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In this paper, we study the transmissivity of electromagnetic waves through stacked two-

dimensional printed periodic arrays of square conducting patches. An analytical circuit-like model is

used for the analysis. The model accounts for the details of the transmission spectrum provided that

the period of the unit cell of each patterned layer is well below the wavelength in the dielectric slabs

separating the printed surfaces. In particular, we analyze the low-pass band and rejection

band behavior of the multilayer structure, and the results are validated by comparison with a

computationally intensive finite element commercial electromagnetic solver. The limiting case of an

infinite periodic structure is analytically solved and the corresponding band structure is used to

explain the passband/stopband behavior of finite structures. In addition, we study in depth the

elementary unit cell consisting of a single dielectric slab coated by two metal patch arrays, and its

resonance behavior is explained in terms of Fabry-P�erot resonances when the electrical thickness of

the slab is large enough. In such case, the concept of equivalent thickness of the equivalent ideal

Fabry-P�erot resonator is introduced. For electrically thinner slabs it is also shown that the analytical

model is still valid, and its corresponding first transmission peak is explained in terms of a lumped-

circuit LC resonance. VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4740054]

I. INTRODUCTION

The study of electromagnetic waves propagation

through periodic structures has a long history, beginning

with the introduction of the first diffraction grating1 and the

first in-depth analysis of such ubiquitous device.2 Diffraction

gratings for spectroscopy applications are typically devised

to operate in the diffraction regime, when the wavelength of

the incident radiation is smaller than the grating period.

However, more recently, the opposite situation attracted the

attention of researchers due to the technological possibility

of fabricating structures with extremely fine geometrical

details, smaller than the wavelength even at optical frequen-

cies. Thus, the sub-diffraction operation of periodic struc-

tures has received considerable attention in various research

fields: frequency selective surfaces (FSS) for microwave and

millimeter-wave applications (see, for instance, Munk’s

book3 and references therein), design of infrared filters based

on periodically patterned metal grids,4,5 photonic band-gap

structures6,7 and, very recently, microwave,8,9 THz,10–13 and

optical14,15 extraordinary transmission systems. Usually, the

analysis of this kind of structures relies on the use of com-

mercial full-wave electromagnetic solvers, which generally

demand high computation resources for obtaining accurate

results. Furthermore, the simulators only provide “numbers”

without any physical insight on the nature of the obtained

solutions. Fortunately, the modeling of this class of periodic

structures operating in the sub-diffraction regime can be car-

ried out, under some circumstances, by means of very simple

models based on the elementary distributed circuit theory.

For instance, it was already reported16 an accurate modeling

of extraordinary transmission through electrically thick and

highly conductive periodically perforated plates. The same

concept has been extended later to other periodic structures,

including electrically thick simple or compound gra-

tings,17,18 and electrically thin metallic gratings printed on

layered dielectric slabs.19–21

The transmission spectra of electrically thin gratings or

grids are controlled by the dimensions of the grating/grid as

well as the thickness and permittivity of the dielectric slabs.

However, these parameters provide a limited control of the

transmission spectrum, and typically only a narrow transmis-

sion band can actually be achieved. A better control of the

transmission/reflection spectra is provided by stacking the

metal grids or other periodically patterned metal screens. For

instance, several metal grids made of narrow perpendicular

crossed strips can be arranged parallel to each other and sep-

arated by dielectric slabs. This is the principle behind the

design of relatively wideband infrared filters4,5 and modern

wideband microwave FSS.22,23 In a recent paper by some of

the authors,24 it has been shown that stacked metal grids sep-

arated by dielectric slabs can be accurately analyzed using
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circuit models with the grid parameters known in closed

form. That model is restricted to normal incidence and valid

for grids having a lattice constant well below the operating

wavelength, with a distance between the adjacent grids large

enough to avoid higher-order mode interaction. With these

limitations, the analytical model24 gives accurate results, and

thus it has been used for the explanation of the experimental

and numerical data previously reported in Ref. 25. It was dis-

cussed in Refs. 24 and 25 that the structure based on stacked

metal grids is the microwave analogue to the optical multi-

layer metal-dielectric stack analyzed in Ref. 26. The metal

grids in Ref. 24 behave at microwaves similarly to the thin

silver layers with optical negative permittivity in the problem

analyzed in Ref. 26. Such structure exhibits a passband

behavior that can be explained in terms of coupled modified

Fabry-P�erot (FP) resonators using the elementary theory of

one-dimensional periodic structures.

In this contribution, we propose an electromagnetic fil-

tering structure that can be considered as a quasi-

complementary version of the structure in Refs. 24 and 25. It

will be shown that a very accurate analytical model is also

available for this system. The proposed structure is formed

by a two-dimensional (2D) stack of periodic partially reflec-

tive surfaces (PRS) uniformly separated by dielectric slabs.

