
Weighted Fuzzy Spiking Neural P Systems

Jun Wang, Peng Shi, Senior Member, IEEE, Hong Peng, Mario J. Pérez-Jiménez, and Tao Wang

 Abstract

Spiking neural P systems (SN P systems) are a new class of
computing models inspired by the neurophysiological be-havior of
biological spiking neurons. In order to make SN P sys-tems
capable of representing and processing fuzzy and uncertain
knowledge, we propose a new class of spiking neural P systems in
this paper called weighted fuzzy spiking neural P systems (WFSN
P systems). New elements, including fuzzy truth value, certain
factor, weighted fuzzy logic, output weight, threshold, new firing
rule, and two types of neurons, are added to the original definition
of SN P systems. This allows WFSN P systems to adequately
characterize the features of weighted fuzzy production rules in a
fuzzy rule-based system. Furthermore, a weighted fuzzy
backward reasoning algorithm, based on WFSN P systems, is
developed, which can ac-complish dynamic fuzzy reasoning of a
rule-based system more flexibly and intelligently. In addition, we
compare the proposed WFSN P systems with other knowledge
representation methods, such as fuzzy production rule, conceptual
graph, and Petri nets, to demonstrate the features and advantages
of the proposed tech-niques.

 Index Terms

Spiking neural P systems (SN P systems), weighted
fuzzy production rules, weighted fuzzy reasoning, weighted
fuzzy spiking neural P systems (WFSN P systems).

I. INTRODUCTION

N ATURAL Computing is a novel field of computer sci-
ence research that uses computational paradigms
inspired

from various well-known natural phenomena in physics, chem-
istry, and biology. There are several fields in Natural Com-
puting that are now well established, such as genetic algo-
rithms [1], [2], artificial neural networks [3]–[6], particle
swarm
optimization [7]–[11], DNA-based molecular computing [12].
Membrane computing, which is part of molecular computing,

was introduced in [13] under the assumption that the processes
taking place in the compartmental structure of a living cell can
be interpreted as computations. Since then, a large number of
variants have been considered, and the devices of the models
are generally called P systems [14].

A new class of distributed and parallel computing devices,
spiking neural P systems (SN P systems), presented in [15], was
inspired by the neurophysiological behavior of neurons sending
electrical impulses (spikes) along axons to other neurons. An
SN P system can be viewed as a set of neurons placed in the
nodes of a directed graph whose arcs represent the synaptic con-
nections among the neurons, and each neuron contains a number
of copies of single object type as well as a lot of firing/spiking
and forgetting rules. The rules in each neuron are used in a
sequential manner, but neurons function with each other in par-
allel. More recently, a large number of variants of SN P systems
have been developed (see, [16]–[23] and the references therein).
In addition to distributed and parallel computing abilities, SN
P systems inherently feature: 1) high understandability (due to
their directed graph structure); 2) dynamic behavior (it seems to
be suitable to model dynamic behaviors of a system on the basis
of neuron’s firing/spiking mechanisms); 3) synchronization (it
seems to be suitable to describe concurrent events or activities);
4) nonlinearity (it is capable of dealing with nonlinear problem);
and 5) nondeterministic. No doubt, these features will be attrac-
tive to a lot of real-world problems, such as process control,
expert systems, fault diagnosing, investment advising systems,
and even the new intelligent wireless sensor networks.

However, many successful applications have determined that
there is a great deal of fuzzy and uncertain information in the
aforementioned real-world areas and our computing models are
often required to be capable of dealing with fuzzy and uncertain
knowledge. It is well known that fuzzy knowledge retrieved by
human experts or extracted by fuzzy neural networks (FNNs) is
usually represented by fuzzy production rules [24]–[27]. Nev-
ertheless, fuzzy production rules are not straightforward and
their fuzzy reasoning is usually a complicated process. For this
reason, some knowledge representation methods were devel-
oped, such as conceptual graph [28], semantic networks [29],
and fuzzy Petri nets [30]–[33]. Meanwhile, weighted fuzzy pro-
duction rules and weighted fuzzy logics were developed in
order to process fuzziness and uncertainty in the knowledge
base [34]–[39].

As stated previously, some significant features possessed by
SN P systems are attractive to real-world applications. Unfortu-
nately, existing SN P systems and their variants lack the ability
to process fuzzy and uncertain knowledge so far. The main mo-
tivation behind our study is to build a bridge between SN P
systems and various real-world problems such that the SN P
systems can serve as a new model in real-world problems. For
this reason, we will extend SN P systems so that they are capable

of dealing with fuzzy and uncertain information and represent-
ing weighted fuzzy production rules. In this paper, we propose
weighted fuzzy spiking neural P systems (WFSN P systems)
by incorporating some new elements into the original defini-
tion of SN P systems, including a new type of neuron, fuzzy
truth value, certain factor, weighted fuzzy logic, output weight,
threshold, and new firing/spiking rules. WFSN P systems are
especially suitable from expressing weighted fuzzy production
rules in graphical form. In addition, a fuzzy backward reason-
ing algorithm, based on the WFSN P systems, is developed. The
main advantages offered by the proposed WFSN P systems can
be summarized as follows.

1) Because of the graphical nature of WFSN P systems, the
structure of weighted fuzzy production rules in a fuzzy
knowledge base can be easily modeled and visualized,
and the model is relatively simple and legible.

2) The dynamic firing mechanism of neurons in WFSN P sys-
tems are capable of carrying out dynamic fuzzy reasoning
process more intelligently.

3) Based on the parallel computing mechanism of WFSN P
systems, the proposed reasoning algorithm is an efficient
reasoning algorithm with parallel reasoning ability.

The rest of this paper is organized as follows. In Section II,
we provide the original definition of SN P systems, and propose
WFSN P systems and simplified versions. In Section III, we
perform weighted fuzzy knowledge representation based on the
WFSN P systems. A fuzzy backward reasoning algorithm based
on WFSN P systems for a rule-based system is presented in
Section IV. In Section V, we compare WFSN P systems with
other knowledge representation methods to show the advantages
of our results. Finally, Section VI gives the conclusions.

II. WEIGHTED FUZZY SPIKING NEURAL P SYSTEMS

A. Spiking Neural P Systems

In this section, we briefly review SN P systems in standard
form and in a computing version (i.e., able to take an input
and provide an output). (A more detailed description of SN P
systems can be found in [16]–[22]).

Definition 1: A computing SN P system of degree m ≥ 1 is a
construct of the form

Π = (O, σ1 , . . . , σm , syn, in, out)

where
1) O = {a} singleton alphabet (the object a is called spike);
2) σ1 , . . . , σm neurons, of the form σi = (ni, ri) with 1 ≤

i ≤ m, where:
a) ni ≥ 0 initial number of spikes contained in neuron

σi ;
b) ri finite set of rules of the following two forms:

1) E/ac → a; d, where E is a regular expression
over a, and c, d ≥ 0 are natural numbers;

2) as → λ, where s ≥ 1 is a natural number, with
restriction that for each rule E/ac → a; d of
type (i) from ri , we have as �∈ L(E);

3) syn ⊆ {σ1 , σ2 , . . . , σm} × {σ1 , σ2 , . . . , σm} with i �= j
for all (σi, σj) ∈ syn, 1 ≤ i, j ≤ m (synapses between
neurons);

4) in, out ∈ {σ1 , σ2 , . . . , σm} input and output neurons,
respectively.

