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ABSTRACT
Railway systems in metropolitan areas support a high density of daily traffic that is exposed to different 
types of disturbances in the service. An interesting topic in the literature is to obtain action protocols 
in the presence of contingencies which can affect the system operation, avoiding the propagation of 
perturbation and minimizing its negative consequences.

Assume that, with a small margin of time (e.g. one day), the decision-maker of the transportation 
network is knowing that a part of the train fleet will become inoperative temporarily along a specific 
transit line and none additional vehicle will be able to restore the affected services. The decision to be 
taken in consequence will require to reschedule the existing services by possibly reducing the number 
of expeditions (line runs). This will affect travellers who regularly use the transit system to get around.

Consider that the decision-maker aims to lose the least number of passengers as a consequence of 
having introduced changes into the transit line. A strategy that could be applied in this context is to 
remove those line runs which are historically less used by travellers without affecting the remaining 
services. Another alternative strategy might be to reschedule the timetables of the available units, taking 
into account the pattern of arrivals of users to the boarding stations and the user behavior during waiting 
times (announced in situ).

The aim of this work consists of assessing the strategy of train rescheduling along the current 
transportation line when the supply must be reduced in order to reinforce the service of another line, 
exploited by the same public operator, which has suffered an incidence or emergency.
Keywords: disruption management, railways, timetable rescheduling.

1 INTRODUCTION
Planning of public transport systems includes decisions about the design of lines and service 
frequency that seek a balance between supply and demand in a given context and with a 
medium-long time horizon. The occasional failures in the operation of the system are usually 
not considered in this initial planning stage; therefore, a system, even properly designed, may 
be unavailable for unforeseen occurrences (such as accidents), or expected episodes of peak 
demand as a consequence of massive events.

In order to reduce the disruptive effect of these imbalances, the operator of a passenger 
transport system must be able to implement some control strategy to adjust schedules to traf-
fic conditions in real time. The most commonly control strategies that are implemented for 
this purpose are express service (to skip stations with little flow of passengers), deadheading 
(to skip all stations during the returning trip), short-turning [1] (to select a portion of the fleet 
in order to serve, by means of short cycles, those route sections exhibiting high demand) and 
a combination of them [2–4].

On the other hand, if the incident happens in another transit line managed by the same oper-
ator, this decision-maker may additionally choose to reallocate its global fleet of vehicles, in 
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order to help for recovering the operability of the affected line with an additional reinforce-
ment of the rolling stock coming from other lines which were normally functioning [5, 6]. A 
first review of models for the rescheduling of railway traffic timetables can be found in Ref. 
[7] and other more recent contribution, oriented to manage incidents, in Ref. [8].

Customers plan their journeys according to a known schedule, and they can become greatly 
inconvenienced if their trains do not arrive or depart at the expected time. In such cases, 
travellers can choose alternative means of transportation different than the usual ones. We 
propose in this article a methodology for implementing a redistribution of services along 
a transit line, which must be carried out by the operator by determining new schedules for 
trains within a series of feasible space-time windows, which have previously been set by the 
manager of the rail infrastructure. The objective consists of minimizing the loss of users, who 
can notice a change in the quality of service that until now they had been receiving.

In Section 2, a model of graphical representation for train schedules is introduced. The 
formulation of the decision model, in addition to its corresponding resolution algorithm, is 
presented in Section 3. A computational experience based on an application to a real case is 
implemented in Section 4. Finally, some conclusions are summarized in Section 5.

2 A GEOMETRIC APPROACH TO MODEL TRAIN SCHEDULES
Railway planners usually use running maps as graphic tools to help them in the planning 
process. A running map is a time-space diagram where possible crossings of trains can be 
observed. According to the approach developed in Ref. [9], a set of diagrams of train opera-
tions, associated to the stations along the transit line, can be built by following a common 
pattern of uniform mesh of time squares of length h. By using this geometric resource, activ-
ity of trains at each section k can be represented in a comprehensive way. Inside the activity 
map of the kth stretch/station, each point will indicate the arriving time (X-coordinate) and 
the leaving time (Y-coordinate) of a train.

In a generic k-station, each train is assigned to a unique point (timetable point, in the fol-
lowing) whose coordinates must be necessarily located in the upper triangle of the first quad-
rant above the straight line Y = X + h (the upper sub-diagonal outlined in green). 

