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sitaba, aún estando en diferentes continentes. En especial a Aurora por hacerme
sentir tan afortunada de tenerla como compañera de despacho, confidente y amiga.
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RESUMEN

Numerosos problemas en diferentes áreas de las matemáticas pueden ser reformula-
dos como un problema de punto fijo de una aplicación no expansiva. Por ejemplo,
dado un operador monótono en un espacio de Banach, es conocido que el operador
resolvente asociado es una aplicación no expansiva cuyo conjunto de puntos fijos
coinciden con el conjunto de ceros del operador monótono. Igualmente, el operador
complementario de una aplicación no expansiva es monótono y su conjunto de ceros
es el conjunto de puntos fijos de la aplicación. La conexión existente entre la teoŕıa
del punto fijo y la teoŕıa de operadores monótonos permite establecer equivalencias
entre un problema de punto fijo para aplicaciones no expansivas y otros problemas
como por ejemplo la búsqueda de una solución de una desigualdad variacional, un
minimizante de una función convexa o un punto de silla de un problema minimax.

Motivado por las anteriores aplicaciones, el estudio de métodos iterativos para la
aproximación de puntos fijos de aplicaciones no expansivas en espacios de Banach ha
adquirido una gran relevancia en los últimos años, especialmente en el caso particular
de los espacios de Hilbert. Entre los algoritmos iterativos investigados hasta hoy,
cabe destacar los siguientes:

• La iteración de Mann, cuyo esquema algoŕıtmico consiste en definir la nueva
iterada como la combinación convexa de la iterada anterior y su imagen por
la aplicación no expansiva.

• La iteración de Halpern, cuya formula recursiva viene dada por la combinación
convexa de un punto arbitrario y la imagen de la iterada anterior por la apli-
cación no expansiva.

Ambos algoritmos, en sus fórmulas impĺıcitas y expĺıcitas, han sido ampliamente
estudiados y siguen siendo el objeto de investigación de muchos trabajos. A pesar
del gran número de resultados en cuanto a la convergencia de estos algoritmos, aún
existen importantes problemas abiertos referentes a las propiedades geométricas
del espacio, hipótesis sobre la aplicación no expansiva u otros aspectos como el
comportamiento asintótico de la sucesión de constantes de la combinación convexa.

Un importante campo de aplicación de estos métodos es el problema de apro-
ximación de ceros de un operador monótono. Otro ejemplo es el uso de la teoŕıa
de aproximación del punto fijo para resolver problemas de viabilidad convexa como



es el caso del problema multiple-sets split feasibility que consiste en encontrar un
punto perteneciente a la intersección de una familia finita de conjuntos cerrados y
convexos cuya imagen por una aplicación lineal pertenece a la intersección de otra
familia finita de conjuntos cerrados y convexos. Este problema constituye una v́ıa
de enfoque de problemas de otras disciplinas cient́ıficas como la reconstrucción de
imágenes o la terapia con radiación de intensidad modulada.

Esta extensa teoŕıa que tiene como objeto de estudio las aplicaciones no expan-
sivas y los operadores monótonos ha sido desarrollada principalmente en el marco
de los espacios de Banach. Recientemente algunos conceptos y técnicas propias de
los espacios vectoriales lineales han sido extendidos al marco más general de los
espacios métricos. En concreto, en variedades de Riemann, el estudio de métodos
iterativos para resolver problemas de optimización, desigualdades variacionales y la
búsqueda de ceros de operadores monótonos ha sido el centro de investigación de
muchos trabajos. Especialmente en variedades de Hadamard, que son variedades
con curvatura negativa que presentan muy buenas propiedades geométricas.

En esta tesis, se estudia los problemas que aparecen en la conexión entre las
teoŕıas de operadores monótonos y aplicaciones no expansivas tanto en espacios li-
neales como no lineales. El Caṕıtulo 1 está dedicado a diferentes enfoques para
aproximar puntos fijos de aplicaciones de tipo no expansivo definidas en espacios
de Banach. En el Caṕıtulo 2, se desarrolla una teoŕıa de operadores monótonos y
punto fijo de aplicaciones no expansivas en variedades de Hadamard, extendiendo
resultados de la teoŕıa clásica conocida en espacios de Hilbert.



Contents

Introduction i

1 Iterative methods in Banach spaces 1
1.1 Theoretical Framework . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Geometry of Banach spaces . . . . . . . . . . . . . . . . . . . 2
1.1.2 Iterative algorithms for nonexpansive mappings . . . . . . . . 15

1.2 Alternative iterative methods . . . . . . . . . . . . . . . . . . . . . . 23
1.2.1 Implicit algorithm . . . . . . . . . . . . . . . . . . . . . . . . 24
1.2.2 Explicit algorithm . . . . . . . . . . . . . . . . . . . . . . . . 27

1.3 Perturbation techniques . . . . . . . . . . . . . . . . . . . . . . . . . 35
1.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

1.4.1 Zeros of accretive operators . . . . . . . . . . . . . . . . . . . 45
1.4.2 Variational inequality problems . . . . . . . . . . . . . . . . . 50
1.4.3 Multiple-set split feasibility problem . . . . . . . . . . . . . . 53

2 Iterative methods in Hadamard manifolds 79
2.1 Theoretical framework . . . . . . . . . . . . . . . . . . . . . . . . . . 80

2.1.1 Differentiable manifolds . . . . . . . . . . . . . . . . . . . . . 80
2.1.2 Riemannian manifolds . . . . . . . . . . . . . . . . . . . . . . 81
2.1.3 Hadamard manifolds . . . . . . . . . . . . . . . . . . . . . . . 83

2.2 Monotone and accretive vector fields . . . . . . . . . . . . . . . . . . 91
2.3 Nonexpansive type mappings . . . . . . . . . . . . . . . . . . . . . . 103

2.3.1 Firmly nonexpansive mappings . . . . . . . . . . . . . . . . . 104
2.3.2 Pseudo-contractive mappings . . . . . . . . . . . . . . . . . . 109

9



2.4 Singularities, resolvent and Yosida approximation of vector fields . . 111
2.4.1 Singularities of strongly maximal vector fields . . . . . . . . . 111
2.4.2 Resolvent and Yosida approximation of a vector field . . . . . 113
2.4.3 Asymptotic behavior of the resolvent of a vector field . . . . 118
2.4.4 Singularities of monotone vector fields under boundary condi-

tions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
2.5 Proximal point algorithm for monotone vector fields . . . . . . . . . 125
2.6 Iterative algorithms for nonexpansive type mappings . . . . . . . . . 128

2.6.1 Picard iteration for firmly nonexpansive mappings . . . . . . 128
2.6.2 Halpern algorithm for nonexpansive mappings . . . . . . . . 130
2.6.3 Mann algorithm for nonexpansive mappings . . . . . . . . . . 134
2.6.4 Viscosity approximation method for nonexpansive mappings . 136
2.6.5 Numerical example . . . . . . . . . . . . . . . . . . . . . . . . 141

2.7 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
2.7.1 Constrained optimization problems . . . . . . . . . . . . . . . 145
2.7.2 Saddle-points in a Minimax Problem . . . . . . . . . . . . . . 150
2.7.3 Variational Inequalities . . . . . . . . . . . . . . . . . . . . . 152
2.7.4 Equilibrium problem . . . . . . . . . . . . . . . . . . . . . . . 156

References 161



Introduction

Many problems arising in different areas of mathematics, such as optimization, vari-
ational analysis and differential equations, can be modeled by the equation

x = Tx,

where T is a nonlinear operator defined on a metric space. The solutions to this
equation are called fixed points of T . If T is a contraction defined on a complete
metric space X, Banach contraction principle establishes that T has a unique fixed
point and for any x ∈ X, the sequence of Picard iterates {Tnx} strongly converges
to the fixed point of T . However, if the mapping T is a nonexpansive mapping, that
is,

d(T (x), T (y)) ≤ d(x, y), ∀x, y ∈ X,

then we must assume additional conditions on T and/or the underlying space to
ensure the existence of fixed points. Since the sixties, the study of the class of
nonexpansive mappings is one of the major and most active research areas of non-
linear analysis. This is due to the connection with the geometry of Banach spaces
along with the relevance of these mappings in the theory of monotone and accretive
operators.

