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Chapter 1

Introduction

Quantum few-body problems appear in many branches of physics, ranging from
nuclear and high energy physics, to ultra-cold atomic gases and condensed matter
physics. Notorious examples are for instance the study of small nuclei [1], like the
triton, the study of hadrons as compounds of constituents quarks [2], the trapped
few-atom problem which can be prepared in ultra-cold atomic labs [3]-[6] or few-
electron quantum dots in condensed matter [7]. In all cases, there are some common
features and techniques which can be applied to many of the systems despite the
very different energy and size scales involved in the problem. All these few-body
systems can exhibit different kind of phases, depending on the interaction among
the constituents, e.g. long or short ranged, spin dependent, etc., which give rise to
different quantum mechanical properties. Among the latter, the onset of quantum
mechanical correlations among the constituents, requiring beyond mean-field ap-
proaches in the description, are particularly interesting nowadays.

In this work we will concentrate on systems of ultra-cold atoms trapped in ex-
ternal potentials. Whenever possible, e.g. non-interacting, we will explore many-
body properties of the system to then concentrate on a more detailed study of the
few-body case. Recent experiments have shown a great improvement in control of
the experimental parameters of the Bose-Einstein condensates (BEC), such as their
geometry, the number of particles condensed and the interactions induced in the
system. Nowadays, it is possible to generate a BEC confined to one dimension just
by increasing substantially the transversal frequencies of the optical lattices which
sustain the condensate [8]. It has also been reported the possibility of precisely con-
trolling the interaction among particles by means of a magnetically induced Fes-
hbach resonances [9]. Thus open us a new way to understand how many-body
quantum mechanical correlations build in few-body systems [3]-[6] & [10]-[13], as
in these systems, the clash between a strong interaction and the confinement to a
low-dimensional geometry ends in a magnification of the quantum effects, induc-
ing important quantum correlations in the system.

These new experimental procedures provide us a theoretical many-body labo-
ratory that permits to either corroborate or discard some mean-field theories de-
veloped in the last century, which are thought to be good approaches for weak-
interacting systems. Another interesting example to study this interplay between
confinement and interaction, is the Tonks-Girardeau gas, which basically consists
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on having atoms with a very strong repulsive interaction confined to a one dimen-
sional geometry. Taking advantage of these new experimental methods, it is possible
to study the evolution of the static and dynamical properties of this kind of systems
from the non-interacting to the strongly interacting regimes.

The minimal example of the Tonks-Girardeau system is that of two particles
trapped in a harmonic oscillator potential [14]. Such system offers an appropri-
ate playground to study this interplay between quantum many-body correlations
and statistics. For the case of a contact interaction potential, two noteworthy lim-
its are well known. This kind of contact interaction potentials are realistic in the
case of ultra-cold atomic systems [15], and even have also been used in effective
interaction theories in nuclear physics [16]. In the particular case of two particles,
in absence of interactions the two atoms populate the lowest energy single particle
state, producing the minimal version of a Bose-Einstein condensed state, whereas
in the infinite interaction limit the two bosons resemble in many ways two spin-less
non-interacting fermions, producing the so called Tonks-Girardeau (TG) limit [17].

This thesis is organized in the following way. First, in chapter 2 we introduce
the homogeneous system, which is most simple system of this kind only containing
a δ-contact interaction. Next, in chapter 3 we describe the N particles one dimen-
sional Tonks-Girardeau system with a confinement given by an harmonic potential,
whereas in chapter 4 we do analyze more extensively the same system but only for
2 particles. In the following chapter, the breathing mode (excitation) of this system
is explained; and in chapter 6 the general energy sum rules of the dynamic structure
function associated to a given excitation operator are derived. After that, in chapter
7 , these sum rules are applied to the two particle system. Finally, in chapter 8 we
summarize the whole project and draw the conclusions.
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Chapter 2

Homogeneous system

We start by considering the homogeneous system, characterized by a linear density
n = N/L where N is the number of bosons enclosed in a linear box of length L.
To simulate the homogeneous system, we implement periodic boundary conditions
and take the thermodynamic limit with N → ∞ and L → ∞ keeping the ratio n
constant. We concentrate our efforts on the Lieb-Liniger model ([18]), which takes a
δ-contact interaction to describe the inter-atomic interactions which has been used
frequently in the literature.

The Hamiltonian for this system has two terms : the kinetic energy and the in-
teraction energy.

H = − ~2

2m

N∑
i

d2

dx2i
+ g

N∑
i<j

δ (xi − xj) , (2.1)

where g is a parameter which characterizes the strength of the δ-contact interaction.
In this work we consider only the repulsive case with g ≥ 0.

2.1 Non-interacting limit and mean-field

In the non-interacting limit, the system would simply consists on having N free
bosons of massm enclosed in a linear box of length Lwith periodic boundary condi-
tions. The system could be described as a product state of N free-particles properly
symmetrized.

The use of periodic boundary conditions allows us to consider the plane wave
single-particle basis.

ψ0(x1, x2, ..., xN) = Ŝ(
N∏
i=1

φk(xi)), (2.2)

where the operator Ŝ is the responsible for the symmetrization of the wave function.
The single particle wave functions are defined as :

φk(xi) =
1√
L
eipkxi , pk =

2πnk
L

, (2.3)
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and where nk can be any integer.

In the ground state the system is fully condensed with all the particles in the zero
momentum state which is allowed by the periodic boundary conditions. In this case,
the product of the single-particle wave functions with k = 0, i.e. , ψ0(x1, x2, ..., xN) =

(
∏N

i=1 φ0(xi)), is already symmetric.

In this regime, using perturbation theory, we can derive the energy per particle
as the expectation value of the interaction energy in the ground state of the free sys-
tem

e =
E

N
=
V

N
=

1

2
ng, (2.4)

and the chemical potential

µ =
dE

dN
= ng. (2.5)

Notice, that both are linear with the density number and the interaction strength.
In the non-interacting limit we will not observe any kind of two-body correlations,
obtaining a constant two-body distribution of g(x) = 1.

2.2 Tonks-Girardeau limit and Fermi-Bose mapping

In the Tonks-Girardeau limit we assume an infinite interaction strength g, so that
the particles in our system become impenetrable point-like bosons. In this limit we
can apply the Fermi-Bose mapping ([17],[20]), which in essence consists on trans-
forming a fermionic wave-function (ψF ) into a bosonic one (ψB). The most general
expression for this mapping is given by

ψB(x1, ..., xN , t) = A(x1, ..., xN)ψF (x1, ..., xN , t), (2.6)

where A is a unit antisymmetric function

A(x1, ..., xN) ≡
N∏
i>j

sgn(xi − xj), (2.7)

in which

sgn(x) ≡ x

|x|
. (2.8)

By construction, the new wave-function ψB is symmetric under any permuta-
tion. In the case of the the ground state of the system, the expression reduces to

ψB0 (x1, ..., xN) =
∣∣ψF0 (x1, ..., xN)

∣∣ , (2.9)
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where ψF0 (x1, ..., xN) is the ground state of a free-fermion system, which is sym-
metrized by applying the absolute value on the Slater determinant of the underly-
ing free Fermi sea.

This mapping allows us to obtain the ground state of the system as the absolute
value of the Slater determinant of the lowest N single-particle plane waves

ψ0(1, .., N) =
1√
N !

∣∣∣∣det

(
1√
L
eipjxl

)∣∣∣∣ . (2.10)

The highest occupy level defines an effective Fermi momentum, which is related to
the linear density through

N =
L

2π

∫ kF

−kF
dk ⇒ n =

kF
π
. (2.11)

While the energy and chemical potential are given by

E =
L

2π

∫ kF

−kF

~2k2

2m
dk ⇒ e =

E

N
=
π2~2

6m
n2 (2.12)

µ =
dE

dN

π2~2

2m
n2. (2.13)

In this strongly interacting limit emerge important two-body correlations which
affect the two-body distribution function:

g(x12) =
N(N − 1)

n2

∫
ψ∗(1, ..., N)ψ(1, ..., N)dx2...dxN , (2.14)

which essentially gives the probability to find two particles at a given distance
x12 and coincides with the two-body distribution function of the underlying one-
dimensional free Fermi sea. 2.1

g(x) = 1− sin2(nπx)

(nπx)2
. (2.15)

The two-body distribution function is zero for x12 = 0, i.e., two particles can not be at
the same point if the strength of the interaction goes to infinity. Then the distribution
function heals to 1, with small oscillations that never bring g(x12) above 1.

