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INTRODUCTION 

In the past twenty years numerous investigations which deal with the computation of dynamic 
stiffness (also called impedance) matrices of massless rigid foundations with different shapes have 
been reported. Taking advantage of the simplifications derived from axial symmetry, circular and 
cylindrical foundations have been studied in many cases. Analytical solutions for stiffness 
functions of circular foundations on a uniform half-space were presented for horizontal and 
rocking motions by Veletsos and Wei1 and for vertical and torsional motions by Luco and 
Westman.2 

The development of absorbing boundaries permitted the use of the finite element method to 
study the dynamic response of axisymmetric foundations on soils that consist of one or several 
layers based on a rigid rock.3"5 

An alternative approach to the dynamic analysis of rigid foundations is the use of boundary 
integral equations which allow for the modelling of many different geometries and soil profiles. 
Both the direct and the indirect integral equation formulations have been used in dynamic 
soil-structure interaction problems.6"8 Dynamic stiffness functions of rigid circular foundations 
on uniform or layered soils have been computed by Apsel9 and Apsel and Luco7 using the indirect 
formulation in combination with Green's function of a ring load in a uniform or layered half-
space, derived by the same authors.9"11 This Green's function is written in terms of integral forms 



that include products of two Bessel functions. Owing to that, it has to be evaluated segmentally 
and its computation becomes rather involved. An auxiliar boundary where the unknown sources 
are located has to be defined.7'9,12 

The boundary element method, based on the direct integral equation formulation, has been 
used to compute dynamic stiffness functions of rectangular6 and strip foundations in the frequency 
domain13,14 as well as in the time domain.15 In the present paper the boundary element method is 
formulated for time harmonic axisymmetric problems using the full-space point load fundamental 
solution. The approach is applied to the computation of the dynamic stiffness functions of rigid 
circular foundations on layered viscoelastic soils. 

The formulation of the BEM for axisymmetric elastostatic problems was presented by 
Kermanidis16 and Cruse et al11 They used the ring load fundamental solution. However, a closed 
form expression for the ring load does not exist in elastodynamics18 and when the same 
formulation is followed the computations become involved because of the difficulties in the 
evaluation of the fundamental solution at each integration point. On the contrary, the point load 
fundamental solution is simple and may be integrated numerically along the azimuthal co­
ordinate without any particular difficulty. 

As an example of the range of sites to which the proposed approach can be applied, three 
different sites are considered; a uniform half-space, a soil layer on a half-space, and a soil consisting 
of four horizontal layers and a compliant half-space. The numerical results computed by the 
proposed approach are compared with results obtained by different procedures. 

BOUNDARY ELEMENT FORMULATION FOR ELASTODYNAMIC 
AXISYMMETRIC PROBLEMS 

Following the idea of Chapel,19 the full-space point load fundamental solution is used to solve 
time harmonic axisymmetric problemsJ The axisymmetric representation of the geometry and field 
variables is maintained. The boundary of the generating surface of the body is discretized into line 
elements and the point load collocated at each node. The fundamental solution, in terms of 
cylindrical co-ordinates, is integrated along the boundary elements of the generating surface and 
along the azimuthal co-ordinate. 

The basic BEM equation for zero body forces can be written in Cartesian co-ordinates as usual: 

C V + T u d r = UtdT (1) 

where u and t stand for the displacements and traction vectors, respectively; U and T are, 
respectively, the matrices representing displacements and tractions produced by the point load 
applied at point / and C is the independent coefficient matrix such that Ckl = (1/2)<5W when the 
surface is smooth at the point i. 

