3. Let Φ(z) =
2d
π

arctan(z) be defined as in (1.7). Then

lim
t→+∞

1
t

∫ t

0
Φ(z∗(θsω))ds = 0, a.s. in Ω. (2.4)

Proof. From the definition of Φ it yields that∫
Ω

|Φ(z∗(ω))| dP(ω) =

∫
Ω

∣∣∣∣∣2d
π

arctan(z∗(ω))
∣∣∣∣∣ dP(ω) ≤ d|Ω| = d

whence Φ(z∗(·)) ∈ L1(Ω,F ,P). Therefore, since P is invariant by θ (see [26, 41]), from the Birkhoff

ergodic theorem we obtain

lim
t→+∞

1
t

∫ t

0
Φ(z∗(θsω))ds = E[Φ(z∗(ω))], a.s. in Ω.

Then, it remains to prove that E[Φ(z∗(ω))] = 0. In fact,

E[Φ(z∗(ω))] =

∫ +∞

−∞

Φ(x) fOU(x)dx = 0,

where fOU denotes the density function of the random variable z∗(·), which is an even function since it
is gaussian, and Φ is an odd function. �

Remark 3. From the proof of Proposition 2.3 we notice that we could consider any odd measurable
function Φ such that

lim
z→+∞

Φ(z) = d > 0.

Remark 4. We would like to point out that the resulting random system (1.8)–(1.10) generates a
random dynamical system and then we could use the theory of random dynamical systems and pullback
attractors (see [26]). Nevertheless, we will study the solutions of the random system (1.8)–(1.10) for
fixed events ω ∈ Ω since, thanks to this, every result in this work can be proved in forward sense,
which is more natural from the biological point of view than the pullback one.

We refer readers to [30, 31, 33, 34] for more details about modeling bounded perturbations with
the OU process not only in chemostat models but also when dealing with other models in population
dynamics. Moreover, readers can compare the results in those works with the ones in [42,43] where the
usual Wiener process was used to model stochastic perturbations in different versions of the chemostat
model.
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3. Random chemostat with wall growth and Haldane consumption kinetics

In this section we investigate the random chemostat model with wall growth (1.8)–(1.10) presented
in the introductory section. We first prove that there exists a unique global positive solution of system
(1.8)–(1.10). After that, by studying the asymptotic behavior of system (1.8)–(1.10), we prove the
existence of absorbing and attracting sets (forwards in time) that do not depend on the noise. Then,
in order to have more detailed information about the random dynamics inside the attracting set, we go
further and investigate the long-time behavior of the state variables involved in the model. Thanks to
this fact, we provide conditions under which species go to extinction and also conditions to ensure the
persistence of species.

3.1. Existence and uniqueness of global positive solution

In this section we prove that system (1.8)-(1.10) has a unique global positive solution that remains
positive for every positive initial condition.

From now on X =
{
(s, x1, x2) ∈ R3 : s ≥ 0, x1 ≥ 0, x2 ≥ 0

}
denotes the positive cone in the three

dimensional space.

Theorem 3.1. For every initial condition u0 := (s0, x10, x20) ∈ X, random system (1.8)-(1.10) possesses
a unique global solution

u(·; 0, ω, u0) = (s(·; 0, ω, s0), x1(·; 0, ω, x10), x2(·; 0, ω, x20)) ∈ C1([0,+∞);X)

which remains in X for every t > 0.

Proof. Let us write our random system (1.8)-(1.10) as

du
dt

= L(θtω)u + F(u, θtω), (3.1)

where* u = (s, x1, x2)t,

L(θtω) =


−(D + Φ(z∗(θtω))) bν 0

0 −(ν + D + Φ(z∗(θtω)) − r1) r2

0 r1 −ν − r2


and F(u, ω) = (sin(D + Φ(z∗(θtω))) − (µ(s)/y)(x1 + x2), µ(s)x1, µ(s)x2)t .

On the one hand, from Proposition 2.2 (ii) one has that t 7→ z(t, ω) := z∗(θtω) is continuous. Apart
from that, it is easy to check that F(·, ω) ∈ C1(X) (recall that µ is given by (1.6)) whence we deduce
that F is locally Lipschitz with respect to the state variables (s, x1, x2). Hence, the right side of (3.1)
is continuous respect to the time and locally Lipschitz respect to u and, from classical arguments from
the theory of ODEs, it yields that the random system (1.8)–(1.10) possesses a unique local solution.

Let us now define the new state variable y = s + x1 + x2 as the sum of the substrate and both species
concentrations. By differentiation, one has that y satisfies the following random differential inequality

dy
dt
≤ Dr sin − my, (3.2)

*We note that t denotes the transposed of the vector.
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where m = min{Dl, ν} and we used (2.3) and the fact that b < 1.
Then, by solving (3.2), we obtain

y(t; 0, ω, y0) ≤ y0e−mt +
Dr sin

m
(
1 − e−mt) (3.3)

for all t > 0, any ω ∈ Ω and every initial condition y0 = s0 + x10 + x20 > 0.
Thus, y = s + x1 + x2 is bounded from above (and from below by zero, as we will prove next). As a

consequence, one can define the unique local solution of the random system (1.8)-(1.10) on the whole
interval t ∈ (0,+∞) and then it is in fact a global one.

