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Abstract

Let OX (resp. DX) be the sheaf of holomorphic functions (resp. the
sheaf of linear differential operators with holomorphic coefficients) on X =
Cn. LetD ⊂ X be a locally weakly quasi-homogeneous free divisor defined
by a polynomial f . In this paper we prove that, locally, the annihilating
ideal of 1/fk over DX is generated by linear differential operators of order
1 (for k big enough). For this purpose we prove a vanishing theorem for
the extension groups of a certain logarithmic DX–module with OX . The
logarithmic DX–module is naturally associated with D (see Notation 1.1).
This result is related to the so called Logarithmic Comparison Theorem.

1 Introduction

Let us denote by OX the sheaf of holomorphic functions on X := Cn and
by DX the sheaf of linear differential operators with holomorphic coefficients
on X . A local section P of DX is a finite sum P =

∑
α∈Nn aα(x)∂

α where
x = (x1, . . . , xn), α = (α1, . . . , αn) ∈ Nn, aα(x) is a local section of the sheaf
OX and ∂α stands for ∂α1

1 · · · ∂αn
n each ∂i being the partial derivative with

respect to the variable xi. The order of such an element P is by definition the
non negative integer ord(P ) := max{|α| :=

∑
i αi | aα(x) 6= 0}. For each point

p ∈ X we will write Op := OX,p and Dp := DX,p.
Let us fix a point p ∈ X . Denote byDer(Op) the Op-module of C-derivations

of Op. The elements in Der(Op) are called (germs of) vector fields at the point
p. This yields to the sheaf Der(OX) of vector fields on X . Vector fields are
linear differential operators of order 1.

LetD be a divisor (i.e. a hypersurface) onX . Following K. Saito [Saito 1980],
a (germ of) vector field δ ∈ Der(Op) is said to be logarithmic with respect to D
if δ(f) = af for some a ∈ Op, where f is a local (reduced) equation of the germ
(D, p) ⊂ (X, p). The Op-module of logarithmic vector fields (or logarithmic
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derivations) with respect to D is denoted by Der(− logD)p and it is closed un-
der the bracket product [−,−]. This yields a coherent O-module sheaf denoted
by Der(− logD), which is a sub-module sheaf of Der(OX).

Definition 1.1 [Saito 1980] The germ of divisor (D, p) ⊂ (Cn, p) is said to be
free if the Op-module Der(− logD)p of germs of logarithmic vector field with
respect to D is free (and in this case it is necessarily of rank n). If (D, p) is free
we also say that D is free at p. A divisor D ⊂ Cn is said to be free if the germ
(D, p) is free for any p ∈ D.

Saito’s criterion [Saito 1980] says that a divisor D ≡ (f = 0) is free at a
point p ∈ D if and only if there exists a basis {δ1, . . . , δn} of Der(− logD)p, say
δi =

∑
j aij∂j , whose determinant det((aij)) is equal to u ·f , for some invertible

power series u ∈ Op (i.e. such that u(p) 6= 0). Smooth divisors and normal
crossing divisors are free. By [Saito 1980], any plane curve D ⊂ C2 is a free
divisor.

Notation 1.1 The quotient

M logD :=
DX

DXDer(− logD)

plays a fundamental role in what follows. It is a coherent left DX–module and
has been introduced in this context in [Calderón 1999]. We are going to consider
later some others related DX-modules.

Attached to each germ (D, p) we will also consider the following two left
ideals in Dp. First of all, the annihilating ideal

AnnDp
(1/f) = {P ∈ Dp such that P (1/f) = 0}

where f is a local (reduced) equation of the germ (D, p), and the ideal

Ann
(1)
Dp

(1/f) = Dp{P ∈ Dp such that P (1/f) = 0 and ord(P ) = 1}.

An order 1 operator P ∈ Dp such that P (1/f) = 0 must have the form

δ + δ(f)
f

where δ is a logarithmic derivation in Der(− logD)p.