The relation between Cartesian and cylindrical co-ordinates may be written for vectors u and t 
at a certain pointy as 

u = Qu 

(2) 

t=Qt 



cylindrical (Figure 1) and the transformation 
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By substitution of equation (2) into equation (1) and premultiplying by Q ,vr the following equation 
is obtained: 

QiT C Q' û  + J (Q*'-T TQ)ucdr (Q*'-TUQ)tcdr (4) 
r 

where QJ is the transformation matrix for the collocation point i. Equation (4) can now be written 
as 

C^+ j r
T c ucdr uc tc dr (5) 

r 

which is the same as equation (1) written in cylindrical co-ordinates. [ 
The 9 co-ordinate of the collocation point j is fixed during the integration process and can be set 

equal to any desired value; for instance $' = 0. In such a case 
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where the terms Tkl are the well-known Cartesian co-ordinate components of the tractions in the / 
direction at the integration point, due to a unit point load in the k direction at the point i. The same 
equation can be written for Uc. 
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Figure 1. Description of co-ordinate systems 



When a circular foundation under vertical or torsional motion is considered, the field variables 
are axisymmetric. Assuming that the boundary is smooth at i, equation (5) becomes 
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where T* is the boundary of the generating surface (Figure 2), s and c stand for sin and cos, 
respectively and a zero has been placed for the skewsymmetric terms, where the integrals around 
the azimuthal axis are null. It should be mentioned that the torsional and vertical radial motions 
are uncoupled in equation (7) and that the kernels to be integrated along d are known functions. 

When a circular foundation is under horizontal motion along Xx or rocking around X2, the 
field variables are of the form (Figure 3) 
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u2 = ulz cos 3 ; tz = tXz cos $ 

where u lp, u l v , u l r , r lp, tx</> and fj2 are independent of 9. Instead of equation (7) the following 
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Figure 2. Generating surface of an axisymmetric domain: (a) genera] problem; (b) surface foundation on a half-space 
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Figure 3. Horizontal and rocking displacement 

equation is obtained: 
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Equation (9) can be used to represent the radial and vertical displacements but not the 
azimuthal displacement for which an identity would be obtained. The amplitude of a function such 
as ud = ux a sin 9 cannot be computed with a collocation point where the function is zero. Because 
of this, a different collocation point where the shape function —sin 3' has a unit amplitude 

( » ' 
7t/2) is selected for the azimuthal equation: 
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where the superindex '0' indicates that the collocation point is at 8' 
represents the three components is 

7t/2. The equation that 
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In general, non-axisymmetric boundary conditions can be analyzed using a plane model by 
representing the field variables by a Fourier series along the azimuthal co-ordinate. The series is of 
the form 
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terms 
and a boundary equation may be written for the amplitude of the symmetric and the 
antisymmetric parts of each mode. The equations for the amplitude of the terms of the form sin n3 
are obtained using a point at 0' fin as the collocation point 

except 
element that contains the collocation point. In the next section, an integration procedure for 
constant elements contained in planes x3 = constant is presented. This kind of element is the only 
one needed for the analysis of circular foundations on uniform or layered soils. 

INTEGRATION OVER THE BOUNDARY ELEMENTS 

Constant boundary elements with one node per element are considered (Figure 4). The boundaries 
of the circular foundation problems analyzed are perpendicular to the X3-axis and the line 
boundary co-ordinate T* coincides with the radial cylindrical co-ordinate p. Equations (7) and 
(11) can be written after discretization as 
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Figure 4. Boundary element discretization 

where N is the number of boundary elements, pi indicates the segment that forms the element j9 

and Tc and Uc stand for the matrices in equations (7) or (11). The double integrals extend over one 
half of the circular crowns represented by the line elements (Figure 4). The collocation point for 
equation (13) can be either at 9l =0 or at & n12 and for each term the integration domain is 
either the element to which the collocation point belongs (i=y) or a different one (i #7). The latter 
case is analysed first. The integrals are done numerically using a Gaussian quadrature formula 
after a special co-ordinate transformation. The integration domain is shown in Figures 5(a) and 
5(b), the latter being for the case when the collocation point is at S1 = — it/2. 