In the aforementioned definition, the rule of type (1) is called
the firing/spiking rule, and that of type (2) is called the
forgetting rule. The firing mechanism of neurons in SN P
systems can be described as follows. If a neuron σi contains k
spikes, ak ∈ L(E) and k ≥ c, the firing/spiking rule E/ac →
a; d ∈ ri in neuron σi is enabled and can be applied. This means
that c spikes are consumed, k − c spikes remain in the neuron,
the neuron fires, and then it produces a spike after d time units.
If d = 0, the spike is emitted immediately. In the case d ≥ 1, if
the rule is used at step t, the neuron is “closed” and “blocked”
at steps t, t + 1, . . . , t + d − 1, and it cannot receive new spikes
from other neurons. At step (t + d), the neuron emits a spike
and becomes again open; hence, other neurons can receive the
spike. The spike emitted by neuron σi is replicated and it goes to
all neurons σj such that (σi, σj) ∈ syn (each such neuron σj of
those receives a spike). A forgetting rule ac → λ is applicable to
a neuron whether the neuron contains exactly c spikes, and then,
all c spikes are removed. Note that if all rules of a system have
d = 0, i.e., no delay is involved, the parameter d is omitted.

SN P systems are synchronized because a global clock is
assumed, marking the time for the whole system. Besides, SN P
systems are nondeterministic because two rules E1/ac1 → a; d1
and E2/ac2 → a; d2 can have L(E1) ∩ L(E2) �= ∅. Therefore,
it is possible that two or more rules of the system can be enabled
in a neuron. In this case, one of them is nondeterministically
chosen to be used. Moreover, in each time unit, if a neuron can
use a rule, the rule must be used. Each neuron deals with its
spikes in a sequential manner, only using one rule in each time
unit, but the rules are used in parallel for all neurons of the
system.

An instantaneous description or a configuration at any instant
of an SN P system is described by both the number of spikes in
each neuron and the state of the neuron, or more precisely, by
the number of steps to count down until it becomes open (this
number is zero if the neuron is already open). The initial con-
figuration is described by the number of spikes initially placed
in each neuron, n1 , n2 , . . . , nm , with all neurons being open. A
configuration is a halting configuration if all neurons are open
and no rule of the system is applicable to it. Using the rules
described previously, one can define transitions among config-
urations. We say that configuration C1 yields configuration C2
in one transition step, which is denoted by C1 ⇒Π C2 , if we
can pass from C1 to C2 by applying the rules from the system
following the previous remarks.

A computation of Π is a (finite or infinite) sequence of con-
figurations such that:

1) the first term of the sequence is the initial configuration of
the system;

2) each noninitial configuration of the sequence is obtained
from the previous configuration by a transition step;

3) if the sequence is finite (called halting computation), then
the last term of the sequence is a halting configuration.

With any computation (halting or not), we can associate a
spike train, which is a sequence of symbols 0, and 1, describing
the behavior of the output neuron. If the output neuron spikes,
then we write 1; otherwise, we write 0. In addition, we can
also associate other forms of computation results according to
different computing purposes, such as the distance between two
consecutive steps when there are spikes that exit the system.

B. Weighted Fuzzy Spiking Neural P Systems

The introduction of fuzzy elements in P systems is an in-
teresting and open issue. This paper will pay attention to
this issue but be limited to the discussion of SN P systems
for processing fuzzy and uncertain knowledge. Thus, we will
extend the definition of SN P systems and propose a class
of extended SN P system models, called WFSN P systems.
The motivation for this is to model weighted fuzzy produc-
tion rules in a fuzzy knowledge base and perform weighted
fuzzy reasoning by using WFSN P systems in a more intelligent
manner.

Definition 2: A computing WFSN P system of degree m ≥ 1
is a construct of the form

Π = (O,Np,Nr , syn, IN, OUT)

where
1) O = {a} singleton alphabet (the object a is called spike);
2) Np = {σp1 , σp2 , . . . , σpm} proposition neuron set, where

σpi is its ith proposition neuron associated with a fuzzy
proposition in a fuzzy knowledge base, 1 ≤ i ≤ m. Each
proposition neuron σpi has the form σpi = (αi, �ωi, λi , ri),
where

a) αi ∈ [0, 1] potential value of pulse contained in
proposition neuron σpi . αi is used to express fuzzy
truth value of a proposition associated with propo-
sition neuron σpi .

b) �ωi = (ωi1 , ωi2 , . . . , ωisi
) output weight vector of

the neuron σpi , where component ωij ∈ [0, 1] is
the weight on jth output synapse (arc) of the neu-
ron, 1 ≤ j ≤ si , and si is the number of all output
synapses (arc) of the neuron.

c) ri finite set of firing/spiking rules of the form
E/aα → aα ; d, where α ∈ [0, 1], and d ≥ 0 is a
natural number. E = {α ≥ λi} is called the firing
condition, i.e., if α ≥ λi , then the firing rule will
be enabled, where λi ∈ [0, 1) is called the firing
threshold.

3) Nr = {σr1 , σr2 , . . . , σrn} rule neuron set, where σri is its
ith rule neuron associated with a weighted fuzzy produc-
tion rule in a fuzzy knowledge base, 1 ≤ i ≤ n. Each rule
neuron σri has the form σri = (αi, γi, �νi, τi , ri), where

a) αi ∈ [0, 1] potential value of pulse contained in rule
neuron σri .

b) γi ∈ [0, 1] certain factor. It represents the strength of
belief of a weighted fuzzy production rule associated
with rule neuron σri .

c) �νi = (νi1 , νi2 , . . . , νiti
) output weight vector of the

neuron σri , where component νij ∈ [0, 1] is the
weight on jth output synapse (arc) of the neu-
ron, 1 ≤ j ≤ ti , and ti is the number of all output
synapses (arc) of the neuron.

d) ri finite set of firing/spiking rules of the form
E/aα → aβ ; d, where α ∈ [0, 1], β ∈ [0, 1], and
d ≥ 0 is a natural number. E = {α ≥ τi} is called
the firing condition, i.e., if α ≥ τi , then the firing
rule will be enabled, where τi ∈ [0, 1) is called the
firing threshold.

4) syn ⊆ (Np × Nr)
⋃

(Nr × Np) synapses between both
proposition neurons and rule neurons. Note that there are
no synapse connections between any two proposition neu-
rons or between any two rule neurons;

5) IN, OUT ⊆ Np input neuron set and output neuron set,
respectively.

In the following, we illustrate how WFSN P systems are
extended from the original definition of SN P systems. First,
WFSN P systems consist of two types of neurons: proposition
neurons and rule neurons. The intuitive purpose of introducing
the two types of neurons is to express fuzzy propositions and
weighted fuzzy production rules in a fuzzy knowledge base.
Second, content of the neuron is now denoted by a fuzzy truth
value instead of the number of spikes as in SN P systems. It can
be interpreted as the (potential) value of spike from the view-
point of biological neuron. For a proposition neuron, its content
is used to express the fuzzy truth value of a fuzzy proposition
associated with it. When a neuron fires and emits a spike, the
(potential) value of the spike is transmitted into all successive
neurons connected with the neuron. Third, each proposition neu-
ron is assigned an output weight vector �ω = (ω1 , ω2 , . . . , ωs).
This indicates that the jth output synapse of the proposition
neuron has the output weight ωj . Therefore, when a proposition
neuron fires and emits a spike with value α, its jth successive
neuron will receive a spike with value α ⊗ ωj from its output
synapse, where “⊗” is the multiplication operator of fuzzy truth
values. Similarly, each rule neuron is also assigned an output
weight vector �ν = (ν1 , ν2 , . . . , νt). When a rule neuron fires
and emits a spike with value α, its jth successive neuron will
receive a spike with value (α � νj) ⊗ γ, where “�” is the divi-
sion operator of fuzzy truth values. Fourth, because proposition
neurons and rule neurons in WFSN P systems are used to char-
acterize fuzzy propositions and weighted fuzzy production rules
in a fuzzy knowledge base, respectively, both input neuron set
and output neuron set only consist of proposition neurons, while
rule neurons are interconnector of proposition neurons. More-
over, there are no direct connections between two proposition
neurons or between two rule neurons. Fifth, WFSN P systems
use the new firing condition E = {α ≥ λi} or E = {α ≥ τi}
rather than the original regular expression in SN P systems, and
this controls whether the corresponding neuron fires or not. If
a proposition neuron contains at least a spike and its value of
spike is with α ≥ λi , then it fires. Likewise, if a rule neuron
contains at least a spike and its value of spike is with α ≥ τi ,
then it fires. Finally, when a neuron receives spikes from its
several predecessor neurons, (potential) values of the received

Fig. 1. Proposition neuron in S-WFSN P systems.