Each PRS consists of a 2D periodic distribution of closely

spaced square conducting patches. The separation between

two consecutive PRS has to be significantly larger than the

transverse gap between conducting patches at each PRS in

order to keep negligible the effects of interaction through

higher-order modes. Moreover, as in Ref. 24, the period of

the 2D array of patches has to be sufficiently smaller than

the wavelength in the involved dielectric media. In a system

made up of N þ 1 PRS separated by N identical dielectric

slabs, there will appear N þ 1 resonant transmission peaks

ranging from zero frequency up to a certain upper limit fre-

quency. It will be shown that this upper frequency limit does

not depend on the number of slabs (N). This partially trans-

parent frequency range with total transmission peaks is fol-

lowed by a deep stopband. After that stopband, a new

passband appears. The upper frequency of the low-pass band

and the lower and upper frequency limits of the next pass-

band can be analytically obtained from the study of the peri-

odic structure that results from stacking an infinite number

of uniformly spaced PRS separated by the dielectric slabs. In

contrast to the problem of stacked grids studied in Ref. 24,

the electric near field of the structure considered here is very

different from that obtained with the circuit model. However,

the mean value of the electric field (averaged over the unit

cell of the 2D patch array) is accurately accounted for by the

analytical model. As shown in the paper, this is sufficient to

obtain accurate values for the transmission and reflection

coefficients with the circuit model. The above study is

directly applicable to the microwave/millimeter-wave/THz

regimes if losses are phenomenologically incorporated by

adding the appropriate resistors to the model. The model can

also give some preliminary insight on the spectrum expected

at optical frequencies, when metals are characterized by

complex dielectric constants. It should be mentioned that the

obtaining of numerical results using full-wave commercial

software requires many hours of CPU time (with eventual

lacks of convergence) while the analytical model provides

results almost instantaneously.

Particular attention is also paid to the study of the simple

structure formed by two patch arrays separated by a single

dielectric slab. This structure exhibits resonance transmis-

sion peaks that can be explained, under certain conditions, in

terms of FP resonances of a FP resonator with an equivalent

length. This equivalent length can be analytically obtained

and is larger than the physical thickness of the dielectric slab

provided that the slab is electrically thick enough. For the

case of electrically thin dielectric slabs, there appear low fre-

quency resonances that are modeled in terms of quasi-

lumped resonators. In contrast with the electrically thick

case, the higher-order resonances of the FP type correspond

to a FP resonator having a length smaller than the separation

between the PRS.

II. STACKED 2D ARRAYS OF CONDUCTING PATCHES

An example of the multilayer configuration studied in

this paper is shown in Fig. 1, where it can be seen the front

view of each of the stacked PRS (consisting of a 2D periodic

array of square conducting patches). Although only 5� 5

unit cells along the x and y directions are shown, the struc-

ture is assumed infinite in the lateral directions. Each PRS

has sub-wavelength dimensions such that the unit cell size,

FIG. 1. Schematics of stacked identical

2D arrays of square conducting patches

(dark gray) printed on uniform dielectric

slabs of thickness h (light pink). (a)

Front view of 25 cells of the structure

and (b) cross-section along the direction

normal to the PRS. The incidence plane

is the xz-plane and two orthogonal polar-

izations (TE and TM) are considered in-

dependently. The lattice parameter is D
and the gap between the patches is g.

The thickness of the metal patches is

neglected. An elementary unit cell is

highlighted with the dashed lines.
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D, is smaller than the wavelength in the dielectric slabs at

the operation frequency, and the square metal patches

occupy most of the surface of the unit cells (i.e., g� D,

where g is the gap between the patches). As shown in Fig.

1(b), N þ 1 PRS of this kind (N ¼ 4 in the present example)

are stacked and separated by identical dielectric slabs (which

can also be air-filled regions). The structure is illuminated

with a uniform transverse electromagnetic (TEM) plane

wave under oblique incidence conditions (h is the angle

formed by the wave vector and the unit vector normal to the

surface). Since the structure is isotropic with respect to any

direction perpendicular to z (the coordinate along which the

structure is stacked), the incidence plane can be arbitrarily

chosen. Without loss of generality, the plane of incidence is

taken as one of the principal planes of the structure (for

example, the xz-plane in Fig. 1). Two different polarizations

are considered independently: transverse electric (TE) or

s-polarization and transverse magnetic (TM) or p-polarization.

The TE case with the electric field perpendicular to the plane

of incidence is shown in Fig. 1(a). A single isolated free-

standing array of square patches behaves as a PRS with the

magnitude of the transmission coefficient monotonically

decreasing from unity to very small values in the frequency

region of interest (see, for instance, Ref. 4). This behavior is

opposite to the one exhibited by the complementary struc-

ture: an electrically dense grid made with narrow conducting

crossed strips (as it is apparent from Babinet’s principle, the

reflection and transmission coefficients of the patches and

grid structures are interchanged for free-standing structures).

