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Abstract. Associated with a k-tuple (n1, . . . , nk) ∈ S(2n + 1) with n ≥ 1,

we define a contact δ-invariant, δc(n1, . . . , nk), on an almost contact metric

(2n + 1)-manifold M . For an arbitrary isometric immersion of M into a Rie-

mannian manifold, we establish an optimal inequality involving δc(n1, . . . , nk)

and the squared mean curvature of the immersion. Furthermore, we inves-

tigate isometric immersions of contact metric and K-contact manifolds into

Riemannian space forms which verify the equality case of the inequality for

some k-tuple.

1. Introduction.

According to the celebrated embedding theorem of J. F. Nash [21], every Rie-
mannian manifold can be isometrically embedded in Euclidean spaces with suffi-
ciently high codimension. The Nash theorem was established in the hope that if
Riemannian manifolds could always be regarded as Riemannian submanifolds, this
would then yield the opportunity to use extrinsic help. As observed by M. Gromov
[18] in 1985, this hope had not been materialized however. The main reason for
this is lack of controls of the extrinsic properties of the submanifold by the known
intrinsic invariants.

In order to overcome such difficulties as well as to provide answers to an open
question on minimal immersions, the first author introduced in the early 1990’s
new types of Riemannian invariants δ(n1, . . . , nk), known as the δ-invariants (also
known as Chen invariants in the literature). At the same time he was able to
establish general optimal inequalities involving the new intrinsic invariants and the
main extrinsic invariants, the squared mean curvature, for arbitrary Riemannian
submanifolds. The δ-invariants are very different in nature from the “classical”
Ricci and scalar curvatures (see [6, 7, 8]).

After δ-invariants were invented and the corresponding inequalities were estab-
lished in [6, 7], δ-invariants were investigated by many geometers in the last two
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decades. Such invariants have been applied to several areas, including spectral ge-
ometry, affine geometry and general relativity (see for instance [2, 10, 11, 17, 19, 23];
in particular, see [8, 10] for a recent survey on δ-invariants and their applications).

For an almost contact metric manifold M and an integer q ≥ 2, the first author
and Mihai defined in [12] a contact invariant δc(q). They also established an optimal
inequality for isometric immersions of M into real space forms involving δ2(q).
Moreover, they investigated K-contact submanifolds in Riemannian space forms
which satisfy the equality case of the inequality.

In this paper, we extend δc(q) to contact invariants δc(n1, . . . , nk) on almost
contract metric manifolds. For an isometric immersion of an almost contract metric
(2n + 1)-manifold M into any Riemannian manifold, we establish in section 4 an
optimal inequality relating δc(n1, . . . , nk) to the squared mean curvature. In section
5, we prove a minimality result for contact metric manifolds in Riemannian space
forms. In section 6, we show that K-contact manifolds in Riemannian space forms
satisfying the equality case of the inequality are Sasakian. In the last section, we
prove that every K-contact hypersurface of a Riemannian space form satisfying
the equality case of the inequality for a k-tuple (n1, . . . , nk) with

∑k
j=1 nj ≤ 2n is

totally geodesic.

2. Preliminaries.

We recall some general definitions and basic formulas which will be used later.
For general background on almost contact metric manifolds and submanifolds, we
recommend references [1] and [4] respectively.

2.1. Almost contact metric manifolds. An odd-dimensional Riemannian man-
ifold (M, g) is called an almost contact metric manifold if there exist on M a (1, 1)-
tensor field φ, a vector field ξ and a 1-form η such that

φ2X = −X + η(X)ξ, η(ξ) = 1, (2.1)

g(φX, φY ) = g(X, Y )− η(X)η(Y ) (2.2)

for vector fields X,Y on M . On an almost contact metric manifold, we also have
φξ = 0 and η ◦ φ = 0. The vector field ξ is called the structure vector field.

By a contact manifold we mean a (2n + 1)-manifold M together with a global
1-form η satisfying η ∧ (dη)n 6= 0 on M . If η of an almost contact metric manifold
(M, φ, ξ, η, g) is a contact form and if η satisfies dη(X,Y ) = g(X, φY ) for all vectors
X, Y tangent to M , then M is called a contact metric manifold. A contact metric
manifold is called K-contact if its characteristic vector field ξ is a Killing vector
field. It is well-known that a contact metric manifold is a K-contact manifold if
and only if

∇Xξ = −φX (2.3)
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holds for all vector fields X on M . In fact, an almost contact metric manifold
satisfying condition (2.3) is also a K-contact manifold. Condition (2.3) is equivalent
to

K(X, ξ) = 1 (2.4)

for every unit tangent vector X orthogonal to ξ.
An almost contact metric structure of M is called normal if the Nijenhuis torsion

[φ, φ] of φ equals to −2dη⊗ξ. A normal contact metric manifold is called a Sasakian
manifold. It can be proved that an almost contact metric manifold is Sasakian if
and only if the Riemann curvature tensor R satisfies

R(X,Y )ξ = η(Y )X − η(X)Y (2.5)

for any vector fields X,Y on M . A Sasakian manifold is also K-contact but the
converse is not true in general if dim M ≥ 5.