Fig. 2. Rule neuron in S-WFSN P systems.

spikes will be calculated by using some logical operators unlike
the neuron in SN P systems that simply accumulate the num-
ber of spikes received by it. The proposition neuron calculates
(potential) values of spikes received by it from its predecessor
neurons through logical “OR” operator “∨,” whereas rule neu-
ron calculates potential values of spikes received by it through
addition operator “⊕” (see Figs. 1 and 2).

In addition to several aspects described previously, other orig-
inal mechanisms in SN P systems are retained in WFSN P
systems, for instance, time delay d, synchronization, nondeter-
minacy, and so forth.

As stated previously, the purpose of proposing the WFSN
P systems is to model weighted fuzzy production rules in a
knowledge base and develop a more intelligent weighted fuzzy
reasoning algorithm. Some elements in WFSN P systems how-
ever, are redundant, such as time delay d, and firing thresholds
λi and τi . Hence, we simplify the WFSN P systems by remov-
ing the redundant elements and denote the simplified version of
WFSN P systems as S-WFSN P systems.

Compared with WFSN P systems, S-WFSN P systems have
the following differences. First, time delay d is omitted; hence,
all neurons are always open in S-WFSN P systems. Second,
firing thresholds λi and τi in WFSN P systems are removed.
Therefore, if a neuron contains at least a spike and its value
of spike αi > 0, then it fires. Third, any neuron (proposition
neuron or rule neuron), contains only a firing rule. Finally, each
rule neuron has only an output weight factor νi , i.e., all its output
synapses are assigned the same weight.

We describe the operating principle of S-WFSN P systems
as follows. Initially, the system provides a spike for each in-
put neuron in IN (or each input neuron in IN receives a spike
from the environment as its input), where the value of the spike
equals the fuzzy truth value of the corresponding proposition.
When the system halts, the contents contained in output neu-
rons (or results exported by output neurons) are regarded as its
computing results. In S-WFSN P systems, each neuron contains
only a firing/spiking rule and its firing principle is explained as
follows. First, if a proposition neuron has k predecessor rule
neurons and it receives k spikes from them, the (potential) value
of the received k spikes is calculated as its content α through

Fig. 3. Example of S-WFSN P systems: Π0 .

logical “OR” operator “∨.” When α > 0, the neuron fires and
its firing/spiking rule E/aα → aα can be applied. Applying the
firing/spiking rule E/aα → aα means that the spike contained
in the neuron is consumed, and then, it produces a spike with
value α, which will be weighted by the corresponding weight
factor. In this paper, we denote a proposition neuron by a cir-
cle, as shown in Fig. 1. Here, α = x1 ∨ x2 ∨ . . . ∨ xk , and its
outputs are α ⊗ ωi(i = 1, 2, . . . , s), respectively. Second, if a
rule neuron has k predecessor proposition neurons, then it fires
and its firing/spiking rule E/aα → aβ can be applied when it
receives k spikes from its all predecessor proposition neurons.
The value of the received k spikes is calculated as its content
α through addition operator “⊕.” Applying the firing/spiking
rule E/aα → aβ means that the spike contained in the neuron
is consumed, and then, it produces a spike with value β where
β = (α � ν) ⊗ γ. In this paper, we denote a rule neuron by a
rectangle, as shown in Fig. 2. Here, α = x1 ⊕ x2 ⊕ . . . ⊕ xk ,
and all its outputs are (α � ν) ⊗ γ.

Example 1: Fig. 3 shows an example of S-WFSN P systems,
which can be formally described as follows. Π0 = ({a},
{σp1 , σp2 , σp3 , σp4 , σp5}, {σr1 , σr2 , σr3 , σr4}, syn, IN, OUT),
where

1) σpj = (αj , ωj , rj)(j = 1, . . . , 5) proposition neurons.
The weights of proposition neurons σp1 , σp3 , and σp4
are ω1 = 1.0, ω3 = 0.8, and ω4 = 0.7, respectively, while
proposition neuron σp2 has two weights ω21 = 1.0 and
ω22 = 1.0;

2) σri = (αi, γi, νi , ri)(j = 1, . . . , 4) rule neurons. The cer-
tain factors of rule neurons σr1 , σr2 , σr3 , and σr4 are
γ1 = 0.85, γ2 = 0.90, γ3 = 0.95, and γ4 = 0.90, respec-
tively. The weights of rule neurons σr1 , σr2 , σr3 , and σr4
are ν1 = ω1 = 1.0, ν2 = ω22 = 1.0, ν3 = ω21 = 1.0, and
ν4 = ω3 ⊕ ω4 = 1.5, respectively;

3) syn={(σp1 , σr1), (σp2 , σr2), (σp2 , σr3), (σp3 , σr4), (σp4 ,
σr4), (σr1 , σp2), (σr2 , σp3), (σr3 , σp4), (σr4 , σp54)};

4) IN = {σp1}, OUT = {σp5}.
In addition to modeling weighted fuzzy production rules by

using WFSN P systems, we will develop a fuzzy reasoning
algorithm based on WFSN P systems in this paper. In order to
conveniently describe our weighted fuzzy reasoning algorithm,
we first, define several concepts (terminologies) here. Let σrs

TABLE I
IMMEDIATE RULE-INCIDENCE TABLE OF ALL PROPOSITION

NEURONS IN EXAMPLE 1

be a rule neuron and σpi , σpj , and σpk be three proposition
neurons.

Definition 3: Immediately backward rule incidence. If
(σpi, σrs) ∈ syn and (σrs, σpk) ∈ syn, i.e., σrs is the intercon-
nector between σpi and σpk , then σpi is called an immediately
backward rule incidence of σpk .

In Example 1, σp1 is an immediately backward rule incidence
of σp2 , and σp2 is an immediately backward rule incidence of
σp3 and σp4 , while σp3 and σp4 are immediately backward rule
incidences of σp4 .

Definition 4: Backward rule incidence. If σpi is an immedi-
ately backward rule incidence of σpj , and σpj is an immediately
backward rule incidence of σpk , then σpi is called a backward
rule incidence of σpk .

From Example 1, we can observe that σp1 is a backward
rule incidence of σp3 and σp4 , respectively. Moreover, σp2 is a
backward rule incidence of σp5 .

Definition 5: Immediately backward rule incidence set. For
a proposition neuron σpk , its immediately backward rule inci-
dence set is defined as follows:

IBRIS(σpk) = {σpi ∈ Np |σpi is an immediately backward
rule incidence of σpk}.

Definition 6: Immediately backward rule incidence table. For
WFSN P systems, its immediately backward rule incidence table
is defined as follows:

IRIT = {(σpk , IBRIS(σpk), σri) | for ∀σpk ∈ Np and ∀σpj ∈
IBRIS(σpk), ∃σri ∈ Nr such that (σpj , σri) ∈ syn and (σri,
σpk) ∈ syn}.

