
Hierarchical Path Search with Partial
Materialization of Costs for a Smart Wheelchair �

DANIEL CAGIGAS
Department of Computer Architecture and Technology, University of Seville, Spain; e-mail: 
dcagigas@us.es

JULIO ABASCAL
Laboratory of Human–Computer Interaction for Special Needs, University of the Basque Country, 
Spain; e-mail: julio@si.ehu.es

Abstract. In this paper, the off-line path planner module of a smart wheelchair aided navigation 
system is described. Environmental information is structured into a hierarchical graph (H-graph) and 
used either by the user interface or the path planner module. This information structure facilitates 
efficient path search and easier information access and retrieval. Special path planning issues like 
planning between floors of a building (vertical path planning) are also viewed. The H-graph proposed 
is modelled by a tree. The hierarchy of abstractions contained in the tree has several levels of detail. 
Each abstraction level is a graph whose nodes can represent other graphs in a deeper level of the 
hierarchy. Path planning is performed using a path skeleton which is built from the deepest 
abstraction levels of the hierarchy to the most upper levels and completed in the last step of the 
algorithm. In order not to lose accuracy in the path skeleton generation and speed up the search, a set 
of optimal subpaths are previously stored in some nodes of the H-graph (path costs are partially 
materialized). Finally, some experimental results are showed and compared to traditional heuristic 
search algorithms used in robot path planning.

Key words: hierarchical graph search, path planning, smart wheelchairs.

1. Introduction

The problem presented in this paper focuses on the path planning subprocess of
a special robotic system: an aided navigation system of an intelligent wheelchair
called TetraNauta.

TetraNauta is a controller for standard electric-powered wheelchairs. Basically,
it is an aided navigation system for users who have serious mobility restrictions.
The navigation environment is modelled using a hierarchical graph (H-graph). In a
TetraNauta system a building corridor represents a non-directed arc and a crossing
between corridors represents a node. Thus, the graph contains a sub-set of the free
configuration space of a world model and no static obstacles are expected to be

� This work is partially supported by the Spanish CICYT (Comision Interministerial de Ciencia y 

Tecnologia), Contract TER96-2056-C02-02.



found. The map generation process is made off-line taking into account usabil-
ity issues of the user interface (see [2]) and path planning efficiency. Although
there can be several TetraNauta wheelchairs in a same environment, path planning
is performed in each wheelchair embedded computer system. Maps are usually
large, complex and computational hardware resources are limited. Several real-
time tasks control the aided navigation system and path searching has the lowest
priority/importance. Tasks such as guidance, sensors attention or user monitoring,
have the highest importance. These factors may delay the aided navigation system
response when searching a new path. A more extended description of TetraNauta
can be found in [1] and [13]. In this paper only the map model (abstract search
space configuration) and the path search tasks are described.

In Section 2 a map model based on a H-graph is specified. Section 3 describes
and analyses an hierarchical algorithm for path searching in the map model pro-
posed. Section 4 shows some experimental results. Finally, in Section 5 conclusions
are drawn and suggestions for further works are made.

2. Map Model

2.1. REQUIREMENTS AND LIMITATIONS

As was previously mentioned, the types of environments where the TetraNauta
wheelchairs navigate (and therefore the maps used) are usually large and complex.
Think for example in a hospital which is composed of several floors. On each floor
there are different sections (and even subsections) that also contain rooms.

Abstractions are useful to arrange and model information. Graphs are widely
used in mobile robotics to abstract environments [10]. However, if plain graphs
have a large amount of nodes and arcs, path searching and information management
becomes a problem. This last point is specially critical for TetraNauta users that
must usually manage a lot of information. Rehabilitation is a key factor for wheel-
chair users and the whole aided navigation system must be designed according
to usability principles. Therefore, graph information must be arranged in order to
reduce complexity and gain efficiency and clarity. A hierarchical decomposition is
necessary and H-graphs are very suitable in this case.

Moreover, hierarchies of abstraction can reduce exponential complexity prob-
lems to linear complexity [9]. Again this is important because path search algo-
rithms like A∗ tend to have exponential complexity when searching in large-scale
graphs. Remember that computational time in TetraNauta is shared by multiple
tasks (including path search). However, A∗ guarantee optimality. Optimality is
desirable but it is not necessary and critical in this problem. The computer-assisted
system just gives aid in the navigation process and initial quasi-optimal paths are
acceptable. Other hierarchical path searching approaches in robotics can be found
in [3] and [11].

Maps in robotics usually represent a continuous horizontal space. Little atten-
tion has been given to applications where robots have to move across floors of a



building and/or between floors of different buildings. However, in TetraNauta path
searching may involve two floors of a building (hospital). Therefore, H-graphs must
be adapted to this type of path planning without losing their benefits.

2.2. DEFINITION

The H-graph proposed is a sequence of hierarchical levels. The sequence is L =
{L0, L1, L2, . . . , LD}. The depth of the hierarchy is D. The “root level” is L0 and
it represents the highest abstract representation of an environment. On the contrary,
LD contains the most detailed representation and for example it may contain the
internal structure of a room in a building. In each level Li (0 � i � D) there is a
graph Gi = (Ni, Ai, Ci,Wi, Ti), where Ni is a set of nodes, Ai is a set of arcs, Ci is
a set of Cartesian coordinates for Ni , Wi is a set of weights for Ai and Ti is a set of
pre-calculated paths associated to Ni . The union of graphs G0,G1,G2, . . . ,GD is a
graph G = (N,A,C,W, T ) where N = N0∪N1∪· · ·∪ND , A = A0∪A1∪· · ·∪AD,
C = C0 ∪ C1 ∪ · · · ∪ CD, W = W0 ∪ W1 ∪ · · · ∪ WD, T = T0 ∪ T1 ∪ · · · ∪ TD .