For instance, Fig. 1 shows the data corresponding to three different trains. The first one 
spends in the k-station a time equivalent to 2h in boarding and alighting passengers. Train 2 

Figure 1: Three trains passing through station k.
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uses the minimum time required for that operation, h. Finally, train 3 does not stop at station 
k, and hence its position is located on the shifted diagonal in the first quadrant.

The sequence of stations (where a train may stop or not) along the railway transit line can 
be identified as a succession of temporary arrival–departure diagrams. As shown in Fig. 2, 
each timetable point in the kth map will be connected to all of the feasible points of the verti-
cal segment which starts from its projection on the diagonal inside the (k + 1)th temporary 
map.

These previous considerations lead to a directed graph structure that connects a set of 
feasible points belonging to arrival–departure diagrams that correspond to adjacent stations 
along the transit line (see Fig. 3).

Logically, the number of feasible timetable points (nodes in the graph) will be bounded by 
the number of tracks available into the section considered. Moreover, each timetable point in 
the kth map will have its continuation in any of the feasible points at the vertical segment of 
its projection on the diagonal in the (k + 1)th temporary map (arcs in the graph).

Figure 2: Feasibility zone of timetable points between consecutive stations.

Figure 3: Arcs connecting feasible points corresponding to adjacent stations.



 Francisco A. Ortega et al., Int. J. Transp. Dev. Integr., Vol. 2, No. 4 (2018) 365

3 MODEL FORMULATION
These considerations are included in the following formulation.

Indices and sets

 Index identifying trains of set J

 Index identifying stations of set K

 Indexes identifying instances in the discretized time horizon T

Coordinates in a feasible temporary map                at station k

Parameters

Population available to boarding train j at station k and at time v

Variables

Binary variable equals to 1 if train j is located at point (u,v) at station k; 0, 
otherwise

Objective and constraints
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The objective function (1) maximizes the number of users who can be transported along 
the rail corridor, picking them up at their respective stations k during the time interval that 
they are waiting on platforms, represented by set M k. Constraints (1a) establish that the 
number of train schedules to be located must exactly be J . Restrictions (1b) force passage 
through all stations (with or without stop) for all trains to be determined. Constraints (1c) 
indicate that there can be no train arriving/departing from the kth station if there was just 
another train operating. Restrictions (1e) establish that if there is an active (equals to 1) time-
table point located at position (u,v) of the temporary map for the kth station, then there must 
also be another active timetable point, at the (k + 1)th station on the vth column. Limitation 
of the number of trains that can operate, according to the existing number of tracks (nk), is 
indicated by means of constraints (1d). Finally, restrictions (1f) state the binary nature of the 
decision variables in the integer linear programming model.

In order to compute the real number of users that remains into the transit system (avoiding 
duplicities in the counting process), a threshold must be considered. Let d(k, v) be a param-
eter that indicates a temporary safety distance with respect to the departure time of the last 
train in the initial schedule, which departed from station k before time v + 1. If such a train 
had not existed, then d(k, v) = 1. Hence, once an initial schedule has been established, a value 
for d(k, v) (greater than 1) can be easily computed,  providing a security distance that avoids 
counting one passenger more than once.

Therefore, in order to maximize the real number of travellers kept in the system after the 
rescheduling, constraints (1c) can be modified as follows:
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Additionally, an algorithm is implemented for obtaining good solutions (not necessarily opti-
mal) within a competitive computational time. This heuristic approach can be described as 
follows.

ALGORITHM

[STEP 1] Generate the sequence of temporary maps corresponding to the sections of rail-
way line. Set the mesh density of parameter h. Locate the existing timetable points ( , )u v  
weighted by populations Av

jk.
[STEP 2] Calibrate parameter of a logit function and Estimate populations associated to the 
remaining not quantified timetable-points.
[STEP 3] Determine initial sets:
 – Points of map M k−1  connected to point (u,v) of map M k

: E u v
k
( , )
−

 
 – Points of map M k+1

 connected to point (u,v) of map M k : E u v
k
( , )
+

[STEP 4] An initial feasible graph G
0
 is determined by considering arc sets E u v

k
( , )
−  and E u v

k
( , )
+ , 

varying from maps k = 1 to k = |K|–1. Set j = 0.
[STEP 5] While j < |J|
   [5.1] Let index e represent the arc that ends at point (u,v) in the kth map M k

. For 
each arc e of graph under consideration, the weight Av

jk  of its terminal node is as-
signed. Let A

e 
denote this weight. Let x

e
 be a binary variable equal to 1 if arc e is 
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selected; 0, in other case. By using a usual shortest-path algorithm, determine the jth 
optimal path connecting both two terminal stations.

