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We present a parallel architecture for fuzzy controllers and a methodology for their realization
as analog CMOS chips for low- and medium-precision applications. These chips can be made
to Jearn through the adaptation of electrically controllable parameters guided by a dedicated
hardware-compatible learning algorithm. Our designs emphasize simplicity at the circuit level—
a prerequisite for increasing processor complexity and operation speed. Examples include a
three-input, four-rule controller chip in 1.5-um CMOS, single-poly, double-metal technology.

uzzy sets and fuzzy inference enable
us to use insights about local features
to predict the behavior of a system,
even if its exact mathematical descrip-
tion is unknown or ill-defined.! For instance,
fuzzy inference can stabilize an inverted pole on
a moving cart through statements like “if the pole
is falling rapidly to the left, then the cart must
move rapidly to the left.” For fuzzy inference, as
for a human operator, there is no need for exact
formulation of the system dynamics.

In recent years, designers have successfully
applied fuzzy inference to control problems in
vehicles, robots, motors, power systems, home
appliances, and so on, as well as to decision-
making systems and image processing.'! In many
of these systems, software on conventional
microprocessors can produce fuzzy inference,
attaining up to 1-Kflips inference speed with 8-
to 16-bit resolution. However, systems requiring
high-speed inference, reduced power consump-
tion, or smaller dimensions have prompted the
development of dedicated hardware.?

There are two design approaches to fuzzy
inference hardware: ASICs using digital circuits
and ASICs using analog circuits, though an exact
border between the two technologies is contro-
versial. Digital circuits provide greater accuracy,
while analog circuits feature greater speed effi-
ciency for medium- to low-accuracy levels below
about 9 bits.* (We measure speed efficiency as
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the power consumption and area occupation
needed for a given speed.) Consequently, analog
techniques are better suited for applications in
which power consumption, system dimensions,
or operation speed takes precedence over accu-
racy. This is actually the case in most fuzzy sys-
tem applications, where accuracv requirements
range from 10 percent to 1 percent*—accuracy
even the least expensive VLSI technologies can
provide.’ Another obvious advantage of analog
fuzzy circuits is their simple interface with phys-
ical sensors and actuators, that requires no data
converters.

There are two major classes of analog fuzzy
chips: fixed function and adaptive. The former
are better suited to applications in which the
input-output function is already completely
defined at the chip design phase and does not
change with operation. However, this is not the
situation in most practical cases, where design-
ers do not know the exact function a priori, or
where the function must adapt to specific envi-
ronmental characteristics.® Thus, the need arises
for combining the inference capabilities of fuzzy
systems with the learning capabilities of neural
networks, as other authors have discussed.”
Based on these developments, we present a
neuro-fuzzy analog chip architecture, circuit
blocks for its realization in VLSI CMOS technol-
ogy, and hardware-oriented algorithms to adapt
its parameters through learning. We emphasize
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Neuro-fuzzy controllers

the modularity of the circuits used tor adaptability; our design
methodology is applicable to both fixed- and adaptive-func-
tion chips

Chip architecture

Figure 1 shows our chip architecture—an implementation
of Takagi's and Sugeno’s singleton fuzzy inference rules.'
This approach, advantageous for hardware implementation
and programming,* obtains the output as a weighted linear
combination of fuzzy basis functions,

y=r(x)= Y vl

=N

1

where X = (x, X, , ..., x3)" is the input vector in column for-
mat, each @*(x) corresponds to a rule, and p* is the single-
ton associated with it. We calculate the basis functions from

the input as

)
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Figure 1. Conceptual architecture of a singleton fuzzy
chip. Inset: Bell-like membership function.
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Here, 1 € /< N, min is the multidimensional minimum, and
5,0x;) are membership functions that codify the degrees of
matching between each input and its fuzzy labels.' For the
sake of generality, we have assigned each input in Figure 1
a membership function per inference rule. However, in prac-
tical applications, some inputs may have identical member-
ship functions at different rules, thus yielding simpler
architectures and circuit implementations.
Figure 1 shows five different types of processing nodes:

e layer 1. Each node in this layer realizes a nonlinear
transformation to evaluate a membership function s,(x),
where 1<i<MNand1<j<s M

e Layer 2. Each node here obtains a component of w =
(e, w, ..., wy" as the minimum among the M mem-
bership function values associated with the corre-

sponding rule.

e Layer 3. This layer normalizes w using collective com-
putation to obtain w* according to Equation 2.

o Layer 4. Each node in this layer multiplies a component
of w* by its singleton to obtain w/*p}.

e Layer 5. This layer contains a single node, which per-
forms the summation in Equation 1.