This two-body distribution fulfills the sequential condition

n

∫ ∞
−∞

(g(x)− 1) dx = −1. (2.16)

Directly related to g(x) we have the static structure function defined as

S(k) = 1 + n

∫
eikx (g(x)− 1) dx. (2.17)

This is the Fourier transform of the two-body distribution function, which is shown
in Fig. 2.2. The static structure function contains useful physical information. For
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FIGURE 2.1: Two-body distribution function for an homogeneous bo-
son system, with a delta contact interaction in the Tonks-Girardeau
limit (g → ∞). It departs from 0 at the origin, since the particles in
this regime are impenetrable and point-like. Notice that is the same as

for a free Fermi gas at T=0.

instance the slope of S(k) when k → 0 is related to the speed of sound in the system,

S(k)→ ~k
2mcs

⇒ cs =
~πn
m

, (2.18)

which is in agreement with the thermodynamic estimation of the speed of sound
calculated from the derivative of the chemical potential:

mc2s = n
dµ

dn
⇒ ~πn

m
, (2.19)
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FIGURE 2.2: Static distribution function for an homogeneous boson
system, with a delta contact interaction in the Tonks-Girardeau limit
(g → ∞). It departs from 0 at the origin, and end up in a limit value
S(k)→ 1 for k

nπ ≥ 2. since the particles in this regime are impenetrable
and point-like. Notice that is the same as for a free Fermi gas at T=0

and that also fulfills the sequential condition.
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Chapter 3

1D system trapped in an H.O.
potential

In this chapter we introduce a one dimensional bosonicN -particles system confined
in an harmonic oscillator potential. The interactions between the particles are de-
scribed by a δ-contact interaction with strength g. First we analyze two extreme lim-
its: the mean field or weakly interacting regime which includes the non-interacting
case, with g = 0, and the strongly interacting regime, also known as the Tonks-
Girardeau limit, when g →∞. In the TG regime the quantum correlations dominate
the behavior and as a consequence the mean field, which is not able to incorporate
particle-particle correlations to the wave function, gives a very poor description of
the system. As mentioned in the introduction, these systems with different number
of particles and a good control of the tuning of the strength of the interaction have
been experimentally realized ([3, 5, 13, 21, 22]).

3.1 Hamiltonian of the system

The Hamiltonian for many identical bosons trapped in a one dimensional harmonic
oscillator and interacting through a contact potential can be read as,

H = − ~2

2m

∑
i

d2

dx2i
+
∑
i

1

2
mωx2i + g

∑
i<j

δ (xi − xj) , (3.1)

where the inter-atomic interaction is described by a Dirac delta function with strength
g. In order to simplify the notation, from now on, we will work in H.O. units. In this
case, the Hamiltonian is written as:

H = −1

2

∑
i

d2

dx2i
+

1

2

∑
i

x2i + g
∑
i<j

δ (xi − xj) . (3.2)

3.2 Virial Theorem

Note that the Hamiltonian in 3.2 is formally the same for fermionic and bosonic sys-
tems. It is useful to decompose the Hamiltonian in three contributions: the kinetic
energy (T ), the energy associated to the harmonic potential (VHO) which plays the
role of a confining potential and the interaction energy (Vint). Therefore we have
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H = T + VHO + Vint with

T =
N∑
i=1

−1

2

d2

dx2i
,VHO =

N∑
i=1

x2i
2
, Vint =

N∑
i<j

gδ(xi − xj). (3.3)

When the system is composed by bosons, one can compute analytically the en-
ergy in two limiting cases: 1) the non-interacting case and, 2) the extremely repulsive
case. But in this section we want to concentrate on the virial theorem which allows
to establish a relation between the different energy contributions. The virial theorem
is based on the scaling transformation of the many-body wave-function and how the
expectation values of the different pieces of the Hamiltonian transform under these
scaling transformations. To this end, we first define a new wave function through
the scaling transformation,

Ψλ(x1, x2, ..., xn) = λN/2Ψ(λx1, λx2, ..., λxN). (3.4)

The new wave-function ψλ has exactly the same normalization than ψ, since

〈ψλ|ψλ〉 =

∫
dx1dx2...dxNψλ(x1, x2, ..., xn)∗ψλ(x1, x2, ..., xn)

= λN
∫
dx1dx2...dxNψ(λx1, λx2, ..., λxn)∗ψ(λx1, λx2, ..., λxn)

= λN
∫

1

λN
dy1dy2...dyNψ(y1, y2, ..., yn)∗ψ(y1, y2, ..., yn) = 〈ψ|ψ〉 ,

(3.5)

where we have implemented the change of variable yi = λxi. The harmonic oscilla-
tor energy is transformed as

VHO(λ) = 〈ψλ|
N∑
i=1

x2i
2
|ψλ〉

=
N

2
λN
∫
dx1dx2...dxNψ(λx1, λx2, ..., λxn)∗x21ψ(λx1, λx2, ..., λxn)

=
N

2
λN
∫

1

λN
dy1...dyNψ(y1, ..., yN)∗

y21
λ2
ψ(y1, ..., yN)

=
1

λ2
〈ψ|VHO |ψ〉 =

1

λ2
VHO(λ = 1).

(3.6)

The transformation of the interaction energy reads:

Vint(λ) = 〈ψλ|
∑
i<j

gδ(xi − xj) |ψ〉

=
N(N − 1)

2
gλN

∫
dx1...dxNψ(λx1, λx2, ..., λxN)δ(x1 − x2)ψ(λx1, λx2, ..., λxN)

=
N(N − 1)

2
gλN

∫
1

λN
dy1...dyNψ(y1, y2, ..., yN)λδ(y1 − y2)ψ(y1, y2, ..., yN)

= λ 〈ψ|Vint |ψ〉 = λVint(λ = 1),
(3.7)
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and for the kinetic energy we have

T (λ) = 〈ψλ|
N∑
i=1

−1

2

d2

dx2i
|ψλ〉 = −N

2
λN
∫
dx1...dxNψ(λx1, ..., λxN)∗

d

dx21
ψ(λx1, ..., λxN)

= −N
2
λN
∫

1

λN
dy1...dyNψ(y1, ..., yN)∗λ2

d2

dy21
ψ(y1, ..., yN)

= λ2T (λ = 1).
(3.8)

After all these transformation, the final effect of the scaling can be written as

Eλ = 〈ψλ|H |ψλ〉 = λ2T (λ = 1) +
1

λ2
VHO(λ = 1) + λVint(λ = 1). (3.9)

Now we know that at λ = 1, the energy function Eλ has a stationary point, i.e.

dEλ
dλ

= 0

∣∣∣∣
λ=1

, (3.10)

since ψ(x1, ..., xN)) is taken to be an eigenfunction, which in particular could be the
ground state. Therefore,

dEλ
dλ

= 2λT (λ = 1)− 2

λ3
VHO(λ = 1) + Vint(λ = 1), (3.11)

and imposing the stationary condition, we reach

dEλ
dλ

∣∣∣∣
λ=1

= 0 = 2T (λ = 1)− 2VHO(λ = 1) + Vint(λ = 1), (3.12)

which is valid for any eigenstate of the system. Also notice that the virial relation is
valid for both type of particles; for bosons and for fermions.

3.3 Non-interacting and Tonks-Girardeau limits

It is easy to figure out how the non-interacting limit behaves: as we have no inter-
action, we just deal with a system composed by particles confined by an harmonic
oscillator. Therefore, the Hamiltonian of the system reduces to

H = −1

2

∑
i

d2

dx2i
+

1

2

∑
i

x2i , (3.13)

and the total energy of the system will be the sum of the single-particle states of
one dimensional harmonic oscillator. Knowing that the eigenvalues of a one dimen-
sional H.O. are EHO

n = n+ 1/2 (in H.O. units), the ground state energy of the system
is

E0 =
N∑
i

EHO
0 =

N

2
, (3.14)



12 Chapter 3. 1D system trapped in an H.O. potential

having all the particles in the single-particle state n = 0 of the H.O. Therefore, the
wave-function for the ground state of the system is given by

ψ0(x1, x2, ..., xN) =
N∏
i=1

φ0(xi), (3.15)

where φ0(xi) =
(
1
π

)1/4
e−x

2
i /2 is the ground state of the single-particle harmonic os-

cillator.

In the Tonks-Girardeau limit, g → ∞ we rely again on the Fermi-Bose mapping
to calculate the energy of the ground-state of the system. . As has been explained
in previous sections, in this case, the ground state is the absolute value of the Slater
determinant built as if the particles were fermions. In the case of N particles they
occupy the first N lowest single-particle energy levels of the harmonic oscillator po-
tential, therefore

E0 =

(
1

2
+

3

2
+ ...+

2N − 1

2

)
=
N2

2
. (3.16)

Notice that the absolute value of the Slater determinant guarantees the symmetric
character of the wave function under the exchange of particles, which is a necessary
condition to describe identical bosons. Is also worth to mention the different behav-
ior of the total energy on the number of particles in these two limits: in the non-
interacting case is just linear in the number of particles while becomes quadratic a
function in the strongly interacting case.