If we denote by X∗ the dual space of a Banach space X, a set-valued operator
A : X → 2X

∗
with domain D(A) is said to be monotone if

〈x∗ − y∗, x− y〉 ≥ 0, ∀x, y ∈ D(A) and x∗ ∈ A(x), y∗ ∈ A(y).

On the other hand, a set-valued operator A : X → 2X is said to be accretive if

〈x∗ − y∗, j(x− y)〉 ≥ 0, ∀ x, y ∈ D(A) and x∗ ∈ A(x), y∗ ∈ A(y),

i
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where j(x−y) ∈ J(x−y) and J denotes the normalized duality mapping. One of the
most relevant facts in the theory of monotone and accretive operators is that the two
classes of operators coincide in the setting of Hilbert spaces; see [16]. The concepts
of monotonicity and accretivity have turned out to be very powerful in diverse fields
such as operator theory, numerical analysis, differentiability of convex functions and
partial differential equations; see [88, 76, 27, 129]. In particular, one of the reasons
is that the class of monotone operators is broad enough to cover subdifferentials
of convex functions, which are operators of increasing importance in optimization
theory. Recall that, given a function f : X → (∞,−∞], the subdifferential of f is
the set-valued operator ∂f : X → 2X

∗
defined by

∂f(x0) = {x∗ ∈ X∗ : f(x) ≥ f(x0) + 〈x− x0, x
∗〉, ∀x ∈ X},

for any x0 ∈ X. Then, if f is lower semicontinuous and convex, ∂f is monotone; see
[27]. This fact establishes an equivalence between convex minimization problems
and the search for zeros of monotone operators. A zero of an operator A is a point
x ∈ X such that 0 ∈ A(x).

Regarding the problem of the existence of zeros it is essential the concept of
maximal monotone operators. We say that A : X → 2X

∗
is maximal monotone if is

a monotone operator on X such that, for any x1 ∈ X and y1 ∈ X∗, the inequality

〈y1 − y2, x1 − x2〉 ≥ 0, ∀x2 ∈ D(A) and y2 ∈ A(x2),

implies that y1 ∈ A(x1). Likewise, its relationship with the notion of upper-
semicontinuity constitutes a fruitful tool; see [14].

The relationship between the theory of monotone operators and the theory of
nonexpansive mappings is basically determined by two facts: (1) if T is a nonex-
pansive mapping then the complementary operator I − T is monotone and (2) the
resolvent of a monotone operator A is nonexpansive. Moreover, in both cases the
fixed point set of the nonexpansive mapping coincides with the set of zeros of the
monotone operator.

The resolvent of a monotone operator in the setting of a Banach space was
introduced by Brezis, Crandall and Pazy in [10]. They set up the fundamental
properties of the resolvent, with special emphasis on the strong connection between
its fixed points and the zeros of the monotone operator. From this starting point, the
study of the asymptotic behavior of the resolvent operator has awakened the interest
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of many researchers. See, for instance, [20, 95, 56] and references therein. In the
framework of a Hilbert space H, given a maximal monotone operator A : H → 2H ,
the resolvent of A of order λ > 0 is the single-valued mapping Jλ : H → H defined
by

Jλ(x) = (I + λA)−1(x),

for any x ∈ H. It is straightforward to check that A−1(0) = Fix(Jλ), where Fix(Jλ)
denotes the fixed point set of Jλ. Moreover, the resolvent is not just nonexpansive
but also firmly nonexpansive; that is,

‖Jλ(x)− Jλ(y)‖2 ≤ 〈x− y, Jλ(x)− Jλ(y)〉,

for all x, y ∈ H; see, for instance, [20]. Thus the problems of existence and ap-
proximation of zeros of maximal monotone operators can be formulated as the cor-
responding problems for fixed points of firmly nonexpansive mappings. It is this
approach, applicable to other related problems as well, which makes firmly nonex-
pansive mappings an important tool in monotone operator and optimization theory.

In the interface between monotone operators and nonexpansive type mappings
another class of nonlinear mappings appears, the so called pseudo-contractive map-
pings. Recall that a mapping T : H → 2H is said to be pseudo-contractive if, for
any r > 0,

‖x− y‖ ≤ ‖(1 + r)(x− y)− r(u− v)‖, ∀ x, y ∈ H, u ∈ T (x), v ∈ T (y).

This concept was introduced by Browder and Petryshyn, in [16], and they proved
that a mapping T is pseudo-contractive if and only if the complementary operator
I − T is monotone. This means that the problem of solving an equation for mono-
tone operators may be formulated as a fixed point problem of a pseudo-contractive
mapping.

Concerning the fixed point approximation problem, we recall that the sequence
of Picard iterations {Tnx} strongly converges for contractions on complete metric
spaces. However, if T is nonexpansive, even when it has a fixed point, this se-
quence {Tnx} does not converge in general. For this reason, in the last decades,
the development of feasible iterative methods for approximating fixed points of a
nonexpansive mapping T has been of particular importance. For instance, [19, 29]
constitute nice surveys about the asymptotic behavior of nonexpansive mappings
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in Hilbert and Banach spaces. It is worth mentioning two types of iterative proce-
dures, Mann iteration and Halpern iteration. Both algorithms have been studied
extensively and are still the focus of a host of research works.

Mann iteration, initially due to Mann [72], is the averaged algorithm defined by
the recursive scheme

xn+1 = (1− αn)xn + αnTxn, n ≥ 0,

where x0 is an arbitrary point in the domain of T and {αn} is a sequence in [0, 1].
One of the classical results, due to Reich [94], states that if the underlying space
is uniformly convex and has a Fréchet differentiable norm, T has fixed points and∑

n αn(1 − αn) = ∞, then the sequence {xn} defined by Mann algorithm weakly
converges to a fixed point of T . Moreover, a counterexample provided by Genel
and Lindenstrauss ([45]) shows that in infinite-dimensional spaces Mann iteration
cannot have strong convergence. References [52, 94, 44, 121] can be consulted for
the convergence of Mann algorithm.

Halpern iteration, first presented in [50] by Halpern, is generated by the recursive
formula

xn+1 = αnu+ (1− αn)Txn, n ≥ 0,

where x0 and u are arbitrary points in the domain of T and {αn} is a sequence
in [0, 1]. Unlike Mann iteration, Halpern algorithm can be proved to have strong
convergence provided that the underlying space is smooth enough; see [65, 116, 95,
99, 120, 28, 108] and references therein. We should mention that it is still not clear
whether Halpern algorithm converges if the underlying space does not have a smooth
norm. We give more details about the convergence of both methods in Section 1.1.2.