It remains to prove that every state variable remains inX for any initial condition u0 = (s0, x10, x20) ∈
X. To this end, let us consider in the rest of the proof s̃ ≥ 0, x̃1 ≥ 0 and x̃2 ≥ 0.

Assume that we reach the plane x2 = 0 at some point (s̃, x̃1, 0). Since our initial condition is in the
positive cone X then the rest of the state variables remain positive. By computing the derivative of x2

at (s̃, x̃1, 0) we obtain
dx2

dt

∣∣∣∣∣
(s,x1,x2)=(s̃,x̃1,0)

≥ 0 (3.4)

whence we deduce that the solution will not cross the plane x2 = 0 and then x2 will always remain
non-negative.

By similar arguments one also has

dx1

dt

∣∣∣∣∣
(s,x1,x2)=(s̃,0,x̃2)

= r2x2 ≥ 0, (3.5)

when assuming that the solution reaches some point in the plane x1 = 0 and

ds
dt

∣∣∣∣∣
(s,x1,x2)=(0,x̃1,x̃2)

= (D + Φ(z∗(θtω)))sin + bνx̃1 ≥ 0 (3.6)

when reaching s = 0.
Summing up, s, x1 and x2 remain non-negative and then the unique global solution of the random

system (1.8)–(1.10) is in X for every time. �

3.2. Existence of absorbing and attracting sets

In this section, we study the long-time behavior of the state variables involved in system (1.8)–(1.10)
to prove the existence of absorbing and attracting sets (forwards in time).

Theorem 3.2. For any ε > 0, the random system (1.8)–(1.10) possesses an absorbing set (forwards in
time) given by

Bε :=
{

(s, x1, x2) ∈ X : s + x1 + x2 ≤
Dr sin

m
+ ε

}
, (3.7)

where m = min{Dl, ν}. As a consequence,

A :=
{

(s, x1, x2) ∈ X : s + x1 + x2 ≤
Dr sin

m

}
(3.8)
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is an attracting set for the solutions of the random system (1.8)–(1.10) forwards in time†. In addition,
both the absorbing and attracting sets are deterministic, i.e., they do not depend on the realization of
the noise.

Proof. Let us recall that y = s + x1 + x2 satisfies (3.3) for all t ≥ 0. Thus, for any ε > 0 and every
ω ∈ Ω, there exists some time T y

ε(ω) > 0 such that

s(t; 0, ω, s0) + x1(t; 0, ω, x10) + x2(t; 0, ω, x20) ≤
Dr sin

m
+ ε (3.9)

for any t ≥ T y
ε(ω) and everty initial condition y0 := s0 + x10 + x20 > 0.

Hence, it follows that

Bε :=
{

(s, x1, x2) ∈ X : s + x1 + x2 ≤
Dr sin

m
+ ε

}
is a forward absorbing set for the solutions of the random system (1.8)–(1.10) which, in addition, does
not depend on the realization of the noise and then

A :=
{

(s, x1, x2) ∈ X : s + x1 + x2 ≤
Dr sin

m

}
is a forward deterministic attracting set for the solutions of the random system (1.8)–(1.10). �

3.3. Random dynamics inside the attracting set

Once the existence of an attracting set is proved, our goal now is to obtain more detailed information
about its random dynamics. To this end, we introduce two new state variables

x = x1 + x2 and p =
x1

x1 + x2
, (3.10)

where x denotes the total concentration of species and p the proportion of the first species.
From now on, as in (3.10), we will write x and p, instead of x(t; 0, ω, x0) and p(t; 0, ω, p0), for the

sake of clarity.
By differentiation, we obtain the following random system satisfied by the substrate s and the new

variables x and p which will be the object of study in the next sections

ds
dt

= (D + Φ(z∗(θtω)))(sin − s) −
µ0s

s + ks +
1
ki

s2
x + bνpx, (3.11)

dx
dt

= −(ν + (D + Φ(z∗(θtω)))p)x +
µ̄0s

s + ks +
1
ki

s2
x, (3.12)

†which means
lim

t→+∞
sup
y0∈E

inf
b0∈A
|y(t; 0, ω, y0) − b0| = 0,

where E denotes a bounded set in X.
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dp
dt

= −(D + Φ(z∗(θtω)))p(1 − p) − r1 p + r2(1 − p). (3.13)

Our goal now is to investigate the long-time dynamics of the random system (3.11)-(3.13).
We note first that the equation describing the dynamics of the proportion (3.13) is uncoupled of the

rest of the system. Then, we will study this equation individually.