On a contact metric (2n+1)-manifold M , η = 0 defines a 2n-dimensional dis-
tribution in TM , which is called the contact distribution. A submanifold N of M

is called an integral submanifold if η(X) = 0 for every tangent vector X ∈ TN .
On a contact manifold of dimension 2n + 1, there exist integral submanifolds of
the contact distribution of dimension less than or equal to n, but of no higher
dimension.

2.2. Basic formulas, equations and definitions. Let (M,φ, ξ, η, g) be a (2n +
1)-dimensional almost contact metric manifold with n ≥ 1 isometrically immersed
in a Riemannian m-manifold (M̃m, g̃). Let 〈 , 〉 denote the inner product of M̃m

as well as of M . Denote by ∇ and ∇̃ the Levi-Civita connections on M and
M̃m respectively. Let h,D and A be the second fundamental form, the normal
connection, and shape operator of M , respectively.

The Gauss and Weingarten formulas are given by

∇̃XY = ∇XY + h(X,Y ), (2.6)

∇̃XV = −AV X + DXV (2.7)

for vector fields X, Y tangent to M and V normal to M .
Denote by R and R̃ the Riemann curvature tensors of M and M̃m, respectively.

Then the Gauss and Codazzi equations are given by

〈R(X,Y )Z, W 〉 = 〈 R̃(X, Y )Z,W 〉+ 〈h(X, W ), h(Y, Z)〉 (2.8)

− 〈h(X, Z), h(Y, W )〉 ,
(R̃(X,Y )Z)⊥ = (∇̄Xh)(Y,Z)− (∇̄Y h)(X, Z), (2.9)

where X, Y, Z, W are tangent vectors of M , (R̃(X,Y )Z)⊥ is the normal component
of R̃(X,Y )Z, and ∇̄h is defined by

(∇̄Xh)(Y, Z) = DXh(Y, Z)− h(∇XY, Z)− h(Y,∇XZ). (2.10)
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When the ambient space M̃m is a Riemannian space form of constant curvature c,
equations (2.8) and (2.9) of Gauss and Codazzi reduce to

〈R(X, Y )Z,W 〉 = c{〈X,W 〉 〈Y,Z〉 − 〈X, Z〉 〈Y, W 〉} (2.11)

+ 〈h(X, W ), h(Y,Z)〉 − 〈h(X, Z), h(Y, W )〉 ,
(∇̄Xh)(Y, Z) = (∇̄Y h)(X,Z), (2.12)

The mean curvature vector of M in M̃m is defined by H = (trace h)/ dim M . The
squared mean curvature H2 is defined as H2 = 〈H, H〉.

2.3. Twisted products. The notion of twisted products was introduced in [5,
page 66] as follows:

Let B and F be Riemannian manifolds with Riemannian metrics gB and gF ,
respectively, and f a positive differentiable function on B×F . Consider the product
manifold B × F with its projection πB : B × F → B and πF : B × F → F . The
twisted product B ×f F is the manifold B × F equipped with the Riemannian
structure such that

||X||2 = ||πB∗(X)||2 + f2||πF ∗(X)||2

for any vector X tangent to B ×f F . Thus, we have g = gB + f2gF .
The function f above is called the twisting function of the twisted product.

When f depends only on B, the twisted product is a warped product and f is
called the warping function.

For vector fields V,X tangent to B and F respectively, we have

∇XV = ∇V X = (Xf)V, (2.13)

where ∇ is the Levi-Civita connection of the twisted product B ×f F .

3. Contact δ-invariants.

Suppose that (M, φ, ξ, η, g) is an almost contact metric (2n + 1)-manifold with
n ≥ 1. If {e1, . . . , er} is an orthonormal basis of a linear r-space L ⊆ TpM at
p ∈ M , we define the scalar curvature of L by

τ(L) =
∑

1≤α<β≤r

K(eα, eβ).

The scalar curvature τ(p) at a point p ∈ M is τ(p) = τ(TpM).
For an integer k ≥ 1, let S(2n+1, k) be the set of k-tuples (n1, . . . , nk) of integers

satisfying
2 ≤ n1, · · · , nk ≤ 2n and 2 ≤ n1 + · · ·+ nk ≤ 2n + 1.

We denote by S(2n + 1) the union: ∪k≥1S(2n + 1, k).
For each k-tuple (n1, . . . , nk) ∈ S(2n + 1), the δ-invariant δ(n1, . . . , nk) was

introduced in [7]. Now, we define the contact version of the δ-invariant in the same
spirit as in [7, 12].
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Definition 3.1. Let M be an almost contact metric (2n+1)-manifold and (n1, . . . , nk) ∈
S(2n + 1). The contact δ-invariant δc(n1, . . . , nk) is defined by

δc(n1, . . . , nk)(p) := τ(p)− inf
{
τ(L1) + · · ·+ τ(Lk)

}
,

where L1, L2, . . . , Lk run over all mutually orthogonal subspaces of TpM so that L1

contains the characteristic vector ξ and dim Lj = nj , j = 1, . . . , k.