One of the sources of the relevance of the iterative methods for approximating a
fixed point of a nonexpansive mapping is its application in other fields. Besides the
problem of zeros of a monotone operator, they can be applied to finding a solution to
a variational inequality and a minimizer of a convex function, among other problems.
For instance, in a Hilbert space H, given a monotone operator A defined on a closed
convex subset C, the variational inequality problem associated to A, VIP(A,C), is
formulated as finding a point x∗ ∈ C such that

〈Ax∗, x− x∗〉 ≥ 0, ∀x ∈ C.
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It can be readily proved that the VIP(A,C) is equivalent to the problem of finding
a fixed point of the nonexpansive mapping

T = PC(I − λA),

where λ > 0 is an arbitrary real number, I is the identity mapping and PC is the
metric projection onto C. On the other hand, if f : C → R is a differentiable convex
function and we denote by A the gradient operator of f , then the VIP(A,C) is the
optimality condition for the minimization problem

min
x∈C

f(x).

So an approach to approximating a solution of the VIP(A,C) or a minimizer of f
is via a fixed point problem.

Another example of applications of the approximation fixed point theory is the
multiple-sets split feasibility problem, MSSFP, introduced by Censor et al [24], which
consists of finding a point belonging to a family of closed convex sets in one space
such that its image under a linear transformation is contained in another family of
closed convex sets in the image space. It serves as a model for inverse problems where
constraints are imposed on the solutions in the domain of a linear transformation
as well as in its range. In particular, the MSSFP arises in the field of intensity-
modulated radiation therapy; see [22, 25] and references therein. Formally, in the
setting of Hilbert spaces, the MSSFP is formulated as finding a point x∗ satisfying

x∗ ∈ C :=
N⋂
i=1

Ci and Ax∗ ∈ Q :=
M⋂
j=1

Qj ,

where N,M ≥ 1 are integers, {Ci}Ni=1 and {Qj}Mj=1 are closed convex subsets of
Hilbert spaces H1 and H2, respectively, and A : H1 → H2 is a bounded linear
operator. It generalizes the convex feasibility problem (cf. [31]) and the two-sets
split feasibility problem (cf. [23, 21, 130, 124]).

Regarding the problem of finding a zero of a monotone operator A, in the case of
Hilbert spaces, Rockafellar [103], inspired by Moreau and Martinet [78, 75], defined
the proximal point algorithm for monotone operators by means of the iterative
scheme

0 ∈ A(xn+1) + λn(xn+1 − xn), n ≥ 0,
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where {λn} is a sequence of real positive numbers and x0 is an initial point. In the
study of its convergence, the key tool is the asymptotic behavior of the resolvent of
the monotone operator A.

This extensive theory dealing with nonexpansive mappings and monotone oper-
ators has mainly been developed in the framework of Banach spaces. Out of the
setting of linear vector spaces, some concepts and techniques have been extended to
other metric spaces. In particular, in the setting of Riemannian manifolds, relevant
advances have been made in this direction. The study of optimization methods to
solve minimization problems on Riemannian manifolds has been the subject of many
works. It has offered a new way to solve non-convex constrained minimization prob-
lems in Euclidean spaces by means of convex problems on Riemannian manifolds;
see [36, 41, 42]. A generalization of the convex minimization problem is the varia-
tional inequality problem. In the study of this problem several classes of monotone
vector fields have been introduced (see [81, 82, 36] for single-valued vector fields and
[35] for point-to-set vector fields) and convergence properties of iterative methods
to solve them have been presented (see, for instance, [41]).

Riemannian manifolds constitute a broad and fruitful framework for the de-
velopment of different fields. However, most of the extended methods previously
mentioned require the Riemannian manifold to have nonpositive sectional curva-
ture. This is an important property which is enjoyed by a large class of Riemannian
manifolds and it is strong enough to imply tight topological restrictions and rigid-
ity phenomena. More precisely, Hadamard manifolds, which are complete simply
connected and finite dimensional Riemannian manifolds of nonpositive sectional cur-
vature, have become a suitable setting for diverse disciplines. A Hadamard manifold
is an example of hyperbolic space and geodesic space, more precisely, a Busemann
nonpositive curvature (NPC) space and a CAT(0) space; see [59, 54, 113].

This thesis studies the problems that arise in the interface between the fixed
point theory for nonexpansive type mappings and the theory of monotone operators
in linear and nonlinear settings.

In Chapter 1, we present different approaches to approximate solutions of fixed
point problems for nonexpansive type mappings in the setting of Banach spaces. In
particular, in Section 1.2, we study the behavior of an approximating curve and its
discretized iteration for finding a common solution to a fixed point problem for a



Fixed point approximation methods for nonexpansive mappings vii

nonexpansive mapping T and the variational inequality

〈(I − ψ)q, J(x− q)〉 ≥ 0, ∀x ∈ Fix(T ),

associated to a contraction ψ, where J is the normalized duality mapping and Fix(T )
is the fixed point set. As a consequence we obtain a hybrid steepest descent method,
first studied by Yamada [117], which extends the viscosity approximation method;
see [79, 123, 109].

Section 1.3 is devoted to the discussion of a general perturbation technique for
approximating a fixed point of a nonexpansive mapping involving a sequence of
nonexpansive mappings which converges in some sense to the original mapping. It
consists of a Halpern type algorithm which has strong convergence under suitable
conditions. Previous perturbation techniques are due to Yang and Zhao [130, 128],
and Xu [124], for Mann type algorithms. To end Chapter 1, we give some appli-
cations of the previous methods to solve other related problems such as variational
inequalities, accretive inclusions and convex feasibility problems. In particular, we
study diverse iterative approaches for solving the multiple-sets split feasibility prob-
lem.

In Chapter 2, we present some contributions to the approximation fixed point
theory and monotonicity theory in the setting of a Hadamard manifold. Section 2.2
is devoted to introducing the concept of monotonicity for set-valued vector fields,
establishing a relationship with the notions of maximal monotonicity and upper
semicontinuity. We define the class of accretive vector fields and prove that it coin-
cides with the class of monotone vector fields, as happens in Hilbert spaces. These
equivalences will be the key in Section 2.4 to prove the existence of singularities
(zeros) of a maximal strongly monotone vector field. Then the concept of resolvent,
previously defined implicitly on Hilbert manifold by Iwamiya and Okochi [53], will
be given and proved to be well-defined. We also analyze the asymptotic behavior
of the resolvent by using the notion and properties of the Yosida regularization;
we then obtain some existence results of singularities under boundary conditions.
Regarding the approximation of singularities, in Section 2.5, we provide a proximal
point algorithm for maximal monotone vector fields which coincides with the one
introduced by Rockafellar [103] in the framework of Hilbert spaces.

Concerning the fixed point theory in the setting of Hadamard manifolds, in Sec-
tion 2.3, we introduce the notion of firmly nonexpansive mappings consistent with
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the definition given by Goebel and Reich [48] on the Hilbert ball. The properties
of this class of mappings establish a strong relation between monotone vector fields
and firmly nonexpansive mappings by means of the resolvent. By using the con-
cept of complementary vector fields (cf. [80]) we establish a connection between
monotonicity and the class of pseudo-contractive operators introduced by Reich
and Shafrir [101] in the more general setting of hyperbolic spaces. In Section 2.6,
we study the convergence of different algorithms for nonexpansive type mappings.
In particular, we prove the convergence of Picard iteration for firmly nonexpansive
mappings, define and study Mann and Halpern iterations for nonexpansive mappings
and present a viscosity approximation method. In order to illustrate the application
of these methods, we provide some numerical examples for Mann and Halpern iter-
ations. Finally, Section 2.7 focuses on how to apply the previous results to different
problems: minimization problems, minimax problems, variational inequalities and
equilibrium problems.