Elements nJ , nK,wH define an arc a(nJ , nK,wH) ∈ A, where nJ , nK ∈ N ,
nJ �= nK and wH ∈ W . A Cartesian coordinate cI ∈ C is defined by (x, y), where
x, y ∈ �. A weight wI ∈ W is real number (wI ∈ �).

Nodes can represent a cluster (subset) of nodes in a deeper abstraction level
of the hierarchy. There are some functions/methods associated to a node nJ ∈
Gj (0 � j � D). We use the dot notation:
− map → nJ .map = nK , where nJ ∈ Lj , nK ∈ Lk, j = k + 1 (0 < j � D,

0 � k � D) and nJ ⊂ nK in Lk. Namely, it indicates in which node is nJ

included in an upper level of the hierarchy. We call nK submap (cluster or
subset) of nJ .

− depth → nJ .depth = x, where nJ ∈ Lx (0 � x � D). Namely, the level of
the hierarchy where nJ belongs.

Nodes are also classified in four classes: end nodes, cross nodes, submap nodes
(node clusters) and bridge nodes. End nodes are starting or goal points that a
user can select through the navigation user interface menus. Cross nodes represent
subtargets that indicate turns or crossroads. Bridge nodes are nodes that connect a
submap to a “parent” submap. Formally, nI ∈ Gi is a bridge node if there is a node
nJ ∈ Gj and an arc aI (nI , nJ ,wX) ∈ A, where i = j + 1. The concept of bridge
node leads to a new function/method:
− get_bridge_nodes → nI .get_bridge_nodes = BNS, where nI ∈ N , nI .depth

< D and BNS is a bridge node set composed of bridge nodes that satisfies
∀nx ∈ BNS, nx.map = nI . Namely, if nI is a submap, it obtains its bridge
node set included in the next deeper level of the hierarchy.

Bridge nodes are divided in two classes: horizontal bridge nodes and vertical
bridge nodes. Horizontal bridge nodes follow the given definition. Vertical bridge
nodes are almost equal to horizontal bridge nodes but conceptually they connect
two submaps that represent two floors in a building. In fact, elevator entrances are



modelled as vertical bridge nodes in G. These nodes allow path planning between
different floors of a building or even between floors of different buildings.

Arcs (A) are non-directed: a wheelchair can navigate between two points (nodes)
in both ways. An important difference from other H-graph models is that here arcs
do not contain other arcs in a deeper abstraction level of the hierarchy. Cartesian
coordinates (C) are attributes associated to every node. They are used in the heuris-
tic function of the path search algorithm. Weights (W ) are attributes associated to
every arc and indicate the cost of traversing an arc. They are used by the cost
function of the search algorithm and represent a length in metres.

A path is defined as a succession of nodes. The whole set of paths contained
in a H-graph is called P . Formally, a path PI ∈ P of length L is defined by
PI = (n0, n1, n2, . . . , nL), where n0, n1, . . . , nL ∈ N and ∃ a0(n0, n1, w(0,1)),
a1(n1, n2, w(1,2)), . . . , aL−1(nL−1, nL,w(L−1,L)) ∈ A. A path PI has two attributes/
methods:

− cost → PI .cost = x, where x ∈ �. It gets or assigns a path a cost to PI .

− last_node → PI .last_node = nL, where PI = (n0, n1, n2, . . . , nL) and
n0, n1, n2, . . . , nL ∈ N .

Each submap node nI ∈ Ni ⊂ N (0 � i < D) has its own pre-calculated path
set PPSnI

∈ Ti ⊂ T (0 � i < D). Thus, a new method/function associated to a
submap node nI can be defined:

− pre_path → nI .pre_path(nX, nY ) = PZ , where nX, nY ∈ N , PZ = (nX, nX+1,

nX+2, . . . , nY−2, nY−1, nY ), PZ ∈ PPSnI
⊂ P . Namely, a node nI returns a

path PZ between nodes nX and nY whether it has an attached pre-calculated
path set PPSnI

that contains PZ . The nodes nX and nY will be bridge nodes
typically. If node nI is not a submap node or it does not contain the required
path, the method/function returns NULL.

Pre-calculated paths in PPSnI
are optimal-length paths and are off-line calcu-

lated. They are grouped in three classes:

1. Paths that link two bridge nodes inside nI .

2. Paths that link the bridge nodes of nI (nI .get_bridge_nodes) with the bride
nodes of its “parent” submap ((nI .map).get_bridge_nodes).

3. Paths that link “brother” submaps contained in nI . Two submap nodes nX,
nY ∈ N are “brother” submaps contained in nI if nX.map = nY .map = nI .
Namely, they are “brother” submaps if they have the same “parent” submap in
the previous level of the hierarchy.

Pre-calculated paths avoid recalculating several subpaths in a hierarchical search
process. This is called materialization of costs [7]. On one hand, materialization
of cost requires extra storage space for paths and costs and off-line path calcu-
lation [5]. On the other hand, it can guarantee optimality in a classic refinement
hierarchical search method.



Materialization of costs saves computational time too because it avoids refine-
ment of nodes in deeper abstraction levels of the hierarchy. Extra store space and
off-line path calculation are not serious drawbacks in modern computer embedded
systems or static environments like buildings, respectively.