For Example 1, Table I gives the immediately backward
rule-incidence table of Π0 . From Table I, we can see that
IBRIS(σp2) = {σp1}, IBRIS(σp3) = {σp2}, IBRIS(σp4) =
{σp2}, while IBRIS(σp5) = {σp3 , σp4}, where σp3 and σp4 are
adjacent proposition neurons with respect to rule neuron σr4 .

III. WEIGHTED FUZZY KNOWLEDGE REPRESENTATION

A. Weighted Fuzzy Production Rules

The weighted fuzzy production rules that are discussed here
are similar to conventional fuzzy production rules. However, a
weight factor (or vector) is assigned to each proposition in the
antecedent part in a fuzzy production rule, and a certainty factor
is also assigned to the rule. Weight factor of a proposition indi-
cates the degree of its importance contributing to the consequent
when comparing with other proposition in the antecedent part.
Obviously, when there is only one proposition in the antecedent
of a fuzzy production rule, weight is meaningless for the rule.

Generally, weighted fuzzy production rules can be catego-
rized into four types as follows:

Type 1: Ri : IF pj THEN pk (CF = γi), ω.

This type rule is a simple fuzzy production rule. In the rule Ri ,
pj and pk are propositions, γi is certainty factor of the rule,
and ω is the weight of proposition pj . Since pj is only one
proposition in the antecedent part of the rule Ri , its weight ω is
meaningless for the rule. Therefore, we can set ω = 1.

Type 2: Ri : IF p1 AND p2 AND . . . AND pk−1 THEN pk

(CF = γi), ω1 , ω2 , . . . , ωk−1

where ω1 , ω2 , . . . , ωk−1 are the weights of propositions
p1 , p2 , . . . , pk−1 in the antecedent part of the rule Ri , respec-
tively. This is a composite conjunctive fuzzy production rule.

Type 3: Ri : IF p1 THEN p2 AND p3 AND . . . AND pk

(CF = γi), ω

where ω is the weight of proposition p1 in the antecedent part
of the rule Ri . Similarly, we can set ω = 1 since weight ω in the
rule is meaningless.

Type 4: Ri : IF p1 OR p2 OR . . . OR pk−1 THEN pk

(CF = γi), ω1 , ω2 , . . . , ωk−1 .

This is a composite disjunctive fuzzy production rule. In
the rule Ri , ω1 , ω2 , . . . , ωk−1 are the weights of proposi-
tions p1 , p2 , . . . , pk−1 in the antecedent part of the rule Ri ,
respectively.

B. Mapping Weighted Fuzzy Production Rules Into Weighted
Fuzzy Spiking Neural P Systems

In order to model weighted fuzzy production rules in a fuzzy
knowledge base by using S-WFSN P systems, we have to
map the aforementioned weighted fuzzy production rules into
S-WFSN P systems. The basic principle is to map each fuzzy
proposition in fuzzy knowledge base into one proposition neu-
ron of S-WFSN P systems and to map each fuzzy production rule
into one rule neuron or several rule neurons. Thus, the weighted
fuzzy production rules of four types described previously and
their fuzzy reasoning processes can be modeled as follows.

For a rule of Type 1, assume that the fuzzy truth value of
propositions pj is αj and certainty factor of the rule is γi . Hence,
the rule of Type 1 can be modeled by the following S-WFSN P
system Π1 , as shown in Fig. 4(a):

Π1 = ({a}, {σpj , σpk}, {σri}, syn, IN, OUT), where
1) σpj and σpk two proposition neurons associated with fuzzy

propositions pj and pk , respectively. σpj = (αj , ωj , rj)
and σpk = (αk , ωk , rk). Since the antecedent part of the
rule has only one proposition, set ωj = 1;

2) σri rule neuron associated with the fuzzy production rule
Ri . σri = (αi, γi , νi , ri), where νi = 1;

3) syn = { (σpj , σri), (σri, σpk) }, IN = {σpj}, OUT =
{σpk}.

Furthermore, Fig. 4(a) shows the dynamic fuzzy reason-
ing process modeled by Π1 . The fuzzy reasoning process is

(b)

(c)

(d)

(a)

……
…

Fig. 4. Four weighted fuzzy rule presentations with S-WFSN P systems and
their rule reasoning. (a) Type 1. (b) Type 2. (c) Type 3. (d) Type 4.

automatically carried out via three time units. Initially, a spike
with value αj is assigned into proposition neuron σpj . Thus,
σpj fires and emits a spike with value αj . Next, rule neuron σri

receives the spike and fires, and then, it sends a spike with value
αj ⊗ γi to proposition neuron σpk . Finally, proposition neuron
σpk receives the spike and its value of spike αj ⊗ γi is regarded
as the result computed by the S-WFSN P system Π1 , as shown
in Fig. 4(a).

For a rule of Type 2, assume that the fuzzy truth values of
propositions p1 , p2 ,. . ., pk−1 are α1 , α2 ,. . ., αk−1 , respectively,
and certainty factor of the rule is γi . Hence, the rule of Type
2 can be modeled by the following S-WFSN P system Π2 , as
shown in Fig. 4(b):

Π2 = ({a}, {σp1 , . . . , σpk−1 , σpk}, {σri}, syn, IN, OUT),
where

1) σp1 , σp2 ,. . ., σpk−1 , and σpk proposition neurons as-
sociated with fuzzy propositions p1 , p2 ,. . ., pk−1 , and
pk , respectively. σpj = (αj , ωj , rj), j = 1, 2, . . . , k −
1, k. ω1 , ω2 , . . . , ωk−1 are weights of the propositions

p1 , p2 , . . . , pk−1 in the antecedent part of the rule, respec-
tively;

2) σri rule neuron associated with the fuzzy production rule
Ri . σri = (αri, γi , νi , ri), where νi = ω1 ⊕ ω2 ⊕ . . . ⊕
ωk−1 ;

3) syn = {(σp1 , σri), . . . , (σpk−1 , σri), (σri, σpk)},
IN = {σp1 , σp2 , . . . , σpk−1}, OUT = {σpk}.

Fig. 4(b) shows the dynamic fuzzy reasoning process mod-
eled by Π2 . The fuzzy reasoning process is automatically per-
formed as follows. Initially, a spike is provided for each propo-
sition neuron σpj in IN and their values are α1 , α2 , . . . , αk−1 ,
respectively. These proposition neurons concurrently fire, and
then, each of them emits a spike with value αj ⊗ ωj . Next,
rule neuron σri receives spikes from these proposition neurons
and values of the spikes are computed by addition operator
“⊕” as its content, i.e., αri = (α1 ⊗ ω1) ⊕ (α2 ⊗ ω2) ⊕ . . . ⊕
(αk−1 ⊗ ωk−1). Thus, the rule neuron fires, and then, it
sends a spike with value [αri � νi] ⊗ γi to proposition neu-
ron σpk . Finally, proposition neuron σpk will receive the spike
as its content, as shown in Fig. 4(b). Therefore, the result
computed by Π2 is αk = {[(α1 ⊗ ω1) ⊕ (α2 ⊗ ω2) ⊕ . . . ⊕
(αk−1 ⊗ ωk−1)] � (ω1 ⊕ ω2 ⊕ . . . ⊕ ωk−1)} ⊗ γi .