Chapter 1

Iterative methods in Banach
spaces

In this chapter we will focus on the linear case when X is a real Banach space.
We first provide the theoretical framework in which the problems we deal with are
formulated, including some knowledge of geometry of Banach spaces as well as some
iterative methods for approximating fixed points of nonexpansive type mappings.
In Section 1.2 we study the behavior of an approximating curve and its discretized
iteration for finding a common solution to a fixed point problem and a variational
inequality. As a consequence we obtain a hybrid steepest descent method which ex-
tends the viscosity approximation method. We dedicate Section 1.3 to the discussion
of general perturbation techniques for approximating a fixed point of a nonexpansive
mapping, involving a sequence of nonexpansive mappings which converges in some
sense to the original mapping. Finally we analyze the applications of the previous
methods to solve other related problems such as variational inequalities, accretive
inclusions and convex feasibility problems. In particular, we propose different ap-
proaches to approximate a solution to the multiple-sets split feasibility problem.

1



2 Iterative methods in Banach spaces

1.1 Theoretical Framework

We provide the theoretical framework necessary to develop and discuss the subject
we will focus on in the setting of Banach spaces. Likewise we introduce some iterative
process well-known in the literature for approximating fixed points of nonexpansive
mappings within this framework. This brief introduction will be very useful to
motivate and understand the iterative methods that we present in the following
sections.

Throughout this chapter X is a real Banach space with norm ‖ · ‖. The dual
space of X will be denoted by X∗, which is a Banach space itself endowed with the
norm

‖x∗‖∗ := sup{|〈x, x∗〉| : x ∈ X, ‖x‖ ≤ 1}, x∗ ∈ X∗,

where we write 〈x, x∗〉 = x∗(x) for the application of an element x∗ ∈ X∗ on an
element x ∈ X. We will omit the index whenever it becomes clear from the context
which norm is meant. In some particular cases we will work in the setting of a
Hilbert space denoted by H. By xn → x, xn ⇀ x or xn

∗
⇀ x, we denote the strong,

weak or weak∗ convergence of {xn} to x, respectively. The extended real line will
be denoted by R = R ∪ {∞}.

1.1.1 Geometry of Banach spaces

This section gathers some basic definitions and geometrical properties of Banach
spaces which can be found in [27]. We also survey basic results of convex analysis
and connect them to characterize those spaces in which some iteration methods
are defined and proved to converge to solutions to fixed point problems for certain
nonlinear mappings.

Elements of Convex Analysis

We briefly introduce some elements of convex analysis which can be found in many
texts on the general theory of convex analysis. See, for instance, [90, 40, 9].

Definition 1.1.1. A function f : X → R is said to be

• proper if its effective domain, D(f) = {x ∈ X : f(x) <∞}, is nonempty;
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• convex if
f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)

for all λ ∈ (0, 1) and x, y ∈ D(f);

• lower semicontinuous at x0 ∈ D(f) if

f(x0) ≤ lim inf
x→x0

f(x).

We say that f is lower semicontinuous on D(f) if it is so at every x0 ∈ D(f);

• Gâteaux differentiable at x0 ∈ D(f) if there exists an element f ′(x0) ∈ X∗

such that
lim
t→0

f(x0 + ty)− f(x0)
t

= 〈y, f ′(x0)〉, ∀y ∈ D(f);

• Fréchet differentiable at x0 ∈ D(f) if it is Gâteaux differentiable and

lim
t→0

sup
‖y‖=1

∣∣∣∣∣f(x0 + ty)− f(x0)
t

− 〈y, f ′(x0)〉

∣∣∣∣∣ = 0;

• subdifferentiable at x0 ∈ D(f) if there exists a functional x∗ ∈ X∗, called
subgradient of f at x0, such that

f(x) ≥ f(x0) + 〈x− x0, x
∗〉, ∀x ∈ X.

The set of all subgradients of f at x0

∂f(x0) = {x∗ ∈ X∗ : f(x) ≥ f(x0) + 〈x− x0, x
∗〉, ∀x ∈ X}

is called the subdifferential of f at x0.

Proposition 1.1.2. (Cioranescu [27]) Let f : X → R be a proper convex lower
semicontinuous function. Then

(i) the function f is subdifferentiable on intD(f), the interior of D(f);

(ii) the function f is Gâteaux differentiable at x ∈ intD(f) if and only if it has a
unique subgradient ∂f(x) = ∇f(x) called the gradient of f .
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Classes of Banach spaces

Definition 1.1.3. A Banach space X

• is smooth or has a Gâteaux differentiable norm if

lim
t→0

‖x+ ty‖ − ‖x‖
t

(1.1.1)

exists for each x, y ∈ SX = {v ∈ X : ‖v‖ = 1}, the unit sphere of X;

• has a uniformly Gâteaux differentiable norm if for each y ∈ SX the limit (1.1.1)
is uniformly attained for x ∈ SX ;

• is uniformly smooth if the limit (1.1.1) is attained uniformly for any x, y ∈ SX ;

• is uniformly convex if the modulus of convexity, δ : [0, 2] −→ [0, 1] defined by

δ(ε) := inf
{

1−
∥∥∥x+ y

2

∥∥∥ : ‖x‖ ≤ 1, ‖y‖ ≤ 1, ‖x− y‖ ≥ ε
}
,

satisfies that δ(ε) > 0 for all ε > 0.

Duality Mappings

Recall that a gauge is a continuous strictly increasing function φ : R+ → R+ such
that φ(0) = 0 and limt→∞ φ(t) =∞. Associated with a gauge φ the duality mapping
is the mapping Jφ : X → 2X

∗
given by

Jφ(x) =
{
jφ(x) ∈ X∗ : 〈x, jφ(x)〉 = ‖jφ(x)‖ ‖x‖, φ(‖x‖) = ‖jφ(x)‖

}
(1.1.2)

It is easily seen that Jφ(x) is nonempty for each x ∈ X and Jφ(·) is odd (cf. [27]).
If the gauge φ is given by φ(t) = t for all t ∈ R+, then the corresponding duality

mapping is called the normalized duality mapping, and is denoted by J . Hence the
normalized duality mapping J is defined by

J(x) = {j(x) ∈ X∗ : 〈x, j(x)〉 = ‖x‖2 = ‖j(x)‖2}. (1.1.3)

We can use another way to describe duality mappings. Given a gauge φ, we define

Φ(t) =
∫ t

0
φ(s)ds.
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Then it can be proved that Φ is convex and, for any x ∈ X,

Jφ(x) = ∂Φ(‖x‖).

Thus we have the following subdifferential inequality: for any x, y ∈ X,

Φ(‖x+ y‖) ≤ Φ(‖x‖) + 〈y, jφ(x+ y)〉, jφ(x+ y) ∈ Jφ(x+ y). (1.1.4)

For the normalized duality mapping J , the subdifferential inequality (1.1.4) turns
into

‖x+ y‖2 ≤ ‖x‖2 + 2〈y, j(x+ y)〉, j(x+ y) ∈ J(x+ y). (1.1.5)

The relation between the normalized duality mapping J and the general duality
mapping Jφ is easily seen to be

Jφ(x) =
φ(‖x‖)
‖x‖

J(x), x 6= 0, x ∈ X. (1.1.6)

The following result gathers the relation between the geometric properties of the
classes of Banach spaces and the features of the normalized duality mapping.