Definition 3.2. Let M be an almost contact metric manifold and let L1, . . . , Lk

be mutually orthogonal subspaces of TpM with dim Lj ≥ 2, j = 1, . . . , k. A plane
section π ⊂ TpM is said to be orthogonal to L1, . . . , Lk if there exists an orthonormal
basis {ē1, ē2} such that π = Span{ē1, ē2} and one of the following three cases occurs:

(1) ē1 ∈ Li and ē2 ∈ Lj with 1 ≤ i 6= j ≤ k;

(2) ē1 ∈ Li for some i ∈ {1, . . . , k} and ē2 ⊥ L1, . . . , Lk;

(3) ē1, ē2 ⊥ L1, . . . , Lk.

We call an orthonormal frame {e1, . . . , e2n+1} an orthonormal ξ-frame if e1 is
parallel to ξ.

We need the following algebraic lemma from [6] for later use.

Lemma 3.1. Let a1, . . . , ap, ζ be p + 1 real numbers such that
(

p∑

i=1

ai

)2

= (p− 1)

(
ζ +

p∑

i=1

a2
i

)
.

Then 2a1a2 ≥ ζ, with equality holding if and only if a1 + a2 = a3 = . . . = ap.

4. An optimal inequality.

For each k-tuple (n1, . . . , nk) ∈ S(2n + 1), let c(n1, . . . , nk) and b(n1, . . . , nk) be
the positive numbers given by

c(n1, . . . , nk) =
(2n + 1)2(2n + k −∑k

j=1 nj)

2(2n + k + 1−∑k
j=1 nj)

,

b(n1, . . . , nk) = n(2n + 1)− 1
2

k∑

j=1

nj(nj − 1).

Put

∆1 = {1, . . . , n1}, . . . , ∆k = {n1 + · · ·+ nk−1 + 1, . . . , n1 + · · ·+ nk},
∆ = ∆1 ∪ · · · ∪∆k, ∆2 = (∆1 ×∆1) ∪ · · · ∪ (∆k ×∆k).

Now, we modify the proof of [9, Theorem 3.1] to obtain the following.

Theorem 4.1. Let M be a (2n + 1)-dimensional almost contact metric manifold
isometrically immersed in a Riemannian m-manifold M̃m. Then, for each point
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p ∈ M and each k-tuple (n1, . . . , nk) ∈ S(2n + 1), we have:

δc(n1, . . . , nk)(p) ≤ c(n1, . . . , nk)H2(p) + b(n1, . . . , nk)max K̃(p), (4.1)

where max K̃(p) is the maximum of the sectional curvature function of M̃m re-
stricted to 2-plane sections of the tangent space TpM .

Moreover, the equality case of inequality (4.1) holds at p if and only the following
two conditions hold:

(a) There exists an orthonormal ξ-basis {e1, . . . , e2n+1} of TpM and an orthonor-
mal basis {e2n+2, . . . , em} of the normal space T⊥p M such that the shape operator
with respect to {e1, . . . , em} satisfies

Aer
=




Ar
1 . . . 0
...

. . .
... 0

0 . . . Ar
k

0 µrI




, r = 2n + 2, . . . ,m, (4.2)

where I is an identity matrix and each Ar
j is a symmetric nj × nj submatrix satis-

fying

trace (Ar
1) = · · · = trace (Ar

k) = µr. (4.3)

(b) There exist mutually orthogonal subspaces L1, . . . , Lk of TpM with ξ ∈ L1

and δc(n1, . . . , nk)(p) = τ(p) −∑k
j=1 τ(Lj) such that any plane section π ⊂ TpM

orthogonal to L1, . . . , Lk satisfies K̃(π) = max K̃(p).

Proof. Let M be an almost contact metric (2n+1)-manifold isometrically immersed
in M̃m. Then, at a point p ∈ M , the equation of Gauss gives

2τ(p) = (2n + 1)2H2(p)− ||h||2(p) + 2τ̃(TpM), (4.4)

where ||h||2 is the squared norm of h and τ̃(TpM) is the scalar curvature of the
ambient space M̃m corresponding to TpM ⊂ TpM̃

m. Let us put

η = 2τ(p)− (2n + 1)2(2n + k −∑k
j=1 nj)

2n + k + 1−∑k
j=1 nj

H2(p)− 2τ̃(TpM). (4.5)

Then (4.4) and (4.5) give

(2n + 1)2H2(p) = γ
(
η + ||h||2(p)

)
, γ = 2n + k + 1− n1 − · · · − nk. (4.6)

Let us choose an orthonormal ξ-basis {e1, . . . , e2n+1} of TpM in such way that
eαi ∈ Li for each αi ∈ ∆i. We choose an orthonormal basis {e2n+2, . . . , em} of
T⊥p M so that e2n+2 in the direction of H at p. Then (4.6) yields

(∑2n+1

A=1
aA

)2

= γ
[
η +

∑

A

a2
A +

∑

A 6=B

(h2n+2
AB )2 +

m∑
r=2n+3

2n+1∑

A,B=1

(hr
AB)2

]
(4.7)
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with aA = h2n+2
AA for 1 ≤ A, B ≤ 2n + 1. Equation (4.7) is equivalent to