In this paper, it is shown that the behavior of a single PRS

made of square conducting patches is drastically modified if

several PRS of this type are stacked between dielectric slabs

(or air-filled regions). This study could have been done using

any commercial full-wave electromagnetic solver, but we

show that very accurate results can be obtained for the trans-

mission/reflection coefficients using the fully analytical

model proposed in this paper. The model is valid for normal

and oblique incidence and its accuracy is validated through

comparison with computationally intensive full-wave results

obtained with the well-known HFSS package.27

A. Derivation of the analytical circuit model

Assuming that the wavelength in free space is larger

than the period in the transverse direction of the structure

under study shown in Fig. 1 (k0 > D), no diffraction lobes

appear and a single plane wave is reflected or transmitted

into the far-field region. The phase and amplitude of the

transmitted and reflected plane waves depend on the level of

excitation of the evanescent fields scattered by each patch

array (which account for the near field around the patches).

In the absence of patches, these evanescent fields are not

excited and the corresponding plane-wave incidence problem

in the layered structure can be written in terms of cascaded

transmission-line sections characterized by the appropriate

propagation constants (c ¼ jb) and characteristic admittan-

ces (Y). Following Ref. 28, the values of the propagation

constants and characteristic admittances for the air (subscript

0) and dielectric (subscript d) regions, and for TM and TE

polarizations are given by

b0 ¼ k0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sin2 h

p
bd ¼ k0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
er � sin2 h

q
; (1a)

YTE
0 ¼

cos h
g0

YTM
0 ¼ 1

g0cos h
; (1b)

YTE
d ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
er � sin2 h

p
g0

YTM
d ¼ er

g0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
er � sin2 h

p ; (1c)

where k0 ¼ x=c (x is the angular frequency and c is the

speed of light in vacuum), g0 ¼
ffiffiffiffiffiffiffiffiffiffiffi
l0=e0

p
(free-space imped-

ance), and er is the relative permittivity of the dielectric

slabs. When the patches are present, the equivalent

transmission-line sections that replace each of the dielectric

regions can still be used with a slightly different meaning.

Each unit cell of the periodic problem, induced by the pres-

ence of the patches, can be viewed as a generalized transmis-

sion line whose walls are electric, magnetic, or periodic

boundary conditions, depending on the polarization of the

impinging wave and the angle of incidence (see, for instance,

Ref. 16 for the particular case of normal incidence). Thus,

the unit cell highlighted in Fig. 1 (black dashed lines) is rep-

resented in Figs. 2(a) and 2(b). For square unit cells, the

FIG. 2. (a) Front view and (b) side view of the equivalent transmission lines for

TE and TM polarized waves. Periodic boundary conditions are applied in the x
axis (dotted lines) while electric walls (solid lines; TE polarization) or magnetic

walls (dashed lines; TM polarization) are used in the y axis. The equivalent cir-

cuit proposed in this paper is depicted in (c). The capacitances of the three inter-

nal patches (having dielectric slabs at both sides) are different from the first and

the last capacitances (see the main text). (d) Unit cell of the periodic structure

along the z direction for an infinite number of slabs (N !1).
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characteristic admittances of these virtual waveguides are

identical to those given in (1b) and (1c) (if the unit cell is

rectangular, the aspect ratio can be included in the definition

of the characteristic admittances in a trivial manner). As

long as the higher-order fields scattered by the patches are

evanescent, the presence of the patches can be accounted for

by means of properly defined lumped elements, as typically

done in microwave modeling of discontinuities in wave-

guides. This methodology was successfully used in Ref. 24

to deal with stacked grids made with narrow crossed metal

strips. Grids are inductive discontinuities but patches are

mostly capacitive in nature. Therefore, a suitable circuit

model for the structure under study is the one depicted in

Fig. 2(c). The global effect of the patches is accounted for by

the shunt capacitors and the resistors located between the

transmission-line sections (the resistors account for ohmic

losses in the skin effect regime). Strictly speaking, inductors

should have also been included in the circuit model to take

into account higher-order evanescent TE modes. However,

since we are assuming electrically small patches occupying

most of the unit cell area (i.e., g� D), inductive effects are

negligible in the frequency range of interest (see, for

instance, Ref. 4). Thus, we only need appropriate expressions

for the capacitances and the resistances of the model. An ap-

proximate analytical expression for the capacitances can be

obtained by using the technique reported in Ref. 29. The fol-

lowing two closed-form expressions are obtained for the two

possible polarizations of the impinging wave (TM/TE):

CTM
g ¼ 2Deeff

pcg0

ln csc
pg

2D

� �h i
; (2a)

CTE
g ¼

2Deeff

pcg0

1� sin2 h
2eeff

� �
ln csc

pg

2D

� �h i
; (2b)

where eeff is the average of relative permittivities at both

sides of the patch surface (eeff ¼ ð1þ erÞ=2 for the first and

last PRS, and eeff ¼ er for the internal PRS). Provided that

the skin depth, d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ðxl0rÞ

p
, is meaningfully smaller

than the thickness of the metalizations of conductivity r, the

value of R used in this paper is given by the following simple

expression:

R ¼ D

ðD� gÞrd
: (3)

According to the proposed model, the obtaining of the

reflectivity and transmissivity of the stacked structure in Fig.

1 reduces to the computation of the scattering parameters,

S11 and S21, of the transmission line circuit shown in Fig.