Furthermore, the map model is highly flexible and easily adaptable. If a building
map has to be updated, the intrinsic modularity of H-graphs makes a partial path
recalculation easy. Depending on the path planning module requirements, some
pre-calculated paths or path classes may be even added to the H-graph or removed.
This last point means a new concept: a partial materialization of costs.

2.3. EXAMPLE

In Figure 1 there is an example of how a hospital complex is modelled. The left
column shows hierarchical levels Li and the right column shows graphs Gi (0 �
i � 4). Cross nodes and end nodes are represented by small black filled squares.
End nodes are only showed in G4. Notice that end nodes in L4 are marked with
dotted lines. Submaps are represented in Gj by not filled rectangles and in Lj by
ellipses (0 � j � 3). There can be also seen two horizontal bridge nodes: one
in G3 and the other in G4. No vertical bridge nodes are showed but they can be
included in any graph except in G0 and G1.

3. Path Searching

The path planning module of a TetraNauta wheelchair finds paths between two
points represented by a pair of nodes in a map. No static obstacles or unknown
spaces are expected to be found. On-line path planning and obstacle avoidance are
treated separately and are not described in this paper.

3.1. ALGORITHM DESCRIPTION

There are several steps involved in the path search process that can be summed
up in two. First, a path skeleton set that joins a start node Ns and a goal node Ng

is constructed. Second, the best path skeleton is completed and returned. A path
skeleton PS is a not complete path because it does not contain a continuous node
sequence between Ns and Ng. Namely, there is a lack of intermediate nodes in PS

that must be added. Path skeletons are constructed as a sequence of subgoals that
are reached systematically. These subgoals are special nodes previously called as
bridge nodes in Section 2.2.

Basically, in a skeleton development process the search algorithm tries to find
the best trajectories or paths between the submaps where a start node Ns and a goal
node Ng are included. These submaps are called “start submap” SMs and “goal
submap” SMg. SMs and SMg are linked to their “parent” submaps in an upper level
of the hierarchy of abstractions through their bridge nodes. This process is repeated



Figure 1. Example of map model.



until both set of partial paths converge into a common submap. This last submap
could be even the first abstraction level of the hierarchy (“root” submap at level 0).
Every path used to link sub-maps is taken from T ∈ G = (N,A,C,W, T ).
The search algorithm defines a bottom-up process instead a traditional down-top
refinement process, typically used when working with hierarchical graphs.

The MAIN PROCEDURE consists on four parts that take into account four dif-
ferent cases. Each case depends on the submap (cluster) and the level of hierarchy
where Ns and Ng are included.

1. Both nodes are included in the same submap (line 6). This is the simplest case.
It is almost equivalent to a plain graph search and an A∗ algorithm is used.
Notice that if a submap node is found during the search process there is no
need to refine it because path costs are materializated.

2. Ns is in a deeper level of the hierarchy than Ng (line 14). A path skeleton set that
joins Ns and Ng is constructed. It begins in Ns.depth and finish in Ng.depth−1
(bottom-up process).

3. Same as before but swapping Ns and Ng (line 20).
4. Both nodes are in the same hierarchical level (line 26). The same previous

process is repeated for Ns and Ng until both sets of path skeletons converge in
a common submap in an upper level of the hierarchy.

There is also a final procedure for cases 2, 3 and 4 (line 32): path skeleton sets
are connected to Ng (case 2), Ns (case 3) or each other (case 4). Finally, the best
path skeleton is selected, completed and returned (line 33). Now, the hierarchical
path search algorithm is detailed. Algorithm descriptions are based on definitions
in Section 2.2. Comments appear into { } symbols.

MAIN PROCEDURE. Hierarchical path search (Node Ns, Node Ng):
1: {Begin variable declaration:}
2: Integer Ls, Lg, Lsg;
3: Path Pathaux;
4: Path_Set PS1, PS2, PS3;
5: {End variable declaration:}
6: if (Ns.map == Ng.map) then
7: {Case 1: No hierarchical path search is performed.}
8: {Pre-calculated paths avoid submap nodes refinement.}
9: return (PATH_SEARCH(Ns, Ng));

10: end if
11: {General process:}
12: Ls = Ns.depth;
13: Lg = Ng.depth;
14: if (Ls > Lg) then
15: {Case 2: Ns is in a deeper abstraction level of the hierarchy.}
16: PS1 = GET_PATH_SKELETON_SET(Ns, Lg);



17: Pathaux = (Ng);
18: Pathaux.cost = 0;
19: PS2 = Pathaux;
20: else if (Ls < Lg) then
21: {Case 3: Ng is in a deeper abstraction level of the hierarchy.}
22: PS1 = GET_PATH_SKELETON_SET(Ng, Ls);
23: Pathaux = (Ns);
24: Pathaux.cost = 0;
25: PS2 = Pathaux;
26: else
27: {Case 4: No and Ng are in the same level of the hierarchy.}
28: Lsg = FIRST_COMMON_LEVEL(Ns, Ng);
29: PS1 = GET_PATH_SKELETON_SET(Ns, Lsg);
30: PS2 = GET_PATH_SKELETON_SET(Ng, Lsg);
31: end if
32: PS3 = LINK_PATH_SKELETON_SETS(PS1, PS2);
33: return (COMPLETE_BEST_PATH_SKELETON(PS3)).

