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Abstract. It is shown in this short note the existence, for each nonzero member
of the ideal of D-multiples of convolution operators acting on the space of entire
functions, of a scalar multiple of it supporting a hypercyclic algebra.

1. Introduction

Let us consider the vector space L(X) of all operators on X, that is, the
family of all continuous linear self-mappings T : X → X, where X is a Hausdorff
topological vector space. An operator T ∈ L(X) is said to be hypercyclic provided
that there is some vector x0 ∈ X (called hypercyclic for T ) such that the orbit
{T nx0 : n ∈ N} of x0 under T is dense in X (N := {1, 2, . . . }). The set of
hypercyclic vectors for T will be denoted by HC(T ). In this short paper, we
are concerned with the algebraic size of HC(T ) when T runs over an important
class of operators on the space of entire functions. For background on hypercyclic
operators we refer the reader to the excellent books [5,18]. An account of concepts
and results about algebraic structures inside nonlinear sets can be found in [2].

It is well known that if X is an F-space (i.e., complete and metrizable, and hence
Baire) and T is a hypercyclic operator then the set HC(T ) is residual, that is, it
contains a dense Gδ subset of X; we can say that HC(T ) is topologically large.
Furthermore, for any topological vector space and any hypercyclic T ∈ L(X), the
family HC(T ) is algebraically large; specifically, it contains, except for 0, a dense
(even T -invariant) vector subspace of X (see [8, 14, 19, 26]). A number of criteria
have been established for an operator T ∈ L(X) to support a closed infinite
dimensional vector subspace all of whose nonzero vectors are T -hypercyclic on an
F-space X; however, not every hypercyclic operators supports such a subspace (see
[5, Chapter 8] and [18, Chapter 10]).

If G is a nonempty open subset of C, the symbol H(G) will stand for the class
of all holomorphic functions in G. We are mainly interested in operators defined
on the space H(C) of entire functions C → C. It is well known that H(C)
becomes an F-space when endowed with the topology of uniform convergence on
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compacta. An operator T ∈ L(H(C)) is said to be a convolution operator provided
that it commutes with translations, that is, T ◦ τa = τa ◦ T for all a ∈ C, where
τaf := f(· + a). Then T ∈ L(H(C)) happens to be a convolution operator if
and only if T commutes with the derivative operator D : f 7→ f ′, and if and
only if it is an infinite order linear differential operator with constant coefficients
T = Φ(D), where Φ is an entire function with finite exponential type, that is,
there exist constants A,B ∈ (0,+∞) such that |Φ(z)| ≤ AeB|z| for all z ∈ C. For
such a function Φ(z) =

∑
n≥0 anz

n and f ∈ H(C), we have Φ(D)f =
∑∞

n=0 anf
(n).

Godefroy and Shapiro [16] proved that every non-scalar convolution operator is
hypercyclic, so covering the classical Birkhoff [13] and MacLane [21] results on
hypercyclicity of the translation operator τa (take Φ(z) = eaz, a 6= 0) and of D
(take Φ(z) = z), respectively. For every non-scalar convolution operator T , the
set HC(T ) contains, except for 0, a closed infinite dimensional vector subspace
of H(C): see [23–25] and also [2, Section 4.5] and [18, Section 10.1].

Therefore, many linear combinations of hypercyclic functions with respect to
a convolution operator are still hypercyclic. But things seem to be more disap-
pointing with respect to multiplication of hypercyclic functions. Let us give an
overview on the short history of this topic. Firstly, we have that for every a 6= 0,
every f ∈ HC(τa) and every n ∈ N with n ≥ 2, the n-power fn 6∈ HC(τa)
(see [3, Cor. 2.4]). As a positive result, it was proved in [3, Th. 2.3] (see also
[4]) the existence of a function f ∈ H(C) –in fact, of a residual subset of them–
such that fn ∈ HC(D) for all n ∈ N. Going into this area in more depth,
it has been recently shown in [7] the existence (for any prescribed nonconstant
Φ ∈ H(C) of subexponential type, meaning that for given ε > 0 there is a cons-
tant A = A(ε) ∈ (0,+∞) such that |Φ(z)| ≤ Aeε|z| for all z ∈ C) of an infinitely
generated multiplicative group consisting, except for the constant function 1, of
non-vanishing Φ(D)-hypercyclic entire functions.