2(c). This is a simple textbook problem of microwave engi-

neering.30 In the present case, we can exploit the symmetry

of the structures with respect to the AA0 plane (see Fig. 2(c)).

If an even/odd symmetrical excitation is considered, the AA0

plane becomes a magnetic/electric wall. A reflection coeffi-

cient can be obtained for each of those cases (Se;o
11 for even/

odd excitations), and the scattering parameters of the original

structure can finally be calculated using the superposition

principle:

S11 ¼
1

2
ðSe

11 þ So
11Þ; S21 ¼

1

2
ðSe

11 � So
11Þ: (4)

The transmission-line problems defining Se;o
11 are shown

in Fig. 3. These reflection coefficients are different for each

polarization (TE or TM), and are related to the input admit-

tances, Ye;o
in , shown in Fig. 3 as follows:

Se;o
11ðTE;TMÞ ¼

YTE;TM
0 � Ye;o

in

YTE;TM
0 þ Ye;o

in

; (5)

where the input impedances Ye;o
in are easily obtained using

well-known admittance translation formulas (see, for instance,

Ref. 30). A simple iterative expression for the input admittan-

ces can be written for an arbitrary number of slabs. If the

number of slabs is odd (instead of even, as in Fig. 3), the last

transmission-line section would have a length of h=2 and

would be terminated with a short circuit (odd excitation) or an

open circuit (even excitation). In any case, the final result is a

closed-form expression for the reflection and transmission

coefficients of the stacked structure. This approximate expres-

sion is validated in Sec. II B by comparison with full-wave

numerical results.

B. Validation of the circuit model

Since a number of approximations have been done to

give the circuit model described above, this model will be

now validated by proper comparison with full-wave results.

The full-wave results in this paper are calculated by using

the commercial electromagnetic finite elements solver

HFSS.27 The comparison starts with a sample structure con-

sisting of five square patch-type PRS made of 18 lm thick

copper (rCu ¼ 5:7� 107 S/m) printed on the commercially

available Rogers RO3010 substrate (thickness, h ¼ 2:0 mm,

er ¼ 10:2, loss tangent, tan d ¼ 0:0035). The lattice constant

along the x and y directions is D ¼ 2:0 mm and the gap

between patches is g ¼ 0:2 mm. In particular, we present nu-

merical values of the transmissivity (jTj2 ¼ jS21j2) of this

FIG. 3. Equivalent circuits for determining the reflection coefficients under

(a) even and (b) odd excitation conditions (Se;o
11 ) for the structure in Fig. 1.

033101-4 Kaipa et al. J. Appl. Phys. 112, 033101 (2012)



structure computed with HFSS along with the analytical data

provided by our model (dielectric losses have been incorpo-

rated in the model by using complex values for the relative

dielectric constant in (1a)–(1c)). This quantity is plotted in

Fig. 4(a) as a function of frequency at normal incidence (in

the present situation of square patches and normal incidence,

there is no distinction between TM and TE polarizations).

In the frequency range where we have obtained results

from HFSS within an acceptable lapse of time, there is an

excellent agreement between numerical and analytical data.

In the explored range of frequencies, the structure exhibits a

low-pass filter behavior with strong ripples. Apart from the

transmission peak occurring at zero frequency (not shown in

Fig. 4(a) and also occurring when a single PRS is used), the

structure exhibits other four high-transmission peaks (labeled

A, B, C, and D). Note that, at the maximum frequency con-

sidered in that plot (20 GHz), the ratio D=k0 � 0:13 and

D=kd � 0:43 (kd ¼ 2p=bd). It is interesting to emphasize

that the condition D� kd has not to be enforced strictly: D
is simply required to be sufficiently smaller than kd. Indeed,

the model is expected to work if (1) the inductance of the

patch is negligible (as mentioned before, this is essentially

related to the gap size: g� D) and (2) the frequency de-

pendence of Cg can be neglected (the frequency-dependent

behavior of Cg is here relevant only at frequencies above

20 GHz; corresponding to D � 0:75kd). Similar comparisons

have also been done for a wide variety of geometrical and

electrical parameters and the same good agreement has been

observed. If the analytical model is used up to higher fre-

quencies, Fig. 4(b) shows the appearance of a second pass-

band with four transmission peaks that are more attenuated

than in the first transmission band. HFSS data have not been

included here because, in that frequency region, we found

convergence problems to obtain numerical results with the

simulator.

If the transmission spectrum in Fig. 4(b) is compared

with the spectra reported in Ref. 25 for the stacked grids, we

can see that, in contrast with the bandpass behavior of the

grid structure, the patch structure exhibits a low-pass band

followed by a wide stopband (followed by another passband,

and so on). This behavior is observed independently of the

number of stacked layers. This fact is illustrated in Fig. 5(a),

where three plots for the transmissivity corresponding to sev-

eral numbers of layers (N¼ 2, 4, and 8) are depicted.