For simplicity there are three subprocedures in MAIN PROCEDURE that will
be not detailed:
− PATH_SEARCH (line 9).
− FIRST_COMMON_LEVEL (line 28).
− COMPLETE_BEST_PATH_SKELETON (line 33).

The first subprocedure is similar to an A∗ algorithm but with submap (cluster)
nodes. The second subprocedure searches the first submap that includes or contains
Ns and Ng in an upper level of the hierarchy and returns its depth. The third subpro-
cedure uses the PATH_SEARCH subprocedure to convert a path skeleton into path.

The GET_PATH_SKELETON_SET subprocedure is a key part in the bottom-
up hierarchical path search algorithm. It performs the path skeleton linkage through
the different levels of the hierarchy. Submaps are linked to their “parent” submaps
through their bridge nodes. Only pre-calculated paths (materializated costs) con-
tained in T ∈ G = (N,A,C,W, T ) are used. This will mean a significant compu-
tational time reduction and a better quality (optimality) of paths returned.

First for loop selects a bridge node in a “parent” submap (line 11) and second
for loop selects a bridge node in a “children” submap (line 14). The pre-calculated
path between both nodes that optimises the current skeleton path accumulate costs
is selected. This submap linkage process is repeated through several abstraction
levels recursively. The while loop (line 9) stops the process in the previous (deeper)
hierarchy level of Lg, where Lg is the hierarchy of the goal node.

GET_PATH_SKELETON_SET (Node Ns, Integer Lg).
1: {Begin variable declaration:}
2: Node Current_submap, Ni,N1;



3: Path Pi, Pj , Px;
4: Path_Set PS, PSnew;
5: {End variable declaration:}
6: NS = (Ns.map).get_bridge_nodes;
7: PS = ESTIMATE_PATHS (Ns, NS);
8: Current_submap = Ns.map;
9: while (Current_submap.depth > Lg) do

10: PSnew = ∅;
11: for all Ni ∈ (Current_submap.map).get_bridge_nodes do
12: Pi = ∅;
13: Pi.cost = MAXIMUN;
14: for all Pj ∈ PS do
15: N1 = Pj .last_node;
16: Px = Pj ∪ Current_submap.pre_paths(N1, Ni);
17: Px.cost = Pj .cost + (Current_submap.pre_paths(N1, Ni)).cost;
18: if (Px.cost � Pi.cost) then
19: Pi = Px;
20: end if
21: end for
22: PSnew = PSnew ∪ Pi;
23: end for
24: PS = PSnew;
25: Current_submap = Current_submap.map;
26: end while
27: return PS.

The ESTIMATE_PATHS subprocedure is included in the previous subprocedure
(line 7). It initialises the path skeleton set that will join a sequence of submaps
through several hierarchical levels. Each pseudo-path included in this initial skele-
ton path set has only two nodes: the start node and a bridge node of the submap
where it belongs. Path costs are approximated with a HEURISTIC function
(line 8).

The heuristic function is based on the Euclidean distance and initialises the cost
(cost function value) of a path skeleton. The heuristic function utilizes coordinates
C ∈ G = (N,A,C,W, T ) associated to nodes (N) and estimates a path length
(cost) between two nodes. The cost function implemented f that the search algo-
rithm tries to minimize is f = g + h, where g is accumulated cost and h estimated
cost to goal. Function f is the same cost function used in A∗ algorithms.

ESTIMATE_PATHS (Node Ns, Node_Set NS).
1: {Begin variable declaration:}
2: Path_Set PS = ∅;
3: Path Pi;



4: Node Ni;
5: {End variable declaration:}
6: for all Ni ∈ NS do
7: Pi = (Ns, Ni);
8: Pi.cost = HEURISTIC(Ns, Ni);
9: PS = PS ∪ Pi;

10: end for
11: return PS.

The LINK_PATH_SKELETON_SETS subprocess joins two path skeleton sets
called PS1 and PS2. First for loop (line 6) takes a path skeleton from PS1 and finds
another path skeleton in PS2 that minimize the function cost f of the resulting path.
If no pre-calculated paths are found during this process, then costs are estimated
using the HEURISTIC function (line 27).

LINK_PATH_SKELETON_SETS (Path_Set PS1, Path_Set PS2).
1: {Begin variable declaration:}
2: Path Pathpre, Pathnew, PI , PJ ;
3: Path_Set PSresult = ∅;
4: Node Naux;
5: {End variable declaration:}
6: for all PI ∈ PS1 do
7: for all PJ ∈ PS2 do
8: Naux = (PI .last_node).map;
9: Pathpre = Naux.pre_paths(PI .last_node, PJ .last_node);

10: if (Pathpre �= NULL) then
11: {PS11 and PS2 are NOT included in “brother” submaps.}
12: {Pathpre is a pre-calculated path of class 2. Namely, it links two bridge

nodes of a “parent” and a “children” submap.}
13: Pathnew = PI ∪ Pathpre ∪ PJ ;
14: Pathnew.cost = PI .cost + Pathpre.cost + PJ .cost;
15: else
16: Naux = Naux.map;
17: Pathpre = Naux.pre_paths(PI .last_node, PJ .last_node);
18: if (Pathpre �= NULL) then
19: {PS11 and PS2 are included in “brother” submaps.}
20: {Pathpre is a pre-calculated path of class 3. Namely, it links two

bridge nodes of a “brother” submaps.}
21: Pathnew = PI ∪ Pathpre ∪ PJ ;
22: Pathnew.cost = PI .cost + Pathpre.cost + PJ .cost;
23: else
24: {No pre-calculated path available.}
25: Pathnew = PI ∪ PJ ;



26: Pathnew.cost = PI .cost + PJ .cost +
HEURISTIC(PI .last_node, PJ .last_node);

27: end if
28: end if
29: PSresult = PSresult ∪ Pathnew;
30: end for
31: end for
32: return PSresult.