In order to apply the Gaussian quadrature the domain is transformed into a square in the 
dimensionless co-ordinates (— 1 ^ £ <; 1, — 1 ^ */ < 1). The radius p is transformed into r\ by 
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A linear transformation of the same kind was tested for the co-ordinate 0; however, the 
accuracy of the computed values of the integrals was poor even when a large number of integration 
points was used. The accuracy was improved, and satisfactory results were obtained, by using a 
quadratic transformation formula that increases the number of integration points in the vicinity of 
the X j-axis or the X2-axis in the cases of Figures 5(a) or 5(b), respectively.20 The following 
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Figure 5. Integration domains and coordinates when the collocation point is outside the integration domain: (a) 9' = 0, 
(b) $' = - 7t/2 

parabolic transformation has been applied; 
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when the collocation point is at $' = 0 (Figure 5(a)) and 
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when the collocation point is at 01 7c/2 (Figure 5(b)). In this way one half of the total number of 
integration points are located in the quarter of the domain closer to the collocation point. \ 

The number of quadrature points is two for the radial co-ordinate and twenty for the azimuthal 
co-ordinate. Thus, the integrals in equation (13) become 
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where T c (^ , fjj and UJ&,, r\m) represent the values of the matrices in equations (7) and (11) 
computed at the (n, m) integration point and wn, wm are the weights of the Gaussian quadrature 
formula. 

When the integration is carried out over the element which contains the collocation point, a 
singularity exists in the fundamental solution and the integration scheme is different. First of all, 
the part containing the singularity is separated from the rest of the fundamental solution to be 
integrated. This is done by subtracting the static fundamental solution from the dynamic one. The 
difference is non-singular at any point of the integration domain and can be integrated by means of 
the same kind of numerical quadrature formula, combined with the quadratic transformation of 
the co-ordinate $, as before. 

The coefficients of equation (13) for which i==/ can be written as 
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where TCidin(<^„, r\m) and UK<6in(£H, rjm) stand for the values at £„, rjm of matrices of the same form of 
those in equations (7) and (11) but with the difference between the dynamic and the static 
fundamental solution instead of the dynamic fundamental solution (Tkldin = Tkl — !rt, (static) and 
*Aj.din = Uki — (A/(static) instead of Tkl and Ukl, respectively). Figure 6 shows the integration 
domains and the collocation points for this case. The process is completed with the integration of 
the static fundamental solution. The coefficients Tu (static) and Ukl (static) are known in terms of 
the distance r and its derivatives (Figure 6): 
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Figure 6. Integration domains and co-ordinates when the collocation point is inside the integration domain: (a) 3' = 0, 
(b)^ x/2 

for the case of Figure 6(a) and the same with the angle a instead of 3 for the case of Figure 6(b). The 
double integrals of equations (7) and (11) may be written as an integration over p inside an 
integration over 9. It may easily be shown that the integration over p can always be reduced to a 
linear combination of the following integrals: 
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From which an exact closed form solution is easily obtained. The expressions for the double 
integrals of the static fundamental solution appearing in equations (7) and (11) are given in terms 
of Jx, 12, /3 and J4 in the Appendix. After the integration over p has been carried out, the 
integration*along 9 follows the two extreme circumferences of the element. These non-singular 
integrals are done using the same numerical integration approach as before, i.e. a quadratic 
transformation of $ into the dimensionless variable £ and a twenty-point Gaussian quadrature. 

NUMERICAL RESULTS FOR SURFACE CIRCULAR FOUNDATION 

The generalized frequency-dependent force-displacement relationship (stiffness matrix) for a 
massless rigid circular foundation can be written as (see Figure 7) 
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The stiffness functions are written as 

Kfj = Kijikij + ia0Cij)t (i,j = h, r, v, t) (23) 



where K^ is the static value, ku and c{i are the dynamic stiffness and damping coefficients, 
respectively, and a0 = coR/C% is the dimensionless frequency. R is the foundation radius and C, the 
shear-wave velocity of the material under the foundation. Each material is defined by a complex 
modulus G* =*G (1 + 2i£) in which f is the material damping; p is the density and v is Poisson's 
ratio. Each column of the stiffness matrix is obtained prescribing a unit displacement or rotation 
following one of the co-ordinates and computing the resultant force and moment at the 
foundation centre point. 