Proposition 1.1.4. (Cioranescu [27]) Let X be a Banach space. Given any gauge
φ, the following assertions hold.

(i) The space X is smooth if and only if the duality mapping Jφ is single-valued.

(ii) The space X is uniformly smooth if and only if the duality mapping Jφ is
single-valued and norm-to-norm uniformly continuous on bounded sets of X.

(iii) If the space X has a uniformly Gâteaux differentiable norm then Jφ is norm-
to-weak∗ uniformly continuous on bounded sets of X.

Following Browder [15], we say that a Banach space X has a weakly continuous
duality mapping if there exists a gauge φ such that Jφ is single-valued and weak-to-
weak∗ sequentially continuous; that is,

if {xn} ⊂ X, xn ⇀ x, then Jφ(xn) ∗⇀ Jφ(x).

It is known that the space lp, for 1 < p < ∞, has a weakly continuous duality
mapping with gauge φ(t) = tp−1. The following result constitutes an important
property satisfied by this class of spaces. See [27] and [98] for more details on
duality mappings.
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Theorem 1.1.5. (Lim-Xu [66]) Suppose that X has a weakly continuous duality
mapping Jφ associated with a gauge φ and that {xn} is a sequence converging weakly
to x. Then

lim sup
n→∞

Φ(‖xn − z‖) = lim sup
n→∞

Φ(‖xn − x‖) + Φ(‖z − x‖)

for all z ∈ X. In particular, X satisfies Opial’s property; that is,

xn ⇀ x =⇒ lim sup
n→∞

‖xn − x‖ < lim sup
n→∞

‖xn − z‖ (1.1.7)

for all z ∈ X, z 6= x.

Nonlinear mappings

The following definition contains the nonlinear mappings we are working with and
that will appear throughout the entire chapter.

Definition 1.1.6. Let C ⊆ X be a nonempty set. We say that a mapping T : C →
X is

• L-Lipschitz if there exists a constant L > 0 such that for all x, y ∈ C,

‖Tx− Ty‖ ≤ L‖x− y‖;

• a α-contraction if it is Lipschitz with constant α < 1;

• nonexpansive if it is Lipschitz with constant 1; that is, for all x, y ∈ C,

‖Tx− Ty‖ ≤ ‖x− y‖;

• α-averaged if there exists α ∈ (0, 1) such that

T = (1− α)I + αS,

for some nonexpansive mapping S;
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• firmly nonexpansive if for all x, y ∈ C there exists j(Tx− Ty) ∈ J(Tx− Ty)
such that

‖Tx− Ty‖2 ≤ 〈x− y, j(Tx− Ty)〉,

where J is the normalized duality map; equivalently, if for all x, u ∈ C the
function θ : [0, 1]→ [0,∞] defined by

θ(t) = d((1− t)x+ tTx, (1− t)y + tTy), (1.1.8)

is nonincreasing (see [48]).

We will denote the fixed point set of T as

Fix (T ) := {x ∈ X : x = Tx} (1.1.9)

In the particular case of a Hilbert space, these nonlinear mappings satisfy some
properties which are crucial for the methods developed in Section 1.4 and can be
deduced from the definitions.

Proposition 1.1.7. Let H be a Hilbert space. Given a mapping T defined on H,
the following assertions hold.

(i) If there exist an averaged mapping S, a nonexpansive mapping V and α ∈ (0, 1)
such that T = (1− α)S + αV , then T is averaged.

(ii) A mapping T is firmly nonexpansive if T = (I + V )/2 for some nonexpansive
mapping V . This means that any firmly nonexpansive mapping is 1/2-averaged.

(iii) A mapping T is firmly nonexpansive if and only if the complementary operator
I − T is firmly nonexpansive.

(iv) The composition of finitely many averaged mappings is averaged; that is, if
each of the mappings {Ti}Ni=1 is averaged, then so is the composition T1 · · ·TN .
In particular, if T1 is α1-averaged and T2 is α2-averaged, where α1, α2 ∈ (0, 1),
then the composition T1T2 is α-averaged, where α = α1 + α2 − α1α2.

(iv) The weighted sum of finitely many averaged mappings is averaged; that is, if
each of the mappings {Ti}Ni=1 is αi-averaged, with {αi} real numbers in (0, 1),
and {λi} is a sequence of real numbers in (0, 1] such that

∑N
i=1 λi = 1, then∑N

i=1 λiTi is an α-averaged mapping, where α = max{αi : 1 ≤ i ≤ N}.
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(v) If the mappings {Ti}Ni=1 are averaged and have a nonempty common fixed point,
then

N⋂
i=1

Fix (Ti) = Fix (T1 · · ·TN ) = Fix

(
N∑
i=1

λiTi

)
,

where {λi}Ni=1 is a set of real numbers in (0, 1] satisfying
∑N

i=1 λi = 1.

The metric projection on Hilbert spaces

Let C be a nonempty closed convex subset of a Hilbert space H. The (metric or
nearest point) projection onto C is the mapping PC : H → C which assigns to each
x ∈ H the unique point PCx in C with the property

‖x− PCx‖ = min{‖x− y‖ : y ∈ C}. (1.1.10)

Projections are characterized as follows (see, for example, [5]).

Proposition 1.1.8. Given x ∈ H and z ∈ C. Then z = PCx if and only if

〈x− z, y − z〉 ≤ 0, for all y ∈ C. (1.1.11)

As consequence we have that

(i) ‖PCx−PCy‖2 ≤ 〈x− y, PCx−PCy〉 for all x, y ∈ H; that is, the projection is
firmly nonexpansive;

(ii) ‖x− PCx‖2 ≤ ‖x− y‖2 − ‖y − PCx‖2 for all x ∈ H and y ∈ C;

(iii) If C is a closed subspace, then PC coincides with the orthogonal projection from
H onto C; that is, for x ∈ H, x−PCx is orthogonal to C (i.e., 〈x−PCx, y〉 = 0
for y ∈ C).

If C is a closed convex subset with a particulary simple structure, then the
projection PC has a closed form expression as described below.

1. If C = {x ∈ H : ‖x − u‖ ≤ r} is a closed ball centered at u ∈ H with radius
r > 0, then

PCx =

{
u+ r (x−u)

‖x−u‖ , if x 6∈ C
x, if x ∈ C
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2. If C = [a, b] is a closed rectangle in Rn, where a = (a1, a2, · · · , an)T and
b = (b1, b2, · · · , bn)T , then, for 1 ≤ i ≤ n, PCx has the ith coordinate given by

(PCx)i =


ai, if xi < ai,
xi, if xi ∈ [ai, bi],
bi, if xi > bi.

3. If C = {y ∈ H : 〈a, y〉 = α} is a hyperplane, with a 6= 0 and α ∈ R, then

PCx = x− 〈a, x〉 − α
‖a‖2

a.

4. If C = {y ∈ H : 〈a, y〉 ≤ α} is a closed halfspace, with a 6= 0 and α ∈ R, then

PCx =

{
x− 〈a,x〉−α‖a‖2 a, if 〈a, x〉 > α

x, if 〈a, x〉 ≤ α.

5. If C is the range of an m× n matrix A with full column rank, then

PCx = A(A∗A)−1A∗x

where A∗ is the adjoint of A.

Nonexpansive retraction

Our interest in nonexpansive retractions focusses on the generalization of two results
in the fixed point theory. Firstly a linear one in reflexive Banach spaces, the fact
that the convergence of the means defines a sunny projection on the fixed point sets
(Theorem 1.1.30). On the other hand, the firm nonexpansivity of metric projections
on the fixed point sets, a nonlinear result in Hilbert spaces, extended in some sense
to smooth Banach spaces (Lemma 1.1.9).