3.4 Gross Pitaevskii and Thomas Fermi approaches

In the mean field approach we assume a trial wave function for our system such as

ψ(x1, x2, ..., xN) =
N∏
i=1

φ(xi), (3.17)

with all the particles in the same single-particle state. The expectation value of the
Hamiltonian in this wave function is given by

〈ψ|H |ψ〉 = N 〈φ|− 1

2

d2

dx2
+

1

2
x2 |φ〉+g

N(N − 1)

2
〈φ(x1)φ(x2)| δ(x1−x2) |φ(x1)φ(x2)〉 ,

(3.18)
where the two-body matrix element 〈φ(x1)φ(x2)| gδ(x1−x2) |φ(x1)φ(x2)〉 = g

∫
dx |φ(x)|4.

To find the optimal (less energy) wave function of that type, we perform a functional
variation of the previous energy functional, which is complemented with the intro-
duction of of a Lagrange multiplier µ to impose that the variations in the wave func-
tion respect the normalization condition. The Lagrange multiplier has the meaning
of the chemical potential of the system

δ

δφ∗
[〈ψ|H |ψ〉 − µ 〈ψ|ψ〉] = 0, (3.19)
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from which we get a non-linear differential Hartree-Bose equation for φ, usually
known as the Gross-Pitaevskii equation

− 1

2

d2

dx2
φ(x) +

1

2
x2φ(x) + (N − 1)g |φ(x)|2 φ(x) = µφ(x), (3.20)

where φ(x) is normalized to unity.

It is important to remark that the virial relation is also valid in the mean-field
approximation

2t− 2vHO + vint = 0, (3.21)

where

t = 〈φ| − 1

2

d2

dx2
|φ〉 , vHO = 〈φ| 1

2
x2 |φ〉 ,vint = g

N − 1

2
〈φ(x1)φ(x2)| δ(x1 − x2) |φ(x1)φ(x2)〉

(3.22)
being φ the solution to the Gross-Pitaevskii equation.

A useful approximation to the Gross-Pitaevskii equation which is known as the
Thomas-Fermi approach, which is valid when the kinetic energy contribution can
be neglected in front of both potentials energies; the interaction and the harmonic
oscillator ones. Then the Gross-Pitaevskii equation reduces to

1

2
x2 + (N − 1)g |φ(x)|2 = µ. (3.23)

From this equation we are able to isolate |φ(x)|2, and impose that the density should
be always positive. From that assumption we obtain

φ(x) =

 1√
g(N−1)

√
µ− 1

2
x2, −

√
2µ < x <

√
2µ

0, |x| >
√

2µ .
(3.24)

To determine the value of µ, we impose the normalization of the wave function φ(x),
so that

1

g(N − 1)

∫ √2µ
−
√
2µ

[
µ− 1

2
x2
]
dx = 1. (3.25)

Performing the integral we obtain one equation in terms of the chemical potential
of the system ∫ √2µ

−
√
2µ

[
µ− 1

2
x2
]
dx = 2

∫ √2µ
0

[
µ− 1

2
x2
]
dx =

25/2µ3/2

3
. (3.26)

Then, imposing the normalization condition explained above, we obtain the chemi-
cal potential



14 Chapter 3. 1D system trapped in an H.O. potential

1

g(N − 1)

25/2µ3/2

3
= 1⇒ µ =

(
(3g(N − 1))2

25

)1/3

. (3.27)

Once the chemical potential is known the wave function is fully determined and
the total energy can be calculated assuming always that the kinetic energy is zero.
We can start by the interaction energy per particle

vint = g
N − 1

2
〈φ(x1)φ(x2)| δ(x1 − x2) |φ(x1)φ(x2)〉 = g

N − 1

2

∫ √2µ
−
√
2µ

|φ(x)|4 dx

=
(N − 1)

g2(N − 1)2
g

∫ √2µ
0

[
µ2 − µx2 +

1

4
x4
]
dx

=
1

g(N − 1)

[
µ2x− µx

3

3
+

1

5
x5
]√2µ
0

=
1

g(N − 1)

(
21/2 − 23/2

3
+

25/2

5

)
µ5/2 =

1

5

(
3g(N − 1)

2

)2/3

.

(3.28)

and also compute the harmonic oscillator potential energy per particle

vHO = 〈φTF |
1

2
x2 |φTF 〉 =

1

2

∫ √2µ
−
√
2µ

φ(x)2x2dx =
1

g(N − 1)

∫ √2µ
0

[
µ− 1

2
x2
]
x2dx

=
1

g(N − 1)

[
µ
x3

3
− 1

2

x5

5

]√2µ
0

=
1

g(N − 1)

25/2

15
µ5/2

=
1

10

[
3g(N − 1)

2

]2/3
(3.29)

By adding both vHO and vint, the total energy per particle reads

e =
1

10

[
3g(N − 1)

2

]2/3
+

1

5

(
3g(N − 1)

2

)2/3

=
3

10

(
3g(N − 1)

2

)2/3

. (3.30)

This expression for the energy coincides with the one obtaining by integrating re-
spect to N , the chemical potential as a function of the number of particles:

µ ∼ (3gN)2/3

25/3
, (3.31)

and

E =

∫ N

0

µ(N)dN =

∫ N

0

(3g)2/3

25/3
N2/3dN = N

3

10

(
3gN

2

)2/3

, (3.32)

which coincide with the previous expression when N ≈ (N − 1) (i.e. for N � 1).
Notice also that the virial theorem is still fulfilled in the TF approach. Since t ≡ 0,

2t− 2vHO + vint = 0⇒ vint(N) = 2vHO(N), (3.33)
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expression which we can clearly see that is fulfilled since

vTFint =
1

5

(
3g(N − 1)

2

)2/3

= 2vTFHO. (3.34)

In general, mean-field theories derived above describe properly the behaviour of
our system when the interaction is weak and no correlations are present in the sys-
tem. We have been able to describe the two extreme limits, interacting and strongly
interacting, for any number of particles. It is very interesting, to see how the tran-
sition between the two regimes takes place, and the emergence of the quantum cor-
relations that made useless the mean-field approach. Unfortunately, to solve the
problem for intermediate g and any number of particles is numerically difficult.
However, in the next chapter we will present the first steps towards a general solu-
tion by considering the simple case with N = 2.
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Chapter 4

Two particles trapped in a 1D H.O.
potential

Recent experiments with few ultra-cold atoms are able to probe the statistical prop-
erties of bosons and fermions in the smallest possible settings. Impressively, there
are nowadays experiments with as few as just two fermions [3]-[6] or two bosons
[13]. In the first case, the authors where able to produce the smallest version of the
Fermi sea, populating it atom by atom. In the second, they managed to observe ef-
fects stemming from bosonic statistics with just to bosons.

Thus, in this chapter we will consider the minimal setting of just two bosons
trapped in a harmonic oscillator potential. We will be able to study the transition
from the non-interacting to the strongly interacting systems, thus going from the
two-particle analog of a condensed system to the corresponding to the TG limit.

4.1 Separation of the center of mass

The Hamiltonian can be splitted into two parts: the first one corresponding to the
center of mass of the system (C.M.), and the second one describing the relative mo-
tion. To this end, we define

µ ≡ m/2

M ≡ 2m

xr ≡ x1 − x2

X ≡ x1 + x2
2

,

(4.1)

where µ is the reduced mass, M is the total mass of the system, X is the center of
mass coordinate, and xr is the relative coordinate. With these new variables, the
Hamiltonian is splitted in two piecesH = HCM +Hr with

HCM = − ~2

2M

d2

dX2
+

1

2
Mω2X2 (4.2)

Hr = − ~2

2µ

d2

dx2r
+

1

2
µω2x2r + gδ (xr) . (4.3)
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The frequencies associated to both Hamiltonians are the same. However, the oscil-
lator lengths are different. Now, it is convenient to express the Hamiltonians in the
oscillator units of the original one:

HCM = −1

4

d2

dX2
+X2 (4.4)

Hr = − d2

dx2r
+

1

4
x2r + gδ (xr) . (4.5)

HCM is a harmonic oscillator Hamiltonian which is easy to solve. The problem re-
duces to the solution ofHr.

4.2 First order perturbation theory

In order to get a first idea of the dependence of the energy e system with the strength
of the interaction, we can perform a first order perturbation calculation, which should
provide a reasonable result for small interacting strengths. We assume that the rela-
tive Hamiltonian is given by

Hr = − d2

dx2r
+

1

4
x2r︸ ︷︷ ︸

unperturbed

+ gδ (xr)︸ ︷︷ ︸
perturbation

≡ H0 + gVpert. (4.6)

Then, using the analytical solution of the relative H.O., we obtain a spectrum at first
order perturbation which is slightly shifted

Er = E(0)
r,n + g 〈ψ(0)

r,n| δ(xr) |ψ(0)
r,n〉 =

(
n+

1

2

)
+ g

∣∣ψ(0)
r,n(0)

∣∣2 , (4.7)

Notice that only the states with non zero value of the wave function are affected by
the interaction. For the specific case of the ground state we have:

Eint = g 〈ψ(0)
r,0 | δ(xr) |ψ

(0)
r,0 〉 = g

(
1

2π

)1/2

, (4.8)

and consequently, it provides a perturbed energy for the ground state of relative
motion E0

r = 1/2 + g
(

1
2π

)1/2.
4.3 Solution of the relative Hamiltonian: exact diago-

nalization

As HCM and Hr commute, the wave functions associated to the C.M. and relative
motion factorize, so we can solve each one separated

Ψ(X, xr) = φ(X)ψ(xr). (4.9)
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The HCM is an harmonic oscillator Hamiltonian with the spectrum ECM
k = (k +

1/2) where k are the number of quantums associated to the center of mass motion.
The wave-functions associated to the C.M. are given by

Ψk =
(a
π

)1/4 1√
2kk!