3.2. EXAMPLE

Figure 2 shows an example of a path generation divided in four steps. The H-graph
has three hierarchical levels L0, L1, L2 and their corresponding G0, G1, G2 graphs.
There are four submap nodes including the submap at L0 (“root” level composed
of only one node). Submaps are represented by rectangles. Two submap nodes at
level L1 are brother submaps (indicated in scheme A). Cross nodes are represented
by grey filled circles, bridge nodes by black filled circles and end nodes by a cross.
For clarity, no arcs and only two end nodes (start node and goal node) have been
drawn. The start node is in a deeper abstraction level of the H-graph (level 2) than
goal node (level 1) so this is case 2 (line 14) in MAIN PROCEDURE.

Scheme A shows actions associated to ESTIMATE_PATHS subprocedure (called
from subprocedure GET_PATH_SKELETON_SET at line 7). Initial path costs are
estimated using the heuristic and paths have only two nodes: the start/goal node
and a bridge node.

Scheme B continues a step further in GET_PATH_SKELETON_SET: pre-
calculated paths between bridge nodes of G2 and G1 are linked to previous paths.

In scheme C path skeleton sets are joined. Paths sets are in “brother” submaps
and they are joined through their bridge nodes: this case corresponds to lines 18 to
22 in LINK_PATH_SKELETON_SETS subprocedure.

Finally, in scheme D the best skeleton path is selected and completed (line 32 in
MAIN PROCEDURE). Here arcs of the resulting path are marked with thin lines.

3.3. VERTICAL AND INTER-BUILDING PATH PLANNING EXTENSIONS

TetraNauta wheelchairs are specially designed for working in hospitals or day cen-
ters. Such institutes have usually more than one floor connected through elevators.
Thus, elevators (or better said, their entrances) are a fundamental part that must be
taken into account when designing the path planning module.

The objective consists in extending hierarchical search and H-graphs but with-
out any serious changes or modifications. For example, a more sophisticated heuris-
tic function would need extra computational time. In the H-graph model proposed
only a distinction between horizontal and vertical bridge nodes is necessary (see



Figure 2. Example of path generation in four steps. For clarity arcs are only shown in step D
in the final path.



Figure 3. Example of interbuilding path planning: an extension of the general hierarchical
path search algorithm. A vehicle on the third floor of a building A plans to reach a goal on a
second floor in another building B that is in front of building A. Elevator entrances are treated
as subgoals.

example in Section 2.3). However, the path search algorithm extension requires
extra analysis.

The solution proposed consists on considering vertical bridge nodes described
in Section 2.2 as starting or goal nodes. In this way, the original path planning
problem is divided in two: first find a path from a start node to a vertical bridge node
(elevator entrance) and second find a path from a vertical bridge node (contained
in another “floor submap”) to the goal node. Notice that an elevator is modelled in
an H-graph as a sequence of vertical bridge nodes and each of them represent an
elevator entrance.

Elevator entrances in a building floor are usually near to each other. This means
that bridge vertical nodes can be easily grouped into a submap node (cluster) in
order to speed-up search and save computational time. Thus, search is performed
from one node (a start node) to n vertical bridge nodes, or better said, from a “start
submap” to a “vertical bridge node submap”. It is even possible to have several
submaps containing vertical bridge nodes in the same “floor submap”. A more
general path search problem consists of finding a path through several submaps
containing bridge vertical nodes in different floors and different buildings. See
example in Figure 3.



The hierarchical search algorithm that supports “vertical path planning” re-
quires some small modifications. At least one subprocedure must be adapted or
completed: ESTIMATE_PATHS. A start node Ns is substituted for a start node set
NSs composed of vertical bridge nodes.

ESTIMATE_PATHS_2 (Node_Set NSs, Node_Set NS).
1: {Begin variable declaration:}
2: Path_Set PS = ∅;
3: Path Pi;
4: Node Ni,Nj ,Nsubmap;
5: {End variable declaration:}
6: {NSs contains the vertical bridge node set.}
7: {Their submap node is pointed by Nsubmap.}
8: Nsubmap = (Nj ∈ NSs).map;
9: for all Ni ∈ NS do

10: for all Nj ∈ NSs do
11: if (Nsubmap.pre_paths(Nj ,Ni) �= NULL) then
12: {There are pre-calculated paths of class 2 between vertical and
13: horizontal bridge nodes included in submap Nsubmap.}
14: PS = PS ∪ (Nsubmap.pre_paths(Nj ,Ni));
15: else
16: Pi = (Nj ,Ni);
17: Pi.cost = HEURISTIC(Nj ,Ni);
18: PS = PS ∪ Pi;
19: end if
20: end for
21: end for
22: return PS.

3.4. ALGORITHM ANALYSIS

There are two ways of classifying search algorithms complexity: time complexity
and space complexity. Space complexity refers to the amount of memory needed
by algorithms. Nowadays the cost of computer memories is reasonable and this
is not a serious problem. However, exponential time complexity search problems
cannot yet be solved by faster microprocessors. Exponential time complexity prob-
lems must be transformed or approximated. As was mentioned in Section 2.1 a
hierarchical decomposition turns a exponential problem into a linear problem.