Notation 1.2 Let us denote by M̃ logD the coherent DX-module with stalks

(M̃ logD)p :=
Dp

Ann
(1)
Dp

(1/f)

for f a local reduced equation of (D, p). Although the previous quotient module
depends on the reduced equation f of the germ (D, p) they are all isomorphic
for different reduced equations.
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The module M̃ logD admits in the free Spencer case (see [Castro and Ucha 2002];
see also [Calderón and Narváez 2005] for an intrinsic treatment of these objects)
a free resolution (called the logarithmic Spencer resolution) analogous to the one
of M logD (see [Calderón 1999]):

DX ⊗OX
∧•D̃er(− logD) → M̃ logD → 0

where D̃er(− logD) denotes the free OX -module whose stalks are

D̃er(− logD)p := {δ +
δ(f)

f
| δ ∈ Der(− logD)p}.

2 Weak quasi-homogeneity

In this paper we will consider a weight vector as an element (w1, . . . , wn) ∈ Qn

with non negative coordinates and such that at least one wi is strictly positive.
A weight vectorw = (w1, . . . , wn) defines a filtration on the ringO = C{x} =

C{x1, . . . , xn} of convergent power series with complex coefficients.
If g(x) =

∑
α gαx

α is a non zero element in O we define its weight or its
w-order as ordw(g) := min{α ·w =

∑
i αiwi | gα 6= 0}. By definition the w-order

of 0 is +∞.
The so called w-filtration on O, which is a decreasing filtration, is defined

by
Fν = Fν(O) := {g ∈ O | ordw(g) ≥ ν}

for all ν ∈ Q. We have Fν = O for ν < 0.
The associated graded ring is by definition

grw(O) := ⊕ν≥0
Fν

Fν+1
.

Let us denote by r = r(w) the number of non zero coordinates of w. By
assumption 1 ≤ r ≤ n. The graded ring grw(O) is isomorphic to a polynomial
ring in r variables with coefficients in a convergent power series ring in n − r
variables. To this end, assume (applying if necessary a permutation of the
components (x1, . . . , xn)) that wi > 0 for i = 1, . . . , r and wj = 0 for j =
r + 1, . . . , n. Let us write x′ = (x1, . . . , xr), x

′′ = (xr+1, . . . , xn) and define

C{x′′}[x′]ν =





∑

β∈Nr

gβ(x
′′)(x′)β ∈ C{x′′}[x′] |

∑

i

βiwi = ν if gβ 6= 0



 .

Then the vector space Fν/Fν+1 is isomorphic to C{x′′}[x′]ν . In this way, the
weight vectorw induces a graded structure on the ringC{x′′}[x′] = ⊕ν≥0C{x

′′}[x′]ν .
The graded rings grw(O) and C{x′′}[x′] are then isomorphic as graded rings.

If no confusion arises elements in C{x′′}[x′]ν are called weakly quasi-homogeneous
(or WQH) power series of weight ν (with respect to the weight vector w). Any
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non zero element g in O can be written in an unique way as a sum

g =
∑

ν≥0

gν

where each gν is a WQH power series of weight ν. If the weight w has no zero
coordinates (i.e. if r = r(w) = n) then Fν/Fν+1 is isomorphic to C[x]ν the
vector space of quasi-homogeneous (QH) polynomials of weight ν.

If a WQH power series f(x) has strictly positive weight ν = ordw(f) then it
is WQH of weight 1 with respect to the weight vector (w1/ν, . . . , wn/ν).

Definition 2.1 Let p be a point in Cn. A germ of divisor (D, p) ⊂ (Cn, p) is
said to be weakly quasi-homogeneous (WQH) if it can be defined by a WQH germ
of convergent power series around p. If U ⊂ Cn is a non empty open set and
D ⊂ U is a divisor, we say that D is locally weakly quasi-homogeneous (LWQH)
if for any point p ∈ D the germ (D, p) is WQH.