Hk(
√
aX)e−aX

2/2, (4.10)

where Hk are the Hermite’s polynomials and a ≡ Mω/~. Notice that acm = 2,
whereas ar = 1

2
in the H.O. units.

To diagonalize the relative part we will use the following procedure. We choose
a finite number of non-interacting energy eigenstates of the harmonic oscillator,
{ψ0(xr), ψ2(xr), ..., ψ2M(xr)} corresponding toH(0)

r (here M +1 will be the total num-
ber of modes we want to use). Notice that in order to fulfill the requirements of the
bosonic symmetry, we consider only the modes associated to even functions. The
matrix elements of Hr are

〈Ψm|Hr |Ψn〉 =

(
n+

1

2

)
δm,n + g

∫
dxrΨn(xr)Ψm(xr)δ(xr)

=

(
n+

1

2

)
δm,n + gΨn(0)Ψm(0),

(4.11)

where Ψi(0) are the H.O. wave functions at the origin.

Diagonalizing the truncated Hamiltonian we get approximate solutions, whose
eigenvalues are upper bounds of the corresponding exact solutions.

HrΨ̄l = Ē
(r)
l Ψ̄l. (4.12)

4.4 Convergence of the method

In practice we use a huge number of modes, M up to 1500, to guarantee the conver-
gence of the calculations. In fact, in Fig. 4.1 we report the dependence of the ground
state energy on the number of modes used to diagonalize Hr for different values of
the strength interaction g. Obviously, the energy decreases as the number of modes
increases reaching in all cases a limit saturating value with the number of modes
which defines an asymptotic value. The horizontal line at Egs = 3/2 corresponds to
the ground-state energy of Hr in the limit g → ∞. For any finite value of g one can
always find a number of modes (mcrit) such that for a larger number of modes the
energy will be always below 3/2. The mcrit becomes larger as g increases. Therefore,
one can conclude that when g → ∞ the ground-state energy of Hr, as a function
of the number of modes, approaches 3/2 from below. For the case of two bosons
trapped in a harmonic oscillator potential, we could have used the exact solutions
of Ref. [14]. Instead we have decided to present a procedure which, although more
tedious for this precise case, is more general and can readily be applied to other
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FIGURE 4.1: Ground state energy (in h.o. units) of Hr as a function of
the number of modes (the dimension of the space used to diagonalize
the Hamiltonian) for several values of the strength of the interaction.

single particle trapping potential besides the harmonic oscillator or also to other in-
teractions by a proper computation of the matrix elements. Our results coincide,
when applicable, with the exact solutions of Ref. [14].

4.5 Energy spectrum

The full spectrum of the problem will be obtained as,

Ek,l = ECM
k + Ē

(r)
l . (4.13)

In Fig. 4.2 we depict the lowest part of the spectrum as a function of g. The eigen-
values are seen to evolve from the non-interacting bosonic system to those of a free
fermionic system for g → ∞. The g.s. of H is non-degenerated. At g = 0 is built
with both atoms in the ground-state of the harmonic oscillator single-particle Hamil-
tonian or which is the same, it is the product of the ground-states of HCM and Hr.
Therefore both descriptions provide the same energy, E = 1.

However, in the limit g → ∞, the ground state of the two-body system is given
by the absolute value of the Slater determinant built with one atom in the ground
state and the other in the first excited state of the harmonic oscillator single particle
Hamiltonian. Therefore in this limit, the ground state energy (2 in h.o. units) is the
sum of 1/2 and 3/2 single-particle energies, and the contribution of the contact inter-
action is zero. When one does the decomposition in HCM and Hr the ground state in
the g → ∞ is achieved by taking the center of mass in the ground state (φ0(X)), i.e.
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FIGURE 4.2: Lowest energy levels of the spectrum for the two bosons
system, for a range of interaction strength [0,20]. The red lines corre-
spond to the G.S. of Hr, whereas the green and blue lines correspond
to its 1st and 2nd excitations respectively. These relative Hamiltonian
states are also combined with C.M. excitations,which result in paral-
lel curves which are shown with the same color for the same relative
Hamiltonian state. For instance, the lowest state takes into account the
energy of the ground state of the C.M., equal to 1/2 and independent of
the strength of the interaction, and the ground state energy of Hr which

is 1/2 for g = 0 and approaches 3/2 for g →∞.

in the lowest CM level, with energy 1/2, and the relative wave function is taken to
be the absolute value of the first excited state, ψ1(xr) of H(0)

r with energy 3/2. Notice
that ψ1(xr) is an odd function and therefore it would be necessary to use an infinite
basis of even functions, which are the ones that we have used in the diagonalization
of Hr to respect the symmetry requirements for bosons, to asymptotically approach
the exact eigenstate. The lowest excited state of the system corresponds to the first
excitation of HCM , with energy 3/2 and to the relative ground state along g. Thus
the first excited state has a constant excitation energy independent of g. Actually,
the excitations of the c.m. show all the way up resulting in a set of curves parallel to
the ground state curve, all depicted with red colour in Fig. 4.2. Notice that the first
excited state at g = 0 can also be described as a properly symmetrized wave function
with an atom in the ground state (energy 1/2) and the other in the first excited state
(energy 3/2) of the single-particle harmonic oscillator Hamiltonian.

The next excitation consists of two states, one (red line) corresponds to 2 quan-
tums of excitation of the C.M. motion, combined with the G.S. of Hr. While the
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second (green line) describes the state, where the C.M. is in the ground state and the
relative motion corresponds to the first excited state of positive parity of Hr. The
two lines coincide at g = 0, where the energy level has degeneracy 2, then as g in-
creases, the degeneracy is broken ( green line) and the energy of this state is always
below the energy of the state with two quantums of excitation of the C.M. At g →∞
the two states become again degenerated with total energy 4.

4.6 Contributions to the total energy

The transition from the BEC regime into a correlated one, finalizing at the Tonks-
Girardeau regime, as the interaction strength is increased can be clearly seen in Fig.
4.3. There we report as a function of g the total g.s. energy (red line) decomposed in
kinetic energy Ekin (blue line), harmonic oscillator potential energy Vho (black line)
and the interaction energy Vint (green line). Notice that both Ekin and Vho contain
a constant contribution of the C.M. equal to 1/4. We observe how the interaction
energy increases as g is increased until it reaches a maximum value around g ' 2.
For g & 2 the behavior changes completely and despite the atom-atom interaction
strength is increased the interaction energy of the ground state decreases monoton-
ically as g → ∞. This is a clear consequence of the formation of correlations in the
system which avoid the contact of the two bosons, much in line with systems like
electrons in a 2D fractional Hall regime. Notice, that the exact wave function, when
g →∞ for the relative motion, built as |ψ1(xr)|, does not feel the interaction. In fact,
at g = 0 , Vint = 0 and is zero again in the limit g → ∞. The Vho increases monoton-
ically from Vho = 1/2 at g = 0 up to Vho = 1 for g → ∞, While the kinetic energy
starts at Ekin = 1/2 for g = 0, decreases a little bit, goes through a minimum and
then starts to grow up to the value Ekin = 1 in the limit g → ∞. For any value of g,
the virial theorem

2Ekin − 2Vho + Vint = 0 (4.14)

is exactly fulfilled, indicating a good convergence of the energy results with the
number of modes. The virial relation, together with the fact thatE = Ekin+Vho+Vint
allows to write

Ekin =
1

2
E − 3

4
Vint, Vho =

1

2
E − 1

4
Vint (4.15)

which is valid for any value of g. Therefore we conclude that for any value of g,
Vho ≥ Ekin. In particular, for g = 0, as Vint = 0, Ekin = Vho = e/2 = 1/2. The
same happens at g → ∞ when Vint = 0, but with a different value of e, which turns
to be E/2 = 1. In order to understand the behaviour of the different pieces of the
energy, for very small g, we can combine a first order perturbation theory with the
virial theorem. The correction to the energy is provided by the expectation value
Vint,0 = 〈φ(0)

r | gδ(xr) |φ(0)
r 〉 = gφ

(0)
r (0)φ

(0)
r (0) = g

(
1
2π

)1/2, where |φ(0)
r 〉 is the ground

state of H(0)
r . Therefore, Vint,0 increases linearly with g. Using the previous relations

for Ekin and Vho,
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FIGURE 4.3: Different contributors to the ground state energy: VH.O.,
Ekin and Vint, shown in black, blue and green respectively. The total

ground state energy is shown in red.