(a)

(b)

FIG. 4. (a) Comparison between analytical (blue solid lines) and numerical

(finite elements method, FEM—HFSS—red dashed lines) results for the

transmissivity (jTj2) of a stacked structure made of 5 PRS separated by 4

dielectric slabs at normal incidence (h ¼ 0). Dimensions: D ¼ 2:0 mm,

g ¼ 0:2 mm, h ¼ 2:0 mm. Electrical parameters: er ¼ 10:2, tan d ¼ 0:0035,

rCu ¼ 5:7� 107 S/m. (b) Analytical predictions over a wider frequency

band showing a second passband at around 24–30 GHz (numerical data are

not included due to convergence problems with HFSS for the high frequency

portion of the spectrum).

(a)

(b)

FIG. 5. (a) Transmission spectra obtained for N¼ 2, 4, and 8 dielectric slabs.

Dimensions and electrical parameters are the same as in Fig. 4. (b) Trans-

mission spectra (N ¼ 10) for three different values of the dielectric constants

of the regions separating the PRS (losses have been ignored). The transverse

unit cell dimensions are the same as in Fig. 4 and h ¼ 2:0 mm, 4:0 mm, and

6:0 mm for er ¼ 10.2, 3.0, and 1.0, respectively.

033101-5 Kaipa et al. J. Appl. Phys. 112, 033101 (2012)



Another curve (red) for N ¼ 10 and the same electrical

and dimensional parameters appears in Fig. 5(b) (no losses

are included in this case). The number of transmission max-

ima (excluding the one at zero frequency) is equal to the

number of dielectric slabs. However, the upper frequency

limit of the low-pass band does not seem to depend meaning-

fully on the number of layers. The calculated upper fre-

quency limit (at 3 dB below the maximum) is shown in

Table I for an increasing number of slabs.

From this table and Figs. 4 and 5, it is clear that increas-

ing the number of layers results in an increasing number of

peaks within a certain fixed frequency band. The upper limit

of this band should rather be linked to the geometry and elec-

trical parameters of the unit cell corresponding to a periodic

structure along the z direction in the limit N !1. Thus, the

frequency regions where transmission is possible can be

determined by studying the band structure of the 1D pho-

tonic crystal resulting from cascading along the z direction

an infinite number of identical cells such as that represented

in Fig. 2(d). It turns out that the eigenvalues for that periodic

structure can easily be obtained by using the proposed circuit

model. The resulting periodically loaded transmission line

supports Bloch waves whose propagation constant can be

computed via the method reported in Ref. 30 (this method

was also used in Ref. 25 to explain the existence of bands in

a stacked-grids structure). Following the procedure described

in Ref. 30, the following dispersion equation for the Bloch

waves is obtained:

cosðkBhÞ ¼ cos /� b

2
sin /; (6)

where kB is the Bloch wavenumber, / ¼ bdh is the electrical

thickness of the slabs, and b is the normalized admittance

associated with the capacitances in (2a) or (2b); i.e.,

b ¼ ðxCTE;TM
g Þ=YTE;TM

d . The expression (6) yields a band

structure with passbands separated by forbidden frequency

regions. The Bloch wavenumber is real (passband) within

those frequency regions for which jcos /� b=2 sin /j < 1

and purely imaginary in the complementary regions (forbid-

den bands). The Bloch dispersion curves (first two propaga-

tion bands) for the unit cell associated with the structures

analyzed in Figs. 4 and 5 and Table I are plotted in Fig. 6.

It can be observed how the low-pass band coincides

with the region where the finite structures have non-

negligible transmission (and N high-transmission peaks).

The forbidden band in Fig. 6 perfectly accounts for the low

transmission region of the finite structures. The Brillouin dia-

gram suggests the existence of a second transmission band

that is clearly anticipated by our circuit model in Fig. 4(b).

Note that the first band is forward while the second one is

backward.

At this point, it is worth mentioning that, in the same

manner that the dense metal grid structures studied in Ref.

25 mimic the behavior of stacked dielectric slabs separated

by negative-permittivity solid thin films (metals at optical

frequencies have a negative real part of the permittivity), the

response of the structure studied in this paper resembles the

response of a system of dielectric slabs separated by thin

dielectric foils of very high permittivity. In the structures

with thin dielectric or metal films separating dielectric slabs,

no evanescent TE/TM fields are excited. In such cases, the

required stored reactive energy is exclusively associated

with the presence of TEM standing waves. On the contrary,

the reactive energy in the structures analyzed in this paper

and in Ref. 25 comes from TEM standing waves as well as

higher-order TE and TM evanescent modes.