If r(w) = n then weakly quasi-homogeneity is nothing but classical quasi-
homogeneity and locally weakly quasi-homogeneity coincides with the notion
of locally quasi-homogeneity (see [Castro et al. 1996]), i.e. every locally quasi-
homogeneous (LQH) divisor is LWQH. The reciprocal does not hold. For ex-
ample, the surface defined in C3 by the polynomial xy(x+ y)(xz + y) is LWQH
but it is not LQH (see [Calderón et al. 2002]).

The O–module of germs of holomorphic vector fields DerC(O) is also filtered
with respect to the given weight vector w, just by giving to each variable xi
the weight wi and the weight −wi to the partial derivative ∂i. The w–order
of a non zero element δ =

∑
i ai∂i ∈ DerC(O) is then the (possibly negative)

rational number

ordw(δ) = min{ordw(ai)− wi | i = 1, . . . , n}.

A vector field δ =
∑

i aiδi =
∑

i,α ai,αx
α∂i ∈ DerC(O) is said to be WQH of

weight (or w–order) µ ∈ Q with respect to the weight vector w if all monomials
ai,αx

α∂i in δ have the same weight µ, i.e. if ai,α 6= 0 then α · w − wi = µ. Any
non zero vector field δ ∈ DerC(O) can be written in a unique way as a sum
δ =

∑
µ∈Q δµ where δµ is the WQH part of δ of w-order µ.

We denote by χ =
∑
wixi∂i the Euler vector field with respect to w. It is

WQH of weight 0. If g ∈ O is WQH of weight ν then χ(g) = νg.

Remark 2.2 For any WQH vector field δ of weight ν, a straightforward calcu-
lation proves that [χ, δ] = χδ − δχ = νδ.

3 Two basic lemmata

Let (D, 0) ⊂ (Cn, 0) be a germ of a WQH free divisor, defined by some WQH
power series f ∈ O with respect to a weight vector w = (w1, . . . , wn) ∈ Qn and
assume that the weight of f is 1. We recall that Der(− logD)0 stands for the
O0–module of germs of logarithmic derivations with respect to (D, 0).
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Lemma 3.1 There exists a basis {δ1, . . . , δn} of Der(− logD)0 such that:

1. δ1 = χ.

2. Every δi is WQH with respect to the weight vector w and δi(f) = 0 for
i ≥ 2.

3. If we write δi =
∑
aij∂j for some aij in O, then det(aij) = f .

Proof. The result being well known, we include a complete proof for the sake
of completeness. First of all, we have

Der(− logD)0 = Θf ⊕O · χ,

where Θf is the O–module of vector fields annihilating f . The above decom-

position follows from the equality δ = (δ − δ(f)
f
χ) + δ(f)

f
χ and the fact that

(δ − δ(f)
f
χ)(f) = 0, which holds for any δ ∈ Der(− logD)0.

As D is free, that is, Der(− logD)0 is free of rank n, then Θf is free of rank
n− 1.

As f is WQH of weight or w-order 1, so fi := ∂f
∂xi

is WQH of weight or
w–order 1 − wi (we consider, as usual, the power series 0 to be WQH of order
ν for any ν ∈ Q).

Let us denote by SyzO(f1, . . . , fn) theO–module of syzygies among (f1, . . . , fn).
The O-modules Θf and SyzO(f1, . . . , fn) are naturally isomorphic.

Let us write A for the graded ring C{x′′}[x′] and Aν = C{x′′}[x′]ν for ν ∈ Q

(see the introduction for the notations). Let us consider the A–module ΘA,f

of vector fields with coefficients in A annihilating f . The A-modules ΘA,f and
SyzA(f1, . . . , fn) are naturally isomorphic. By assumption f, f1, . . . , fn are ho-
mogeneous elements in A (more precisely, they are WQH power series of w-order
1, 1−w1, . . . , 1−wn respectively). Then the syzygy A-module SyzA(f1, . . . , fn)
(resp. ΘA,f ) is finitely generated and it is also graded with respect to the weight
vector w. An element (a1, . . . , an) ∈ SyzA(f1, . . . , fn) (resp.