The mentioned result in [3, Th. 2.3] was extended by Bayart and Matheron
who proved that there is even a residual set of functions in H(C) generating a
hypercyclic algebra for the derivative operator, that is, every non-null function in
one of these algebras is D-hypercyclic [5, Th. 8.26]. Recall that the algebra gene-
rated by a function f is nothing but the set {Q ◦ f : Q polynomial, Q(0) = 0}.
The existence of (one-generated) algebras of hypercyclic functions for D was also
independently proved by Shkarin in [25] and extended –also with residuality of
the set of generating functions– by Bès, Conejero and Papathanasiou in [9] to
operators of the form P (D), where P is a nonconstant polynomial with P (0) = 0.

Recently, important advances have been carried out by the last three mentioned
authors in [10,12], but let us first recall the notion of algebrability. If X is a (linear)
algebra then a subset A ⊂ X is called algebrable whenever A ∪ {0} contains a
subalgebra that is not finitely generated, and provided that X is a Fréchet algebra,
A is called dense algebrable if such infinitely generated subalgebra can be taken
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dense in X. For any A ⊂ C the symbol conv(A) denotes its convex hull. If S ⊂ C
is an arc, then S is said to be strictly convex if for each pair of distinct z, w ∈ S
one has S ∩ conv({z, w}) = {z, w}. As usual, the open unit disc {z : |z| < 1}
will be denoted by D, and the space H(C)N is assumed to be endowed with the
product topology.

Theorem 1.1. Let Φ ∈ H(C) be of finite exponential type.

(a) ([10]) Assume that the level set {z : |Φ(z)| = 1} contains a nontrivial,
strictly convex compact arc Γ such that conv(Γ∪{0})\(Γ∪{0}) ⊂ Φ−1(D).
Then the set of entire functions that generate a hypercyclic algebra for
Φ(D) is residual in H(C).

(b) ([12]) Assume that |Φ(0)| < 1 and that the level set {z : |Φ(z)| = 1}
contains a nontrivial, strictly convex compact arc Γ such that conv(Γ ∪
{0}) \ Γ ⊂ Φ−1(D). Then the set of sequences f = (fj)

∞
j=1 that generate

a dense hypercyclic algebra for Φ(D) that is not contained in a finitely
generated hypercyclic algebra for Φ(D) is residual in H(C)N. In particular,
the set HC(Φ(D)) is dense algebrable.

As applications of the last theorem, it is proved in [10] or [12] that, provided
a 6= 0, |b| ≤ 1, 0 < c ≤ 1, |d| < 1 and k, n ∈ N, the operators cos(aD), sin(aD),
(aDk + b)n, D eD, eD − cI support hypercyclic algebras, while sin(aD), cos(D)
and aDk + d support dense, infinitely generated hypercyclic algebras.

With the aim of contributing to shedding light on this research line, and taking
advantage of Theorem 1.1, we prove in this short note that every D-multiple
of a nonzero convolution operator possesses some scalar multiple supporting a
hypercyclic algebra.

2. D-multiples of convolution operators and hypercyclic algebras

Geometrical properties of analytic functions play a central role in the results
of [10,12]. We recall in the next lemma a convexity property due to R. Nevanlinna,
which can be found, for instance, in [17, Theorem 2.33].

Lemma 2.1. If f ∈ H(D) is one-to-one and satisfies f ′(0) = 1 and f(0) = 0
then the set f(rD) is a convex domain for every r ∈ (0, 2−

√
3).

Let us denote by Lcvl(H(C)) the ring of all convolution operators on H(C), and
by DLcvl(H(C)) the ideal generated by the differentiation operator D, that is,

DLcvl(H(C)) := {DS : S ∈ Lcvl(H(C))}.
Next, we state and prove our result. We denote by T the unit circle {z ∈ C :
|z| = 1}.