(∑γ+1

i=1
āi

)2

= γ
[
η +

γ+1∑

i=1

(āi)2 +
∑

A 6=B

(h2n+2
AB )2 +

m∑
r=2n+3

2n+1∑

A,B=1

(hr
AB)2

−
∑

2≤α1<β1≤n1

2aα1aβ1 −
∑

α2<β2

2aα2aβ2 − · · · −
∑

αk<βk

2aαk
aβk

]
,

(4.8)

where α2, β2 ∈ ∆2, . . . , αk, βk ∈ ∆k and

ā1 = a1, ā2 = a2 + · · ·+ an1 ,

ā3 = an1+1 + · · ·+ an1+n2 ,

. . .

āk+1 = an1+···+nk−1+1 + · · ·+ an1···+nk
,

āk+2 = an1···+nk+1, . . . , āγ+1 = a2n+1.

Thus, by applying Lemma 3.1 to (4.8) we obtain
∑

1≤α1<β1≤n1

aα1aβ1 +
∑

α2<β2

aα2aβ2 + · · ·+
∑

αk<βk

aαk
aβk

≥ η

2
+

∑

A<B

(h2n+2
AB )2 +

m∑
r=2n+3

2n+1∑

A,B=1

1
2
(hr

AB)2,
(4.9)

where αi, βi ∈ ∆i, i = 1, . . . , k. It also follows from Lemma 3.1 that the equality
sign of (4.9) holds if and only if a1 + ā2 = ā3 = · · · = āγ+1.

On the other hand, equation of Gauss implies that, for each j ∈ {1, . . . , k},

τ(Lj) =
m∑

r=2n+2

∑

αj<βj

(
hr

αjαj
hr

βjβj
− (hr

αjβj
)2

)
+ τ̃(Lj) (4.10)

for αj , βj ∈ ∆j , where τ̃(Lj) is the scalar curvature of Lj in M̃m. Then, by
combining (4.5), (4.9) and (4.10) we obtain

τ(L1) + · · ·+ τ(Lk) ≥ η

2
+

1
2

m∑
r=2n+2

∑

(α,β)/∈∆2

(hr
αβ)2

+
1
2

m∑
r=2n+3

k∑

j=1

( ∑

αj∈∆j

hr
αjαj

)2

+
k∑

j=1

τ̃(Lj) ≥ η

2
+

k∑

j=1

τ̃(Lj)

= τ − (2n + 1)2(2n + k −∑
nj)

2(2n + k + 1−∑
nj)

H2 − τ̃(TpM) +
k∑

j=1

τ̃(Lj).

(4.11)

From (4.11) we find

τ −
k∑

j=1

τ(Lj) ≤ (2n + 1)2(2n + k −∑
nj)

2(2n + k + 1−∑
nj)

H2 + τ̃(TpM)−
k∑

j=1

τ̃(Lj), (4.12)
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which implies that

δc(n1, . . . , nk) ≤ (2n + 1)2(2n + k −∑
nj)

2(2n + k + 1−∑
nj)

H2 + δ̃c(n1, . . . , nk), (4.13)

where

δ̃c(n1, . . . , nk) := τ̃(TpM)− inf{τ̃(L̃1) + · · ·+ τ̃(L̃k)} (4.14)

with L̃1, . . . , L̃k run over all k mutually orthogonal subspaces of TpM such that
ξ ∈ L̃1 and dim L̃j = nj ; j = 1, . . . , k. From (4.13) we obtain (4.1).

If the equality case of (4.1) holds at p, then all of the inequalities in (4.9) and
(4.11) become equalities. Hence, we obtain condition (a). Moreover, it follows from
(4.13) and (4.14) that condition (b) holds too.

The converse can be easily verified. ¤

As an immediate consequence of Theorem 4.1, we have the following.

Theorem 4.2. Let M be an almost contact metric (2n+1)-manifold isometrically
immersed in a Riemannian space form Rm(c) of constant curvature c. Then, for
any k-tuple (n1, . . . , nk) ∈ S(2n + 1), we have:

δc(n1, . . . , nk) ≤ c(n1, . . . , nk)H2 + b(n1, . . . , nk)c. (4.15)

The equality case of inequality (4.15) holds at a point p ∈ M if and only if there
exists an orthonormal ξ-basis {e1, . . . , e2n+1} of TpM and an orthonormal basis
{e2n+2, . . . , em} of T⊥p M such that the shape operator with respect to {e1, . . . , em}
satisfies

Aer =




Ar
1 . . . 0
...

. . .
... 0

0 . . . Ar
k

0 µrI




, r = 2n + 2, . . . ,m, (4.16)

where each Ar
j is a symmetric nj × nj submatrix satisfying

trace (Ar
1) = · · · = trace (Ar

k) = µr. (4.17)

Definition 4.1. Let M be an almost contact metric (2n + 1)-manifold immersed
in M̃m. If M satisfies the equality case of (4.1) for a k-tuple (n1, . . . , nk), then an
orthonormal ξ-frame {e1, . . . , e2n+1} satisfying (4.2) and (4.3) is called an adapted
ξ-frame.