∑
i ai∂i ∈ ΘA,f )

is WQH of w-order µ ∈ Q if and only if it satisfies the condition ai ∈ Aµ+wi

for i = 1, . . . , n. Then the A–modules ΘA,f and SyzA(f1, . . . , fn) are naturally
isomorphic as graded A–modules. In fact this graded structure is induced on
SyzA(f1, . . . , fn) ⊂ An[−w] by the shifted graded structure on An[−w] where
(An[−w])µ =

∑
iAµ+wi

for any µ ∈ Q. As the inclusion A ⊂ O is flat, the O–
module SyzO(f1, . . . , fn) (and so Θf ) has a finite system {η1, . . . , ηm} of WQH
generators.

Applying Saito’s criterion (see [Saito 1980]) to {χ, η1, . . . , ηm} we can choose
among these vectors fields n elements generating Der(− logD)0 and the deter-
minant of its coefficients being equal to uf , with u inversible in O. Moreover,
χ must be in this generating system, so we write the system {δ1, δ2, . . . , δn}
with δ1 = χ and weight(δi) = νi for some νi ∈ Q, i = 2, . . . , n. If we write
δi =

∑
aij∂j then weight(aij) = wj + νi, so the determinant det((aij)) = uf is

WQH of weight ν =
∑
wi +

∑
νi.

If u =
∑
uµ then uµ = 0 for all µ 6= ν − 1, that is, we have u = uν−1, so

ν − 1 = 0. Changing δ2 by 1
u
δ2 we obtain the desired basis.
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Lemma 3.2 Let (D, 0) ⊂ (Cn, 0) be a germ of free divisor as before and {χ, δ2, . . . , δn}
a basis of Der(− logD)0 as in Lemma 3.1, with weight(δi) = νi. Then for all
subset J ⊂ {2, . . . , n}

1−
∑

j∈J

νj > 0.

Proof. Each δi =
∑n

j=1 aij∂j is a WQH vector field of weight νi and because
weight(∂j) = −ωj it follows that νi + ωj = weight(aij) ≥ 0, if aij 6= 0. Let ∆
be the matrix whose rows are the weights of the aij :

∆ =




ω1 . . . ωr 0 . . . 0
ν2 + ω1 . . . ν2 + ωr ν2 . . . ν2

...
νn + ω1 . . . νn + ωr νn . . . νn


 .

Each summand in the determinant of the matrix (aij) is WQH and since weight(f) =
1, at least one summand is non zero and has weight 1. So there exists some
i ∈ {1, . . . , r} such that

1 = ωi +
n∑

j=2

(νj + ωi(j)), with i(j) 6= i.

If J ⊂ {2, . . . , n} then

1−
∑

j∈J

νj = ωi +
∑

j 6∈J

(νj + ωi(j)) +
∑

j∈J,i(j) 6=i

ωi(j) > 0.

Remark 3.3 In Theorem 3.5 we will compute some Ext groups of the Dp–

module (M̃ logD)p for a class of free divisors D and p ∈ D. For this purpose we

will use the logarithmic Spencer resolution of (M̃ logD)p (see [Calderón 1999];
see also [Castro and Ucha 2002]):

Dp

⊗

Op

∧•
D̃er(− logD)p → (M̃ logD)p → 0

whose differential is defined as

φℓ(P ⊗ δ̃1 ∧ · · · ∧ δ̃ℓ) =
ℓ∑

i=1

(−1)i−1P δ̃i ⊗ δ̃1 ∧ · · · (̂)i · · · ∧ δ̃ℓ

+
∑

1≤i<j≤ℓ

(−1)i+jP ⊗ [δ̃i, δ̃j ] ∧ δ̃1 ∧ · · · (̂)i · · · (̂)j · · · ∧ δ̃ℓ

where (̂)i, (̂)j means that corresponding elements are missing and δ̃ is nothing

but δ+ δ(f)
f

for any δ ∈ Der(− logD)p, once a local reduced equation f of (D, p)
has been chosen.
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We will take a good basis {δ1, . . . , δn} of Der(− logD)p as in Lemma 3.1

which gives a corresponding basis {δ̃1, . . . , δ̃n} of D̃er(− logD)p.