Ekin =
1

2
− 1

4
Vint,0 =

1

2
− 1

4
g

(
1

2π

)1/2

Vho =
1

2
+

1

4
Vint,0 =

1

2
+

1

4
g

(
1

2π

)1/2
(4.16)

Therefore, for very small g the kinetic energy decreases while the harmonic oscillator
energy increases with opposite slopes. These variations are associated to the kinetic
and harmonic potential energies of the relative motion.
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Chapter 5

Breathing mode

The natural way to explore the structure of a quantum system is to study the re-
sponse of the system to excitations. Once we know the excitation operator, the re-
sponse is mathematically expressed in terms of the Dynamic Structure Function.
In this chapter we consider the monopole excitation operator which excites the so
called breathing mode. For this excitation operator, the excitations can be separated
in two types: center of mass excitations and intrinsic excitations. The lowest in-
trinsic excitation which corresponds to the breathing mode concentrates most of the
strength of the dynamic structure.

5.1 Dynamic Structure Function (DSF): Excitation op-
erator

The dynamic structure function encodes the response of our system to an external
perturbation. In this section we will consider the dynamic structure function of a
mono-polar excitation, also known as the breathing mode. For a system with an
arbitrary number of particles N , the breathing mode can be excited by the one body
operator,

F̂ =
N∑
i=1

x2i . (5.1)

The associated Dynamic Structure Function reads

SF (E) =
1

N

D∑
a=0

∣∣∣〈a| F̂ |0〉∣∣∣2 δ [E − (Ea − E0)] . (5.2)

in which d is the dimension of the truncated space of the diagonalization and where
|a〉 runs over the excited states, H |a〉 = Ea |a〉 and |0〉 is the ground state of the sys-
tem. SF (E) can be explicitly computed with the eigen energies and eigenfunctions
of the system.
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5.2 Calculations for N=2

The monopole excitation operator F̂ =
∑N

i=1 x
2
i can be separated in two pieces, one

that corresponds to the center of mass and the other to the intrinsic motion. In the
particular case of N = 2 we have,

F̂ = x21 + x22 = 2X2 +
x2r
2
, (5.3)

so that we compute the matrix elements 〈a| F̂ |0〉 taking advantage of the factor-
ization of the state, |a〉 = |λCM〉 |νr〉 = |Φλ

CM〉 |Φν
r〉, where λ & ν are the quantum

numbers associated to the C.M. and the relative part of the state |a〉 of our system

〈a| F̂ |0〉 = 〈Φλ
CM | 〈Φν

r |
[
2X2 +

x2r
2

]
|Φ0

CM〉 |Φ0
r〉

= 〈Φλ
CM | 2X2 |Φ0

CM〉 〈Φν
r |Φ0

r〉+ 〈Φν
r |
x2r
2
|Φ0

r〉 〈Φλ
CM |Φ0

CM〉 .
(5.4)

The product 〈Φλ
CM | 2X2 |Φ0

CM〉 can be obtained using the orthogonality proper-
ties of the Hermite’s polynomials in the following way: First of all we write the
product explicitly

〈Φλ
CM | 2X2 |Φ0

CM〉 =

∫ ∞
−∞

Ψλ∗(X)2X2Ψ0(X)dX

=

(
2

π

)1/2
1√

2λλ!

∫ ∞
−∞

Hλ(
√

2X)e−X
2/22X2H0(

√
2X)e−X

2/2dX

=

(
2

π

)1/2
1√

2λλ!

∫ ∞
−∞

Hλ(
√

2X)e−X
2

2X2dX.

(5.5)

After that, we can perform a variable change y ≡
√

2X obtaining

〈Φλ
CM | 2X2 |Φ0

CM〉 = 2

(
2

π

)1/2
1√

2λλ!
2−3/2

∫ ∞
−∞

Hλ(y)e−y
2

y2dy (5.6)

and taking advantage of the fact that y2 can be expressed in therms of the Hermite’s
Polynomials, we can use

H2(y) = 4y2 − 2 = 4y2 − 2H0(y)⇒ y2 =
H2(y)

4
+
H0(y)

2
, (5.7)

to rewrite the eq. (5.6)

〈Φλ
CM | 2X2 |Φ0

CM〉 = 2

(
2

π

)1/2
1√

2λλ!
2−3/2

∫ ∞
−∞

Hλ(y)e−y
2

(
H2(y)

4
+
H0(y)

2

)
dy.

(5.8)
We have used that the integral value will be the same for y1 and y2, as we integrate
over all the space, in order to do the summation. Then, using the orthogonality
properties, we do know
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∫ ∞
−∞

e−x
2

Hα(x)Hβ(x)dx =
√
π2αα!δα,β. (5.9)

Finally, we observe that the only possible values of λ for the C.M. contribution to
the breathing mode are 0 and 2

〈Φλ
CM | 2X2 |Φ0

CM〉 = 2

(
2

π

)1/2
1√

2λλ!
2−3/2

(√
π222!

4
δ2,λ +

√
π

2
δ0,λ

)
=

4δ2,λ + δ0,λ

2 ·
√

2λλ!
.

(5.10)

As we have diagonalized the relative Hamiltonian the eigenstates obtained are or-
thogonal, and orthonormal when normalized, and consequently we can obtain the
matrix elements 〈Φν

r |Φ0
r〉 as

〈Φν
r |Φ0

r〉 = δν,0. (5.11)

With all this, we observe that the contribution of the C.M. operator to the breath-
ing mode is very limited, since only accepts two possible states, corresponding to
λ = 0, 2 as explained above. On the other hand, the Hr will contribute to the breath-
ing mode very differently. As we are using many H.O. states to diagonalize and
obtain our eigenstates, every excited state will connect many H.O. states by pairs,
as we are going to demonstrate.

First of all, we obtain 〈Φλ
CM |Φ0

CM〉 = δλ,0 simply because of the normalization of
the wave-function in the H.O. that describes the C.M. motion

〈Φν
r |
x2r
2
|Φ0

r〉 〈Φλ
CM |Φ0

CM〉 = 〈Φν
r |
x2r
2
|Φ0

r〉 δλ,0. (5.12)

Then, as the states |Φr〉 are linear combinations of all the eigenstates of a H.O. sys-
tem, the matrix elements 〈Φν

r |
x2r
2
|Φ0

r〉 must be expressed in terms of H.O. matrix
elements in the following way

|Φν
r〉 =

∑
α

Cν
α |ΦH.O.

α 〉

〈Φν
r |
x2r
2
|Φ0

r〉 =
∑
α,β

Cν
αC

0
β

2
〈ΦH.O.

α |x2r |ΦH.O.
β 〉 ,

(5.13)

where the matrix elements 〈ΦH.O.
α |x2 |ΦH.O.

β 〉 can be expressed as a solvable integral
which solution is

〈ΦH.O.
α |x2r |ΦH.O.

β 〉 =



√
β(β−1)
2ar

α = β − 2
2β+1
2ar

α = β√
(β+1)(β+2)

2ar
α = β + 2

0 Otherwise.

(5.14)
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Using these integral solutions, we can rewrite the breathing mode operator’s mean
value as

〈a| F̂ |0〉 = 〈Φλ
CM | 2X2 |Φ0

CM〉 〈Φν
r |Φ0

r〉+ 〈Φν
r |
x2r
2
|Φ0

r〉 〈Φλ
CM |Φ0

CM〉

=
4δλ,2 + δλ,0

2 ·
√

2λλ!
δν,0 +

∑
α,β

Cν
αC

0
β

2
〈ΦH.O.

α |x2r |ΦH.O.
β 〉 δλ,0.

(5.15)

Notice that actually, we have clearly two contributions to the DSF; the first one
corresponds to the C.M., and can only connect the ground state with the first excita-
tion of the C.M. However, in the second contribution, which belongs to the relative
Hamiltonian excitations, we are able to connect many H.O. states since the relative
motion states are not pure H.O. states. Therefore, if we want to depict the exact
value, we just need to use this formula in the eigenstates diagonalized above.

5.3 Results for two particles

For g = 0 and g → ∞ we can also compute SF (E) analytically. In the case of g = 0
both contributions of the excitation operator, i.e. C.M. and intrinsic, excite only two
different states, both at the same energy E = 2, being both strengths the center of
mass excitation and the one of the relative motion 1/4. The C.M. peak will remain
at the same energy and with the same strength independently of the interaction
strengths. In the g →∞ case the two excitations are again peaked at E = 2 but they
have different strengths, 1/4 for the C.M. and 3/4 for the internal excitation. This
implies that even though both excitations have exactly the same energy it should be
more likely to excite the breathing mode in the TG limit than in the BEC one.

In Fig. 5.1 we depict the strengths of the dynamic structure function for N = 2
for four different values of the interaction g. Notice that the strength contains the
factor 1/N included in the definition of SF (E). For g = 0, we have only one peak,
corresponding to the sum of the C.M. and relative motion. As mentioned before, the
C.M. peak will remain constant within for all the interaction strengths.