Theorem 3.3. For any ε > 0, the deterministic set

Bp
ε := [pl − ε, pr + ε] (3.14)

is an absorbing set for the solutions of the random equation (3.13), and then

Ap := [pl, pr] (3.15)

is a deterministic attracting set for the solutions of the random equation (3.13), where

pl :=
Dr + r1 + r2 −

√
(Dr + r1 + r2)2 − 4Dlr2

2Dl (3.16)

and

pr :=
Dl + r1 + r2 −

√
(Dl + r1 + r2)2 − 4Dlr2

2Dl . (3.17)

Proof. From the equation of the proportion (3.13) we have

dp
dt

= −(D + Φ(z∗(θtω)))p(1 − p) − r1 p + r2(1 − p)

≥ Dl p2 − (Dr + r1 + r2)p + r2, (3.18)

thanks to (2.3).
Define now the mapping H : p ∈ [0, 1] → H(p) ∈ R, where H(p) = Dl p2 − (Dr + r1 + r2)p + r2.

Then H defines a convex parabolic function where, since Dl > 0, one can use the Bolzano’s Theorem
and find a unique‡ pl ∈ (0, 1) such that

H(p)


> 0 for p ∈ [0, pl),
= 0 for p = pl,

< 0 for p ∈ (pl, 1].

In addition, the value of pl can be computed by solving H(s) = 0 and we obtain

pl =
Dr + r1 + r2 −

√
(Dr + r1 + r2)2 − 4Dlr2

2Dl .

Then, for all p̄ < pl, we have
dp
dt

∣∣∣∣∣
p= p̄

> 0. (3.19)

‡The uniqueness is easy to prove and it is left to the reader.
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Thus, from (3.19), for any ε > 0 and every ω ∈ Ω, there exists T p
ε (ω) > 0 such that

p(t; 0, ω, p0) ≥ pl − ε (3.20)

for every t > T p
ε (ω) and p0 ∈ (0, 1).

On the other hand, from (3.13), one also has

dp
dt

= −(D + Φ(z∗(θtω)))p(1 − p) − r1 p + r2(1 − p)

≤ −Dl p(1 − p) − r1 p + r2(1 − p) (3.21)

= Dl p2 − (Dl + r1 + r2)p + r2, (3.22)

thanks to (2.3).
Define in this second case the mapping M : p ∈ [0, 1]→ M(p) ∈ R, where M(p) = Dl p2− (Dl +r1 +

r2)p + r2. Then M defines a convex parabolic function where, since Dl > 0, one can use the Bolzano’s
Theorem and find, as in the previous case, a unique pr ∈ (0, 1) such that

H(p)


> 0 for p ∈ [0, pr),
= 0 for p = pr,

< 0 for p ∈ (pr, 1].

In addition, the value of pr can be computed by solving M(s) = 0 and we obtain

pr =
Dl + r1 + r2 −

√
(Dl + r1 + r2)2 − 4Dlr2

2Dl .

Then, for all p̄ > pr, we have
dp
dt

∣∣∣∣∣
p= p̄

< 0 (3.23)

Hence, from (3.23), for any ε > 0 and every ω ∈ Ω, there exists T̄ p
ε (ω) > 0 such that

p(t; 0, ω, p0) ≤ pr + ε (3.24)

for every t > T̄ p
ε (ω) and p0 ∈ (0, 1).

Thus,
Bp
ε = [pl − ε, pr + ε]

is a deterministic absorbing set for the solutions of the random equation (3.13), whence

Ap = [pl, pr]

is a deterministic attracting set for the solutions of the random equation (3.13). �

Once studied the equation of the proportion (3.13), we focus on investigating the system (3.11)–
(3.12).

From now on, we will denote Y := {(s, x) ∈ R2 : s ≥ 0, x ≥ 0}.
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Theorem 3.4. For any ε > 0, the random system (3.11)–(3.12) has a deterministic absorbing set
(forwards in time) given by

B(s,x)
ε :=

{
(s, x) ∈ Y : zl − ε ≤ µ̄0s + µ0x ≤ zr + ε

}
, (3.25)

where

zl :=
µ̄0sinDr

plDl and zr :=
µ̄0sinDl

Dr + ν −
µ̄0bν
µ0

pl
. (3.26)

Then
A(s,x) :=

{
(s, x) ∈ Y : zl ≤ µ̄0s + µ0x ≤ zr

}
(3.27)

is a deterministic attracting set (forwards in time) for the solutions of the random system (3.11)–(3.12).

Proof. To study the dynamics of system (3.11)–(3.12) we first define a new state variable z =

µ̄0s + µ0x involving s and x.
By differentiation, it yields that z satisfies the random ODE

dz
dt

= µ̄0(D + Φ(z∗(θtω)))sin − µ̄0(D + Φ(z∗(θtω)))s + µ̄0bνpx

−µ0νx − µ0(D + Φ(z∗(θtω)))px. (3.28)