Theorem 2.2. Assume that T ∈ DLcvl(H(C)) \ {0}. Then there is ρ > 0 such
that, for every λ ∈ C with |λ| > ρ, the set HC(λT ) is dense algebrable.
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Proof. We are going to apply Theorem 1.1. By assumption, there is a convolution
operator S such that T = DS. Therefore, there exists a nonzero entire function
Ψ(z) with finite exponential type such that S = Ψ(D). If Φ(z) := zΨ(z), then we
get T = Φ(D), Φ has finite exponential type, Φ 6= 0 and Φ(0) = 0. Let N ∈ N
be the order of the zero of Φ at the origin or, that is the same, N = min{n ∈ N :
Φ(n)(0) 6= 0}. According to the local representation theorem (see, e.g., [1, Section
3.3]), there exist α > 0 as well as a one-to-one function ϕ : αD → C such that
ϕN = Φ on αD. Note that ϕ(0) = 0.

Consider the inverse mapping ψ : ϕ(αD)→ αD of ϕ. Since the image ϕ(αD)
is an open subset of C containing 0, there exists β > 0 such that β D ⊂ ϕ(αD).
Then ψ ∈ H(β D), ψ(0) = 0, ϕ ◦ψ(z) = z (z ∈ β D) and ψ is one-to-one on β D.
In particular, ψ′(0) 6= 0. Define the function γ : D→ C as

γ(z) :=
ψ(βz)

β ψ′(0)
.

Note that γ ∈ H(D), γ(0) = 0, γ′(0) = 1 and γ is one-to-one on D. According
to Lemma 2.1, the set γ(rD) is a convex domain for each r ∈ (0, 2 −

√
3). But

this is equivalent to the fact that κ(P ) > 0, κ denoting the signed curvature at
the points P of the curve Γr := γ(rT), where T is oriented counterclockwise
(see [17, Remark on p. 166]). If P = (x(t), y(t)) (t ∈ R) is a (2π-periodic)
smooth parametrization of Γr (obtained, for instance, via composition of γ with
(r cos t, r sin t)), then

κ(P ) =
x′(t)y′′(t)− y′(t)x′′(t)
((x′(t))2 + (y′(t))2)3/2

,

which is a continuous function of P . Therefore, a segment joining two points P,Q
in Γr can intersect this curve only at P,Q (otherwise κ would be ≤ 0 at some
point of Γr). In other words, each curve Γr is strictly convex.

But neither dilations nor rotations alter the strict convexity of an arc as well
as the convexity of a domain, so that all curves ψ(β rT) are strictly convex and
all domains ψ(β rD) (0 < r < 2 −

√
3) are convex. Equivalently, all curves

Ψr := ψ(rT) are strictly convex and all domains ψ(rD) (0 < r < (2−
√

3)β) are
convex. Define

ρ := ((2−
√

3)β)−N .

Fix λ ∈ C with |λ| > ρ and set Φλ := λΦ. Note that λT = Φλ(D) and
|Φλ(0)| = 0 < 1. Consider the level set

L := {z ∈ C : |Φλ(z)| = 1}

and the curve Γ := Ψ|λ|−1/N . This curve is a strictly convex compact arc, and

if z ∈ Γ then |ϕ(z)| = |λ|−1/N , hence |Φλ(z)| = |λ| · |ϕ(z)|N = |λ| · |λ|−1 = 1.
Therefore z ∈ L, so Γ ⊂ L. Denote, as usual, by ∂A and A the boundary and
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the closure, respectively, of a set A ⊂ C. From the maximum modulus principle,
we get Γ = ∂ψ(|λ|−1/ND) and

ψ(|λ|−1/ND) = Γ ∪ ψ(|λ|−1/ND) ⊂ {z ∈ C : |ϕ(z)| ≤ |λ|−1/N}.