Given a subset K of C and a mapping T : C → K. Recall that T is a retraction
of C onto K if Tx = x for all x ∈ K. We say that T is sunny if for each x ∈ C and
t ∈ [0, 1], we have

T (tx+ (1− t)Tx) = Tx,



10 Iterative methods in Banach spaces

whenever tx+ (1− t)Tx ∈ C.
Although metric projections can be well-defined in any strictly convex reflexive

Banach space, they are no longer nonexpansive in general. In fact, it is known
(cf. [88]) that if nearest point projections are nonexpansive whenever they exist for
closed convex subsets C of a Banach space X with dimension at least three, then
X must be a Hilbert space. Moreover, it is also known [93] that if every closed and
convex subset of a Banach space X with dimension at least three is a nonexpansive
retract of X, then X is necessarily a Hilbert space.

The following result characterizes sunny nonexpansive retractions on a smooth
Banach space.

Lemma 1.1.9. (Bruck [18], Reich [92], Goebel-Reich [48]) Let X be a smooth
Banach space and let C ⊇ K be two nonempty closed convex subsets of X. Assume
that Q : C → K is a retraction from C onto K. Then the following three statements
are equivalent.

(a) Q is sunny and nonexpansive.

(b) ‖Qx−Qy‖2 ≤ 〈x− y, J(Qx−Qy)〉 for all x, y ∈ C.

(c) 〈x−Qx, J(y −Qx)〉 ≤ 0 for all x ∈ C and y ∈ K.

Consequently, there is at most one sunny nonexpansive retraction from C onto K.
Note that in terms of the duality mapping Jφ, (b) and (c) can be re-expressed as

(b′) ‖Qx−Qy‖φ(‖Qx−Qy‖) ≤ 〈x− y, Jφ(Qx−Qy)〉 for all x, y ∈ C.

(c′) 〈x−Qx, Jφ(y −Qx)〉 ≤ 0 for all x ∈ C and y ∈ K.

Note that when X is a Hilbert space the unique sunny nonexpansive retraction
from C to K is the metric projection onto K since (c) turns into its characterization
inequality, and from (b) we deduce its firm nonexpansivity.

The first result regarding the existence of sunny nonexpansive retractions on the
fixed point set of a nonexpansive mapping is due to Bruck.

Theorem 1.1.10. (Bruck [18]) If X is strictly convex and uniformly smooth and
if T : C → C is a nonexpansive mapping having a nonempty fixed point set Fix (T ),
then there exists a sunny nonexpansive retraction of C onto Fix (T ).
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In a more general setting within the framework of smooth Banach spaces, Reich
[95] and O’Hara-Pillay-Xu [86] provided constructive proof for the existence of the
sunny nonexpansive retraction from C onto Fix (T ), as it will be stated in Theorem
1.1.30.

Demiclosedness principle

A fundamental result in the theory of nonexpansive mappings is Browder’s demi-
closedness principle.

Definition 1.1.11. A mapping T : C → X is said to be demiclosed (at y) if the
conditions that {xn} converges weakly to x and that {Txn} converges strongly to y
imply that x ∈ C and Tx = y. Moreover, we say that X satisfies the demiclosedness
principle if for any closed convex subset C of X and any nonexpansive mapping
T : C → X, the mapping I − T is demiclosed.

The demiclosedness principle plays an important role in the theory of nonexpan-
sive mappings (and other classes of nonlinear mappings as well). It is an interesting
problem to identify those Banach spaces which satisfy the demiclosedness principle
for nonexpansive mappings. The following theorem provides a partial answer to the
problem.

Theorem 1.1.12. (Browder [12], Goebel-Kirk [47]) The demiclosedness principle
for nonexpansive mappings holds in a Banach space which is either uniformly convex
or satisfies Opial’s property (1.1.7).

Accretive and monotone operators

The concepts of monotonicity and accretivity constitute a valuable tool in studying
important operators which appear in different areas.

Definition 1.1.13. Let A : X → 2X be a set-valued operator with domain D(A)
and range R(A) in X. The operator A is said to be

• accretive if for each x, y ∈ D(A) and any u ∈ A(x), v ∈ A(y), there exists
j(x− y) ∈ J(x− y) such that

〈u− v, j(x− y)〉 ≥ 0,
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where J is the normalized duality map.

• m-accretive if it is accretive and R(I +A) = X.

Definition 1.1.14. Let A : X → 2X
∗

be a set-valued operator with domain D(A)
and range R(A) in X∗. The operator A is said to be

• monotone if for each x, y ∈ D(A) and any u ∈ A(x), v ∈ A(y),

〈u− v, x− y〉 ≥ 0; (1.1.12)

• strictly monotone if for each x, y ∈ D(A) and any u ∈ A(x), v ∈ A(y), the
strict inequality of (1.1.12) holds;

• strongly monotone if there exists a constant η > 0 such that for each x, y ∈
D(A) and any u ∈ A(x), v ∈ A(y),

〈u− v, x− y〉 ≥ η‖x− y‖2; (1.1.13)

• maximal monotone if it is a monotone operator which is not proper contained
in any other monotone operator on X; in other words, for any x ∈ X and
u ∈ X∗, the inequality

〈u− v, x− y〉 ≥ 0, ∀y ∈ D(A) and v ∈ A(y), (1.1.14)

implies that u ∈ A(x);

• inverse strongly monotone (ism) if there exists a constant ν > 0 such that for
all x, y ∈ D(A) and any u ∈ A(x), v ∈ A(y),

〈x− y, u− v〉 ≥ ν‖u− v‖2.

Remark 1.1.15. Note that when the underlying space is Hilbert, the normalized
duality mapping is the identity operator and then the notions of accretive and
monotone operator coincide.
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Definition 1.1.16. Let A : X → 2X be a set-valued operator with domain D(A)
and range R(A) in X. Given λ > 0, the resolvent of order λ of A is the set-valued
mapping Jλ : X → 2X defined as

Jλ = (I + λA)−1. (1.1.15)

Recall the important Minty Theorem for m-accretive operators on Hilbert spaces
enclosed in the following theorem.

Theorem 1.1.17. (Minty [76], Bruck-Reich [20], Goebel-Reich [48]) Let X be a
Banach space and A : X → 2X an accretive operator. Then the resolvent Jλ is
single-valued and firmly nonexpansive, for any λ > 0. Furthermore, if A is defined
on a Hilbert space H, A is m-accretive if and only if D(Jλ) = H, for any λ > 0.

Some of the problems we will discuss in Section 1.4 are enunciated on a Hilbert
space. So next we recall some properties satisfied in this setting with the aim
of studying these problems. In particular, the following proposition gathers some
results on the relationship between nonexpansive mappings and monotone operators.

Proposition 1.1.18. (Byrne and Xu-Kim [21, 127]) Let T : H → H be a mapping.

(i) If T : H → H is a ρ-contraction then the complement I−T is (1−ρ)-strongly
monotone.

(ii) T is nonexpansive if and only if the complement I − T is 1
2 -ism.

(iii) If T is ν−ism, then for γ > 0, γT is ν
γ -ism.

(iv) The mapping T is α-averaged if and only if I − T is 1
2α -ism.

Regarding the properties of the subdifferential of a convex function, the following
results are extremely useful.