Then, from (3.28), thanks to (3.20), one obtains

dz
dt
≤ µ̄0(D + Φ(z∗(θtω)))sin − (D + Φ(z∗(θtω)))plz, (3.29)

whence, by solving (3.29), one has

z(t; 0, ω, z0) ≤ z0e−Dl plt +
µ̄0sinDr

plDl

(
1 − e−Dl plt

)
(3.30)

for all t ≥ 0, any ω ∈ Ω and every initial condition z0 ∈ Y.
Similarly, from (3.28), it follows

dz
dt
≥ −

(
ν + D + Φ(z∗(θtω)) −

µ̄0bν
µ0

pl

)
z + µ̄0(D + Φ(z∗(θtω)))sin (3.31)

and then

z(t; 0, ω, z0) ≥ z0e
−

Dr+ν−
µ̄0bν
µ0

pl

t
+

µ̄0sinDl

Dr + ν −
µ̄0bν
µ0

pl

1 − e
−

Dr+ν−
µ̄0bν
µ0

pl

t (3.32)

for all t ≥ 0, any ω ∈ Ω and every initial condition z0 ∈ Y.
Hence, since the right side of (3.30) and (3.32) tend to zr and zl (defined as in (3.26)), respectively,

when t goes to infinity, for any ε > 0 and every ω ∈ Ω, there exists T x
ε (ω) > 0 such that

zl − ε ≤ µ̄0s(t; 0ω, s0) + µ0x(t; 0, ω, x0) ≤ zr + ε (3.33)
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for all t ≥ T x
ε (ω) and every initial condition (s0, x0) ∈ Y, which means that

B(s,x)
ε :=

{
(s, x) ∈ Y : zl − ε ≤ µ̄0s + µ0x ≤ zr + ε

}
(3.34)

is a deterministic absorbing set (forwards in time) for the solutions of the random system (3.11)–(3.12)
and then

A(s,x) :=
{
(s, x) ∈ Y : zl ≤ µ̄0s + µ0x ≤ zr

}
(3.35)

is a deterministic attracting set (forwards in time) for the solutions of system (3.11)–(3.12). �

The last theorem in this section concerns some bounds from above for the concentration of both
species x1 and x2 and conditions under which extinction cannot be avoided.

Theorem 3.5. The following statements hold

1. Assume
ν + D + r1 > µ(sm)

holds true, with sm =
√

kski = arg max µ(s). Then, for every ε > 0,

Bx1
ε := [0, xr

1 + ε]

is a deterministic absorbing set for the solutions of the equation of the first species, and then

Ax1 := [0, xr
1]

is a deterministic attracting set for the solutions of the equation of the first species, where

xr
1 :=

r2zr

µ0(ν + Dl − µ(sm) + r1)
. (3.36)

2. As long as
ν + r2 > µ(sm)

is fulfilled, then, for any ε > 0,
Bx2
ε := [0, xr

2 + ε]

is a deterministic absorbing set for the solutions of the equation of the second species, and then

Ax2 := [0, xr
2]

is a deterministic attracting set for the solutions of the equation of the second species, where

xr
2 :=

r1zr

µ0(ν − µ(sm) + r2)
. (3.37)

3. Provided that
ν + D > µ(sm), (3.38)

then, for any ω ∈ Ω and initial condition x0 = x10 + x20 > 0,

lim
t→+∞

x(t; 0, ω, x0) = 0 (3.39)

which means the extinction of both species.
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Proof. We start proving the first statement. To this end, from the equation describing the dynamics
of the first species (1.9), it yields

dx1

dt
≤ −(ν + D + Φ(z∗(θtω)) − µ(sm) + r1)x1 + r2

zr + ε

µ0
, (3.40)

where we used (2.3), (3.33) and the fact that µ(s) ≤ µ(sm) for every s ≥ 0.
By solving (3.40), we obtain

x1(t; 0, ω, x10) ≤ x10e−(ν+D−µ(sm)+r1)t−
∫ t

0 Φ(z∗(θrω))dr

+
r2(zr + ε)

µ0(ν + Dl − µ(sm) + r1)

(
1 − e−(ν+D−µ(sm)+r1)t−

∫ t
0 Φ(z∗(θrω))dr

)
(3.41)

for every t > 0, ω ∈ Ω and any initial value x10 > 0.
Then, since the limit when t goes to infinity of the right side of (3.41) is xr

1, defined as in (3.36), it
is easy to finish this part of the proof.

To prove the second statement, from the equation describing the dynamics of the second species
(1.10) we have

dx2

dt
≤ −(ν − µ(sm) + r2)x2 + r1

zr + ε

µ0
, (3.42)

where we used (3.33) and the fact that µ(s) ≤ µ(sm) for every s ≥ 0.
Similarly to the previous case, by solving (3.42), we obtain

x2(t; 0, ω, x20) ≤ x20e−(ν−µ(sm)+r2)t +
r1(zr + ε)

µ0(ν − µ(sm) + r2)

(
1 − e−(ν−µ(sm)+r2)t

)
(3.43)

for every t > 0, ω ∈ Ω and any initial condition x20 > 0.
Then, since the limit when t goes to infinity of the right side of (3.43) is xr

2, defined as in (3.37), it
is easy to finish this part of the proof.

Finally, to prove the third statement, from the equation describing the dynamics of the total concen-
tration of species (3.12) one has

dx
dt
≤ −νx − (D + Φ(z∗(θtω)))plx + µ(sm)x

= − (ν + D + Φ(z∗(θtω)) − µ(sm)) x, (3.44)

where we used the fact that µ(s) ≤ µ(sm) for every s > 0 and pl < 1.
Now, by solving (3.44) we obtain

x(t; 0, ω, x0) ≤ e
−(ν + D − µ(sm))t −

∫ t

0
Φ(z∗(θrω))dr

(3.45)

for every t > 0, ω ∈ Ω and any initial condition x0 = x10 + x20 > 0.
Hence, it is easy to check that

lim
t→+∞

x(t; 0, ω, x0) = 0

for any ω ∈ Ω and every initial condition x0 > 0, as long as (3.38) is satisfied. �
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3.4. Persistence of species

In this section we provide conditions on the parameters involved in system (1.8)–(1.10) to ensure
the persistence of species. To this end, we firstly prove that the total concentration of species persists
and then we use this fact and some properties proved about the dynamics of the proportion to prove
coexistence of each group of species, the planktonic biomass and the attached biomass.