Foundation on a uniform half-space 

A first test of the proposed approach is obtained by the comparison of the calculated dynamic 
stiffness and damping coefficients, of a circular foundation on a half-space, with analytical 
solutions obtained assuming relaxed contact conditions.1'2 The material is assumed to be 
perfectly elastic with a Poisson's ratio v = 1/3. Welded contact conditions between the soil and the 
foundation are used in the present study. The boundary element discretization under the 
foundation consists of eight constant elements of variable length (Figure 8). Even though a 
complete space fundamental solution is used, the soil free surface is not discretized because the 
effect of those elements on the foundation stiffness would be very small. In fact if'smooth' contact 
between the foundation and the soil were assumed the free-surface element would not have any 
effect at all on the equations of the interface elements.6 

Figure 9 shows a comparison between the stiffness coefficients computed by the proposed 
approach and the analytical solutions published by Veletsos and Wei1 and by Luco and 
Westmann.2 The agreement between the results can be considered as good, in particular when the 
simplicity of the mesh (only eight constant elements) and the kind of contact conditions used in 

Figure 7. Description of model and co-ordinate system 
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Figure 8. Boundary discretization for circular foundation on a half-space 
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Figure 9. Stiffness coefficients for circular foundation on an elastic half-space (v= 1/3) 

each study are taken into account. A zero damping factor has been considered for the half-space. 
This perfectly elastic material cannot be modelled by some other numerical approaches which 
have to include a certain amount of material damping. Results for values of a0 as low as 001 have 
been obtained without any numerical difficulty. Results for a0 = 0 have also been computed. 



To complete the half-space study, a viscoelastic half-space with a damping factor £ = 015 is 
analysed. Results computed using the proposed approach with the eight-element discretization of 
Figure 8 are shown in Figure 10. Results obtained by Luco21,23 by numerical solution of sets of 
integral equations and using relaxed contact conditions for horizontal, vertical and rocking 
stiffness coefficients are also shown for comparison. The agreement is very good. 
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Figure 10. Stiffness coefficients for circular foundation on a viscoelastic half-space (v= 1/3; damping factor £ = 0*15) 



Foundation on a soil layer on a half-space 

The following example has been chosen to test the capability of the proposed approach to 
compute dynamic stiffness coefficients in cases where there are resonance peaks due to the 
existence of a soil layer on a stiffer bedrock. The results are compared with those obtained by 
Chapel19 using a boundary element approach and with the results presented by Luco.22 The same 
properties of References 19 and 22 have been assumed. The soil layer is characterized by Young's 
modulus Ex = 1*76 x 106 N/m2, Poisson's ratio vx = 0-3 and density px = 1-7 x 103 kg/m3. The 
uniform half-space is characterized by Young's modulus E2 = 1*25 x 107 N/m2, Poisson's ratio v2 

= 0-25 and density p2 = 2 x 103 kg/m3. The above properties lead to a shear-wave velocity ratio 
RC% = Ct2/C%1 = 2-5. Two different layer depths are analysed: H/R=0-5 and H/R = \. 

Figure 11 shows the model and the boundary element discretization. The soil-foundation 
interface has the same element distribution as the previous example. Seven elements have been 
placed on the soil free surface, their length being R/4 for the first two and R/2 for the other five. The 
interface between the two materials has been discretized into eight elements with a length equal to 
R/2. 

The values of the computed vertical stiffness coefficients normalized by the static stiffness of a 
uniform half-space with the properties of the soil layer are shown in Figure 12 for a frequency 
range 0 ^ a0 ^ 6 and two layer depths. The results obtained by Chapel19 and Luco22 for the same 
problems are also represented. The calculated values agree very well with Luco's. The results of 
Chapel are, in general, in good correlation with the other two; however, they show more 
differences with the computed and Luco's results than those existing between the latter two. 

Foundation on a multilayered soil on a half-space 

The last example corresponds to a layered soil based on a half space. The problem is the same as 
that studied by Luco in Reference 21 using an approach based on numerical solution of sets of 
integral equations. The depth of the upper boundary of each region and the material properties are 
given in Table I. The foundation radius is 52-5 feet. 