5. Minimality.

Let M be an almost contact metric (2n + 1)-manifold isometrically immersed in
a Riemannian m-manifold M̃m. If M satisfies the equality case of (4.1) for some
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(n1, . . . , nk) ∈ S(2n+1). Then, with respect to an adapted ξ-frame {e1, . . . , e2n+1},
we have

h(eα, Y ) = (2n + 1) 〈eα, Y 〉
2n+k+1−∑k

j=1nj

H, ∀Y ∈ TM, (5.1)

for α ∈ {1 +
∑k

j=1 nj , . . . , 2n + 1}.
Next, we prove the following minimality result.

Theorem 5.1. Let M be a contact metric (2n+1)-manifold isometrically immersed
in a Riemannian space form Rm(c). If M satisfies the equality case of (4.15)
for a k-tuple (n1, . . . , nk) ∈ S(2n + 1) with

∑k
j=1 nj ≤ n, then M is a minimal

submanifold of Rm(c)

Proof. Let M be a contact metric (2n + 1)-manifold isometrically immersed in
Rm(c) such that the equality case of (4.15) is satisfied for some k-tuple (n1, . . . , nk)
with

∑k
j=1 nj ≤ n. Then Theorem 4.2 implies that there exists an adapted ξ-basis

{e1, . . . , e2n+1} of TpM and an orthonormal basis {e2n+2, . . . , em} of T⊥p M such
that (4.16) and (4.17) hold.

Now, assume that M is non-minimal in Rm(c), i.e. H 6= 0. In order to derive a
contradiction, let us put

D(p)=

{
X ∈ TpM :h(X,Y ) = (2n + 1) 〈X, Y 〉

2n+k+1−∑k
j=1nj

H, ∀Y ∈TpM

}
.

It follows from (5.1) that dimD(p) ≥ 2n+1−∑k
j=1 nj . Clearly, dimD(p) is constant

on some nonempty open submanifold, say U , of M . Since H 6= 0, it follows from
the definition of adapted ξ-frame, (4.16) and (4.17) that, for any X ∈ D, we have
η(X) = 0. Hence, D is a contact distribution on U ⊂ M .

Let D⊥ be the orthogonal complementary distribution of D. Then we have
h(D,D⊥) = {0}. Thus, for vector fields X,Y ∈ D and Z ∈ D⊥, we have

(∇̄Xh)(Y, Z) = −h(∇XY, Z)− h(Y,∇XZ).

Therefore, after applying the equation of Codazzi, we obtain

h([X, Y ], Z) = h(∇XY, Z)− h(∇Y X, Z)

= −(∇̄Xh)(Y, Z)− h(∇Y X,Z)− h(Y,∇XZ)

= −(∇̄Y h)(X, Z)− h(∇Y X, Z)− h(Y,∇XZ)

= h(X,∇Y Z)− h(Y,∇XZ)

= 2n + 1

2n+k+1−∑k
j=1nj

(〈X,∇Y Z〉 − 〈Y,∇XZ〉)H

= 2n + 1

2n+k+1−∑k
j=1nj

〈[X,Y ], Z〉H,

which implies [X, Y ] ∈ D. Hence, D is an involutive distribution on U whose leaves
are integral submanifolds of M .
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On the other hand, it is known that the maximal dimension of integral subman-
ifolds is n. Hence, we get 2n + 1 − ∑k

j=1nj ≤ n, i.e.
∑k

j=1nj ≥ n + 1. This

contradicts the assumption
∑k

j=1 nj ≤ n. ¤

Remark 5.1. The condition
∑k

j=1 ≤ n in Theorem 5.1 is necessary. This can be
seen from the following simple example.

Example 5.1. Consider ψ : R× S2(1) → E4 defined by

ψ(t, θ, ϕ) =
(
t, cos θ cos ϕ, sin θ cos ϕ, sin ϕ

)
,

where E4 is the Euclidean 4-space endowed with the standard flat metric.
Define a contact metric structure (φ, ξ, η, g) on M := R× S2(1) by

η = cos θdt + sin θdϕ, ξ = cos θ
∂

∂t
+ sin θ

∂

∂ϕ
,

φ

(
∂

∂t

)
= − tan θ

∂

∂θ
, φ

(
∂

∂ϕ

)
=

∂

∂θ
,

φ

(
∂

∂θ

)
= cos ϕ

(
sin θ

∂

∂t
− cos θ

∂

∂ϕ

)
,

g = dt2 + dϕ2 + cos2 ϕdθ2.

Then η ∧ dη = dt ∧ dθ ∧ dϕ 6= 0 and g(φX, φY ) = g(X, Y )− η(X)η(Y ) hold. This
contact metric hypersurface is non-minimal in E4 and it satisfies the equality case
of (4.15) with k = 1, n1 = 2 and dim M = 3.