Theorem 3.6. Assume
µ̄0

ν + Dr pr zl > zr + µ̄0ks +
(zr)2

kiµ̄0
, (3.46)

where every constant was already defined. Then, the attracting set (3.8) is reduced to

A :=
{

(s, x1, x2) ∈ X : s + x1 + x2 ≤
Dr sin

m
, s ≥ s̄, x ≥ x̄

}
, (3.47)

where

s̄ :=
−a1 −

√
a2

1 − 4a2a0

2a2
and x̄ :=

−b1 −

√
b2

1 − 4b2b0

2b2
, (3.48)

with

a2 := −Dr − 2
µ̄0

µ0
bνpl, a1 := Dlsin − Drks − zr +

zlbνpl

µ0
− 2

µ̄0

µ0
ksbνpl,

a0 := Dlsinks +
zlksbνpl

µ0
, b2 := −

µ2
0

kiµ̄0
,

b1 := −
µ̄0µ0

ν + Dr pr + µ0 +
2zrµ0

kiµ̄0
, b0 :=

µ̄0zl

ν + Dr pr − zr − µ̄0ks −
(zr)2

kiµ̄0
.

Proof. We start proving the lower bound for the concentration of the species. To this end, from
(3.11), we have

ds
dt

= (D + Φ(z∗(θtω)))(sin − s) −
µ0s

s + ks +
1
ki

s2
x + bνpx

≥ Dlsin − Dr s −
µ0s

s + ks +
1
ki

s2

1
µ0

(zr + ε − µ̄0s) + bνpl 1
µ0

(zl − ε − µ̄0s)

≥ Dlsin − Dr s −
s(zr + ε − µ̄0s)

s + ks
+

1
µ0

bνpl(zl − ε − µ̄0s) (3.49)

where we used (2.3) and (3.33).
Let us consider ε < µ̄0 s̄, where s̄ > 0 such that

Dlsin − Dr s̄ −
s̄zr

s̄ + ks
+

1
µ0

bνpl(zl − 2µ̄0 s̄) ≥ 0. (3.50)
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Hence, from (3.49) one has

ds
dt
≥ Dlsin − Dr s −

s(zr + µ̄0 s̄ − µ̄0s)
s + ks

+
1
µ0

bνpl(zl − µ̄0 s̄ − µ̄0s) (3.51)

and, from (3.51), we obtain
ds
dt

∣∣∣∣∣
s=s̄
≥ 0 (3.52)

Then, our goal now is to prove the existence of some s̄ > 0 such that (3.50) holds. To do this, by
doing some calculations, it is easy to verify that (3.50) is equivalent to

a2 s̄2 + a1 s̄ + a0 ≥ 0, (3.53)

where a2, a1 and a0 are defined as in the statement of Theorem 3.6.
Define now the map F : s ∈ [0,+∞) 7→ F(s) ∈ R where F(s) = a2s2 + a1s + a0. Since a2 < 0,

then F defines a concave parabolic function. In addition, a0 > 0 then it follows that there exists s∗ > 0
such that F(s) ≥ 0 for every s ∈ [0, s∗] and F(s) < 0 when s ∈ (s∗,+∞). Hence, (3.50) fulfills by
considering s̄ = s∗ > 0, where the value s∗ can be easily calculated by solving F(s∗) = 0.

As a consequence, we find that

s̄ =
−a1 −

√
a2

1 − 4a2a0

2a2
, (3.54)

where a0, a1 and a2 are defined as in the statement of Theorem 3.6.
The second part of the proof consists of proving the existence of a lower bound for the total con-

centration of species. Thanks to this fact, we will be able to ensure that, at least, some of both species
will persist. To this end, from (3.12) one has

dx
dt

= −(ν + (D + Φ(z∗(θtω)))p)x +
µ̄0s

s + ks +
1
ki

s2
x

≥

−ν − Dr pr +
µ̄0(zl − ε − µ0x)

zr + ε − µ0x + µ̄0ks +
(zr)2 + ε2 + µ2

0x2 − 2zrµ0x + 2zrε

kiµ̄0

 x, (3.55)

where we used (2.3) and (3.46).
Let us consider ε < δx̄, where x̄ > 0 such that

µ̄0(zl − δx̄ − µ0 x̄)

zr + δx̄ − µ0 x̄ + µ̄0ks +
(zr)2 + δ2 x̄2 + µ2

0 x̄2 − 2zrµ0 x̄ + 2zrδx̄
kiµ̄0

≥ ν + Dr pr. (3.56)