For a rule of Type 3, assume that the fuzzy truth value of
propositions p1 is α1 and certainty factor of the rule is γi . Hence,
the rule of Type 3 can be modeled by the following S-WFSN P
system Π3 , as shown in Fig. 4(c):

Π3 = ({a}, {σp1 , . . . , σpk−1 , σpk}, {σri}, syn, IN, OUT),
where

1) σp1 , σp2 ,. . ., σpk−1 , and σpk proposition neurons associ-
ated with fuzzy propositions p1 , p2 ,. . ., pk−1 , and pk , re-
spectively. σp1 = (α1 , ω1 , r1). Since p1 is only one propo-
sition in the antecedent part of the rule, set the weight
ω1 = 1;

2) σri rule neuron associated with the fuzzy production rule
Ri . σri = (αri, γi , νi , ri), where νi = 1;

3) syn = {(σp1 , σri), (σri, σp2), (σri, σp3), . . . , (σri, σpk)},
IN = {σp1}, OUT = {σp2 , σp3 , . . . , σpk}.

Fig. 4(c) shows dynamic fuzzy reasoning process modeled
by Π3 . The fuzzy reasoning process is automatically performed
as follows. Initially, a spike is provided for proposition neuron
σp1 and its values is α1 . Thus, the proposition neuron fires,
and then, it emits a spike with value α1 . Next, rule neuron
σri receives the spikes and fires, and then, it sends a spike
with value α1 ⊗ γi to its all successive proposition neurons.
Finally, proposition neurons σp2 , σp3 , . . . , σpk will receive the
spike as their contents, as shown in Fig. 4(c). Therefore, the
results computed by Π3 are α2 = α1 ⊗ γi , α3 = α1 ⊗ γi , . . .,
αk = α1 ⊗ γi .

For a rule of Type 4, assume that fuzzy truth values of propo-
sitions p1 , p2 ,. . ., pk−1 are α1 , α2 ,. . ., αk−1 , respectively, and
the certainty factor of the rule is γi . Hence, the rule of Type
4 can be modeled by the following S-WFSN P system Π4 , as
shown in Fig. 4(d):

Π4 = ({a}, {σp1 , . . . , σpk−1 , σpk}, {σri}, syn, IN, OUT),
where

1) σp1 , σp2 ,. . ., σpk−1 , and σpk proposition neurons asso-
ciated with fuzzy propositions p1 , p2 ,. . ., pk−1 , and pk

respectively. σpj = (αj , ωj , rj), j = 1, 2, . . . , k − 1, k.
ω1 , ω2 , . . . , ωk−1 are the weights of the propositions
p1 , p2 , . . . , pk−1 in the antecedent part of the rule, respec-
tively;

2) σr1 , σr2 , . . . , σrk−1 rule neurons associated with the
fuzzy production rule Ri . σrj = (αrj , γi , νi , rj), j =
1, 2, . . . , k − 1, where νi = ω1 ⊕ ω2 ⊕ . . . ⊕ ωk−1 ;

3) syn = {(σp1 , σr1), (σp2 , σr2), . . . , (σpk−1 , σrk−1), (σr1 ,
σpk), . . . , (σrk−1 , σpk)}, IN = {σp1 , σp2 , . . . , σpk−1},
OUT = {σpk}.

Fig. 4(d) shows the dynamic fuzzy reasoning process modeled
by Π4 . The fuzzy reasoning process is automatically performed
as follows. Initially, a spike is provided for each proposition
neuron σpj in IN and their values are α1 , α2 , . . . , αk−1 ,
respectively. These proposition neurons σpj concurrently fire,
and then, each of them emits a spike with value αj ⊗ ωj into
the corresponding rule neuron σrj , j = 1, 2, . . . , k − 1. Next,
each rule neuron σrj receives the corresponding spike and fires,
and then, it sends a spike with value [(αj ⊗ ωj) � νi] ⊗ γi

to proposition neuron σpk . Finally, proposition neuron σpk

receives the spikes from the rule neurons, and the value of
the spikes is computed by logical “OR” operator “∨” as its
content, i.e., αk = {[(α1 ⊗ ω1) � νi] ⊗ γi} ∨ {[(α2 ⊗ ω2) �
νi] ⊗ γi} ∨ . . . ∨ {[(αk−1 ⊗ ωk−1) � νi] ⊗ γi}. Therefore,
the result computed by Π4 is αk = {[(α1 ⊗ ω1) � (ω1 ⊕ ω2
⊕ . . . ⊕ ωk−1)] ∨ [(α2 ⊗ ω2) � (ω1 ⊕ ω2 ⊕ . . . ⊕ ωk−1)]
∨ . . . ∨ [(αk−1 ⊗ ωk−1) � (ω1 ⊕ ω2 ⊕ . . . ⊕ ωk−1)]} ⊗ γi .

As is well-known, fuzzy production rules are not straightfor-
ward and their fuzzy reasoning is usually a complicated process.
However, from the aforementioned discussions, we can see that
the structure of weighted fuzzy production rules modeled by
the proposed WFSN P systems is visual and is easily com-
prehended due to its graphical nature. Moreover, owing to the
parallel computing ability of WFSN P systems and the neuron’s
firing mechanism, the proposed WFSN P systems are able to
complete fuzzy reasoning process concurrently and automati-
cally, and the computing process only takes three time units.

IV. WEIGHTED FUZZY REASONING ALGORITHM

In this section, we will present a weighted fuzzy reasoning
algorithm based on S-WFSN P systems. From the previous dis-
cussion, we know that for a fuzzy knowledge base, proposition
neurons express its all fuzzy propositions, while rule neurons
model its weighted fuzzy production rules. Generally, we should
provide the fuzzy truth values for a part of fuzzy propositions
before reasoning, and the proposition neurons associated with
the part of fuzzy propositions are in fact input neurons of the
S-WFSN P system model. The goal of fuzzy reasoning method
is to reason out the fuzzy truth values of other unknown fuzzy
propositions (proposition neurons) from known fuzzy propo-
sitions (input neurons). These unknown fuzzy propositions are
associated with output neurons of the S-WFSN P system model.
Suppose we modeled the weighted fuzzy production rules of a
fuzzy knowledge base by an S-WFSN P system model Π.

Based on S-WFSN P systems, we developed a weighted fuzzy
reasoning algorithm, which is called the weighted fuzzy back-

ward reasoning algorithm. The basis of the weighted fuzzy
backward reasoning algorithm is the construction of a fuzzy
“⊕-OR” (Addition-OR) tree, which is similar to the algorithm
in [40]. The tree uses a special data structure, i.e., a triple
(σpk , IBRIS(σpk), α(σpk)) is used to express a node in the tree,
where σpk is the kth proposition neuron, IBRIS(σpk) is its im-
mediately backward rule incidence set of σpk , and α(σpk) is
the fuzzy truth value of σpk . The weighted fuzzy backward rea-
soning algorithm (Algorithm 1) consists of three components:
1) building the immediately backward rule-incidence table IRIT
(Algorithm 2); 2) generating fuzzy “⊕-OR” tree (Algorithm 3);
and 3) computing fuzzy truth values (Algorithm 4). Initially,
each input neuron is assigned an initial fuzzy truth value. When
the system halts, the system’s outputs are fuzzy truth values in
output neurons.