   [5.2] According to those previously selected arcs and constraints (1a), (1b), (1c′), 
(1d), (1e) and (1f), redefine arc E u v

k
( , )
−  and E u v

k
( , )
+ , giving rise to the graph G

j+1
 for the 

next iteration.
  [5.3] j = j + 1.

The geometrical model above developed can be slightly adapted in order to include the pos-
sibility of transfers between different lines within a more complex network (see Ref. [10]).

4 COMPUTATIONAL EXPERIENCE
As illustration, a section of the railway line with seven stations of Line C4 in the commuter 
train systems of Madrid (Parla [k = 1] – Getafe Sector 3 [k = 2] – Getafe Centro [k = 3] – Las 
Margaritas Universidad [k = 4] – Villaverde Alto [k = 5] – Villaverde Bajo [k = 6] – Atocha 
[k = 7]) has been analysed. Table 1 shows departure times at stations of six trains that com-
plete the itinerary Parla-Atocha in the time period [6:04, 7:00], as well as the number of pas-
sengers boarding trains in each station (data provided by the Spanish national train operator 
RENFE).

The time horizon [6:04, 7:00] has been split into 40 slots of size h (1.5 min). Table 2 shows 
the number of served passengers by each train.

As can readily be seen, the current fleet of six trains running according to this schedule car-
ries 5,598 passengers. Assume that, as consequence of an incident, the system operator must 
reduce the fleet size by three trains. Note that if the three expeditions that carry fewer users 
are removed (myopic strategy), the service could only cover to 3,619 passengers, producing 
a loss of 35.35% of the travellers (see red at Table 2). Therefore, the subsequent strategy for 
train rescheduling should minimize the loss of users, by introducing advances or delays in the 
original schedules of the remainder three vehicles which will remain operative. 

The number of passengers who remain faithful as client in the transit system, after a train 
supply alteration (and a possible travel time increase), can be modelled as: 

Table 1: Departure timetables and passengers boarding in Line C4.

# j k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7

t Pas. t Pas. t Pas. t Pas. t Pas. t Pas. t Pas.

1 6:04 335 6:10 1 6:13 44 6:15 7 6:18 44 6:21 46 6:31 147

2 6:12 177 6:18 5 6:21 113 6:24 48 6:26 124 6:29 81 6:38 302

3 6:16 307 6:22 1 6:25 35 6:28 29 6:30 64 6:34 58 6:42 123

4 6:22 55 6:28 8 6:31 138 6:33 54 6:36 163 6:39 86 6:48 234

5 6:28 429 6:34 10 6:36 145 6:39 62 6:42 173 6:44 119 6:54 349

6 6:34 511 6:40 4 6:42 102 6:44 26 6:46 153 6:50 115 7:00 571
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• A two-level decision model, known as hierarchical logit model (see Ref. [11]), if the user 
knows the news of the rescheduling when he/she is already in the system.

• A decision model of a single level, if the user previously knows the existence of the re-
scheduling in advance, and its impact on the increment of travel time (decreasing the 
perceived utility), choosing the more convenient alternative means of transport between 
the available options.

The situation we assume is the second one. Since departure times of trains at stations were 
previously known by users, a population of potential travellers is mobilized towards the sta-
tion platform, converging in time with the timely arrival of such train. Next, since users are 
unaware of the incident, users will gradually reach the station platforms, hoping to find on 
time their trains (see Fig. 4). Then, they are notified that a service rescheduling has been done 
and some trains can suffer delays or cancellations. This behaviour can produce a decrement 
in the number of passengers after rescheduling. 

There are numerous models devoted to simulate the behaviour of passengers on rail/metro 
platforms (see, for instance, D’Acierno et al. [12]). In Ref. [9] an estimation of the number 
of travellers at the station platform is carried out by means of applying Taylor’s formula to 
the logit term for the waiting-time variable. This approach produces a simple coefficient (less 

Table 2: Passengers transported by the trains (punctual arrivals at stations).