Exceptionally and depending on the start and goal nodes selected, the hierarchi-
cal algorithm proposed may behave like an A∗ algorithm. Here no hierarchical path
search is performed (line 9 in MAIN_PROCEDURE, Section 3.1 when searching in
the deepest hierarchical level). That means a O(2N) time complexity order, where
N is number of nodes.



In [5] a expression for the computational cost in hierarchies with more than two
hierarchical levels is given and in [9] a similar conclusion is found. The expression
that defines the computational cost is

UH(k − 1) = Uk−1 + 1

2

(N(k+2)/k)/2k−1 − N3/k

N1/k − 2
, (1)

where UH(k − 1) is the computational cost of finding a path at the deepest level of
the hierarchy, Uk−1 the computational cost of the most abstract plain path search,
N number of nodes and k number of hierarchical levels.

Expression (1) is a valid expression for hierarchical search algorithms when
no materialization of costs are used. It is also a valid expression for the pro-
posed hierarchical search algorithm because not every cost is material. In fact,
the same hierarchical algorithm can be used without materialization of costs or a
more reduced pre-calculated path set.

Refinement and hierarchical search tries to satisfy a trade-off between optimal-
ity and low computational cost. Cluster sizes (nodes per submap) is an important
parameter that is strongly associated with optimality and computational efficiency.
Small clusters (submaps) imply low computational costs but the quality of solu-
tions decreases and vice versa. In a TetraNauta system, cluster sizes are relative
low (few nodes in a “room submap”, for example) and the number of hierarchical
levels (k) can be considerable. Therefore, partial materialization of costs used has a
doubly positive effect: speed up search (which is critical due to the real-time Tetra-
Nauta restrictions) and help to minimize loss of path accuracy (which is increased
due to a large amount of small clusters/submaps).

Parameter UH(k − 1) in expression (1) (computational cost of finding a path
at the deepest level of the hierarchy) is directly determined by the number of
nodes (N), the number of hierarchical levels (k) and cluster (submap) structures
that are strongly associated to maps (H-graphs). Furthermore, expression (1) is
now also determined by a partial materialization of costs. This does not alter time
complexity order but improves time efficiency. Thus, the difference with respect to
other hierarchical search approaches will depend strongly on the map structure and
the selected materialization of costs (pre-calculated paths). Next section analyses
some practical cases (maps) in order to test the model proposed.

4. Experimental Evaluation

4.1. EXPERIMENTS DESCRIPTION

Three types of path planning are considered:

1. Horizontal path planning (HPP): paths between nodes connected in a horizon-
tal way. Equivalent to traditional robot path planning.



2. Vertical path planning (VPP): paths between nodes connected in a vertical way.
Namely, paths that begin on one floor and finish on another floor of the same
building.

3. Inter-building path planning (IPP): paths between nodes of different buildings.
These paths begin on one floor of a building and finish on a floor of another
building.

In the experiments the hierarchical path search algorithm proposed is called
TetraNauta. It is compared to other search algorithms widely used in mobile robot-
ics. These algorithms are:
− A∗: it uses the same heuristic as the rest of algorithms: Euclidean distance.
− A∗ with prunes: a version of the A∗ algorithm designed to seep-up search

processes. It does not have not the optimality property of A∗ (find best path)
but can reduce computational time, which is critical and more important in a
TetraNauta path planner. The A∗ with prunes represents here an approxima-
tion of the calculation time needed of another widely used algorithm in path
planning: the RTA∗ algorithm.

− Hill climbing: it has the same backtracking subprocess as A∗ with prunes.
This subprocess guarantees the completeness property. That is, if there is at
least one solution, it will be always found. Under certain circumstances, hill
climbing algorithms can be the fastest search algorithms.

− Genetic Algorithms 1 and 2: in genetic algorithm 1 an initial population is
generated randomly. Genetic algorithm 2 uses branch & bound algorithms to
generate an initial population. This strategy is based on the method described
in [8].

Not only length is a valid measure of optimality in a path or trajectory. Left and
right turns are also important issues that imply a time and energy use. A turn im-
plies stopping the wheelchair, changing its direction (rotate) and restarting. Turns
costs in a path are modelled as an extra fixed length, which implies extra energy
consumption. That is why path costs (values of cost function f ) are usually referred
to as lengths. The idea is trying to find quasi time optimal paths rather than quasi
length optimal paths. Thus, the cost function in a path (or path skeleton) can be
composed of arc weights (lengths), turn costs and Euclidean distances (estimated
lengths).

The TetraNauta algorithm is also tested without pre-calculated paths (no ma-
terialization of costs). Computational time represents here an approximation of
a typical refinement search algorithm. Unfortunately, the quality (cost) of paths
cannot be expected to be equal. As was pointed out, optimality is always desirable
but it is not critical. Therefore, the same algorithm without materialization of costs
can be a good reference in comparison with the original one.

Speed-up is measured using only CPU time. A better measurement counts also
the number of crosses found during a search process and the number of “over-
head” operations performed [6]. This is done because algorithms are sensitive to
low-level programming details. However, this measurement cannot be applied to



Table I. Characteristics of maps and elements used in experiments

Number of Hospital Industrial Telephone Lambert

buildings C. building Airport

Buildings 1 2 1 2

Floors 4 3 4 2

Hierarchical levels 7 4 5 3

Nodes 2349 417 2794 369

Arcs 2422 463 3188 401

Pre-calculated paths 3165 281 12841 123

HPP pair of nodes 10000 464 100 100

VPP pair of nodes 10000 1196 100 100

IPP pair of nodes 0 1961 0 100

genetic algorithms and to the hierarchical algorithm proposed when it uses pre-
calculated trajectories (materialization of costs). This last point implies a possible
loss of precision but does not seriously alter general results.