6. K-contact submanifold satisfying the equality.

For a submanifold M of a Riemannian manifold M̃ with second fundamental
form h, the subspace kerhp, p ∈ M , denoted by Np, is given by

Np = {X ∈ TpM : h(X,Y ) = 0 for all Y ∈ TpM}.
Np is called the relative nullity space at p. The dimension νp of Np is called the
relative nullity at p.

Theorem 6.1. Let M be a K-contact (2n+1)-manifold isometrically immersed in
a Riemannian space form Rm(c). If there exists a k-tuple (n1, . . . , nk) ∈ S(2n + 1)
with

∑k
j=1 nj ≤ 2n such that the equality case of inequality (4.15) holds, then c ≥ 1.

Moreover, if c = 1, then M is a Sasakian manifold whose characteristic vector field
ξ lies in relative nullity space, i.e. ξ ∈ N .

Proof. Let M be a K-contact manifold isometrically immersed in Rm(c). Assume
that the equality case of inequality (4.15) holds for some k-tuple (n1, . . . , nk) ∈
S(2n + 1) with

∑k
j=1 nj ≤ 2n. Then Theorem 4.2 implies that there exists an or-

thonormal ξ-basis {e1, . . . , e2n+1} of TpM and an orthonormal basis {e2n+2, . . . , em}
of T⊥p M such that the shape operator with respect to {e1, . . . , em} satisfy (4.16)
and (4.17).
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Since {e1, . . . , e2n+1} is an orthonormal ξ-frame, e1 is parallel to ξ. It follows
from Gauss equation and (4.16) that, for any unit tangent vector ej perpendicular
to ξ, we have

K(ξ, ej) = c + 〈h(e1, e1), h(ej , ej)〉 − 〈h(e1, ej), h(e1, ej)〉 (6.1)

=





c + 〈h(e1, e1), h(ej , ej)〉 − |h(e1, ej)|2, if j = 2, . . . , n1,

c + 〈h(e1, e1), h(ej , ej)〉, if n1 + 1 ≤ j ≤ 2n + 1.

On the other hand, since M is K-contact, we have K(ξ, X) = 1 for any X ⊥ ξ.
Hence, we obtain

n1 − 2 =
n1∑

j=2

K(ξ, ej)−K(ξ, e2n+1)

= (n1 − 2) c + 〈h(e1, e1),
n1∑

j=1

h(ej , ej) 〉 −
n1∑

j=1

|h(e1, ej)|2

− 〈h(e1, e1), h(e2n+1, e2n+1)〉
Therefore, after applying (4.16) and (4.17), we deduce that

(n1 − 2)(c− 1) =
n1∑

j=1

|h(e1, ej)|2 ≥ 0. (6.2)

If n1 > 2, then (6.2) yields c ≥ 1 immediately. If n1 = 2, then (6.2) implies
that h(e1, ej) = 0 for j = 1, . . . , 2n + 1. Combining this with (4.16) shows that
h(ξ, X) = 0 for X ∈ TM , since e1 is parallel to ξ. Thus, we see from (6.1) and
K(ξ,X) = 1 that c = 1. So, c ≥ 1 holds for both cases.

Now, suppose that c = 1 holds, then we find from (6.2) that h(ξ, X) = 0, for all
tangent vector X. Thus, ξ lies in the relative nullity space N .

Finally, after applying h(ξ,X) = 0 and the equation of Gauss, we obtain

R(X, Y )ξ = η(Y )X − η(X)Y,

which implies that M is Sasakian by (2.5). ¤

7. K-contact hypersurfaces satisfying the equality.

Now, we study K-contact hypersurfaces satisfying the equality case of (4.15).
To do so, we recall the following two results from [24]:

Theorem 7.1. Let M2n+1 be a K-contact manifold isometrically immersed in a
Riemannian space form R2n+2(c) with c 6= 1. Then c < 1 and M2n+1 is of constant
curvature one.

Theorem 7.2. Let M2n+1 be a K-contact manifold isometrically immersed in a
Riemannian space form R2n+2(1) of constant curvature one. Then
(a) the rank of the shape operator A is ≤ 2, and
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(b) M2n+1 is of constant curvature one if and only if its scalar curvature satisfies
τ = n(2n + 1).

Finally, we prove the following result for K-contact hypersurfaces in Riemannian
space forms.

Theorem 7.3. Let M be a K-contact hypersurface of a Riemannian space form
R2n+2(c). If M satisfies the equality case of inequality (4.15) for some k-tuple
(n1, . . . , nk) ∈ S(2n + 1) with

∑k
j=1 nj ≤ 2n, then c = 1. Moreover, M is a

Sasakian manifold of constant curvature one immersed in R2n+2(1) as a totally
geodesic hypersurface.

Proof. Let M be a K-contact hypersurface in R2n+2(c). Assume M satisfies the
equality case of (4.15) for a k-tuple (n1, . . . , nk) with

∑k
j=1 nj ≤ 2n, then it follows

from Theorem 6.1 that c ≥ 1. Combining this with Theorem 7.1 yields c = 1.
Hence, by Theorem 6.1, M is a Sasakian manifold whose characteristic vector field
ξ satisfies h(ξ,X) = 0 for X ∈ TM . Moreover, according to Theorem 7.2, the rank
of the shape operator satisfies rk(A) ≤ 2.