In the following, we explain the basic ideas behind the three
components. First Algorithm 2 builds the immediately back-
ward rule-incidence table IRIT according to Π. For each propo-
sition neuron σpk in Π, the algorithm will generate its im-
mediately backward rule-incidence set IBRIS(σpk) and deter-
mine the corresponding rule neuron σri according to syn. Thus,
(σpk , IBRIS(σpk), σri) is composed of a tuple of IRIT. Second,
Algorithm 3 is used to generate a fuzzy “⊕-OR” tree of Π based
on the built IRIT. This algorithm starts from output neurons
and then, creates each node of fuzzy “⊕-OR” tree according to
backward connection relationship of proposition neurons. Each
created node has the structure (σpk , IBRIS(σpk),−), where the
mark “−” denotes that the fuzzy truth value of the proposition
neuron is unknown. In addition to the sides of first level in the
tree, other sides are labeled by the certainty factors associated
with fuzzy production rules. Finally, Algorithm 4 computes the
fuzzy truth value of each nonterminal node of the fuzzy “⊕-
OR” tree. Here, fuzzy truth values of terminal nodes, which are
associated with input neurons of Π, are known. Starting from
terminal nodes, fuzzy truth values of all nonterminal nodes are
backward computed on the basis of step 10 or step 12 of the
algorithm.

The weighted fuzzy backward reasoning algorithm and its
three component algorithms are listed in Tables II–V (Algo-
rithms 1–4), respectively. In the following, we briefly discuss
the computational complexities and convergence of the afore-
mentioned algorithms. First, Algorithm 2 contains triple loop
(m, n, and m times, respectively); therefore, its time complex-
ity is O(m2n), and space complexity is O(m2). By analyzing
Algorithm 3, we can conclude that its time complexity is O(m2),
and space complexity is O(m2). Similarly, time complexity and
space complexity of Algorithm 4 are O(m2) and O(m2), re-
spectively. Therefore, the time complexity of Algorithm 1 is
O(m2n), while its space complexity is O(m2). Finally, we ana-
lyze the convergence of these algorithms. From the descriptions
of these algorithms, we know that the roles of Algorithms 2 and
3 are to construct a table IRIT and a tree T , respectively. There-
fore, the convergence of the proposed weighted fuzzy reasoning
algorithm mainly depends on the convergence of Algorithm 4.
Let l be the largest of the numbers of proposition neurons in
all paths of Π from input neurons to output neurons. We easily
conclude from Algorithm 4 that the algorithm can deduce the

TABLE II
ALGORITHM 1: WEIGHTED FUZZY BACKWARD REASONING ALGORITHM

TABLE III
ALGORITHM 2: IRIT BUILDING ALGORITHM

values of all unknown proposition neurons at step l, i.e., the
algorithm will be converged at step l.

In order to clearly understand the algorithms described pre-
viously, we use two examples to illustrate the weighted fuzzy
backward reasoning process. For Example 1 (Π0), Table I gives
the immediate rule-incidence table of its all proposition neu-
rons. By the fuzzy “⊕-OR” tree generating algorithm, a fuzzy
“⊕-OR” tree of Π0 is generated, as shown in Fig. 5. Assume that
the truth value of proposition p1 associated with input propo-
sition neuron σp1 is 0.8. By performing the fuzzy truth value
evaluating algorithm, the truth values of output proposition neu-
rons in Π0 are obtained, as shown in Fig. 5, from which it can
be clearly seen that the truth value of output proposition neuron
σp5 is 0.63.

Example 2: Let p1 , p2 , p3 , p4 , p5 , p6 , p7 , p8 , and p9 be
nine propositions. Assume the knowledge base of a rule-based
system contains the following weighted fuzzy production rules.

R1 : IF p1 THEN p5 (CF = γ1), ω1 .
R2 : IF p2 AND p3 THEN p6 (CF = γ2), ω2 , ω31 .
R3 : IF p3 AND p4 THEN p7 (CF = γ3), ω32 , ω4 .
R4 : IF p5 AND p6 THEN p8 (CF = γ4), ω5 , ω6 .
R5 : IF p7 THEN p9 (CF = γ5), ω7 .
Here, true values, certainty factors, and weights are extended

to use triangular fuzzy numbers. Assume the certainty factors
γ1 , γ2 , γ3 , γ4 , and γ5 are (0.80, 0.90, 1.0), (0.70, 0.80, 0.90),

TABLE IV
ALGORITHM 3: FUZZY “⊕-OR” TREE GENERATING ALGORITHM

(0.75, 0.85, 0.95), (0.85, 0.95, 1.0), and (0.80, 0.90, 1.0), re-
spectively.

Let ω1 = (1.0, 1.0, 1.0), ω2 = (0.85, 0.95, 1.0), ω31 =(0.70,
0.80, 0.90), ω32 = (0.85, 0.95, 1.0), ω4 = (0.75, 0.85, 0.95),
ω5 = 0.85, 0.95, 1.0), ω6 = (0.75, 0.85, 0.95), and ω7 = (1.0,
1.0, 1.0).

The weighted fuzzy production rules can be modeled by using
the following WFSN P systems Π5 , as shown in Fig. 6:

Π5 = ({a}, {σp1 , σp2 , σp3 , σp4 , σp5 , σp6 , σp7 , σp8 , σp9},
{σr1 , σr2 , σr3 , σr4 , σr5}, syn, IN, OUT),

where
1) σp1 , σp2 , σp3 , σp4 , σp5 , σp6 , σp7 , σp8 , and σp9 proposition

neurons;
2) σr1 , σr2 , σr3 , σr4 , and σr5 rule neurons. Here, ν1 =

ω1 = (1.0, 1.0, 1.0), ν2 = ω2 ⊕ ω31 = (1.55, 1.75, 1.90),

TABLE V
ALGORITHM 4: FUZZY TRUTH VALUE COMPUTING ALGORITHM

Fig. 5. Generated fuzzy “⊕-OR” tree of Π0 and computation of the fuzzy
truth values of the fuzzy “⊕-OR” tree of Π0 .

Fig. 6. Example 2 modeled by WFSN P systems Π5 .

TABLE VI
IMMEDIATE RULE-INCIDENCE TABLE OF ALL PROPOSITION

NEURONS IN EXAMPLE 2

Fig. 7. Generated fuzzy “⊕-OR” tree of Π5 and computation of the fuzzy
truth values of the fuzzy “⊕-OR” tree of Π5 .

ν3 = ω32 ⊕ ω4 = (1.6, 1.8, 1.95), ν4 = ω5 ⊕ ω6 = (1.6,
1.8, 1.95), and ν5 = ω7 = (1.0, 1.0, 1.0);

3) syn={(σp1 , σr1), (σp2 , σr2), (σp3 , σr2), (σp3 , σr3), (σp4 ,
σr3), (σp5 , σr4), (σp6 , σr4), (σp7 , σr5), (σr1 , σp5), (σr2 ,
σp6), (σr3 , σp7), (σr4 , σp8), (σr5 , σp9)};

4) IN = {σp1 , σp2 , σp3 , σp4}, OUT = {σp8 , σp9}.
For Example 2 (Π5), Table VI gives the immediate rule-

incidence table of all its proposition neurons. By the fuzzy
“⊕-OR” tree generating algorithm, a fuzzy “⊕-OR” tree
of Π5 is generated, as shown in Fig. 7. Assume that
the truth values of propositions p1 , p2 , p3 , and p4 associ-
ated with input proposition neurons σp1 , σp2 , σp3 , and σp4
are (0.80, 0.90, 1.0), (0.70, 0.80, 0.90), (0.85, 0.95, 1.0), and
(0.75, 0.85, 0.95), respectively. By performing the fuzzy truth
value computing algorithm, the truth values of output propo-
sition neurons in Π5 are obtained, as shown in Fig. 7, from
which it can be easily seen that the fuzzy truth values of
output proposition neurons σp8 and σp9 are fuzzy numbers
(0.381, 0.714, 1.246) and (0.395, 0.691, 1.130).