Finally, take z0 ∈ conv(Γ∪{0}) \Γ. Since ψ(|λ|−1/ND) is a convex set containing
Γ∪{0}, we get |ϕ(z0)| ≤ |λ|−1/N . But z0 6∈ Γ, so |ϕ(z0)| < |λ|−1/N and |Φλ(z0)| =
|λ| · |ϕ(z0)|N < |λ| · |λ|−1 = 1. Consequently, we obtain conv(Γ ∪ {0}) \ Γ ⊂
(Φλ)

−1(D), and an application of Theorem 1.1(b) yields the desired conclusion. �

Remarks 2.3. 1. Recall that an operator T on a Hausdorff topological space X
is said to be supercyclic whenever there is a vector x0 ∈ X –called supercyclic for
T– whose projective orbit {λT nx0 : n ∈ N} is dense in X. The set of supercyclic
vectors for T is denoted by SC(T ). Observe that Theorem 2.2 also shows, in
particular, that SC(T ) is dense algebrable for every T ∈ DLcvl(H(C)) \ {0}.

2. Part(b) of Theorem 1.1 tells us that, in fact, there are –in the topological
sense– many algebraically independent sequences of functions generating algebras
contained, except for 0, in the sets HC(λT ) of the conclusion of our theorem.

3. Note that the number ρ in Theorem 2.2 is obtained constructively in the proof.
Specifically, we can take ρ = ((2−

√
3)β)−N , where β is the radius of a disc with

center at 0 where the inverse of a local holomorphic branch of the Nth-root of Φ
is defined, and N is the valence of Φ at the origin. This allows us to exhibit
explicit examples. For instance, the operator

T : f ∈ H(C) 7−→ µf ′ + f ′(· + 1) ∈ H(C),

where |µ| ≥ 3e, supports hypercyclic algebras. In order to prove this, we first
notice that T = Φ(D) with Φ(z) = µz + zez. Then Φ(0) = 0. Also, Φ′(0) =
µ+ 1 6= 0, so that N = 1. If z1, z2 are distinct points of D and L is the segment
joint z1 to z2, then by assuming Φ(z1) = Φ(z2) we get

µ|z1 − z2| > 2e|z1 − z2| =
∫
L

2e |dz| ≥
∫
L

|ez + zez| |dz| =
∫
L

|Φ′(z)− µ| |dz|

≥
∣∣∣∣∫
L

(Φ′(z)− µ) dz

∣∣∣∣ = |(Φ(z2)− µz2)− (Φ(z1)− µz1)| = µ|z1 − z2|,

which is absurd. Hence Φ(z1) 6= Φ(z2) and Φ is one-to-one on αD, where α = 1.
Given w ∈ C with |w| < 2.10 +

√
3, we have for all z ∈ T that

|(Φ(z)− w)− (µz − w)| = |Φ(z)− µz| = |zez| < e|z| = e

< 3e− (2.10 +
√

3) < |µ| − |w| ≤ |µz − w|.

According to Rouché’s theorem (see, e.g., [1]), and taking into account that the
value w is reached exactly once by µz in the geometric interior D of the Jordan
curve T (namely, at z = w/µ), we deduce that w is reached exactly once by Φ in
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D, so that we can take as β, ρ the respective quantities

β = 2.10 +
√

3, ρ = ((2−
√

3)(2.10 +
√

3))−1 < ((2−
√

3)(2 +
√

3))−1 = 1.

The selection λ := 1 in Theorem 2.2 ensures the existence of a dense infinitely
generated algebra contained in HC(T ).

In the next and final remark, we will make use of the following assertion, known
as Hadamard’s factorization theorem, that can be found in [20, pp. 68–70].

Lemma 2.4. Assume that f ∈ H(C) \ {0} has finite exponential growth order ρ.
Let Π(z) be the canonical product formed with the zeros of f . Then there exists
a polynomial Q of degree not greater than ρ such that f(z) = eQ(z)Π(z) for all
z ∈ C.