For nonzero values of the interaction, the strength is distributed over several
excited states, but in all cases the center of mass peak remains visible and located
at E = 2. The strength of the higher intrinsic peaks is always significantly smaller,
two orders of magnitude, than those of the center of mass and the breathing mode.
The strength of the breathing mode and the next three excited states of the relative
motion is shown in Fig. 5.2 as a function of g. In all cases, at g = 0, the strength
of these secondary peaks is zero, and increases with g up to a maximum located
around g ≈ 2, and decreases to zero for g → ∞. The maximum decreases when the
excitation energy increases. Apparently, this dependence is very much correlated to
the dependence of the interaction energy with g (Fig. 4.3). In Fig. 5.2 we report the
dependence of the strength of the breathing mode as a function of g, which turns
out to be an increasing function of g. This behavior will be relevant to understand
the evolution of the energy weighted sum rules of SF (E).
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FIGURE 5.1: Dynamic structure function computed for a system com-
posed by 2 bosons, with a delta contact potential. The value is com-
puted for different interaction’s g values [0,30], and with a number of

modes m=200 (101 modes).

The breathing mode energy decreases ( it lies below the C.M. excitation) for in-
creasing g up to g . 2, above that, it increases again towards E = 2 when g → ∞.
This is the so called reentrant behavior of the mono-polar excitation reported in Ref.
[23]. In an experiment, separating the contribution from the center of mass from that
of the breathing mode seems involved. The response of the system will thus easily
mix both contributions.

The reentrant behavior affects not only to the ground state but to all excited states
of the relative motion. The reentrant energy, defined as Er = Ex(g) − Ex(g = 0) is
zero, by definition, at g = 0, it decreases reaching a negative minimum and then
grows to approach asymptotically zero when g → ∞. The reentrant behaviour is
more pronounced for the higher excited states. The maximum reentrance slightly
shifts to higher values of g for the higher excited states. Again, there seems to exist
a correlation between the interaction energy and the reentrant energy as a function
of g. Computing the structure function explicitly becomes difficult for more than 2
particles. In particular a naive second quantization scheme using the one particle
modes as single particle states runs into difficulties as it mixes the center of mass
with the relative motion in a nontrivial way [24].
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FIGURE 5.2: Strength of excitations of Hr as a function of g. The breath-
ing mode can be observed in red, whereas the other three excited states
are shown in green, black and blue, respectively. The breathing mode is
at least two orders of magnitude more intense than the other excitations

in the whole range of interaction strength [0,30].

FIGURE 5.3: Reentrant energy, Ex(g) − Ex(g = 0) as a function of
the strength of the interaction for several excited states of the relative

motion.

5.4 Excitation of the C.M.

For the monopole operator, the contribution of the C.M. piece of the excitation oper-
ator can be exactly calculated for any number of particles. In fact, starting from the
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definition of the DSF

SF (E) =
1

N

∑
j

| 〈j|
N∑
i=1

x2i |0〉 |2δ(E − (Ej − E0)), (5.16)

where |j〉 is a general excited state of the system. However, the excited states can be
factorized |j〉 = |jCM〉 |jrel〉 and the excitation operator can be also splitted into two
pieces, in such a way that the matrix elements responsible of the DSF can be written
as:

〈j|
∑
i

x2i |0〉 = 〈jCM , jr|NX2 +
1

N

∑
i<j

(xi − xj)2 |0CM , 0r〉 (5.17)

which can be expressed as

〈j|
∑

x2i |0〉 = 〈jCM |NX2 |0CM〉 〈jr|0r〉+ 〈jCM |0CM〉 〈jr|
1

N

∑
i<j

(xi−xj)2 |0r〉 . (5.18)

Taking into account the orthogonality of the states, it can be rewritten:

〈j|
∑

x2i |0〉 = 〈jCM |NX2 |0CM〉 δjr,0r + δjCM ,0CM
〈jr|

1

N

∑
i<j

(xi − xj)2 |0r〉 . (5.19)

Therefore, we have separated the excitations of the C.M. from the intrinsic exci-
tations for the general case ofN particles. Now, we should take into account that the
spectrum of the C.M. is identical to the harmonic oscillator: 1/2, 3/2, 5/2... and that
the ground state will correspond always to the jCM = 0 state with energy 1/2. With
this excitation operator, the only excitation of the C.M. will correspond always to ex-
cite the state jCM = 2 with energy ECM = 5/2, with an excitation energy ECM

exc = 2.
The matrix element, for jCM 6= 0 fulfills that:

〈jCM |NX2 |0CM〉 = δjCM ,2N 〈2CM |X2 |0CM〉 . (5.20)

Actually, one can evaluate this matrix element so that

〈2CM |X2 |0CM〉 =
1√
2N

, (5.21)

and

∣∣〈jCM |NX2 |0CM〉
∣∣2 =

∣∣∣∣N 1√
2N

∣∣∣∣2 =
1

2
. (5.22)

The C.M. excitation appears always at an excitation energy E = 2 with strength
1
2N

, independently of the interactions between the particles. The factor 1
N

is due
to our definition of SF (E) in 5.16. Also notice that this is an alternative and more
generalist way to obtain 5.10.





33

Chapter 6

Sum Rules

In this chapter we introduce the energy sum rules of the dynamic structure function
associated to a given excitation operator. The sum rules encode the response of
the system to an excitation, in particular we focus our attention on the mono-polar
excitation. We derive explicitly and with complete generality for the sum rules M−1,
M1 and M3 for N particle systems. The most important outcome from the these
sum rules is that they allow us to compute an estimate of the main excitation energy
of the system, i.e., the breathing mode energy in our case, by only knowing some
properties of the ground state of the system.

6.1 The energy sum rules

The energy moments (Mn) of the dynamic structure function associated to a given
excitation operator F̂

Mn(E) =

∫ ∞
0

EnSF (E)dE

=
1

N

∑
a

(Ea − E0)
n
∣∣∣〈a| F̂ |0〉∣∣∣2 . (6.1)

provide a full characterization of the response of the system.

If the dynamic structure function is concentrated around a single excitation en-
ergy, SF ' Smδ(E − Eex), then a few energy moments are enough to reconstruct
the DSF. In this extreme case, we have Eex '

√
Mn/Mn−2. For instance, the simplest

one would be Eex '
√
M1/M−1. Usually, the DSF associated to a given operator F̂ is

difficult to calculate. It turns out, however, that the energy moments of the DSF, can
be calculated without the explicit knowledge of the DSF.

As it is well known, there is a great number of theorems that allow one to com-
pute several of the Mn without any explicit knowledge of all the eigenvalues and
eigenvectors of the many-body systems [25]. This is done through so-called Sum
Rules. These sum rules can be computed by the expectation values on the ground
state of certain suitable operators. This strategy is specially appropriate when we
have a good knowledge of the ground-state of the system, and is the way that
Monte-Carlo calculations take advantage of its capability to calculate the ground
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state properties for large number of particles to provide information on the response
of the system [23].

In this chapter we derive the M−1, M−1 and M−3 energy sum rules associated to
the single-particle operator F̂ . Some of the derivations are valid for any excitation
operator but finally we give the explicit results for F̂ =

∑
i x

2
i . The derivation is

valid for any number of particles and in some aspects applies to any inter-particle
interaction. However, at the end we report the results for N = 2 and for the contact
interaction. The contribution of the C.M. motion to the considered sum rules is also
discussed.

6.2 Derivation of the sum rules

In this section we will derive the sum rules M−1, M1 and M3 with complete gener-
ality. These sum rules can be applied to any system of N particles, either they are
fermions or bosons, with a Hamiltonian of the kind from 3.2.

6.2.1 M−1 sum rule

The sum rule M−1 can be obtained through perturbation theory, by defining a new
Hamiltonian as Ĥ ′ = Ĥ + λF̂ , where Ĥ is the unperturbed Hamiltonian with an
unperturbed ground state energy E0, and λF̂ is the perturbation , which in our case
is F̂ =

∑
i x

2
i . The expansion of the energy up to the second order, can be written as

E0(λ) = E0 + λ 〈0| F̂ |0〉+ λ2
∑
q

| 〈q| F̂ |0〉 |2

E0 − Eq
, (6.2)

and therefore the M−1 sum rule can be obtained as

M−1 = −1

2

1

N

∂2E0(λ)

∂λ2

∣∣∣∣
λ=0

, (6.3)

which can be calculated numerically.