Theorem 1.1.19. (Minty [76], Moreau [78]) Let f : H → R be a proper lower
semicontinuous convex function. Then its subdifferential ∂f is a maximal monotone
operator.

Lemma 1.1.20. (Baillon-Haddad [2]) If f : H → R is a differentiable convex
function with a L-Lipschitz gradient ∇f , then ∇f is 1

L -ism.
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Technical Lemmas about convergent sequences

Lemma 1.1.21. (Xu [120]) Let {αn} ⊂ (0, 1) be a sequence satisfying limn→∞ αn = 0
and

∑∞
n=0 αn =∞. Let {an} ⊂ R+ be a sequence such that

an+1 ≤ (1− αn)an + αnbn, where lim sup
n→∞

bn ≤ 0.

Then limn→∞ an = 0.

Lemma 1.1.22. (Maingé [70]) Let {an}, {cn} ⊂ R+, {αn} ⊂ (0, 1) and {bn} ⊂ R
be sequences such that

an+1 ≤ (1− αn)an + bn + cn, for all n ≥ 0.

Assume
∑∞

n=0 cn <∞. Then the following results hold:

(a) If bn ≤ αnC where C ≥ 0, then {an} is a bounded sequence.

(b) If
∑∞

n=0 αn =∞ and lim supn→∞ bn/αn ≤ 0, then limn→∞ an = 0.

Definition 1.1.23. Let X be a complete metric space and C ⊆ X be a nonempty
subset. A sequence {xn} ⊂ X is called Fejér monotone with respect to C if

d(xn+1, y) ≤ d(xn, y)

for all y ∈ C and n ≥ 0.

Lemma 1.1.24. (Browder [15], Ferreira-Oliveira [42]) Let X be a complete metric
space and C ⊆ X a nonempty subset. If {xn} is Fejér monotone with respect to C,
then {xn} is bounded. Furthermore, if a cluster point x of {xn} belongs to C then
{xn} converges strongly to x. In the particular case of a Hilbert space, given the set
of all weakly cluster points of {xn},

ωw(xn) = {x : ∃xnj ⇀ x},

{xn} converges weakly to a point x ∈ C if and only if ωw(xn) ⊆ C.
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Lemma 1.1.25. (Suzuki [108]) Let {xn} and {yn} be bounded sequences in a Banach
space X and let {γn} ⊂ [0, 1] be a sequence with 0 < lim infn→∞ γn ≤ lim supn→∞ γn < 1.
Assume that xn+1 = γnyn + (1− γn)xn, for all n ≥ 0 and

lim sup
n→∞

(
‖yn+1 − yn‖ − ‖xn+1 − xn‖

)
≤ 0.

Then limn→∞ ‖xn − yn‖ = 0.

Lemma 1.1.26. (Reich [96]) Let {xn} be a bounded sequence contained in a sepa-
rable subset D of a Banach space X. Then there exists a subsequence {xnk} of {xn}
such that

lim
k→∞

‖xnk − y‖

exists for all y ∈ D.

Lemma 1.1.27. (Reich [96]) Let D be a closed convex subset a real Banach space
X with a uniformly Gâteaux differentiable norm, and let {xn} be a sequence in D
such that

f(y) := lim
n→∞

‖xn − y‖

exists for all y ∈ D. Given a gauge φ, if the function f attains its minimum over
D at u, then

lim sup
n→∞

〈y − u, Jφ(xn − u)〉 ≤ 0

for all y ∈ D.

Remark 1.1.28. The proof of Lemma 1.1.27 appears in [96] for the particular case
of the normalized duality mapping, but it is readily extended to the case of a gen-
eralized duality mapping Jφ thanks to the properties of the gauge φ.

1.1.2 Iterative algorithms for nonexpansive mappings

Let T be a self-mapping defined on a closed convex subset C of a Banach space X.
We know since 1922 that if T is a contraction defined on a complete metric space X,
the Banach contraction principle sets up that, for any x ∈ X, Picard iteration {Tnx}
converges strongly to the unique fixed point of T . If the mapping T is nonexpansive
we must assume additional conditions to ensure the existence of fixed points of T
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and, even when a fixed point exists, the sequences of iterates in general do not
converge to a fixed point. In the particular case when T is firmly nonexpansive,
Picard iteration does converge assuming the existence of a fixed point (see, for
instance, [48]). The study of iterative methods for approximating fixed points of a
nonexpansive mapping T has yielded a host of works in the last decades. The most
relevant progresses are mainly based on two types of iterative algorithms: Mann
and Halpern iterations.

Mann iteration is essentially an averaged algorithm which generates a sequence
recursively

xn+1 = αnxn + (1− αn)Txn, n ≥ 0, (1.1.16)

where the initial guess x0 ∈ C and {αn} is a sequence in (0, 1).
Halpern iteration generates a sequence via the recursive formula

xn+1 = αnu+ (1− αn)Txn, n ≥ 0 (1.1.17)

where the initial guess x0 ∈ C and anchor u ∈ C are arbitrary (but fixed) and the
sequence {αn} is contained in [0, 1].

Both iterations have extensively been studied for decades. The following sub-
sections are devoted to present some background about both iterative algorithms.
We first recall certain convergence results for Mann iteration and both implicit
and explicit schemes of Halpern iteration. Then diverse approaches regarding these
methods will be presented.

Mann iteration

Mann iteration (1.1.16) was first implicitly introduced by Mann, in [72], in a simpler
way. Then Krasnosel’skij [61] studied the iterative scheme (1.1.16) in the particular
case when αn = λ. He provided a result which assures the weak convergence of
Picard iteration for averaged mappings in a Hilbert space. Ishikawa, in [52], proved
that if 0 < a ≤ αn < 1 and

∑∞
n=1 αn = ∞, then ‖xn − T (xn)‖ → 0 as n → ∞,

which implies the convergence of {xn} to a fixed point of T if the range of T lies in
a compact subset of X. Therefore, we can let α be variable and still obtain weak
convergence (see, for instance, [32]). Moreover the weak convergence of the Mann
iterative algorithm remains true in a more general class of Banach spaces as the
following theorem claims.
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Theorem 1.1.29. (Reich [94]) Let C ⊆ H be a closed convex set of a uniformly
convex Banach space with Fréchet differentiable norm and T : C → C a non-
expansive mapping with Fix (T ) 6= ∅. If the sequence {αn}n≥0 ⊂ (0, 1) satisfies∑∞

n=0 αn(1 − αn) = +∞, then, for any x0 ∈ C, the sequence {xn} defined by the
Mann iteration converges weakly to a fixed point of T .

It is worth mentioning other works regarding the convergence of Mann iteration
such as [52, 44, 121].

Halpern implicit iteration

An iterative approach for solving the problem of approximating a fixed point of
a mapping T , which may have multiple solutions, is to replace it by a family of
perturbed problems admitting a unique solution, and then to get a particular original
solution as the limit of these perturbed solutions as the perturbation vanishes. For
example, given a closed convex set C ⊆ H, T : C → C, u ∈ C and t ∈ (0, 1),
Browder [13, 14] studied the approximating curve {xt} defined by

xt = tu+ (1− t)Txt; (1.1.18)

that is, xt is the unique fixed point of the contraction tu+ (1− t)T . He proved that
if the underlying space H is Hilbert, {xt} converges strongly as t → 0 to the fixed
point of T closest to u. This result has been generalized and extended to a more
general class of Banach spaces as it is summarized below.