Consider a given structure determined by the number of
membership functions and rules. The transfer function of
Figure 1 is parameterized by the vector of singletons y* =
O, »* ., D' and the vectors of membership functions’
centers E, = (E,, E,, ..., E,)", widths A,= (A, A, ..., A", and
stopes 8, = (S, S,.. ..., S,»". (The inset in Figure 1 shows the
shape.) For fixed-chip applications, we calculate these para-
meters oft chip and size the circuits accordingly. For appli-
cations that require adaptability, the circuits used in layers 1
and 4 must be programmable, and the chips must be made
to learn the required transfer function in situ.

CMOS premise circuitry

The premise part of the architecture includes layers 1 and
2. The circuitry of layer 1 operates in transconductance mode,
that is, with voltage inputs and current outputs. The use of
voltage inputs simplifies the controller interface. In layer 2,
current-mode circuits realize the minimum operator more
easily than their voltage-mode counterparts.

Membership function circuitry. Let us consider the dif-
ferential amplifier in Figure 2a. Analysis using a square-law
model for the MOS transistor in the saturation regijon obtains
the equation for the large signal transconductance in Figure
2. B = B WD) is the transconductance factor in the satura-
tion region, B, its normalized value, and Wand L the width
and length of transistors in the differential pairs.

The equation in Figure 2 shows that the large-signal
transconductance is a sigmoid with saturations at +/, and
—ly, like those on the left side of Figure 2¢. Thus, cross-cou-
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pling two differential pairs as in Figure 2b obtains the bells
depicted on the right side of Figure 2c. Of these, we obtain
the one at the top by aggregation of the differential output
currents of both pairs using Kirchhoff current law (KCL). It
ranges between 0 and 2/, Aggregaring only the positive or
the negative output current components of each pair pro-
duces the complementary bell-like characteristics shown at
the bottom right of Figure 2¢. These latter characteristics
prove useful in implementation. as we discuss later.

Multidimensional minimum circuitry. We use the
Maximum and Complement operation to calculate «, in prac-
tice, so that

w, = min(‘\‘“.xll,...,sm,) = max (s, SiprernnS m)

The overbar denotes complement. Since s, is a current, we
obtain its complement using KCL: s, = .~ 5,

Sijs

where /,.is the
current associated with logical 1.
Similarly. after we calculate w, using
the maximum operation, we obtain
w, = I, — @, The two design problems
that arise at this level are how to real-
ize the maximum operator in current
domain, and how to interface the
membership function circuitry and
the maximum circuitry.
Current-mode maximum. Figure
3a shows a conceptual CMOS muxi-
mum circuit based on the winner-
take-all of Lazzaro et al.* where we
have shifted all input currents by 7,
for convenience. This circuit exploits
the ohmic region of MOS transistors.
In particular, it is possible to reduce
their current by driving them with
small V,, values—as shown in the

this transistor enters into the ohmic region and the error-cur-
rent signal becomes null. .
The circuit in Figure 3a requires careful design to reduce
errors due to channel length modulation if the drains of the
output and input transistors are not equipotential. We reduce
these errors by adding cascode transistors (similar to M) in
series tothe input branches, but this strategy renders poor
dynamic response. For better dynamic response, we use
adaptive biasing to properly set the gate voltage of M, V...
This adjusts V ; to equalize the drain-source voltage of M,
(V) and that of the input transistor that drives the maximum
current. We achieve this through the design in Figure 3b. In
this design, the large signal transconductances of transistors
M, and My, control the value of V. Thus, we achieve match-
ing between V... and Vi,, by propetly sizing these transis-
tors. We obtain systematic errors below 0.3 percent for input
currents of up to 20 pA. In this circuit, as in the others, fol-

io:[J.?Blov‘ 1V Bl2t,) Wl <Jio/p
W |21

lasgny;

shaded area of Figure 3.