Then, the right hand side of (3.55) can be bounded from below by−ν − Dr pr +
µ̄0(zl − δx̄ − µ0x)

zr + δx̄ − µ0x + µ̄0ks +
(zr)2 + δ2 x̄2 + µ2

0x2 − 2zrµ0x + 2zrδx̄
kiµ̄0

 x.
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Then, we have
dx
dt

∣∣∣∣∣
x=x̄
≥ 0,

whence x̄ > 0 provides a lower bound for the total concentration of species.
Hence, our goal now is to prove that there exists x̄ > 0 such that (3.56) is fulfilled. To this end, by

making some calculations, from (3.56) one obtains

b2(δ)x̄2 + b1(δ)x̄ + b0 ≥ 0, (3.57)

where

b2(δ) = −

(
1

kiµ̄0
(δ2 + µ2

0)
)
, (3.58)

b1(δ) = −(µ0 + δ)
µ̄0

ν + Dr pr − δ + µ0 +
2zrµ0

kiµ̄0
− 2δzr, (3.59)

b0 =
µ̄0

ν + Dr pr zl − zr − µ̄0ks −
(zr)2

kiµ̄0
. (3.60)

Define now the map G : x ∈ [0,+∞) 7→ G(x) ∈ R where G(x) = b2(δ)x2 + b1(δ)x + b0. Since
b2(δ) < 0 for every δ > 0, then G defines a concave parabolic function for every δ > 0. In addition,
b0 > 0 as long as (3.46) is satisfied. Then, for every δ > 0, there exists x∗δ > 0 such that G(x) ≥ 0 for
every x ∈ [0, x∗δ] and G(x) < 0 when (x∗δ,+∞). Hence, the value x∗δ can be easily calculated by solving
G(x) = 0 whence

x∗δ =
−b1(δ) −

√
b2

1(δ) − 4b2(δ)b0

2b2(δ)
, (3.61)

where b2(δ), b1(δ) and b0 were defined above.
Hence, (3.50) fulfills when considering

x̄ = lim
δ→0

x∗δ > 0.

�

Remark 5. Recall that the chemostat model (1.8)-(1.10) studied in this work does not only incorporate
wall growth but also nutrient recycling (coefficient b). Then, one could wonder how this feature is
favorable or not to species persistence, i.e., the difference with case b = 0. To answer this question,
since zr (defined as in (3.26)) is the only parameter in (3.46) (condition to ensure persistence of species)
that involves b, and the value of zr decreases if b = 0, we conclude that b = 0 would help condition
(3.46) to be true, i.e., b = 0 would favor the persistence of the species.

Finally, we prove that not only the total concentration of species remains positive as long as (3.46)
holds true but also both the planktonic biomass and the attached biomass persist. To this end, we use
Theorem 3.6 and the dynamics of the proportion.
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Theorem 3.7. Assume that (3.46) holds true. Then, for every initial condition x10 > 0 and x20 > 0,
ω ∈ Ω and t > 0 large enough, the following lower bounds hold true

x1(t; 0, ω, x10) ≥ x̄1 and x2(t; 0, ω, x20) ≥ x̄2, (3.62)

where
x̄1 := pl x̄ and x̄2 := (1 − pr)x̄, (3.63)

i.e., both the planktonic biomass and the attached biomass persist.

Proof. From the definition of the proportion (3.10), we have

x1(t; 0, ω, x10) = p(t; 0, ω, p0))x(t; 0, ω, x0), (3.64)

for any initial condition x10 > 0, p0 ∈ (0, 1) and x0 = x10 + x20 > 0.
Then, from Theorem 3.3 and assuming (3.46), one can apply Theorem 3.6 and obtain

x1(t; 0, ω, x10) ≥ pl x̄ > 0 (3.65)

for every t large enough, any ω ∈ Ω and every initial condition x10 > 0, where pl and x̄ are defined in
(3.16) and (3.48).

Similarly, from the definition of the proportion (3.10) one has

x2(t; 0, ω, x20) = (1 − p(t; 0, ω, p0)x(t; 0, ω, x0) (3.66)

for every t large enough, any ω ∈ Ω and every initial condition x20 > 0, p0 ∈ (0, 1) and x0 = x10 + x20 >

0.
Then, from Theorem 3.3 and assuming (3.46), we can use Theorem 3.6 and one has

x2(t; 0, ω, x20) ≥ (1 − pr)x̄ > 0,

for every t, any ω ∈ Ω and every initial condition x20 > 0, where pr and x̄ are defined in (3.22) and
(3.48). �

4. Numerical simulations

In this section we depict several numerical simulations to support the theoretical study presented in
the previous section and help every reader to understand better the dynamics of the random chemostat
model with wall growth (1.8)–(1.10).

Every figure in this section shows three different panels: the biggest one displays the three dimen-
sional phase plane of system (1.8)–(1.10); the one placed on the right at the top shows the dynamics of
the species in the liquid media versus the substrate; finally, the panel on the right at the bottom displays
the dynamics of the species sticked on the wall of the culture vessel versus the substrate. In such a way,
it will be easy to observe in the little panels when the species go to extinction or persist. Apart from
that, in every panel a label next to an arrow is depicted to point the initial condition.