In addition, it will be useful for handling bases in
∧ℓ
Der(− logD)p (and

in
∧ℓ
D̃er(− logD)p) to consider a lexicographical ordering with respect to the

indexes of the elements δi: δi1 ∧· · ·∧δiℓ precedes δj1 ∧· · ·∧δjℓ if i1 = j1, . . . , is =
js and is+1 < js+1 for some s < ℓ.

With respect to these bases we will identify

Dp

⊗

Op

∧ℓ
Der(− logD)p and Dp

⊗

Op

∧ℓ
D̃er(− logD)p

with D
(nℓ)
p . We will also write D

(nℓ)
p as a direct sum Rℓ ⊕ Sℓ where

Rℓ =
⊕

2≤j2<···<jℓ≤n

Dp · δ̃1∧ δ̃j2 ∧· · ·∧ δ̃jℓ and Sℓ =
⊕

2≤i1<···<iℓ≤n

Dp · δ̃i1 ∧· · ·∧ δ̃iℓ .

With this choice of bases the matrices of the morphisms φℓ : Rℓ ⊕ Sℓ →
Rℓ−1 ⊕ Sℓ−1 have a special form:

• The coordinate of φℓ(δ̃1 ∧ δ̃i2 ∧ · · · ∧ δ̃iℓ) corresponding to its “tail” δ̃i2 ∧

· · · ∧ δ̃iℓ is

δ̃1 −
∑

j∈{i2,...,iℓ}

νj .

• The coordinate of φℓ(δ̃1 ∧ δ̃i2 ∧ · · · ∧ δ̃iℓ) corresponding to the element

δ̃j2 ∧ · · · ∧ δ̃jℓ is zero if 1 /∈ {j2, . . . , jℓ} and (j2, . . . , jℓ) 6= (i2, . . . , iℓ).

So the matrices written by rows of the morphisms have the form

(
Aℓ Xℓ

Bℓ Cℓ

)
,

where Xℓ is a diagonal
(
n−1
ℓ−1

)
×

(
n−1
ℓ−1

)
matrix with elements of the form δ̃1 −∑

j∈{i2,...,iℓ}
νj in its principal diagonal for all 2 ≤ i2 < . . . < iℓ = n. For our

purposes we do not require to know the particular shape of matrices Aℓ, Bℓ, Cℓ.
Let us remark that, as proven in Lemma 3.1, we have δ̃1 = δ1 + 1 = χ + 1

and δ̃i = δi for i = 2, . . . , n.

Remark 3.4 Given an Euler vector field χ =
∑n

i=1 ωixi∂i with ωi > 0, i =
1, . . . , r, ωi = 0, i = r + 1, . . . , n, and ψ ∈ O = C{x1, . . . , xn}, it is clear that
the equation

(χ+ c)(h) = ψ

has a convergent solution h for any c > 0. To prove that, we decompose the given
power series ψ as the sum of its WQH parts (with respect to the weight vector
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w) ψ =
∑

ν∈Q+ ψν . We write the unknown power series h as h =
∑

ν∈Q+ hν .
From the equation

(χ+ c)(h) =
∑

ν∈Q+

(ν + c)hν =
∑

ν∈Q+

ψν

we get hν = 1
c+ν

ψν and so h is the unique convergent solution. Moreover,
(χ + c)(h) = 0 implies h = 0 and then the solution h of the non-homogeneous
equation (χ+ c)(h) = ψ is unique once ψ is fixed. More generally, if c1, . . . , cr
are strictly positive real numbers, the C–linear morphism from Or to Or defined
by the diagonal matrix




χ+ c1
. . .

χ+ cr




is an isomorphism. This fact will plays a crucial role in what follows (see the
proof of Theorem 3.5).