Algorithms are tested in four maps. In each map three sets of node pairs (start
and goal) are selected randomly. These three node sets define three path types: hor-
izontal path planning (HPP), vertical path planning (VPP) and interbuilding path
planning (IPP). Algorithms have to calculate a path for every pair of nodes in each
map. The first map corresponds to a hospital for disabled people in Toledo (Spain).
The second map represents two fictitious industrial buildings. The third map is
the Lambert Airport in St. Louis (USA) and the fourth map is the headquarters
building of a telephone company. See Table I for a detailed description of the maps
characteristics.

4.2. RESULTS DESCRIPTION

Figures (graphics) 4–7 show simulated experimental results achieved using the
hospital, industrial buildings, headquarters building and airport maps respectively.
On the one hand, Y -axes show total computational time and total path length. On
the other, X-axes are divided into three parts when interbuilding path planning
is considered (more than one building) or two parts when no interbuilding path
planning is considered (only one building). The X-axes divisions correspond to
horizontal path planning (HPP), vertical path planning (VPP) and interbuilding
path planning (IPP). Each part (division) on the X-axis is also divided in two
subparts that indicate total path lengths (L) and total computational time (T ) of
paths obtained by algorithms. In this way, graphics help to compare the balance
between path length optimality (L) and computational speed (T ) easily.

Graphic 8 is the same graphic as 5 (industrial buildings) but including genetic
algorithms. Computational time costs (T ) for genetic algorithms are high when



Figure 4. Hospital results.

Figure 5. Industrial buildings results.



Figure 6. Headquarters building results.

compared with the rest of the algorithms. Similar results are obtained in other maps.
For better clarity and legibility, no more genetic algorithm results are shown.

4.3. RESULTS ANALYSIS

As was already mentioned above, the first relevant conclusion is the low efficiency
obtained when using genetic algorithms. Length/quality of solutions (L) are even
better than other algorithms, but computational time (T ) is always too high. This is
a direct consequence of the coding scheme used in genetic algorithms when work-
ing with topological abstract models (graphs). Codifying strings (paths) of variable
length does not work and needs customizing operators [12]. More concretely, the
initial population generation process is the key problem here. This can be noticed
when comparing computational time (T ) in graphic 5. Genetic algorithms design
with a variable-length coding scheme is usually ad hoc and complicated.

The best horizontal path planning results appear in graphic 4 (hospital map):
total path length (L) is close to A∗ (optimality) and computational time (T ) is
nearly a tenth of A∗ when using materialization of costs. On the contrary, horizontal
path planning performance in industrial buildings (graphic 5) is closer to other
algorithms. This is a direct consequence of the overhead caused by the hierarchical
model. Overhead effects caused by hierarchical search can be also observed in
graphic 7 (Lambert Airport map) when comparing the TetraNauta algorithm in
horizontal and vertical path planning. These maps have a small node density, that
is to say, cluster sizes (nodes per submap) are lower. Moreover, a small number



Figure 7. Airport results.

Figure 8. Industrial buildings results. Genetic algorithms 1 and 2 are included (first two
columns on the right in HPP, VPP and IPP). Total path length (L) is even better (lower)
than other algorithms but total computational cost (T ) is worse (bigger). Computational costs
differences between Genetic algorithm 1 and 2 indicates the importance (and the problem) of
generating an initial population.



of connections (arcs) per node prevents from an exponential search tree expansion
and it allows branch and bound algorithms to converge quickly. Therefore, there
are situations where for example A∗ algorithms are a more suitable choice.

The TetraNauta hierarchical search algorithm provides in general better per-
formance in inter-building and vertical path planning. Here the number of nodes
involved is higher and path searching can be considered as a real large-scale prob-
lem. However, there can again be some exceptions like in graphic 6 (headquarters
building). Total paths length (L) using TetraNauta algorithms and vertical path
planning is bigger (worse) than using A∗. Paths achieved with the Hill Climbing
algorithm have also an important length difference when compared with A∗. This
is a direct consequence of the map structure that forces heuristic search algorithms
to fall in local minimums. Heuristic algorithms can be affected by the abstract
structures (graphs) used and the chosen heuristic. A better heuristic may prevent
this from some local minimums but it implies an extra computational cost. As
soon as path lengths increase and therefore graphs get bigger and more complex,
hierarchical search with materialization of costs performance increases too. Even
so, a Hill Climbing algorithm is sometimes faster than hierarchical algorithms and
it may be a good alternative if quality of paths (solutions) is acceptable.

In general, graphics show that as soon as problems get more complex, hierarchi-
cal search with materialization of cost and several hierarchical levels, becomes re-
ally effective. Computational costs (T ) are reduced significantly and quality/length
of paths (L) are in some cases close to optimal.