In every figure we plot five realizations of the solution of the random chemostat (1.8)–(1.10) with
s0 = 2, x10 = 5 and x20 = 2 as initial condition. In addition, we set β = 1 and γ = 1 to simulate the
realizations of the OU process. The rest of parameters will be specified further in every case.
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In Figure 2 we consider sin = 4, ks = 1.7, µ0 = 8, ki = 7, µ̄0 = 7.5, b = 0.1, ν = 0.4, r1 = 0.4,
r2 = 0.8. Concerning the removal rate, we set D = 0.7, Dr = 0.8, Dl = 0.7 and d = 0.1. One can check
that condition (3.46) is fulfilled (128.3377 > 114.5576) and then persistence of both groups of species
is ensured, as observed in the figure.
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Figure 2. Persistence in random chemostat (1.8)-(1.10) with sin = 4, ks = 1.7, µ0 = 8, ki = 7,
µ̄0 = 7.5, b = 0.1, ν = 0.4, r1 = 0.4, r2 = 0.8, D = 0.7, Dr = 0.8, Dl = 0.6, d = 0.1, β = 1,
γ = 1 and initial condition (s0, x10, x20) = (2, 5, 2).

Figure 3 displays a zoom of the different panels of Figure 2 to let the reader observe the long-time
random dynamics of system (1.8)–(1.10) more clearly, in fact, we can notice how the solutions of the
system reach some place in which the attracting setA given by (3.47) is.
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Figure 3. Persistence in random chemostat (1.8)-(1.10) with sin = 4, ks = 1.7, µ0 = 8, ki = 7,
µ̄0 = 7.5, b = 0.1, ν = 0.4, r1 = 0.4, r2 = 0.8, D = 0.7, Dr = 0.8, Dl = 0.6, d = 0.1, β = 1,
γ = 1 and initial condition (s0, x10, x20) = (2, 5, 2).
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In this case we can observe how the substrate concentration s decreases at the beginning while the
concentration of both species x1 and x2 increases until both species reach their maximum values. Then,
both species start decreasing and, as a consequence, the concentration of substrate increases slightly
up to reaching the attracting set .

In Figure 4 we change a little bit the value of the input flow D to observe its influence on the
dynamics of the system. Then we set again sin = 4, ks = 1.7, µ0 = 8, ki = 7, µ̄0 = 7.5, b = 0.1, ν = 0.4,
r1 = 0.4, r2 = 0.8. Concerning the removal rate, in this case we increase the input flow to D = 0.7, and
set Dr = 1.9, Dl = 1.5 and d = 0.2. It is not difficult to check that condition (3.46) in Theorem 3.5 is
verified (122.7993 > 95.2622), and then persistence of species is ensured, as observed in the figure.
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Figure 4. Persistence in random chemostat (1.8)-(1.10) with sin = 4, ks = 1.7, µ0 = 8, ki = 7,
µ̄0 = 7.5, b = 0.1, ν = 0.4, r1 = 0.4, r2 = 0.8, D = 1.7, Dr = 1.9, Dl = 1.5, d = 0.2, β = 1,
γ = 1 and initial condition (s0, x10, x20) = (2, 5, 2).

In order to have a better panoramic of the dynamics of the system near the attracting set, Figure 7
shows a zoom of every panel of Figure 4.
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Figure 5. Persistence in random chemostat (1.8)-(1.10) with sin = 4, ks = 1.7, µ0 = 8, ki = 7,
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γ = 1 and initial condition (s0, x10, x20) = (2, 5, 2).
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The main difference between the behavior of our system in this last case, respect to the first one, is
due to the change in the removal rate D, which is one of the most important parameters when modeling
chemostats, due to its influence on the dynamics of the device. To be more precise, recall that species
sticked on to the wall of the culture vessel cannot be removed by the flow passing through the pumps,
differently to the species in the medium that can be easily removed from their tank (specially when
increasing the removal rate as in this case). This is the reason why we observe how fast the first species
decreases whereas the second species behaves in a total different way.

Now, in Figure 6 we present the case of extinction of both species studied in Theorem 3.5. To this
end, we do not change the value of the input flow respect to the value in the last figure but we consider
sin = 4, ks = 0.4, µ0 = 4, ki = 0.5, µ̄0 = 1.4, b = 0.1, ν = 1.4, r1 = 0.4, r2 = 0.8. It is easy to notice that
we decreased considerably the the Monod constant ks, the inhibition ki and the consumption of both
species whereas we increased the death rate ν. Then it is not a surprise that condition (3.38) in Theorem
(3.5) is fulfilled (3.1 > 2.7548) and condition (3.46) in Theorem 3.5 is not true (1.6261 ≯ 41.9151),
whence we have extinction of both species, as one can observe.
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Figure 6. Extinction in random chemostat (1.8)-(1.10) with sin = 4, ks = 0.4, µ0 = 4,
ki = 0.5, µ̄0 = 1.4, b = 0.1, ν = 1.4, r1 = 0.4, r2 = 0.8, D = 1.7, Dr = 1.9, Dl = 1.5, d = 0.2,
β = 1, γ = 1 and initial condition (s0, x10, x20) = (2, 5, 2).