Note that all bottom transistors in
Figure 34, including output transistor
M, have the same gate voltage V..
The largest input current 3, Sets its
steady-state value. V, drives transis-
tor My, to draw s, . while their exter-
nally applied current 5, may be
smaller than 7,,,.. Thus, the gate of
each top transistor M, betomes an
error-sensitive node that detects dif-

Figure 2. Membership function generation: differential pair as basic cell (a), bell-
like membership function circuit (b), and response curves set (c).

ferences between 5, and 5, If 5, <
Sy the error s, — 5, 1s integrated a 1
in the gate-to-source capacitor of My,

My Mp
5y+lg Siptlp Sutls Vier
1) g Mg, MMz
o 2 Wy Me "

I " .. — i - o—
(a) :Mb :Mhz :MbM Ve

causing its gate-source voltage to
decrease. Consequently, the drain-

source voltage of M, decreases until  bias circuit (b).

Figure 3. CMOS current-mode maximum/propagate circuit: basic schematic (a) and
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(b)

Figure 4. Interface between membership function and
minimum circuits (shaded). Alternatives offer smaller sili-
con area (a) or greater input range (b).

lowing analog layout and sizing guidelines based on the for-
mulation by Pelgrom® minimizes mismatching errors due to
random variations of technological parameters.

Interface to membership function circuitry, Bear in mind
that output i, of the membership function circuit of Figure 2b
already has the shape of a complemented bell. However,
using PMOS instead of NMOS transistors in this circuit pro-
duces a current that leaves rather than enters the output node.
Thus, interface to a minimum block built with NMOS tran-
sistors is direct, as shown in Figure 4a. The devices in the
shaded area belong to the minimum circuitry, where 7, = [,

Figure -ib shows an alternative that also uses NMOS tran-
sistors in the membership function differential pairs.
Although its cost in silicon area is larger, it features almost 30

P mirror

wi+l," | P mirror

percent greater input range. Through optimum design, it may
provide higher speed due to the larger mobility of electrons
as compared to holes. This alternative, where I, = 21, also
reduces area and parasitic penalties associated with obtain-
ing large slope values at the crossovers. Figure 4b also
enables us to produce replicas of 5; by using multioutput
current mirrors and consequently reduces the circuit com-
plexity for cases where different rules share fuzzy member-
ship functions.

CMOS consequent circuitry

The consequent part of Figure 1 includes layers 3, 4, and
5. The circuitry at these three layers operates in current
domain, which enables us to fully exploit the functional fea-
tures of MOS transistors and, consequently, yields extreme-
ly simple circuit realizations. The output signal is a current,
which we can transform off chip into a voltage through a
linear resistor.

Normalization circuit. Figure Sa shows a simple CMOS
schematic based on Gilbert’s bipolar junction transistor nor-
malization circuit.” For convenience, we have shifted all input
currents by /.. Each transistor M, in the bottom array sens-
es a component w; of w and realizes a nonlinear I-to-V trans-
formation to obtain voltage V. This voltage is applied to
the top transistor M, and transformed into current @/, which
follows the equation in Figure 5. B, and B, are the transcon-
ductance factors of top and bottom transistors.

KCL at node © of the circuit in Figure 5a forces the sum
of components of vector w* to remain constant and equal
to Iy, as required for normalization. Proper design obtains
quasi-linear transformation of w, into w,*. However, lineari-
ty is not strictly necessary in a neuro-fuzzy system, where
nonlinearities are tolerated or correct-
ed through adaptation.

The design in Figure 5a improves
the dynamic response by a factor of
about four over other strategies." The
level-shifting current 7, helps maintain
this advantage by decreasing the
impedance of input nodes. Proper siz-

—
Wytlos ﬁ’—

ing of the top and bottom transistors
eliminates the offset at the output.

(a)

Nonetheless, speed considerations dic-
tate the use of similar gains for both
transistor arrays, producing offset 7,
also at the output.