It is also interesting to study the behavior of the transmis-

sivity for high and low dielectric constant slabs. In Fig. 5(b),

we have plotted the low-pass transmission spectra obtained

for three different slabs. The spectra are qualitatively similar

but some differences can be appreciated. First, the upper limit

of the low-pass band is different for the three cases. One

might expect that this upper limit depended only on the elec-

trical thicknesses of the slabs. However, this is not the case:

The electrical thickness of the slabs at the upper limit fre-

quency is approximately 0:51p, 0:6p, and 0:71p radians for

the high, medium, and low dielectric constant cases, respec-

tively. Actually, Eq. (6) has to be considered to establish such

limit. However, another more interesting differential feature is

that the ripples level is much higher for high dielectric con-

stant materials than for low permittivity materials. In the limit

case of er ¼ 1:0, ripples are low except for frequencies very

close to the upper limit of the low-pass band. This behavior is

TABLE I. Upper frequency limit of the low-pass band of the structure with

the dimensions and electrical parameters in Fig. 4 as a function of the num-

ber of slabs, N.

N Upper frequency (GHz)

4 11.77

5 11.80

6 11.82

10 11.90

18 11.99

30 12.02

FIG. 6. Brillouin diagram for the first two transmission bands of an infinite

periodic structure (1D photonic crystal) with the same unit cell as that used

in the curves plotted in Fig. 4. The non-zero transmission region in Fig. 4

matches the first passband in this graph, and the low transmission region in

Fig. 4 coincides with the stopband region in this figure. The second pass-

band, which is backward, is consistent with the second set of peaks appear-

ing in Fig. 4(b).
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the opposite to the one observed for higher permittivity slabs,

for which the ripples depth decreases as the frequency

increases up to reach the upper limit of the band. Note that

low permittivity slabs would yield better low-pass filters since

their frequency response is flatter.

The model proposed in this paper is also valid for

oblique incidence. Since the HFSS calculations for several

dielectric slabs take a long time, the accuracy of the model

for angles of incidence different from zero has been tested

for a single slab structure. The comparison between HFSS and

analytical results for several angles of incidence and TE/TM

incidence is shown in Fig. 7. From the plots, it is clear that

the model also works quite well for oblique incidence. For

TM polarization, the transmission peak is found to be hardly

sensitive to the angle of incidence, which is a desirable fea-

ture for many applications. However, a slight shift to higher

frequencies is observed for increasing values of the inci-

dence angle under TE polarization.

III. FIELD DISTRIBUTIONS AT THE RESONANCE
FREQUENCIES

In Ref. 24, it was claimed that the field profile along z
predicted by the circuit model should agree with that pro-

vided by full-wave numerical simulations. Thus, in that pa-

per, it was verified that the voltage distribution along the

transmission lines of the proposed circuit model was almost

identical to the electric field distribution (computed using

HFSS (Ref. 27)) along the central line crossing the structure

unit cell. Since the fields predicted by the analytical model

and the numerically computed fields were very close to each

other, the scattering parameters predicted by the two

approaches were clearly expected to be also very similar.

However, for the structure considered in the present work, it

is clear that we cannot expect the same degree of similarity

between the voltage distribution provided by the circuit

model and the transverse electric field distribution given by

the full-wave numerical simulations. Thus, for instance, the

voltage distribution along the transmission-line equivalent

system in Fig. 2(c) cannot reproduce the fact of having zero

transverse electric field in the perfectly conducting patches

(note that the location of the patches corresponds to the loca-

tion of the capacitors in the circuit model). This fact is illus-

trated in Fig. 8 for the four frequency points corresponding

to the peaks A, B, C, and D in Fig. 4.

In each of the plots in Fig. 8, we have included the

y-component of the electric field computed with HFSS (Ref. 27)

(solid green lines). In all the cases, this field pattern has zeros

at those points where the perfectly conducting patches are

located. The “average” electric field deduced from the volt-

age distribution predicted by the circuit model is represented

in Fig. 8 as solid blue lines. It is clear that the HFSS and the

circuit-model field patterns are completely different. How-

ever, we already found in Fig. 4(a) that the scattering param-

eters predicted by the analytical model are very accurate. To

solve this apparent paradox, we should consider that the scat-

tering parameters are power-related quantities and, therefore,

they should be accurately computed from a good estimation

of the average electric field over the cross-section of the unit

cell. The longitudinal (z) profile of this average field, which

could be called macroscopic field, is very close to the actual

longitudinal profile of the local field (or microscopic field) in

the case of the grid structures studied in Ref. 24. However,

the longitudinal profiles of the macroscopic and microscopic

fields are completely different in the patches structure con-

sidered here. The average full-wave field pattern can easily

be computed from HFSS data, and its value has been included

in Fig. 8 as dashed red lines. Since this average field is con-

trolled by the TEM component of the total field (the average

value of any higher-order mode is zero), its longitudinal pro-

file is found to be almost identical to the voltage profile

given by the circuit model. This good agreement is what

finally explains the accuracy of the scattering coefficients

provided by the circuit model.

The longitudinal profile of the average field pattern for

each of the resonances depicted in Fig. 4 has distinctive fea-

tures that allow us to associate each pattern with each reso-

nance. The lowest resonance frequency pattern (Fig. 8(a)) has

a single zero over the central PRS. The second one (Fig. 8(b))

has two zeros in the positions corresponding to the second

and fourth patch arrays. The third resonance frequency pattern

(Fig. 8(c)) has three zeros: one over a patch array and the

other two in the middle of the first and fourth slabs. Finally,

(a)

(b)

FIG. 7. Transmission curves for a single slab structure (N ¼1) under oblique

TM (a) and TE (b) incidence for several values of h. Solid lines are analyti-

cal results and circles have been obtained with HFSS. The dimensions and the

electrical parameters are the same as in Fig. 4.
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the highest resonance frequency field pattern (Fig. 8(d)) has

four zeros: each one inside of one of the four dielectric slabs.