Remark 2.5. Suppose that T ∈ Lcvl(H(C)) is invertible. Then there is an ope-
rator S ∈ L(H(C)) such that ST = I = TS, where I is the identity on H(C).
Since T is a convolution operator, one has Tτ−a = τ−aT for all a ∈ C. Taking
inverses, we get τaS = Sτa for all a ∈ C, so that S is also a convolution operator.
Hence there are Φ,Ψ ∈ H(C) with finite exponential type such that T = Φ(D)
and S = Ψ(D). If by 1 we represent the constant function 1(z) = 1, we obtain:

1(D) = I = Φ(D)Ψ(D) = (Φ ·Ψ)(D).

But the (linear) mapping Φ ∈ {entire functions with finite exponential type} 7→
Φ(D) ∈ Lcvl(H(C)) is one-to-one because Φ(D) 6= 0 as soon as Φ 6= 0: indeed,
according to the Malgrange–Ehrenpreis theorem (see [6,15,22]), any nonzero con-
volution operator is even surjective. Therefore, Φ(z) · Ψ(z) = 1 for all z ∈ C
and so Φ is an entire function without zeros having exponential growth order
ρ ≤ 1. It follows from Lemma 2.4 that Φ(z) = eaz+b for some scalars a, b ∈ C.
Consequently, we have

T = Φ(D) = eaD+b = eb · eaD = eb · τa,
that is, T is a nonzero scalar multiple of a translation operator (conversely, if
T = Mτa with M 6= 0 and a ∈ C then T is invertible: indeed, it possesses inverse
M−1τ−a). Now, assume that T ∈ Lcvl(H(C)) is invertible (so that T = Mτa as
above), that f ∈ H(C) and that (nk) ⊂ N is a strictly increasing sequence such
that fk(z)→ z (k →∞) compactly in C, where

fk(z) := Mnk(f(z + nka))2.

Now, we proceed similarly to [3] (in fact, the following is a special case of [10,
Theorem 2.1], but we keep the proof for the sake of completeness). Since f cannot
be identically 0, any fk is not identically 0 either, so that we can find a closed
Jordan curve J surrounding 0 such that fk(z) 6= 0 (z ∈ J, k ∈ N). Now, we
invoke the argument principle (see, e.g., [1, p. 152]) and the fact that the identity
z 7→ z vanishes only at 0 to deduce that Nk → 1 (k →∞), where by Nk we have
denoted the number of zeros of fk inside J , counting multiplicities. But, clearly,
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each Nk is an even integer, hence (Nk) cannot tend to 1, a contradiction. Hence
f 2 6∈ HC(T ) for any f ∈ H(C). In other words, T cannot support hypercyclic
algebras.

In view of these considerations, of Theorem 2.2, and of the fact that T is in-
vertible if and only if T is not in any ideal (D − cI)Lcvl(H(C)) (c ∈ C), we want
to conclude this paper by expressing what is our conjecture: A nonzero operator
T ∈ Lcvl(H(C)) supports hypercyclic algebras if and only if T is not invertible;
if this is the case, then HC(T ) is dense algebrable. In particular, our conjecture
claims for an affirmative answer to Question 3(ii) in [11] whether the only hyper-
cyclic convolution operators on H(C) not supporting hypercyclic algebras must be
scalar multiples of translations.
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[17] M. O. González, Complex Analysis. Selected Topics, Marcel Dekker, New York-Basel-Hong

Kong, 1992.
[18] K.-G. Grosse-Erdmann and A. Peris, Linear Chaos, Springer, London, 2011.
[19] D. Herrero, Limits of hypercyclic and supercyclic operators, J. Funct. Anal. 99 (1991), no. 1,

179–190.
[20] A. S. B. Holland, Introduction to the theory of entire functions, Academic Press, New York

and London, 1973.
[21] G. R. MacLane, Sequences of derivatives and normal families, J. Anal. Math. 2 (1952),

no. 1, 72–87.
[22] B. Malgrange, Existence et approximation des solutions des équations aux dérivées partielles
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