Notation 3.1 For any integer k ≥ 0 we also consider, as in the Introduction,
the coherent DX-module M̃ (k) logD with stalks

(M̃ (k) logD)p :=
Dp

Ann
(1)
Dp

(1/fk)

where f is a local reduced equation of the germ (D, p). For k = 1 one has

M̃ (1) logD = M̃ logD (see Introduction).

We have a natural DX–module morphism ϕk
D : M̃ (k) logD −→ OX [∗D] veri-

fying ϕk
D,p(P ) = P ( 1

fk ) for any P ∈ DX,p. Once a local reduced equation f ∈ Op

of (D, p) has been chosen, we will write M̃ (k) log f = M̃ (k) logD.

Theorem 3.5 Given a Spencer free divisor (D, p) defined at p ∈ X = Cn by a
WQH power series f , then

ExtiDp
((M̃ log f )p,Op) = 0

for i = 0, . . . , n.

Proof. We can assume p = 0 ∈ X . The preceding Lemmata have prepared the
computations:

• We choose an adapted basis {δ1 = χ, δ2, . . . , δn} of Der(− logD)0 as in
Lemma 3.1 with [χ+ 1, δj] = νjδj and [δi, δj] =

∑n
l=2 ν

ij
l δl.

• We use the logarithmic Spencer resolution of (M̃ logD)0 with respect to
this basis, so the matrices of the morphisms in this resolution are like in
Remark 3.3.
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• The elements χ + 1 −
∑

j∈{i2,...,iℓ}
νj in the main diagonal of the upper-

right blocks of the matrices Xℓ (see Remark 3.3) verify by Lemma 3.2 that
1−

∑
j∈{i2,...,ip}

νj > 0.

To compute the Ext groups, we apply the functor HomD0
(−,O0) to the

corresponding logarithmic Spencer complex (obtained by truncation of the log-

arithmic Spencer resolution of M̃ log f )

0 −→ D0
φn
−→ D

( n

n−1)
0

φn−1

−→ · · ·
φ2
−→ D

(n1)
0

φ1
−→ D0 −→ 0,

obtaining the complex

0 −→ O0
φ∗

1−→ O
(n1)
0

φ∗

2−→ · · ·
φ∗

n−1

−→ O
( n

n−1)
0

φ∗

n−→ O0 −→ 0,

using the isomorphism HomD0
(Dp

0 ,O0) ≃ Op
0 . The morphisms φ∗i come from

the φi just by applying the functor HomD0
(−,O0).

Using the notation of Remark 3.3 we will write the O0–module
∧ℓ

D̃er(− log f) ≃ O
(nℓ)
0 as a direct sum Gℓ ⊕Hℓ where

Gℓ =
⊕

2≤j2<···<jℓ≤n

O0 · δ̃1∧ δ̃j2 ∧· · ·∧ δ̃jℓ and Hℓ =
⊕

2≤i1<···<iℓ≤n

O0 · δ̃i1 ∧· · ·∧ δ̃iℓ .

We will identify the isomophic O–modules Hℓ−1 and Gℓ. The matrix of the
C–linear map φ∗ℓ : Gℓ−1 ⊕Hℓ−1 → Gℓ ⊕Hℓ is nothing but

(
Aℓ Xℓ

Bℓ Cℓ

)
.

We have

ExtℓD0
((M̃ logD)0,O0) =

ker(φ∗ℓ+1)

Im (φ∗ℓ )
.

For (g, h) ∈ ker(φ∗ℓ+1) ⊂ Gℓ⊕Hℓ we have Aℓ+1g+Xℓ+1h = Bℓ+1g+Cℓ+1h =
0. By Remark 3.4 there is a unique h′ ∈ Hℓ−1 such that Xℓh

′ = g. So,
φ∗ℓ (0, h

′) = (g, h′′) where h′′ = Cℓ(h
′) ∈ Hℓ. So (g, h) − (g, h′′) = (0, h − h′′)

belongs to ker(φ∗ℓ+1). In particularXℓ+1(h−h
′′) = 0 and then, again by Remark

3.4, h = h′′. We have proven (g, h) ∈ Im (φ∗ℓ ) and then ExtℓD0
((M̃ logD)0,O0) =

0.