This rule for the field patterns applies to any number of slabs.

IV. THE BASIC STRUCTURE: TWO PRS SEPARATED
BY A DIELECTRIC SLAB

In this final section, we study in depth the simplest ver-

sion of the structure considered in this paper with the purpose

of obtaining a deeper understanding of the type of resonances

that are possible in this structure. The simplest stacked struc-

ture corresponds to the case N ¼ 1. Two identical 2D arrays

of perfectly conducting square patches are printed and aligned

on both sides of a single dielectric slab. In the absence of

patches, the slab behaves as a Fabry-P�erot resonator exhibit-

ing transmission peaks at those frequencies for which the

thickness of the slab is an integer number of half-wavelengths

(or, equivalently, bdh ¼ np; n ¼ 61;62; …). The presence

of the patches modifies the situation. Following the theory in

Sec. II, the equivalent circuit for the single slab with patches

at both sides would be a section of transmission line of length

h (wavenumber bd and characteristic admittance YTE;TM
d )

inserted between two transmission lines having wavenumber

b0 and characteristic admittance YTE;TM
0 (see (1a)–(1c)). The

resulting equivalent circuit is formally identical to the one

used in Ref. 17 to analyze electrically thick slit gratings. In

that paper, the resonances were explained in terms of modified

FP resonators with an equivalent length slightly larger than

the physical length of the resonator (in that case, the depth of

the slit). However, although the equivalent circuit is identical

to the one in Ref. 17, the values of the parameters now

involved in the circuit model could be drastically different

from those in Ref. 17. This fact can give rise to a completely

different operation. An implicit equation for the location of

the resonance frequencies (transmission peaks) was derived in

Ref. 17 from the circuit model. Once adapted to the notation

in this paper, that equation can be written as

tanðbdhÞ ¼ j
2YdYC

Y2
d � Y2

0 þ Y2
C

¼ � 2xYdCg

Y2
d � Y2

0 � ðxCgÞ2
; (7)

where the upper indexes for TE and TM have been sup-

pressed for simplicity. Although the previous equation should

be numerically solved, some qualitative ideas can help us to

understand the different type of solutions that are expected.

The left hand side in (7) is a tangent function having poles at

those frequency values making bdh ¼ ð2nþ 1Þp=2 and zeros

at those frequency values where bdh ¼ np (n ¼ 0; 1; 2; …) is

satisfied. At the right hand side in (7), we have a rational

function whose single positive pole is located at

xp ¼ ðY2
d � Y2

oÞ
1=2=Cg. For the typical values of the parame-

ters of (7) considered in Ref. 17, the position of this pole was

well beyond the frequency range of interest, and thus the

rational function behaved as a linear function of x with a

small negative slope within the frequency range of interest.

The crossing between this almost-linear function and the tan-

gent function is expected to occur below and close to the ze-

ros of the tangent function. A similar situation is found for

(a)

(b)

(c)

(d)

FIG. 8. Longitudinal profile of the y-component of the electric field for the frequencies corresponding to the transmission peaks plotted in Fig. 4 ((a) A; (b) B;

(c) C; (d) D). Solid green lines, the detailed local field computed by HFSS along a center line across the structure; dashed red lines, the corresponding average

electric field along every transverse cross-section; solid blue lines, the electric field extracted from the analytical circuit model.
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the present structure when the pole of the rational function is

above one or several of the roots of the tangent function (i.e.,

when xp > npc=½h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
er � sin2 h

p
� for some n> 1). In such a

case, following the discussion in Ref. 17, the transmission

peaks occurring below xp can be approximately explained in

terms of FP resonances of an equivalent slab having a thick-

ness larger than the physical one. This equivalent thickness,

heq, is given by the following expression:

heq ¼ hþ Dh ¼ hþ 2cCg

Yd
: (8)

The above expression is useful for relatively electrically

thick slabs since, in such cases, the tangent function has sev-

eral poles and zeros below the pole of the rational function in

(7). The field patterns inside the dielectric slabs then corre-

spond to standing waves having one or more maxima and ze-

ros, such as expected for FP-like resonances. However, due to

the relatively high values of Cg in the present problem (when

compared with the corresponding values in Ref. 17) and the

possibility of having low values of ðY2
d � Y2

0Þ (low permittiv-

ity slabs), the pole of the rational function can be below the

first positive root of the tangent function or even below the

first pole of such function (i.e., xp < cp=½h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
er � sin2 h

p
�). A

simple inspection of the graphical representation of the tan-

gent and rational functions tells us that, in this latter case,

there is a solution to (7) for a frequency value located between

xp and the frequency corresponding to bdh ¼ p=2. At such

resonance frequency, the electrical thickness of the slab is less

than kd=4 and no FP mechanism can be invoked. This is the

situation found for electrically short slabs, where the unit cell

behaves more like a quasi-lumped resonator. The electric field

is strongly concentrated around the gaps oriented perpendicu-

larly to the impinging electric field, while the cavity between

the two PRS mainly stores magnetic energy.