Because c = 1, without loss of generality, we may assume that R2n+2(1) is the
unit hypersphere S2n+2(1) ⊂ E2n+3. Since the equality case of (4.15) is satisfied
for (n1, . . . , nk) with

∑k
j=1 nj ≤ 2n, Theorem 6.1 shows that, with respect to an

adapted ξ-frame, the shape operator takes the form:

A =




A1 . . . 0
...

. . .
... 0

0 . . . Ak

0 µI




(7.1)

with

trace(A1) = · · · = trace(Ak) = µ. (7.2)

Because e1 is in the direction of ξ, it follows from h(ξ,X) = 0 that the first row
and the first column of A1 are zero submatrices.

Case (a): rk(A) = 0. In this case, M is a totally geodesic hypersurface.

Case (b): rk(A) = 1. It follows from (7.1) and (7.2) that µ = 0, which is impossible
since rk(A) = 1.

Case (c): rk(A) = 2. We divide this into three subcases:

Case (c.1): There exist Ai, Aj , i 6= j, with rk(Ai) = rk(Aj) = 1. In this case, by
using

∑k
j=1 nj ≤ 2n and rk(A) = 2, we obtain µ = 0. But this is impossible due

to (7.2).

Case (c.2): There exists Ai with rk(Ai) = 1 and Aj = 0 for i 6= j ∈ {1, . . . , k}.
It follows from (7.2) and the condition rk(A) = 2 that k = 1, n1 = 2n and
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trace(A1) = µ 6= 0. So, we can choose an orthonormal {e1, . . . , e2n+1, e2n+2} such
that the second fundamental form satisfies

h(e2n, e2n) = h(e2n+1, e2n+1) = µe2n+2,

h(ei, ej) = 0 otherwise,
(7.3)

where e2n+2 is a unit normal vector field.
Let ωj

i be the connection 1-forms defined by

∇ei
ej =

2n+1∑

`=1

w`
j(ei)e`, i, j = 1, . . . , 2n + 1.

From (7.3) and the equation of Codazzi, we find

ω2n
r (es) = ω2n+1

s (er) = 0, (7.4)

ωr
2n(e2n+1) = ωr

2n+1(e2n) = 0, (7.5)

er(lnµ) = ωr
2n(e2n) = ωr

2n+1(e2n+1), e2nµ = e2n+1µ = 0, (7.6)

for r, s = 1, . . . , 2n− 1.
Let F = Span{e2n, e2n+1} and F⊥ = Span{e1, . . . , e2n−1}. Then (7.4) implies

that F⊥ is a totally geodesic distribution, i.e. F⊥ is an involutive distribution whose
leaves are totally geodesic submanifolds of M . Furthermore, it follows from (7.5)
and (7.6) that F is an involutive distribution whose leaves are totally umbilical.
Hence, a result of [22] implies that M is locally a twisted product B ×f F , where
B and F are leaves of F⊥ and F , respectively, and f is the twisting function.

Since the characteristic vector field ξ lies in F⊥, it is tangent to B. Therefore, by
(2.13), we have ∇e2nξ = (ξf)e2n. On the other hand, it follows from (2.3) that we
have ∇e2nξ = −φ(e2n). Thus, we get φ(e2n) = −(ξf)e2n, which is a contradiction.
Consequently, this case is impossible.

Case (c.3): There exists one Ai with rk(Ai) = 2. In this case, we obtain trace(Ai) =
µ = 0. Hence, Ai has exactly two nonzero eigenvalues λ,−λ with multiplicity
one and the remaining eigenvalues are zero. Because ξ ∈ N , we can choose an
orthonormal {e1, . . . , e2n+1, e2n+2} such that e1 is in the direction of ξ and the
second fundamental form satisfies

h(e2, e2) = λe2n+2, h(e3, e3) = −λe2n+2,

h(ei, ej) = 0 otherwise.
(7.7)

By applying (7.7) and the equation of Codazzi, we find

ω2
r(es) = ω3

r(es) = 0, (7.8)

ωr
2(e3) = −ωr

3(e2) = 2ω3
2(er), (7.9)

er(lnλ) = ωr
2(e2) = ωr

3(e3), (7.10)

e2(lnλ) = 2ω2
3(e3), e3(lnλ) = 2ω3

2(e2) (7.11)

for r, s = 1, 4, . . . , 2n + 1.
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Let W denote the open subset of M consisting of all non-totally geodesic points.
Then W is an open dense subset of M due to minimality of M . Since W has relative
nullity 2n− 1, we know from [14, Lemma 2.2] and [13, Theorem 2] that there is a
non-totally geodesic, minimal isometric immersion ψ : B2 → S2n+2(1) of a surface
B2 into S2n+2(1) such that M is an open subset of the unit normal bundle NB2

defined by

NpB
2 =

{
v ∈ Tψ(p)S

2n+2(1) : 〈v, v〉 = 1 and
〈
v, ψ∗(TpB

2)
〉

= 0
}

.