V. COMPARISONS WITH OTHER METHODS

As described previously, the proposed WFSN P systems are
an extended version of SN P systems. The main motivation be-
hind developing the WFSN P systems is to build a bridge by
which SN P systems can be used to deal with real-world prob-
lems, such as process control, expert system, and fault diagnos-
ing. Compared with the existing SN P systems and their variants,
the proposed WFSN P systems feature the following differences:
1) there are two types of neurons, proposition neurons and rule
neurons; 2) fuzzy truth value is used to express the contents of
neurons; 3) each neuron is assigned an output weight vector;
4) weighted fuzzy logic is used to process operation of the pulse
value; and 5) a new firing mechanism is applied, including new
firing/spiking rules and the use of firing condition and thresh-
old. These differences can ensure that the proposed WFSN P
systems are able to express fuzzy and uncertain knowledge and
process weighted fuzzy reasoning.

The weighted fuzzy production rule is one of most pop-
ular methods that represent fuzzy and uncertain knowledge.
For instance, when we use fuzzy neural network (FNN) to ex-
tract knowledge from the measured data, fuzzy production rules
are usually used to express the extracted results. However, the
knowledge expressed by fuzzy production rules is usually diffi-
cult to understand because it lacks straightforward structure and
representing form, and its fuzzy reasoning process is very com-
plicated. In addition, some knowledge representation methods
have been developed, such as concept graph, semantic networks,
etc. One of the advantages is their graphical structure. However,
their reasoning process lacks the capability of parallel reasoning.

As a graphical modeling method, Petri nets have a powerful
ability that describes and studies information processing system,
and possess several perfect characterizations, such as being con-
current, asynchronous, distributed, parallel, nondeterministic,
etc. Thus, Petri nets are capable of describing fuzzy rule-based
system. SN P systems are a novel distributed and parallel com-
puting model. From the previous discussion, we know that the
proposed WFSN P systems are very suitable for expressing a
fuzzy rule-based system and for modeling its dynamic reasoning
process. As two models that describe fuzzy rule-based system,
SN P systems and Petri nets share some common features.

1) They are distributed and parallel computing models or
systems.

2) Their graphical nature can visualize the structure of a
fuzzy rule-based system, and the models represented by
them are relatively simple and easily understandable.

3) It is easy to model dynamic reasoning process of a
fuzzy rule-based system by them because of their firing
mechanism.

Compared with Petri nets, however, the proposed WFSN P
systems have the following different features and advantages

1) For WFSN P systems (SN P systems), most of their mech-
anisms are originated from living cells or neurophysio-
logical behavior of neurons, such as firing and emitting
a spike in neuron. The different types of cells or neurons
may provide new inspirations to extend SN P systems.
In fact, different types of variants of SN P systems have

been addressed so far. This opens the door to dealing with
fuzzy and uncertain knowledge (acquisition, representa-
tion, and reasoning) and learning problems by integrating
fuzzy logic, evolution mechanism, and learning mecha-
nism of neural network, as in, for example, the WFSN P
systems discussed in this paper and the membrane algo-
rithm developed in [41].

2) The time-delay mechanism of SN P systems is inborn and
inherent. Although S-WFSN P systems, which are used
to express fuzzy knowledge, omit their time-delay mecha-
nism in this paper, the time-delay mechanism is often very
useful for knowledge acquisition and representation situ-
ations. For instance, in some industry control processes,
due to the use of sensors with different sample frequen-
cies, the data obtained may include some time delays. As
a result, the extracted knowledge should also include the
delay factor. The proposed WFSN P systems can poten-
tially satisfy the need to express such fuzzy knowledge
and perform fuzzy reasoning.

3) Although both SN P systems and Petri nets have nonde-
terministic features, their principles are different. For SN
P systems, when multiple firing rules in a neuron are en-
abled, they will nondeterministically choose a firing rule
so that the configuration (or state) of whole system is
changed. Of course, due to flexible definition mechanism
of the neuron in SN P systems, we can easily develop
nondeterministic feature like in Petri nets.

4) Since SN P systems are essentially a nonlinear computing
model, the feature is advantageous for extracting fuzzy
and uncertain knowledge from the measured data. In many
real-world industry situations, the modeled relationships
between input and output are usually nonlinear. Therefore,
the proposed WFSN P systems seem to be suitable for such
nonlinear situations.

5) SN P systems are synchronized, while Petri nets are asyn-
chronous. However, due to use of some different mecha-
nisms, some extended SN P systems are also asynchronous
[21].

VI. CONCLUSION

Most of the research related to SN P Systems has focused
on theoretical computing issues, such as computing ability and
computing effectiveness, and only a small number of real-world
applications have been addressed. The current definitions of SN
P systems and their variants are not suitable for a large number
of real-world applications. Thus, how to extend SN P systems so
that they are suitable for one or several real-world applications
becomes an interesting open issue. This paper focused on the
representation of fuzzy and uncertain knowledge and weighted
fuzzy reasoning. In this paper, we extended SN P systems to
process fuzzy and uncertain knowledge, and proposed WFSN
P systems. The presented WFSN P systems can model and vi-
sualize weighted fuzzy production rules in a rule-based system.
Moreover, based on the inherent parallel computing features of
WFSN P systems and the neuron’s firing mechanism, a parallel

and fast weighted fuzzy reasoning algorithm has been devel-
oped. Several real-world applications relate to the aforemen-
tioned problem, such as process control, expert system, fault
diagnosing, and investment advising system. Therefore, the re-
sults obtained in this paper can be applied to earlier real-world
application areas. In summary, the significance of proposing the
WFSN P systems lies in the following: 1) from the viewpoint
of SN P systems, WFSN P systems are a new type of SN P sys-
tems and extend the scope of application of SN P systems, and
2) from the viewpoint of expressing fuzzy knowledge, WFSN P
systems provide a modeling tool for it and the developed reason-
ing algorithm is a parallel and fast fuzzy reasoning algorithm.

Future research work will seek to extend the learning ability
of WFSN P systems and apply WFSN P systems to solve real-
world problems associated with the learning tasks.

ACKNOWLEDGMENT

The authors would like to thank Associate Editor J.-Y. Chang
and the reviewers for their very insightful and constructive sug-
gestions, which have helped greatly improve the presentation of
this paper.

REFERENCES

[1] L. Davis, Handbook of Genetic Algorithms. New York: Van Nostrand,
1991.

[2] J. Wang, H. Peng, and P. Shi, “An optimal image watermarking approach
based on a multi-objective genetic algorithm,” J. Inform. Sci., vol. 181,
no. 24, pp. 5501–5514, 2011.

[3] S. Haykin, Neural Networks: A Comprehensive Foundation, 2nd ed. Up-
per Saddle River, NJ: Pearson Education, 1999.

[4] D. J. Livingstone, Artificial Neural Networks: Methods and Applications.
New York: Humana Press, 2011.

[5] C.-F. Juang, T.-C. Chen, and W.-Y. Cheng, “Speedup of implementing
fuzzy neural networks with high-dimensional inputs through parallel pro-
cessing on graphic processing units,” IEEE Trans. Fuzzy Syst., vol. 19,
no. 4, pp. 717–728, Aug. 2011.

[6] C.-J. Lin, C.-F. Wu, and C.-Y. Lee, “Design of a recurrent functional neural
fuzzy network using modified differential evolution,” Int. J. Innovative
Comput., Inform. Control, vol. 7, no. 2, pp. 669–684, 2011.

[7] J. Kennedy and R. C. Eberhart, “Particle swarm optimization,” in Proc.
IEEE Int. Conf. Neural Netw., Perth, W.A., Australia, 1995, pp. 1942–
1948.

[8] P. Puranik, P. Bajaj, A. Abraham, P. Palsodkar, and A. Deshmukh, “Human
perception-based color image segmentation using comprehensive learn-
ing particle swarm optimization,” J. Inform. Hiding Multimedia Signal
Process., vol. 2, no. 3, pp. 227–235, 2011.