Alternatively, related with this procedure, we have another way to calculate this
sum rule, which can be used as a test

M−1 = −1

2

1

N

d

dλ
〈0̃|F |0̃〉

∣∣∣∣
λ=0

, (6.4)

where |0̃〉 is the ground state of H +λF . In fact, the expansion of the ground state of
H + λF around λ = 0 can be written as

|0̃〉 = |0〉+ λ
∑
k 6=0

Fk0
E0 − Ek

|k〉+ ... , (6.5)
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and

〈0̃|F |0̃〉 = 〈0|F |0〉+ 2λ
∑
k 6=0

|〈k|F |0〉|2

E0 − Ek
+ ... (6.6)

Therefore,

d
(
〈0̃|F |0̃〉

)
dλ

∣∣∣∣
λ=0

= 2
∑
k 6=0

|〈k|F |0〉|2

E0 − Ek
, (6.7)

and recovering expression 6.4

M−1 = −1

2

1

N

d

dλ
〈0̃|F |0̃〉

∣∣∣∣
λ=0

. (6.8)

6.2.2 M1 sum rule

Using the definition of M1, one can express the sum rule as the expectation value
of a certain commutator of the excitation operator F̂ and the Hamiltonian in the
ground-state of the system.

M1 =

∫
ESF (E)dE =

1

N

∫
dEE

∑
n

|〈n|F |0〉|2 δ(E − (En − E0))

=
1

N

∑
n

(En − E0) 〈0|F † |n〉 〈n|F |0〉

=
1

N

∑
(〈0|F † |n〉 〈n|EnF |0〉 − 〈0|F † |n〉 〈n|FE0 |0〉)

=
1

N

∑
(〈0|F † |n〉 〈n|HF |0〉 − 〈0|F † |n〉 〈n|FH |0〉)

=
1

N
〈0|F † [H,F ] |0〉 =

1

2

1

N
〈0|
[
F †, [H,F ]

]
|0〉 .

(6.9)

With this new expression we are able to compute M1 using only the ground state.
To do so, we must start computing the commutators for the specific F̂ =

∑
i x

2
i ,

[H,F ] = [Ekin + VH.O. + Vint, F ] = [Ekin, F ] + [VH.O., F ] + [Vint, F ] . (6.10)

Since both potentials VH.O. and Vint depend only on the coordinates, we have that
[VH.O., F ] = [Vint, F ] = 0. Therefore, we only need to calculate the kinetic energy
commutator

[Ekin, F ] = −

[
N∑
i=1

1

2

d2

dx2i
,

N∑
j=1

x2j

]
= −1

2

∑
i,j

[
d2

dx2i
, x2j

]
δi,j = −1

2

∑
i=1

[
d2

dx2i
, x2i

]
. (6.11)
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In order to evaluate these commutators we must use the canonical commutation
rules

p = −i d
dx
,

[
−i d
dx
, x

]
= [p, x] = −i, (6.12)

and the property [AB,C] = A [B,C] + [A,C]B. Therefore, applying both

[
− d2

dx2i
, x2i

]
=
[
p2, x2

]
= p

[
p, x2

]
+
[
p, x2

]
p

= p [p, x]x+ px [p, x] + [p, x]xp+ x [p, x] p

= −i(px+ px+ xp+ xp) = −2i(px+ xp) .

(6.13)

With this expression, the commutator can be written as it as

[H,F ] =
1

2

N∑
i=1

[
p2i , x

2
i

]
= −i

N∑
i=1

(pixi + xipi) , (6.14)

and therefore,

[
F †, [H,F ]

]
=

[∑
i

x2i ,−i
∑
j

(pjxj + xjpj)

]
= −i

∑
i

∑
j

[
x2i , pjxj + xjpj

]
= −i

∑
j

[
x2j , pjxj + xjpj

]
= −i

∑
j

(
[
x2j , pj

]
xj + pj

[
x2j , xj

]
+
[
x2j , xj

]
pj + xj

[
x2j , pj

]
)

= −i
∑
j

(
[
x2j , pj

]
xj + xj

[
x2j , pj

]
)

= −i
∑
j

(xj [xj, pj]xj + [xj, pj]xjxj + xjxj [xj, pj] + xj [xj, pj]xj) = −i
∑
j

i4x2j .

(6.15)
Introducing this result on the sum rule M1,

M1 =
1

2
〈0|
[
F †, [H,F ]

]
|0〉 =

2

N
〈0|

N∑
i=1

x2i |0〉 . (6.16)

Taking into account the symmetry of the N-particle wave-function and that F is a
one-body operator, the sum rule M1 can be expressed as

M1 = 2 〈0|x2 |0〉 = 2

∫ ∞
−∞

x2ρ(x)dx =
4

N
〈VH.O.〉 , (6.17)

where the one-body density is normalized as
∫∞
−∞ ρ(x)dx = 1.
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6.2.3 M3 sum rule

Assuming that F̂ is hermitian so that

[H,F ]† = − [H,F ] (6.18)

the sum rule M3 can be computed using the expectation value

M3 =
1

2N
〈0| [[H,F ] , [H, [H,F ]]] |0〉 . (6.19)

Alternatively, it can also be computed as

M3 =
1

2N

∂2Eη
∂η2

∣∣∣∣
η=0

, (6.20)

where
Eη = 〈φη|H |φη〉 , (6.21)

with
|φη〉 = eη[H,F ] |0〉 . (6.22)

Therefore, the first derivative is

dEη
dη

= 〈0| − e−η[H,F ] [H,F ]Heη[H,F ] + e−η[H,F ]H [H,F ] eη[H,F ] |0〉

= −〈0| e−η[H,F ] [[H,F ] , H] eη[H,F ] |0〉 ,
(6.23)

and the second derivative yields

d2Eη
dη2

=
d

dη

(
−〈0| e−η[H,F ] [[H,F ] , H] eη[H,F ] |0〉

)
= 〈0| e−η[H,F ] [H,F ] [[H,F ] , H] eη[H,F ] − e−η[H,F ] [[H,F ] , H] [H,F ] eη[H,F ] |0〉
= 〈0| e−η[H,F ] [[H,F ] , [H, [H,F ]]] eη[H,F ] |0〉 ,

(6.24)
and therefore M3 it can be computed as

M3 =
1

2N

∂2Eη
∂η2

∣∣∣∣
η=0

. (6.25)

Noticing that

eη[H,F ]Ψ(x1, x2, ..., xN) = Ψ(eηx1, e
ηx2, ..., e

ηxN), (6.26)

and recalling the virial theorem

Eλ = 〈ψλ|H |ψλ〉 = λ2Ekin(λ = 1)− 1

λ2
VHO(λ = 1) + λVint(λ = 1), (6.27)

where
Ψλ(x1, x2, ..., xN) = λN/2Ψ(λx1, λx2, ..., λxN), (6.28)
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it is shown that for the monopole excitation,

M3 =
4

N
(Ekin + 3VHO) (6.29)

6.3 Non-interacting and Tonks-Girardeau limits

The non-interacting and the infinitely interacting limits are particularly amenable
and allow one to compute the exact limiting values of M1 and M3 sum rules. The
two sum rules can be cast as a function of the average values of the kinetic and
harmonic oscillator energies. The M1 and M3 sum rules for N particles read,

M1 =
4

N
VHO

M3 =
4

N
(Ekin + 3VHO) =

16

N
VHO.

(6.30)

For g = 0, all particles populate the H.O. single-particle ground state, therefore
the total, kinetic and harmonic potential energy are , E = N/2, Ekin = N/4 and
Vh.o. = N/4. Therefore, the estimate of the mono-polar excitation energy is

Eexc =

√
M3

M1

=

√
4VHO
VHO

= 2. (6.31)

corresponding to the excitation of one particle in the second single-particle state of
the H.O.

Surprisingly, in the TG limit we obtain the same result for the estimation of the
excitation energy. To evaluate the sum rules in this limit we rely on the Bose-Fermi
mapping. We have seen in a previous chapter that the total energy in the case of N
particles is E = N2/2. Then taking into account the virial theorem, valid also in this
limit, we have that Ekin = N2/4 and also Vh.o. = N2/4. Therefore, M1 = 4Vh.o./N =
N , and M3 = 4(Ekin + 3Vh.o.)/N = 4N and therefore:

Eex =

√
M3

M1

=

√
4N

N
= 2 . (6.32)

which is the same as in the non-interacting case.

It is also interesting to pay attention to the contribution of the C.M. excitation to
the energy sum rules. We have already seen that the energy of the C.M. excitation
lies 2 energy units above the ground state, independently of the number of particles,
and the strength of the excitation is given by 1/(2N). Therefore, the contribution of
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the C.M. to the total energy sum rules is

M−1,CM =
1

Eex

1

N

1

2
=

1

4

1

N

M1,CM = Eex
1

N

1

2
=

1

N

M3,CM = E3
ex

1

N

1

2
=

4

N

(6.33)

After this analysis of the sum rules we are ready for the discussion of the N = 2
results that will be presented in the next chapter.
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Chapter 7

Sum Rules applied to a 2 bosons
system

In previous chapters, we have derived the sum rules with complete generality for
N particles. We have also calculated the properties of the ground-state, excitation
spectrum and the dynamic structure function associated to the monopole excitation
for N = 2. The calculations for N > 2 for any values of g are much more involved.
Although we have been able to provide some limiting values for two extreme cases:
g = 0 and g →∞. As an alternative, we have proposed to use energy sum rules as a
convenient method to estimate some average properties of the dynamical structure
function. In this chapter we want to explore the limitations of the sum rules method
by comparing with the explicit calculation of SF (E) and gain confidence on these
sum rules for future works with N > 2.