4.4. COMPARISON WITH OTHER RESULTS

In [4] an H-graph with multiples hierarchical levels and a refinement hierarchical
search algorithm is analysed. The hierarchical search algorithm uses a top-down
strategy. It is pointed out that a 321% computational cost reduction is obtained
when compared with Dijkstra’s algorithm. Instead of CPU time, computational
cost is approximated by number of explored nodes. Using the TetraNauta algorithm
without materialization of costs, up to 228% CPU time reduction is obtained when
compared with A∗ algorithm and horizontal path planning. However, in optimal
conditions when using materialization of costs up to 1366% computational time
reductions (in hospital map) are achieved. Quality of solutions (path lengths/costs)
is important too. In [4] no experimental results are given. In our experiments and
horizontal path planning, paths obtained are close to optimal. Differences between
path length sums in A∗ and the TetraNauta algorithm are always less than 1%.
However, exceptions described in the last section must be taken into account.
Thus, as was pointed out in Section 3.4, maps structure, cluster sizes or number
of hierarchical levels play an important role.

Materialization of costs are for the first time introduced in [7]. Again path
retrieval is significantly faster than A∗. It uses only two hierarchical levels, so
cluster sizes (nodes per submap) are relative high. On the contrary, the proposed



hierarchical algorithm (TetraNauta) is based on an H-graph that contains several
hierarchical levels. Thus, it obtains faster paths/solutions. However, quality of paths
(length/cost) is slightly worse. The TetraNauta algorithm and abstract world model
proposed does not materialize each possible path and it focuses mainly on saving
CPU time. Nevertheless, it would retrieve optimal paths if submaps in the deepest
level of the hierarchy had only one bridge node. In this case initial path skeletons
(subprocedure ESTIMATE_PATHS) would have only one possibility: estimate a
path from a initial/goal node to a single bridge node. In fact, in a TetraNauta system
many paths begin or finish in a “room submap” where there is only one bridge
node (representing a door). This context helps to avoid a complete materialization
of costs (like [7] does), reduce memory storage and speed-up calculations.

5. Conclusions

The contribution of this paper is:

1. Adapt H-graphs for a smart wheelchair aided navigation system. The abstract
model allows efficient path planning and easy information management for
users with special needs.

2. Propose a new hierarchical graph model G = (N,A,C,W, T ) that uses ma-
terialization of costs.

3. Extend hierarchical search with materialization of costs to H-graphs with sev-
eral hierarchical levels (more than two).

4. Extend hierarchical path search to vertical path planning and interbuilding
path planning.

Some other conclusions that can be drawn from this work:

1. Experimental results demonstrate the utility of the model proposed in some
practical cases. The method shows better results in large-scale graphs and a
significant node cluster (submap) density.

2. The model proposed may be adapted to on-line path planning (i.e., obstacle
avoidance). Pre-calculated paths (materialization of costs) can help to find path
deviations faster.

References

1. Abascal, J., Cagigas, D., Garay, N., and Gardeazabal, L.: Interfacing users with severe mobility
restrictions with a semi-automatically guided wheelchair, SIGCAPH (ACM Press) 63 (1999),
16–20.

2. Abascal, J., Cagigas, D., Garay, N., and Gardeazabal, L.: Mobile interface for a smart wheel-
chair, in: 4th Internat. Symposium on Human Computer Interaction with Mobile Devices,
Mobile HCI 2002, Pisa, Italy, 18–20 September 2002, pp. 373–377.

3. Conte, G. and Zulli, R.: Hierarchical path planning in a multi-robot environment with a simple
navigation function, IEEE Trans. Systems Man Cybernet. 25(4) (1995), 651–654.



4. Fernandez, J. A. and Gonzalez, J.: Hierarchical graph search for mobile robot path planning,
in: Internat. Conf. on Robotics and Automation, Leuven, Belgium, 1998.

5. Fernandez, J. A. and Gonzalez, J.: Multi-Hierarchical Representation of Large-Scale Space,
Kluwer Academic Publishers, Dordrecht, 2001.

6. Holte, R. C., Drummond, C., and Perez, M. B.: Searching with abstractions: A unifying frame-
work and new high-performance algorithm, in: Proc. of the 10th Canadian Conf. on Artificial
Intelligence, 1994, pp. 263–270.

7. Huang, Y.-W., Jing, N., and Rundensteiner, E. A.: Hierarchical optimization of optimal path
finding for transportation applications, J. GeoInformatica 1(2) (1997), 125–159.

8. Kanoh, H., Kashiwazaki, A., Bui, L. T. H., Nishihara, S., and Kato, N.: Real-time route selec-
tion using genetic algorithms for car navigation systems, in: IEEE Internat. Conf. on Intelligent
Vehicles, 1998.

9. Korf, R. E.: Planning as search: A quantitative approach, Artificial Intelligence 1(33) (1987),
65–88.

10. Latombe, J.-C.: Robot Motion Planning, Kluwer Academic Publishers, Boston/Dordrecht/
London, 1990.

11. Sasaki, T., Chimura, F., and Tokoro, M.: The trailblazer search with a hierarchical abstract map,
in: Proc. of the 14th Internat. Joint Conf. on Artificial Intelligence, Montreal, Canada, 1995,
pp. 259–265.

12. Sugihara, K. and Smith, J.: Genetic algorithms for adaptative planning of path and trajectory of
a mobile robot in 2D terrains, IEICE Trans. Inform Systems E82-D(1) (1999).

13. Vicente Diaz, S., Amaya Rodriguez, C., Diaz del Rio, F., Civit Balcells, A., and Cagigas
Muniz, D.: TetraNauta: An intelligent wheelchair for users with very severe mobility re-
strictions, in: Proc. of the 2002 IEEE Internat. Conf. on Control Applications, 2002, pp.
778–783.


