Mostrar el registro sencillo del ítem

Artículo

dc.creatorSánchez Valencia, Juan Ramónes
dc.creatorDienel, Thomases
dc.creatorGröning, Oliveres
dc.creatorShorubalko, Ivanes
dc.creatorMueller, Andreases
dc.creatorJansen, Martines
dc.creatorAmsharov, Konstantines
dc.creatorRuffieux, Pascales
dc.creatorFasel, Romanes
dc.date.accessioned2018-12-13T18:27:02Z
dc.date.available2018-12-13T18:27:02Z
dc.date.issued2014
dc.identifier.citationSánchez Valencia, J.R., Dienel, T., Gröning, O., Shorubalko, I., Mueller, A., Jansen, M.,...,Fasel, R. (2014). Controlled synthesis of single-chirality carbon nanotubes. Nature, 512, 61-64.
dc.identifier.issn0028-0836es
dc.identifier.issn1476-4687es
dc.identifier.urihttps://hdl.handle.net/11441/80978
dc.description.abstractOver the past two decades, single-walled carbon nanotubes (SWCNTs) have received much attention because their extraordinary properties are promising for numerous applications. Many of these properties depend sensitively on SWCNT structure, which is characterized by the chiral index (n,m) that denotes the length and orientation of the circumferential vector in the hexagonal carbon lattice. Electronic properties are particularly strongly affected, with subtle structural changes switching tubes from metallic to semiconducting with various bandgaps. Monodisperse 'single-chirality'(that is, with a single (n,m) index) SWCNTs are thus needed to fully exploit their technological potential. Controlled synthesis through catalyst engineering, end-cap engineering or cloning strategies, and also tube sorting based on chromatography, density-gradient centrifugation, electrophoresis and other techniques, have delivered SWCNT samples with narrow distributions of tube diameter and a large fraction of a predetermined tube type. But an effective pathway to truly monodisperse SWCNTs remains elusive. The use of template molecules to unambiguously dictate the diameter and chirality of the resulting nanotube holds great promise in this regard, but has hitherto had only limited practical success. Here we show that this bottom-up strategy can produce targeted nanotubes: we convert molecular precursors into ultrashort singly capped (6,6) 'armchair'nanotube seeds using surface-catalysed cyclodehydrogenation on a platinum (111) surface, and then elongate these during a subsequent growth phase to produce single-chirality and essentially defect-free SWCNTs with lengths up to a few hundred nanometres. We expect that our on-surface synthesis approach will provide a route to nanotube-based materials with highly optimized properties for applications such as light detectors, photovoltaics, field-effect transistors and sensorses
dc.formatapplication/pdfes
dc.language.isoenges
dc.publisherSpringer Nature Publishing AGes
dc.relation.ispartofNature, 512, 61-64.
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.titleControlled synthesis of single-chirality carbon nanotubeses
dc.typeinfo:eu-repo/semantics/articlees
dcterms.identifierhttps://ror.org/03yxnpp24
dc.type.versioninfo:eu-repo/semantics/submittedVersiones
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.relation.publisherversionhttp://dx.doi.org/10.1038/nature13607es
dc.identifier.doi10.1038/nature13607es
idus.format.extent25 p.es
dc.journaltitleNaturees
dc.publication.volumen512es
dc.publication.initialPage61es
dc.publication.endPage64es

FicherosTamañoFormatoVerDescripción
Controlled synthesis of single ...1.591MbIcon   [PDF] Ver/Abrir  

Este registro aparece en las siguientes colecciones

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como: Attribution-NonCommercial-NoDerivatives 4.0 Internacional