7.1 Behaviour of the sum rules and contribution of the
C.M. peak

We start our discussion by comparing in Fig.7.1 the results of the energy sum rules
M−1,M1 andM3 for different values of g calculated using the explicit values of SF (E)
with the values obtained from the ground state properties. We can appreciate a very
good agreement between the two ways to calculate the sum rules in all the range of g
considered. Notice the importance of this comparison: using the SF (E) to compute
the sum rules, we must know the whole spectrum (or at least the few more probable
excited states, which here correspond to the lowest excited energy states), whereas
using the sum rules relations we can calculate them by only using information about
the ground state.

It should be mentioned that even if the higher peaks of SF (E) have a very small
strength their contribution to the sum rules is not negligible. In particular for M3. In
fact, one requires a very good precision in the calculation of the excitation energies
and their strengths or equivalently a huge dimension of the Hilbert space when di-
agonalizing the Hamiltonian which increases when g is large. To cure this problem,
we have performed the diagonalization using 101 modes and taking only the first
ten excited states to compute the sum rules. This procedure provides stable results.
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FIGURE 7.1: Comparison of the sum rules M−1, M1 and M3 computed
through the DSF or using the ground-state properties. In the DSF
method we have truncated the spectra by taking the first 10 energy

levels and both have been computed with m=200 (101 modes).

All the sum rules are increasing functions of the strength of the interaction and
approach an asymptotic value for g →∞. The increasing character of the sum rules
with g is mainly due to the increment of the strength of the breathing mode with g.
As expected the convergence to the asymptotic values is faster for M−1 and slower
for M3. However, in all cases for g = 30, the largest value of g considered in the
figure, the convergence has been almost reached.

ForN = 2, the expressions derived in the previous chapter in the non-interacting
limit reduce to M1 = 1 and M3 = 4, while for the Tonks- Girardeau regime we have
M1 = 2 and M3 = 8. Also relevant is the contribution of the C.M. excitation to the
total sum rules, as mentioned before, the contribution is independent of g and for
N = 2 we have: M−1,CM = 1/8,M1,CM = 1/2 and M3,CM = 2.

While the strength and energy of the c.m. excitation remains constant as a func-
tion of g, the energy and strength of the peak due to the intrinsic motion depends
on g. In particular the strength is an increasing function of g going from 1/4 at g = 0
to 3/4 when g → ∞. This increment of the strength of the intrinsic peak associated
to the mono-pole vibration is the main reason for the increasing behaviour of the
different sum rules as a function of g. For all values of g, the peaks associated to the
C.M. and to the breathing mode exhaust more than the 99 % of the sum rules and
the higher peaks have a small but not negligible influence.

It is also illustrative to compare the g → ∞ value with the Thomas-Fermi one,
in this case the kinetic energy is neglected and the estimate of the excitation energy
from the sum rules is, Eexc =

√
3. Thus, as emphasized in [23], the reentrant behav-

ior is a clear consequence of the "fermionization" taking place as the g → ∞. In 1D
gases with contact interaction increasing the interaction strength, the approximation
which is sensible is to neglect the interaction energy keeping the kinetic one, unlike
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in the Thomas-Fermi limit where the kinetic energy is neglected in front of the in-
teraction.

7.2 Excitation energy and reentrant behaviour

In the calculation of SF (E) in a previous chapter, we have observed that the two
important peaks (C.M. and breathing mode ) of SF (E) are rather close to each other.
Therefore, , one expects that the estimation of the breathing excitation energy through
the sum rules should be rather accurate. In Fig. 7.2 we compare the mono-polar
excitation energies estimated by means of the sum rules described above with the
values of the excitation energy of the breathing mode.
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FIGURE 7.2: Mono-polar excitation energy estimated using Eex =√
M3/M1 and Eex =

√
M1/M−1 compared to the one from the breath-

ing mode itself. In the non-interacting limit and in the Tonks-Girardeau
limit they reach the value Eex = 2. For g ≈ 2 we can depict a minimum
of Eex leaving us with the reentrant behaviour. The sum rules have

been computed using m=200 (101 modes).

Notice that in all cases, the estimate
√
M3/M1 is larger than

√
M1/M−1 for any

value of g and both are larger or equal than the minimum excitation energy defined
by the breathing mode. First we note that the two quantities obtained from

√
M3/M1

and
√
M1/M−1 do not produce the same estimate for the intrinsic mono-polar exci-

tation energy. This reflects the fact that the structure function contains two relevant
excited states not located at the same energy, one from the center of mass and the sec-
ond from the breathing mode. The difference between the two estimates provided
by the sum rules increases with g and is larger for the value of g that maximizes
the interaction energy. For this value of g the difference in energy between the C.M.
excitation and the energy of the breathing mode is also maximal. Then, when g in-
creases further and the breathing mode gets closer again to the C.M. excitation, the
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estimates get closer and both reach asymptotically the Eex = 2 when g →∞.

The reentrant behaviour of the breathing mode previously discussed in cleanly
reproduced by the estimations of the excitation energies provided by the sum rule
analysis. If we subtract the contribution of the C.M. to the sum rules, is equivalent to
study only the intrinsic excitations, see Fig. 7.3. In this case there is only one domi-
nating peak: the breathing mode and consequently, the estimations of the excitation
energy from the sum rules are much closer. The differences in this case should be
assigned to the higher excitations beyond the breathing mode.
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FIGURE 7.3: Intrinsic excitation energy of the breathing mode com-
pared to the mono-polar excitation estimations using Eex =

√
M3/M1

and Eex =
√

M1/M−1, where the C.M. contribution has been extracted.
In both limits they all reach the value Eex = 2, and there is a minimum
that signals the reentrant behaviour around g ≈ 2. These new estima-
tions are a good approach to the breathing mode excitation energy. The

sum rules have been computed using m=200 (101 modes).
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Chapter 8

Summary and Conclusions

In this thesis we have considered a 1D gas of ultra-cold bosonic atoms, where the
atom-atom interaction is assumed to be well represented by a delta contact interac-
tion. This system has already been realized experimentally in two ultra-cold atomic
laboratories and is expected to be studied in more detail in future experiments. Our
main aim has been to explore the properties of the system, i.e. wave functions, exci-
tations, correlations, etc, as the strength of the atom-atom interaction is varied. The
latter is possible in ultra-cold atom experiments by means of Feshbach resonances.

In the first chapter, we considered the homogeneous system. In this case, we
introduced already the two noteworthy limiting cases, the zero interaction case, in
which the system fully condenses and the infinitely strong interaction case, which
gives rise to the Tonks-Girardeau gas. We have shown some of the properties of
the TG gas, like the impossibility of finding two particles at the same position, as
revealed by pair correlations.

Then we have concentrated in the case of N bosons trapped in a harmonic oscil-
lator potential. In this case, we have first derived a virial relation which holds for
both bosons and fermions and which is very useful to cross check numerical calcula-
tions. Afterwards we have discussed the two limiting cases, discussing the proper-
ties of both the condensate and TG gas. Then we have derived the Gross-Pitaevskii
equation, which is obtained in the mean-field approximation. As expected, this de-
scription fails to capture the properties of the N-body system when the interactions
are not small or for very small number of particles, where more involved quantum
correlations appear in the system.

After the general case, we have concentrated in the two-boson case. We have
explained in detail the spectral properties of the system as a function of the inter-
action parameter, discussing also the different contributions of the energy. Notably,
the interaction energy provides a good witness of the presence of correlations: for
small interaction strength the interaction energy increases with the strength. At suf-
ficiently large interaction strength, the system starts to build quantum correlations
to avoid the contact, which in turn result in a decrease of the interaction energy as
we further increase the interaction strength.

The study of the spectral properties has been the main objective of the last two
chapters. This has been done by computing the dynamic spectral function for a
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mono-polar excitation. In particular, we have thus considered the excitation of the
breathing mode, i.e. the first excitation of the relative motion of the atoms. This
breathing mode had been previously shown to exhibit a reentrant behavior as the
interaction strength was varied from 0 to large values. We have demonstrated that
this is indeed the case for the two-particle case, and also that other relative excitation
exhibit a similar reentrant behavior.

Finally, we have explained how information about the mono-polar excitation can
be obtained from ground state properties by means of energy sum rules, which were
originally introduced in nuclear physics. We have shown how the squared ratio of
two momenta of the distribution can be used to obtained estimates for the breathing
mode energy. This is the technique used in quantum Monte-Carlo calculations in
which only ground state properties can be computed. Our method allows us to
explore the quality of this approach for different squared ratios of the sum rules in
the whole range of interaction strengths considered.
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