Main error sources of the design in
Figure 5a are channel length modula-
tion and common mode rejection. We
minimize errors due to channel length

Figure 5. Open-loop CMOS normalization circuit: basic schematic (a) and cas-

code current mirrors (b).
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modulation at the p mirrors by insert-
ing cascode transistors. Similarly, cas-
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coding the n mirror that replicates I
reduces common mode rejection
errors. In both cases, we avoid
stacked cascode mirrors o preserve
range. Instead, we use a cascode
transistor at the output branch for p
! mirrors and a cascode structure with
high output voltuge swing for the
f bottom n mirror (Figure Sb).
‘ Singleton weighting and aggre-
gation. We achieve singleton
weighting using current mirrors with
scale factors y?. Figure 6a depicts a
current mirror with generic transcon-
ductors. We can use different
transconductor  implementations
depending on design requirements.”
Since interface with the normaliza-

tion circuit does not impose severe
limitations in voltage range, stacked
cascode mirrors (shaded area of
| Figure 6a) offer good DC matching
i and output resistance. Besides cas-
coding, splitting the output transistor
into multiples of the input transistor
reduces channel length modulation
errors due to mirror asymmetry. We
accomplish aggregation in current
i mode by KCL, simply by wiring all
rule outputs (Figure 6b). We must
also provide the output node with a
bias current to eliminate offset creat-
ed by the normalization circuit, in
case it is not eliminated there.

| Hardware-compatible
learning

Figure 7a shows the concept of
supervised learning applied to the
management of parameter adapta-
tion in a fuzzy engine. We must
1 choose the algorithms used to adapt
the parameters of membership func-
tions und the singleton values to
guarantee hardware compatibility.
; Our choices take advantage of the
" many similarities between the chip
‘ architecture of Figure 1 and the archi-
tectures of neural networks. To high-
light these similarities, we recast
Figure 1 into the two-layer architec-
ture of Figure 84. Here, each neuron
in the input layer has a multidimen-
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Figure 6. Singleton weighting (a), stacked cascode current mirror (inset), and

aggregation (b).
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Figure 7. Concept of supervised, learnable fuzzy engine (a), and performance of
the learning algorithm (b). RMSE signifies root mean square error.
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Figure 8. Two-layer fuzzy architecture (a); one-dimensional projection of input
layer nodes for fuzzy and RBFNN systems (b); one-dimensional projection of input
layer nodes (Kohonen'’s layer) for counterpropagation network (c); and measured
two-dimensional surface response for a 1.5-um CMOS analog fuzzy chip (d).
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correction algorithm for the weights in
output layers. This has already been
considered at the algorithmic level,”
using a back-propagation algorithm
for the antecedents (layer 1) and least
mean squares for the consequents
(layer 4). However, back propagation
is hard to implement in hardware.
Instead, we consider weight perturba-
tion,'? where we replace derivatives
with finite differences and avoid feed-
back paths by calculating the influence

Im
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of each parameter on the global error.
If ® is the learning parameter, and {
the global error at output, a change in
the value of ® is given by

0,0 B

A9 -H[C co + pen)]

pert

3)

where pert is a4 small perturbation, 1
is the learning rate, and both are con-
stant. Note that weight update hard-

L

B, B=B-B=U- V)\/ Mbot[‘[WM‘”

JL
WMd2

perturbed and unperturbed weight

and then multiplies by a constant.
We use this strategy for the mem-

bership functions. We exploit the sim-

] ware evaluates the error with

Figure 9. Transconductance as a function of bias current and B for single and com-
pound MOS transistors. Bias current is //2 for all cases (a-d); Implementation of B

with transistors (e).

sional, nonlinear transter function w*(x), and the activation
function of the neuron in the output layer is unity.
Geometrically, w*(x) is a multidimensional membership
function whose one-dimensional projections are bell-shaped
(Figure 8b). They divide the input universe into clusters, shown
in Figure 8d. This graph shavs measurements taken from a
silicon prototype of a three-input, four-rule analog fuzzy con-
troller fabricated in 1.5-um CMOS, single-poly, n-well tech-
nology. The chip uses our design methodology and features
5-Mflips operation with 1-percent accuracy. The figure depicts
a two-dimensional projedtion of the surface response and
shows four differcent clusters, one for each inference rule.
The clustering performed by the fuzzy inference procedure
is similar to the role played by basis functions in radial basis
function neural networks' (RBFNNs), although radial basis
functions are not commonly normalized. This leads us to
explore learning strategies borrowed from RBFNNS: a cluster-
ing algorithm to determine membership functions and an error-
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ilarities of singleton fuzzy inference
with the counterpropagation net-
work. The similarities become evident
when we use “crisp” rather than fuzzy
sets. In this case, Figure 8c depicts the
one-dimensional projections of the
membership functions, which are similar to a trained coun-
terpropagation network with Kohonen input nodes and
Grossberg output node. Based on this, our learning algorithm
uses the outstar rule,