Remark 3.6 The main idea of the proof of Theorem 3.5 has its origin in
[Ucha 1999] (see also [Castro and Ucha 2001]). Given an integer k ≥ 1, if

M̃ (k) log f admits a logarithmic Spencer resolution (analogous to the one of Re-

mark 3.3) then Theorem 3.5 holds for M̃ (k) log f .

Theorem 3.7 Let D ⊂ X be a Spencer free divisor. We also assume that
D is LWQH on X (i.e. the germ (D, p) can be defined by a WQH germ of
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holomorphic function in Op for any p ∈ D). Then, as long as (M̃ (k) log f )p
admits a logarithmic Spencer resolution, we have

AnnDp

(
1

fk

)
= Ann

(1)
Dp

(
1

fk

)

for any p ∈ D, any reduced equation f of (D, p) and k ≫ 0.

Proof. Let us consider the DX–module OX [∗D] of meromorphic functions on
X with poles along D. If p ∈ X and f is a local equation of (D, p) we have
(OX [∗D])p = Op[

1
f
].

Let p ∈ D and −k0 be the least integer root of the local b-function bf,p
where f ∈ Op is a local reduced equation of the germ (D, p). We know that
−n ≤ −k0 ≤ −1. Let k be an integer k ≥ k0. We have an exact sequence

0 → Lk,p → (M̃ (k) log f )p →
Dp

AnnDp
( 1
fk )

= Op[
1

f
] → 0 (1)

where Lk,p is the kernel of the morphism ϕk
D,p which is surjective because k ≥ k0.

By considering the long exact sequence associated to the exact sequence (1)
we get

. . .→ Exti(Op[
1

f
],Op) → Exti((M̃ (k) log f )p,Op) → Exti(Lk,p,Op) →

→ Exti+1(Op[
1

f
],Op) → . . .

where i ≥ 0 and the Ext groups have been considered with respect to the ring
Dp.

Since p ∈ D the vector space ExtiDp
(Op[

1
f
],Op) is equal to 0 for i ≥ 0 (see

e.g. [Mebkhout 1989, Chap. II, Th. 2.2.4]).

So, from the equality ExtiDp
((M̃ (k) log f )p,Op) = 0 (see Theorem 3.5 and

Remark 3.6) we get ExtiDp
(Lk,p,Op) = 0 for i ≥ 0. If p 6∈ D then (M̃ (k) log f )p ≃

Op ≃ Op[
1
f
] and Lk,p = 0 (see the exact sequence (1)).

So, we have proved that ExtiDp
(Lk,p,Op) = 0 for p ∈ X and k ≥ k0.

Since Lk,p = ker(ϕk
D)p and

(ExtiDX
(ker(ϕk

D),OX))p ≃ ExtiDp
(Lk,p,Op) = 0

then the following Ext sheaf vanishes

ExtiDX
(ker(ϕk

D),OX) = 0.

By [Mebkhout 2004, Corollary 11.4.-1] this implies that ker(ϕk
D) = 0 for k ≥ k0

. This proves the theorem.
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Remark 3.8 We do not know if the hypothesis about the LWQH condition on f
is necessary in Theorem 3.7. We notice that by using [Mebkhout 2004, Corollary
11.4.-1] in the last part of the proof we do not need to assume the holonomy of

M̃ (k) logD. Let us also notice that the proof of Theorem 3.7 uses very deep results
in D–module theory: The Grothendieck Comparison Theorem (as presented in
[Mebkhout 1989, Chap. II, Th. 2.2.4]) and the biduality Theorem for D∞–
modules (as presented in [Mebkhout 2004, 11.4.]).

Corollary 3.9 Under the hypotheses of Theorem 3.7, if −1 is the least integer
root of the local Bernstein polynomial bf,p(s) for all p ∈ D, then the Logarithmic
Comparison Theorem (LCT) holds for D.