In order to illustrate the application of the concept of

equivalent thickness and its range of validity, we have calcu-

lated the position of the first resonance frequency for a single

slab of relative dielectric constant er ¼ 10:2 coated by square

metal patches (having dimensional parameters D ¼ 2:0 mm

and g ¼ 0:2 mm for several values of the slab thickness, h).

The results have been included in Table II, where the numeri-

cal HFSS data are compared versus data obtained using the cir-

cuit formula (7) and the approximate equivalent thickness

formula (8). It is clear from the table that the circuit model

provides accurate results for any thickness of the slabs,

although the prediction for the case h ¼ 1:0 mm has poorer

accuracy (in this case the interaction between consecutive PRS

through higher-order modes is not negligible). However, the

prediction given by (8) clearly fails for electrically thin slabs.

In Fig. 9(a), the HFSS and circuit model predictions for

relatively thin slabs (h � 2:0 mm) are shown for comparison

purposes. This figure makes apparent that the circuit model

becomes less accurate as the value of h decreases. However,

the quality of the circuit model description for a given value

of h is better for small values of g, as illustrated in Fig. 9(b).

This observation is consistent with the fact that higher-order

modes are less important when accounting for the interac-

tions between PRS when the gaps are small.

Coming back to the analysis of the results in Table II, we

can deduce that, even though the circuit model description

works quite well, the equivalent-thickness slab concept

starts to lose its meaning for h�4:0 mm. Indeed, the first res-

onance (total transmission) frequencies for h ¼ 1:0 mm and

h ¼ 2:0 mm correspond to the values of electrical thickness

of the dielectric slabs below p=4 and, hence, these first two

cases cannot be associated with FP resonances but rather with

TABLE II. Comparison of the frequencies of total transmission, fTT, calcu-

lated by solving the dispersion equation (7), the equivalent thickness for-

mula (8), and using the full-wave HFSS solver. The analyzed structure is a

two-sided patch array (D ¼ 2:0 mm; g ¼ 0:2 mm) printed on a dielectric

slab (er ¼ 10:2) for different thicknesses under normal incidence conditions.

h (mm) fTT (GHz) via (7) fTT (GHz) via (8) fTT (GHz) via HFSS

1 17.211 13.0606 16.68

2 11.425 10.2174 11.4

4 7.279 7.1182 7.23

6 5.458 5.4616 5.40

8 4.392 4.4304 4.38

10 3.686 3.7268 3.65

(a)

(b)

FIG. 9. (a) Comparison between circuit model and HFSS predictions around

the first resonance frequency for three different slab thicknesses (er ¼ 10:2,

h ¼ 1:0; 1:5, and 2.0 mm). (b) The same comparison (case h ¼ 1:0 mm) for

three different gaps between the patches (g ¼ 0:1; 0:2, and 0:3 mm).
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quasi-lumped resonances. In order to understand the differ-

ence between the two situations (FP-like resonances versus

quasi-lumped resonances), we examine the distribution of the

magnetic field at resonance. Thus, Figs. 10(a) and 10(b) show

the magnetic field distribution inside the dielectric region for

the first resonance frequency obtained for h ¼ 6:0 mm and

h ¼ 2:0 mm, respectively. In the first case, a typical sinusoi-

dal pattern of FP type is visualized. However, in the second

case (h ¼ 2:0 mm), the magnetic field distribution is much

more uniform. A similar plot for the electric field shows a

similar pattern, with a very strong electric field around the

gaps, as expected. For the electrically thin slab case shown in

Fig. 10(b), the resonance frequency can be estimated from

the local capacitances (lumped capacitances of the gaps) and

the overall inductance of the unit cell section between the

PRS, thus validating our consideration of this resonance as a

quasi-lumped one.

V. CONCLUSION

In this work, it has been shown that the study of the

wave propagation along stacked partially reflecting surfaces

consisting on square closely spaced metal patches separated

by dielectric slabs can be carried out analytically with negli-

gible computational effort by means of a very simple circuit

model. The parameters of the model are known in closed

form. Using this model, the band configuration of the periodic

structure resulting of stacking an infinite number of PRS and

slabs can be obtained. A first forward low-pass band is fol-

lowed by a stopband region after which a backward-wave

passband appears. This band configuration provides impor-

tant information about the distribution of the transmission

peaks of a realistic structure having a finite number of PRS

and slabs. The simplest case with only one dielectric slab has

been studied in depth and two types of resonances have been

identified: quasi-lumped and Fabry-P�erot like resonances.

The methodology used in this paper can be useful in

the design of devices based on these structures, for which

numerical simulations are cumbersome or even non-

convergent.
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