Let p ∈ B2 and (x, y) be an isothermal coordinate system on a neighborhood of
p so that the metric tensor of B2 is given by gB = E2(x, y)(dx2 + dy2) for some
function E > 0. If {ξ3(x, y), . . . , ξ2n+2(x, y)} is a local orthonormal frame of B2 in
S2n+2(1), then the immersion of NB2 in S2n+2(1) ⊂ E2n+3 can be parametrized
by

F (x, y, u3, . . . , u2n+1) =
2n+2∑

i=3

yiξi(x, y), (7.12)

where y3 = cos u3, y4 = sin u3 cosu4, . . . , y2n+1 = sin u3 · · · sinu2n cosu2n+1 and
y2n+2 = sinu3 · · · sin u2n+1.

Since B2 is minimal in S2n+2(1) and (x, y) is an isothermal coordinate system,
there exist functions λi, µi such that

Ãξi

(
∂

∂x

)
= λi

∂

∂x
+ µi

∂

∂y
, Ãξi

(
∂

∂y

)
= µi

∂

∂x
− λi

∂

∂y
, (7.13)

for i ∈ {3, . . . , 2n + 2}, where Ã is the shape operator of ψ : B2 → S2n+2(1).
Because B2 does not contain any totally geodesic points, the functions λi, µi, i =
3, . . . , 2n+2, do not vanish simultaneously. It follows from |F | = 1 and (7.13) that
there exist functions αi, βi, i = 3, . . . , 2n + 1, on NB2 such that

F∗

(
∂

∂x

)
=

2n+1∑

i=3

αiF∗

(
∂

∂ui

)
− λψ∗

(
∂

∂x

)
− µψ∗

(
∂

∂y

)
,

F∗

(
∂

∂y

)
=

2n+1∑

i=3

βiF∗

(
∂

∂ui

)
− µψ∗

(
∂

∂x

)
+ λψ∗

(
∂

∂y

)
,

where λ =
∑2n+2

i=3 λiyi, µ =
∑2n+2

i=3 µiyi. Therefore, F is an immersion on an
open dense subset of NB2 and that on this open subset the space spanned by
{F, F∗( ∂

∂x ), F∗( ∂
∂y ), F∗( ∂

∂u3
), . . . , F∗( ∂

∂u2n+1
)} coincides with the space spanned by

{F∗( ∂
∂x ), F∗( ∂

∂y ), ξ3, . . . , ξ2n+2}. So, the tangent vector fields

F∗
(

∂

∂u3

)
, . . . , F∗

(
∂

∂u2n+1

)

of NB2 are normal vector fields of B2 in S2n+2(1). It is easy to verify that the
second fundamental form h of NB2 in S2n+2(1) satisfies
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h
(
F∗

(
∂

∂ui

)
, ψ∗(X)

)
= 0, i = 3, . . . , 2n + 1, ∀X ∈ T (NB2).

Therefore, the vector fields ψx = ψ∗
(

∂
∂x

)
, ψy = ψ∗

(
∂
∂y

)
of NB2 are perpendicular

to N = kerh which is spanned by {F∗( ∂
∂u3

), . . . , F∗( ∂
∂u2n+1

)}. Since the character-
istic vector field ξ lies in N , ξ is a normal vector field of B2 in S2n+2(1). Hence,
we obtain from (2.7) that

〈∇ψx
ξ, ψy 〉 = −〈 Ãξψx, ψy 〉 = −〈 Ãξψy, ψx 〉 = 〈∇ψy

ξ, ψx 〉 . (7.14)

Therefore, if we put e1 = ξ/|ξ|, e2 = ψx/E, e3 = ψy/E, then (7.14) gives ω3
1(e2) =

ω2
1(e3). Combining this with (7.9) with r = 1 gives

ω2
1(e3) = ω3

1(e2) = ω3
2(e1) = 0. (7.15)

On the other hand, it follows from (7.8) with r = 1 that

∇es
e1 ∈ Span{e4, . . . , e2n+1}, s = 4, . . . , 2n− 1. (7.16)

Since e1 is in the direction of ξ and ∇Xξ = −φ(X) for X ∈ TM , (7.16) implies that
φ(es) ∈ Span{e4, . . . , e2n+1}. Hence, Span{e4, . . . , e2n+1} is φ-invariant, i.e. it is
invariant under the action of φ. Therefore, Span{e2, e3} is also φ-invariant. Thus,
we obtain ∇e2ξ = −φ(e2) ∈ Span{e3}. Because φ(e2) 6= 0, we have ω3

1(e2) 6= 0.
This contradicts (7.15). Consequently, this case is also impossible. ¤

Remark 7.1. We shall point out that the results obtained in this article are quite
different from those in [3, 15, 16, 20], since the target spaces in this article are
Riemannian manifolds (without Sasakian structure), in contrast to [3, 15, 16, 20]
in which Sasakian space forms are the target spaces.
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for centroaffine hypersurfaces, Beiträge Algebra Geom. 38 (1997), 437–458.

[24] T. Takahashi and S. Tanno, K-contact Riemannian manifolds isometrically immersed in a
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