Proof. Let us recall that the divisor D ⊂ X satisfies the Logarithmic Com-
parison Theorem (see [Castro et al. 1996]) if the inclusion of the logarithmic de
Rham complex Ω•(logD) in the meromorphic de Rham complex Ω•(∗D) is a
quasi-isomorphism. Under the hypothesis of the Corollary we have

AnnDp
(
1

f
) = Ann

(1)
Dp

(
1

f
),

for any p ∈ D and then by [Castro and Ucha 2004, Criterion 3.1] LCT holds for
the divisor D. L. Narváez-Macarro pointed out that [Castro and Ucha 2004,
Criterion 3.1] uses [Calderón and Narváez 2005, Cor.4.2].

Remark 3.10 If D is a locally quasi-homogenous (LQH) free divisor we do
not need to assume that -1 is the least integer root of the Bernstein-Sato poly-
nomial bf,p(s) for p ∈ D. To this end, any LQH free divisor is of Spencer
type (see [Calderón and Narváez 2002a, Theorem 3.2 ]) and from the proof of
[Castro and Ucha 2002, Theorem 5.2] we deduce, for each p ∈ D, the equality

AnnDp
( 1
f
) = Ann

(1)
Dp

( 1
f
) where f is a local reduced equation of the germ (D, p).

This implies (see e.g. [Torrelli 2004, Proposition 1.3]) that -1 is the least integer
root of bf,p(s) for any p ∈ D. Then by [Castro and Ucha 2004, Criterion 3.1]
LCT holds for D.

Remark 3.11 After reading the first version of this paper L. Narváez- Macarro
told us that any LWQH free divisor of Spencer type actually satisfies LCT. This
is more general than Corollary 3.9 because it is not necessary to assume the
condition about the roots of the b-function of f . The sketch of his proof is as
follows. By [Calderón and Narváez 2006, Th. 2.1.1] any Koszul free divisor
D ⊂ Cn satisfies LCT if and only if the canonical morphism

j!CU −→ Ω•
X(logD)(OX(−D)) (2)

is an isomorphism in the derived category of complexes of sheaves of complex
vector spaces. Here X = Cn, j : U = X \ D →֒ X is the inclusion and
Ω•

X(logD)(OX(−D)) is the tensor product of Ω•
X(logD) with the invertible OX–

module OX(−D). In fact, the argument in the proof of [Calderón and Narváez 2006,
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Th. 2.1.1] also shows that the previous equivalence is also true for free divisors of

Spencer type, because of the isomorphism Ω•
X(logD)

≃
→ Ω•

X(logD)(OX(−D))∨,
where ∨ denotes the Verdier’s dual, which is nothing but the intrinsic version of
the duality theorem in [Castro and Ucha 2002, Th. 4.3 ]. Moreover, the quasi-
isomorphism (2) holds if and only if the complex
Ω•

X(logD)(OX(−D))p is exact at any point p ∈ D. The last complex is nothing
but

fOX,p → fΩ1
X(logD)p → · · · → fΩn

X(logD)p

(for f a reduced equation of the germ (D, p)) which is a filtered complex us-
ing the weight w. By an argument of [Mond 2000, Lemma 3.3,6] (also used
in [Castro et al. 1996, Section 2 ]) this complex is quasi-isomorphic to its sub-
complex of weight 0 which is in fact 0 because the weight of f is 1 and any
logarithmic differential form has a non negative weight.

This proves that any LWQH free divisor of Spencer type satisfies the Log-
arithmic Comparison Theorem and we do not need to assume the condition of
Corollary 3.9 about the b-function of f .

The free divisor D defined in the space Mn,n+1(C) of n × (n + 1) matrices
by the vanishing of the product of the maximal minors [Granger et al. 2006] is
LWQH and as shown in loc. cit. it is not LQH. Nevertheless, D satisfies the
so called Global Logarithmic Comparison Theorem [Granger et al. 2006]. For
n = 3 the divisor is also of Spencer type and then it satisfies LCT. It seems that
for n ≥ 4 the divisor D is also of Spencer type.
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