s = vl ()

where T'is the target output, p is the learning rate, and »* is
the singleton whose rule antecedent is maximum, that is,
wX(x) = max[wX(x), wX), ..., w (X)) Figure 7b illustrated
the performance of our learning algorithm. We teach the mul-
tidimensional function y = 2 + sin(rx)sin(ry) to a nine-rule
controller by showing it 36 input-output data pairs in the inter-
val [0, 1] x [0, 1]. We initialize the system with membership
functions uniformly distributed along the universe of dis-
course, with all singletons equal to 2. Figure 7b shows the
root mean square error for our learning rule, with pert = 0.05,
N = 0.005 (see Equation 3), and p = 0.01 (see Equation 4).

@
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Circuit strategies for adaptability

The circuits we have presented by themselves realize fuzzy
controllers with fixed function. However, simple modular
maodifications enable us to use them for controllable function
as well. This is based on the replacement of some MOS tran-
sistors with composite transistor structures with electrically
controllable characteristics.

Compound transistors. A characteristic of the MOS tran-
sistor of primary importance for analog design is its operation
as a voltage controlled current source—modeled by transcon-
ductance gain g,. We achieve programmability by exercising
electrical control on g, A simple transistor can achieve pro-
grammability, as Figure 9a illustrates for n-chunnel, where we
assume operation in the saturation region within strong inver-
sion. The tormula included in Figure 9a shows that biasing cur-
reat 1, controls g, However, this is inconvenient for fuzzy
membership function blocks, where any change of the bias
current modifies the electrical value of logical 1.

To overcome this problem, we replace the transistor in
Figure 9a with one of the compound transistors in Figures
9b-d. A digital word controls the g,, value of the transistor in
Figure 9b. We achieve digital control by switching elementary
devices on and off to the signal path under control of digital
word B=(h,, b, ..., ). The sizes of these elementary devices
are most typically binary-weighted, giving a quadratic rela-
tionship between g, and the decimal number coded in the
digital word B. The shape of g,, versus Bshown in Figure 9b
illustrates the relationship obtained in this situation.

The compound transistors of Figures 9c and 9d provide con-
tinuous-control of g,. Figure 9c¢ is u series configuration where
the bottom transistor cannot operate in the saturation region
due to the biasing voltage B. Thus. assuming that the top tran-
sistor operates in the saturation region, we obtain the equa-
tion for g, included with the figure. The shape of g, versus B
(Figure 9¢) illustrates this function. showing a minimum for B
=0, and monotonic growth for positive values of B. The exact
shape depends on the values of B, and B,. As B, and/or B,
increase, the change rate of g,, with Bincreases as well.

Now consider the parallel configuration (Figure 9d), with
transistors operating in the saturation region. The shape of
the transconductance expressjon is an ellipse in the g, ver-
sus B plane. Actual devices cover only a portion of this
ellipse, which includes the point of maximum transconduc-
tance at B = 0 and exhibits saturation regions for large neg-
ative and positive values of B. The heavy line in the graph
illustrates this, where the exact shape depends again on §,
and B,. The saturation value for B < 0 is larger than that for
B> 0 if B, > B,, and smaller otherwise.

Membership function programmability. As we men-
tioned. the cell in Figure 2b exhibits two characteristics which
qualify for practical use: the i, curve and the i, curve (see
Figure 2¢). Both have the same width and center, which are
separately controlled by £, and E,, 2A=E, - E;, 2E= E, + E,

within the common-mode range of the differential pairs, and
with a constraint on minimum width A, = (Z,/B)"? imposed
by the operation of the differential pairs.