[9] W. Pedrycz and M. Song, “Analytic hierarchy process (AHP) in group
decision making and its optimization with an allocation of information
granularity,” IEEE Trans. Fuzzy Syst., vol. 19, no. 3, pp. 527–539, Jun.
2011.

[10] C.-F. Juang and Y.-C. Chang, “Evolutionary-group-based particle-swarm-
optimized fuzzy controller with application to mobile-robot navigation in
unknown environments,” IEEE Trans. Fuzzy Syst., vol. 19, no. 2, pp. 379–
392, Apr. 2011.

[11] T. Niknam, H. D. Mojarrad, and M. Nayeripour, “A new hybrid fuzzy
adaptive particle swarm optimization for non-convex economic dispatch,”
Int. J. Innovative Comput., Inform. Control, vol. 7, no. 1, pp. 189–202,
2011.

[12] G. Păun, G. Rozenberg, and A. Salomaa, DNA Computing: New Comput-
ing Paradigms. New York: Springer, 1998.

[13] G. Păun, “Computing with membranes,” J. Comput. Syst. Sci., vol. 61,
no. 1, pp. 108–143, 2000.

[14] G. Păun, G. Rozenberg, and A. Salomaa, The Oxford Handbook of Mem-
brane Computing. New York: Oxford Univ. Press, 2010.

[15] M. Ionescu, G. Păun, and T. Yokomori, “Spiking neural P systems,” Fun-
dameta Informaticae, vol. 71, no. 2–3, pp. 279–308, 2006.

[16] G. Păun and M. J. Pérez-Jiménez, G. Rozenberg, “Spike train in spiking
neural P systems,” Int. J. Found. Comput. Sci., vol. 17, no. 4, pp. 975–
1002, 2006.

[17] H. Chen, T.-O. Ishdorj, G. Păun, and M. J. Perez-Jimenez, “Handling
languages with spiking neural P systems with extended rules,” Romanian
J. Inform. Sci. Technol., vol. 9, no. 3, pp. 151–162, 2006.

[18] O. H. Ibarra, A. Păun, G. Păun, A. Rodrı́guez-Patón, P. Sosı́k, and S. Wood-
worth, “Normal forms for spiking neural P systems,” Theoretical Comput.
Sci., vol. 372, no. 2–3, pp. 196–217, 2007.

[19] M. Ionescu, G. Păun, and T. Yokomori, “Spiking neural P systems with
an exhaustive use of rules,” Int. J. Unconvent. Comput., vol. 3, no. 2,
pp. 135–154, 2007.

[20] R. Freund, M. Ionescu, and M. Oswald, “Extended spiking neural P sys-
tems with decaying spikes and/or total spiking,” Int. J. Found. Comput.
Sci., vol. 19, no. 5, pp. 1223–1234, 2008.

[21] M. Cavalierea, O. H. Ibarrab, G. Păun, O. Egecioglub, M. Iones-
cuc, and S. Woodworth, “Asynchronous spiking neural P systems,”
Theoretical Comput. Sci., vol. 410, no. 24–25, pp. 2352–2364,
2009.

[22] J. Wang, H. J. Hoogeboom, L. Pan, and G. Păun, “Spiking neural P
systems with weights and thresholds,” in Proc. 10th Workshop Membrane
Comput., Aug. 2009, pp. 514–533.

[23] J. Wang, L. Zhou, H. Peng, and G. Zhang, “An extended spiking neural P
system for fuzzy knowledge representation,” Int. J. Innovative Comput.,
Inform. Control, vol. 7, no. 7A, pp. 3709–3724, 2011.

[24] C. V. Negoita, Expert Systems and Fuzzy Systems. Redwood City, CA:
Benjamin Cummings, 1985.

[25] S. M. Chen, “A new approach to handling fuzzy decision-making prob-
lems,” IEEE Trans. Syst., Man, Cybern., vol. 18, no. 6, pp. 1012–1016,
1988.

[26] J. S. R. Jang, C. T. Sun, and E. Mizutani, Neuro-Fuzzy and Soft Computing.
Englewood Cliffs, NJ: Prentice–Hall, 1997.

[27] C. Li, J. Yi, and T. Wang, “Encoding prior knowledge into data driven
design of interval type-2 fuzzy logic systems,” Int. J. Innovative Comput.,
Inform. Control, vol. 7, no. 3, pp. 1133–1145, 2011.

[28] J. F. Sowa, Conceptual Structures: Information Processing in Mind and
Machines. Reading, MA: Addison-Wesley, 1984.

[29] C. L. Chang, Introduction to Artificial Intelligence Techniques. Austin,
TX: JMA Press, 1985.

[30] S. M. Chen, “Fuzzy backward reasoning using fuzzy Petri nets,” IEEE
Trans. Syst., Man, Cybern. B, Cybern., vol. 30, no. 6, pp. 846–856, Dec.
2000.

[31] D. S. Yeung and E. C. C. Tsang, “A multilevel weighted fuzzy reasoning
algorithm for expert systems,” IEEE Trans. Syst., Man, Cybern. A, Syst.
Humans, vol. 28, no. 2, pp. 149–158, Mar. 1998.

[32] M. Gao, M. Zhou, X. Huang, and Z. Wu, “Fuzzy reasoning Petri nets,”
IEEE Trans. Syst., Man, Cybern. A, Syst. Humans, vol. 33, no. 3, pp. 314–
324, May 2003.

[33] X. Li, W. Yu, and F. Lara-Rosano, “Dynamic knowledge inference
and learning under adaptive fuzzy Petri net framework,” IEEE Trans.
Syst., Man, Cybern. C, Appl. Rev., vol. 30, no. 4, pp. 442–450, Nov.
2000.

[34] X.-G. He, “Weighted fuzzy logics and its application,” in Proc. 12th Annu.
Int. Comput. Softw. Appl. Conf., 1988, pp. 485–489.

[35] S. M. Chen, “A weighted fuzzy reasoning algorithm for medical diagno-
sis,” Decision Support Syst., vol. 11, no. 1, pp. 37–43, 1991.

[36] D. S. Yeung and E. C. C. Tsang, “Weighted fuzzy production rules,” Fuzzy
Sets Syst., vol. 88, no. 3, pp. 299–313, 1997.

[37] D. S. Yeung and E. C. C. Tsang, “A multilevel weighted fuzzy reasoning
algorithm for expert systems,” IEEE Trans. Syst., Man, Cybern. A, Syst.
Humans, vol. 28, no. 2, pp. 149–158, Mar. 1998.

[38] S. M. Chen, “Weighted fuzzy reasoning using weighted fuzzy Petri nets,”
IEEE Trans. Knowl. Data Eng., vol. 14, no. 2, pp. 386–397, Mar.–Apr.
2002.

[39] S.-M. Chen, Y.-K. Ko, Y.-C. Chang, and J.-S. Pan, “Weighted fuzzy in-
terpolative reasoning based on weighted increment transformations and
weighted ratio transformation techniques,” IEEE Trans. Fuzzy Syst.,
vol. 17, no. 6, pp. 1412–1427, Dec. 2009.

[40] S. M. Chen, “Fuzzy backward reasoning using fuzzy Petri nets,” IEEE
Trans. Syst., Man, Cybern. B, Cybern., vol. 30, no. 6, pp. 846–856, Dec.
2000.

[41] L. Zhang and Y. Huang, “A variant of P systems for optimization,” Neu-
rocomputing, vol. 72, no. 4–6, pp. 1355–1360, 2009.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