Finally, we show that bi-stability also happens when considering wall growth, as we do in this work.
To this end, we set sin = 10, ks = 1.8, µ0 = 3.4, ki = 7.7, µ̄0 = 2.3, b = 0.1, ν = 0.4, r1 = 0.4, r2 = 0.8.
Concerning the removal rate, in this case we take D = 1.7, Dr = 1.3, Dl = 2.1 and d = 0.4. It is
easy to check that µ(sin) ≤ D ≤ µ(sm) (1.3717 < 1.7 < 1.7285), the same condition under which
bi-stability is observed in the deterministic framework (see Proposition 2.1 (3)). The initial condition
will be specified later.
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In Figure 7 we can notice how both the planktonic biomass and the attached biomass go to extinction
when considering their initial concentrations x10 and x10 closed to the wash-out.
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Figure 7. Extinction in random chemostat (1.8)-(1.10) with sin = 10, ks = 1.8, µ0 = 3.4,
ki = 7.7, µ̄0 = 2.3, b = 0.1, ν = 0.4, r1 = 0.4, r2 = 0.8, D = 1.7, Dr = 1.3, Dl = 2.1, d = 0.4,
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On the other hand, in Figure 8 we consider the initial condition far enough from the wash-out. Thus,
we observe persistence of both the planktonic biomass and the attached biomass.
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Eventually, Figure 9 presents a zoom of the previous case in order to help the reader to see how the
dynamics inside the attracting set of our model is.
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Figure 9. Persistence in random chemostat (1.8)-(1.10) with sin = 10, ks = 1.8, µ0 = 3.4,
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5. Conclusions

In this final section of our paper we would like to summarize the results obtained in Section 3 and
observed in the numerical simulations displayed in Section 4.

We have considered the chemostat model (1.8)–(1.10) with wall growth and Haldane consumption
kinetics, under bounded perturbations on the removal rate, motivated by observations in real devices in
industrial setup and biotechnology. To this end, we make use of a function and the Ornstein-Uhlenbeck
process to ensure the random fluctuations be bounded in some interval (that is typically observed in
practice).

Thanks to standard techniques from the classical theory of ordinary differential equations and, of
course, due to the properties satisfied by the bounded noise Φ(z∗(θtω)), we proved in Theorem 3.1
that the random chemostat (1.8)–(1.10) possesses a unique global solution which, in addition, remains
positive as long as we consider positive initial conditions.

Then, we proved in Theorem 3.2 the existence of an absorbing set for the solutions of system (1.8)–
(1.10). This allowed us to ensure the existence of an attracting set (forwards in time) for the solutions
of system (1.8)–(1.10). In addition, we proved that both absorbing and attracting set enjoys a very nice
property: They are deterministic, i.e., they do not depend on the realization of the noise.

After that, we went further and we investigated the internal structure of the deterministic attracting
set obtained in Theorem 3.2 in order to have more detailed information about the long-time dynamics
of our system. To this end, we proved two theorems that can be interesting for both mathematicians
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and biologists: On the one hand, Theorem 3.5 provides conditions under which extinction of both
species cannot be avoided as well as some conditions leading in upper bounds for both species; on
the other hand, Theorem 3.6 and 3.7 states a condition under which not only the persistence of the
total concentration of species but also the persistence of both the planktonic biomass and the attached
biomass is ensured. This last point is undoubtedly the most meaningful since it is the main goal pursued
by practitioners.

We would also like to highlight again the importance of considering the non-monotonic growth rate
(1.6), since it allows us to study mathematical models that really fit better the devices displayed in real
life, as underlined in the introduction. Concerning the non-monotonic growth of species, it is worth to
mention some aspects observed in this work compared to the classical deterministic model (1.1)–(1.2)
with Haldane consumption function.

More precisely, the dynamics of the deterministic chemostat (1.1)–(1.2) with non-monotonic con-
sumption function may exhibit a bi-stability for certain values of the removal rate D (see [21]), as
explained in Section 2.1. In such a case, the concentration of the biomass converges asymptotically
either to the wash-out equilibrium (which is not desirable since it means the extinction of the species)
or to a positive steady state. This type of instability is observed in practice and entails an issue in
industrial applications since it requires a good monitoring of the system to prevent it from going to the
wash-out equilibrium (see [44–47]). Then, practitioners normally decide on avoiding this behavior by
sizing the process such that the system has an unique globally stable equilibrium (see [48, 49]) which
mathematically means to have the following condition

D < min{µ(sin), µ(sm)}. (5.1)

In addition, we supported every theoretical result with several numerical simulations depicting the
random dynamics of the system when considering different values of the parameters involved in the
model. Moreover, this also allowed us to illustrate the bi-stability for some values of the parameters
involved in the model and the huge importance that the removal rate D has on the dynamics of the
chemostat giving another justification of our interest in introducing the random perturbations on it.

Finally, we would like to highlight that the Ornstein-Uhlenbeck process has proved again to be a
very powerful tool when modeling real bounded fluctuations, not only when studying chemostats but
also when dealing with any model involving bounded perturbations, as the ones in real life.
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