The other tunable parameter, the slope at the crossover
points, is given by the formula in Figure 9a for the i, curve,
with §= g,. Note that we can modify Son chip by changing
L, However, this forces us to include an additional clamping
stage to maintain equality of logical 1 for all fuzzy labels, in
spite of the actual value of the bias current for each corre-
sponding differential pair. Consequently, the membership
function shapes will be less smooth. Even more important, the
correlation between slope and width increases. For simpler
design and easier on-chip tuning, all membership functions
should have the same bias current. We then control their slope
by using compound transistors in the differential pairs. Figure
10 (next page) shows different ¢, ~ I, shapes produced by
the cell in Figure 2b for different compound transistor con-
figurations and different values of B. Expressions of the slope
as a function of B for the curve i, coincide with those given
in Figure 9.

Singleton programmability. As with membership func-
tion circuits, using compound transistors obtains a current
mirror for which parameter B controls the input-to-output
characteristics. Figures 10d-f depict parametric families for
three compound transistor configurations. The observed non-
linearities are not problematic if the error signals that guide
the learning procedure are measured on the chip.

Programmability strategies. The three compound tran-
sistors of Figure 9 have the common feature cf controlling g,,
without changing the bias current. The advantages of a dig-
itally controlled configuration are an easier interface to con-
ventional equipment, lower sensitivity to technological
parameters, and simpler design. The disadvantages are larg-
er area and power consumption. The other configurations
have less control. Apart from these considerations, we base
comparative evaluation of the different strategies for pro-
grammability on the following criteria:

e variation range of the adaptive parameter,

e variation range of the control parameter,

o influence of the controlled circuit on common-mode
input range, and

¢ smoothness of the relationship between control para-
meter and adaptive parameter.

Each compound transistor exhibits pros and cons when
contemplated in light of these criteria. The series configura-
tion features large control range and good input range, since
the global cut-in voltage equals a simple threshold voltage,
V;. On the downside, it displays a low range of adaptive
parameters—a negative consequence of the low incremen-
tal change of the transconductance with B.

On the other hand, the parallel configuration features bet-
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Figure 10. Tuning the slope of the membership functions and singletons through compound transistors: parallel transis-
tor (a-d), digitally controlled transistor (b-e), and series transistor (c-f).

ter range of adaptive parameter, but worse input range, since
the cut-in voltage of the global transconductor depends on
control parameter B. Its control range is also smaller. and its
nonlinearity larger than for series configuration.

Finally, the digital configuration has input range similar to
that of the series, thus greater,than the parallel configuration.
Tt is also the most flexible implementation in terms of control
und adaptive ranges. However, its linearity is smaller. Analog
implementation of learning with the adaptive parameters
stored in capacitors is also more suitable for previous con-
figurations, which offer art analog interface.

ANALOG FUZZY CONTROLLERS save silicon area and
power as compared to their digital counterparts. This is
because they exploit the MOS transistor fully to realize the
linear and nonlinear operators used for fuzzy inference. A
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major drawback of analog circuits is limited precision.
However, careful modeling of mismatches and the use of
sound circuit strategies and design techniques obtain great
enough accuracy for many practical applications.

A major issue for successful analog VLSI fuzzy chips is
adaptability. This encompasses the interrelated problems of
developing proper circuitry and feasible adaptation rules.
Our modular solution to the first problem produces simple
circuits and, thus, helps keep the intrinsic analog area and
power advantages. It is also simple to comprehend for sys-
tem-level designers. As a counterpart, its linearity is far from
perfect and imposes that adaptation parameters be adjusted
in situ using error feedback schemes. To that purpose, adap-
tation rules capable of coping with the parasitics and non-
linearities of the hardware must be developed. This is one
of our major current research activities, and runs parallel to
the development of behavioral models of the proposed hard-
ware, On the one hand, these models allow us to develop
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and refine adaptation algorithms in a computer simulation
environment, without actual chip implementations. On the
other, it enables us to evaluate the designs prior to chip fab-
rication.

A major handicap of analog fuzzy techniques is that they
are much more difficult to design and far less flexible than
their digital counterparts. Consequently, they are not very
attractive for system-level designers, or whenever there is a
need for rapid prototyping. To alleviate these problems, we
are currently extending the techniques presented in this arti-
cle to the design of a new generation of mixed-signal chips
that combine the area and power advantages of analog with
the flexibility of digital. The basic objective is to give system-
level designers the possibility to cover a large variety of prob-
lems through programming, instead of designing a different
chip for each application. [@
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