Train Pass. 1 Pass. 2 Pass. 3 Pass. 4 Pass. 5 Pass. 6 Pass. 7 Total pass.

1 335 1 44 7 44 46 147 624

2 177 5 113 48 124 81 302 850

3 307 1 35 29 64 58 123 617

4 55 8 138 54 163 86 234 738

5 429 10 145 62 173 119 349 1,287

6 511 4 102 26 153 115 571 1,482

Figure 4: Percentage of users that reach the station platform.
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than 1) that, after multiplying by initial population, reduces the number of potential travellers 
waiting at the station platform. 

Additionally, the model of demand must describe the interactions between successive 
waves of user arrivals to the platforms. If a train does not arrive at the scheduled time, a part 
of the population will leave the station while another portion would remain waiting for the 
next train, mixing with the next wave of users (see Fig. 5). We assume that no user waits 
beyond two tardy train arrivals.

As example, Fig. 6 shows the time slots and the number of passengers boarding the first 
three trains of the system in the first three stations of Table 1.

Given the gradual access of users to the platforms before the arrival of the train and the 
decline of this population, after verifying that the expected train will not circulate, we can 
estimate the number of potential travellers who stay at all time slots in the station platforms. 
The number of users, ready at platform of station 1 to board a train corresponding to the first 
three waves, is shown in Fig. 7 for successive time slots.

By accumulating the travellers corresponding to independent waves that meet for the same 
time slot on the platform, we can estimate the efficiency of new train schedules by using the 
before described algorithm.

Table 3 shows the three most efficient train schedules along the transit line, by assuming 
that every train must stop at all stations. This context is modelled by imposing equality at 
constraints (1b). The total number of passengers, transported by these expeditions which 
were determined by applying our model, is 5,010, a sensitive improvement with respect to the 

Figure 5: Percentage of users waiting at platform after expected arrival at T*.

Figure 6: Number of passengers boarding trains along the transit lines.

TIMING 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

ST1 335 177 307 55 429

ST2 1 5 1 8

ST3 44 113 35

… 7
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3,619 passengers covered by the three most efficient original timetables (myopic strategy). 
In terms of loss of travellers, this amount only would reach a 10.50%, instead of the earlier 
35.35%.

Following on, Table 4 shows the three most efficient line runs by assuming that not all 
the stations had to be visited. When a train does not stop at a station, it is possible to reduce 
the running time and to visit the following station at precedent time slot by capturing a pos-
sible higher number of passengers. This strategy can be modelled by imposing inequality 

Table 3:  Three most efficient train schedules along the transit line (with mandatory stops in 
all stations).

TIM-
ING 5 9 11 15 16 17 20 21 22 23 26 28 29 32 34 35 40
ST1 417 308     866                      

ST2  4   8       11                  

ST3    132     166      221              

ST4        45      77     76          

ST5          142     215    295      

ST6                  106    132    212  

ST7                       382   335   860

Table 4:  Three most efficient train schedules along the transit line (without mandatory 
stops in all stations).

TIMING 5 9 11 12 15 16 17 20 21 22 23 26 28 29 32 34 35 40-
ST1  417 308 391     866                      

ST2  4    8       11                  

ST3    132      166      221              

ST4        45      77     76          

ST5             142     215    295      

ST6                    106    132    212  

ST7                         382   335   860

Figure 7: Number of travellers ready to board the train in separate waves.
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at constraints (1b) in our model. Since station 2 (with a very low demand) is not visited by 
the second train (green sequence), it is possible to change its transit timetable for picking up 
more passengers at station 1 by means a later departure. By using this strategy, the number 
of travellers is now 5085, and the passenger loss with respect to the scenario of incidence 
absence is only 9.16%.

5 CONCLUSIONS
We have presented a new approach for implementing a redistribution of service along a rail-
way line, which must be carried out by the operator by determining new schedules for trains. 
Planar grids represent the basis of a geometric model for identifying possible locations for 
train timetables. An optimization model has been formulated in order to decide an effective 
rescheduling motivated by a forced reduction in the existing fleet size. This model determines 
in two possible scenarios (with/without mandatory stops in all stations) the more efficient 
solutions that can help to make operative decisions in a railway transportation system. 
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