The discretization of the boundaries is done automatically in the code according to the 
following criteria: (1) the soil-foundation interface is discretized into the same eight elements as the 
two previous examples; (2) a soil free surface equal to three times the radius is discretized; (3) the 
length of the free-surface elements is equal to the minimum of two values; one half of the minimum 
S-wavelength of a layer and the minimum layer thickness, except for the two elements closest to 
the foundation, the lengths of which are set equal to R/4; (4) the discretization of the interfaces 
between layers is the same as that of the soil free surface except for the three elements closest to the 
axis, the lengths of which are set equal to R/2. These criteria, that give rise to the discretization 

Figure 11. Circular foundation on a soil layer on a half space. Model and boundary element discretization 
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Figure 12. Vertical stiffness coefficients for circular foundation on a soil layer on a half space 

Table I. Depth and properties of the soil layers and the half-space (foundation radius — 52-5 feet) 

Layer 

S-wave 
velocity Density 

P 

Poisson's 
ratio 

Damping 
factor 

Depth of 
the upper 

undary 

1 
2 
3 
4 
Half-space 

3004 
2198 
3333 
1703 
2522 

143 
138 
160 
136 
150 

0-36 
037 
0-35 
0-37 
0-39 

0-03 
0-05 
0-03 
0-07 
0-06 

0 
49-2 

114 8 
213-2 
377-2 

Units are: pounds, feet and seconds 

shown in Figure 13 for the range of frequencies under study, were applied to the previous example 
as well. Comparisons of the normalized stiffness and damping coefficients obtained by the present 
approach with the results of Luco are presented in Figure 14 for dimensionless frequencies in the 
range from 0 to 1-4. The stiffness coefficients have been normalized using the static stiffness of a 
uniform half-space with the properties of the upper layer. The shear-wave velocity of the upper 
layer is used to normalize the frequency. In general, the agreement of the results shown in Figure 
14 is good. The differences shown in the Figure can be explained to some extent by the different 
kinds of contact conditions used by the authors and by Luco. 



Figure 13. Circular foundation on a multilayered soil on a half-space. Boundary element discretization 

CONCLUSIONS 

Dynamic stiffness functions of rigid circular foundations on a uniform or layered viscoelastic soil 
have been computed by a boundary element approach that makes use of the complete space point 
load fundamental solution. This solution is simple and easy to integrate over the boundary 
elements. The price paid for using such a simple fundamental solution is that the soil free surface 
and the layer interfaces have to be discretized. However, the discretization of the soil surface and 
the layer interfaces can be reduced to a limited zone sorrounding the foundation and is 
automatically done by the code. 

Approaches based on Green's functions for a layered half-space7,9-11 have the advantage of 
requiring only the discretization of the soil foundation interface but have the disadvantage of 
dealing with a fundamental solution that is not known in closed form but in terms of integral forms 
that include products of two Bessel functions and have to be evaluated segmentally by elaborated 
numerical integration procedures. The proposed approach is easier to implement than those other 
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Figure 14. Stiffness coefficients for circular foundation on a multilayered soil on a half space 



approaches. The amount of computer time required to solve a particular problem is smaller for 
one case or the other depending on the number of layers in the soil profile. 

To illustrate the capabilities of the proposed approach, dynamic stiffness functions for a 
uniform half-space and two layered soils have been obtained. The results obtained for the half-
space have been validated by comparison with analytical solutions; those for the layered soils by 
comparison with the results of an approach based on numerical solution of sets of integral 
equations and, in the case of a single soil layer on a half-space, also by comparison with other 
boundary element results. The comparisons indicate a good degree of accuracy. 
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APPENDIX 

Integrals of the static part of the fundamental solution over the element where the point load is 
located, are given in this Appendix. 

Terms corresponding to vertical or torsional motion of the foundation (equation (7)): 

J Pi Jo 

2/4 +^3-cos0+—cosa-^3- ( l+cos 2 9) pdOdp 

2/4 7,cos9d8+ /.cos&d& + /?2 J,cos&d9 VI-
R j /3(l+cos2d)d3 

2 
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(24) 

where A = (l/16);rp(l - v) and B = 3 - 4v. 
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Terms corresponding to horizontal or rocking motion (equation (11)): 
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