Theorem 1.1.30. The net {xt} generated by the implicit algorithm (1.1.18) con-
verges strongly as t → 0 to a fixed point of T and the mapping Q : C → Fix (T )
given by

Q(u) := lim
t→0

xt (1.1.19)

defines the sunny nonexpansive retraction from C onto Fix (T ) under either one of
the following assumptions:

(i) The underlying space X is a Hilbert space (Browder [15]);

(ii) The underlying space X is uniformly smooth (Reich [95]);
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(iii) The underlying space X is reflexive, uniformly Gâteaux differentiable and has
the fixed point property for nonexpansive mappings (Reich [95], Takahashi-
Ueda [111]);

(iv) The underlying space X is reflexive and has a weakly continuous duality map-
ping (Reich [92], O’Hara-Pillay-Xu [86]).

Those Banach spaces where the approximating curve {xt} strongly converges are
said to have Reich’s property since Reich was the first to show that all uniformly
smooth Banach spaces have this property.

Halpern explicit iteration

Halpern was the first in introducing the explicit iterative algorithm (1.1.17) for
finding a fixed point of a nonexpansive mapping T : C → C with Fix (T ) 6= ∅,
where C is a closed convex subset of a Hilbert space H. This iterative method is
now commonly known as Halpern iteration although Halpern initially considered
the case where C is the unit closed ball and u = 0. He proved that {xn} converges
strongly to the fixed point of T which is closest to u (i.e., PFix (T )u) essentially when
αn = n−a with a ∈ (0, 1). He also showed that the following two conditions

(1) limn→∞ αn = 0, and

(2)
∑∞

n=0 αn =∞

are necessary for the convergence of the sequence {xn} to a fixed point of the map-
ping T . For example, taking T (x) = x we see that condition (1) is necessary, and
for condition (2) it suffices to consider T (x) = −x. Ten years later, Lions [65] im-
proved Halpern’s result by proving the strong convergence of {xn} to PFix (T )u if the
sequence {αn} satisfies conditions (1), (2) and

(3) limn→∞
αn−αn−1

α2
n

= 0.

Both Halpern’s and Lion’s conditions on the sequence {αn} exclude the natural
choice of αn = 1

n . Then, to avoid this problem, Wittmann [116], in 1992, obtained
strong convergence to PFix (T )u of {xn} (still in a Hilbert space H), by replacing
condition (3) with the following more general one
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(3’)
∑∞

n=0 |αn+1 − αn| <∞.

Conditions (3) and (3’) are not comparable. For instance, if {αn} is given by α2n =
(n + 1)−

1
4 and α2n+1 = (n + 1)−

1
4 + (n + 1)−1, then (3) holds while (3’) does not

hold. Note that if the sequence is decreasing condition (3’) is a consequence of
conditions (1) and (2), so in this particular case conditions (1) and (2) are necessary
and sufficient.

In 1994, Reich [99] proved the strong convergence of the algorithm (1.1.17) with
the two necessary and decreasing conditions on the parameters in the case when X
is uniformly smooth with a weakly continuous duality mapping.

In 2002, Xu [120] succeeded in improving the previous results twofold. First
weakening condition (3) by removing the square from the denominator so that the
natural choice of αn = 1

n is included:

(3∗) limn→∞
αn−αn−1

αn
= 0.

Secondly, he proved strong convergence in the framework of uniformly smooth Ba-
nach spaces.

Note that conditions (3’) and (3∗) are independent in general. For example, the
sequence defined by α2n = 1√

n
and α2n+1 = 1√

n−1
satisfies (3’) but fails to satisfy

(3∗). However, if there exists the limit of αn−1

αn
, with αn verifying conditions (1) and

(2), it is easy to check that (3∗) holds when (3’) does.
Recently O’Hara, Pillay and Xu [86] extended the proof of Xu [120] to a more

general class of Banach spaces and improved the approach of Shimizu and Takahashi
[106] by showing that the use of the Banach limit can be avoided. The following
theorem gathers the previous results.

Theorem 1.1.31. Let X be either a uniformly smooth Banach space or a reflex-
ive Banach space having a weakly continuous duality mapping Jφ. Assume that
{αn} ⊂ [0, 1] satisfies conditions (1), (2) and (3’) or (3∗). Then the sequence {xn}
generated by scheme (1.1.17) converges strongly to Q(u), where Q is the unique
sunny nonexpansive retraction from C onto Fix (T ).

The uniform smoothness assumption can be weakened to the hypothesis that the
norm of X is uniformly Gâteaux differentiable and each nonempty closed bounded
convex subset C of X has the fixed point property for nonexpansive mappings, i.e.,
every nonexpansive self-mapping of C has a fixed point.
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The existence of a sunny nonexpansive retraction from C to Fix (T ), given by
Theorem 1.1.30, is an important tool in the proof of the previous theorem. However,
while in the uniformly smooth setting the explicit definition of the sunny retraction
is crucial (cf. [121]), only the existence of such retraction is needed when X has a
weakly continuous duality mapping (cf. [86]).

It is straightforward to see that the proof of Theorem 1.1.31 also works if con-
dition (3’) or (3∗) is replaced by the condition of Cho et al. [26] below:

(3�) |αn+1 − αn| ≤ ◦(αn+1) + σn where
∑∞

n=1 σn <∞.

Condition (3�) seems weaker than condition (3∗). However, there are no essential
differences.

Since conditions (1) and (2) are necessary for Halpern iteration (1.1.17) to con-
verge in norm for all nonexpansive mappings T , a natural question is whether they
are also sufficient for strong convergence of Halpern iteration (1.1.17). There are
some cases where the answer is affirmative but in general it has been proved to be
negative in [110] (see also the following subsection).

Theorem 1.1.32. (Xu [122]) Let X be a smooth Banach space, C a closed convex
subset of X, and T : C → C a nonexpansive mapping with Fix (T ) 6= ∅. Let
φ be a gauge and Jφ its associated duality map. Assume conditions (1) and (2).
Then the sequence {xn} generated by Halpern iteration (1.1.17) converges strongly
to z ∈ Fix (T ) if and only if the following condition holds:

lim sup
n→∞

〈u− z, Jφ(xn − z)〉 ≤ 0. (1.1.20)

In particular, under conditions (1) and (2), we have that {xn} converges strongly
to z if either of the following two conditions is satisfied:

(i) X is uniformly smooth and Jφ is weakly continuous, and {xn} is weakly asymp-
totically regular (i.e., xn+1 − xn ⇀ 0);

(ii) X is uniformly smooth and {xn} is asymptotically regular (i.e., xn+1−xn → 0
in norm).
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Averaged mappings

We have seen in the previous subsection that much effort has been devoted to weaken
the third condition on the sequence {αn} and the geometric properties of the Banach
space. What are the sufficient and necessary conditions concerning {αn} is still an
open problem. However there exist some partial answers. Xu [120] proved that if
we replace Txn in the scheme (1.1.17) with the mean

Tnxn = (1/n)
n−1∑
k=0

T kxn,

then we do have strong convergence under conditions (1) and (2). The main con-
tribution, independently due to Chidume-Chidume [28] and Suzuki [108], is that
conditions (1) and (2) are indeed sufficient for the strong convergence of Halpern
iteration (1.1.17) if T is an averaged mapping, a term coined in [3].

If we require that the net {xt} of solutions of the implicit equation (1.1.18)
converge in norm, then the uniform smoothness of X can be weakened to uniform
Gâteaux differentiability.

Theorem 1.1.33. (Chidume-Chidume [28], Suzuki [108] ) Let X be a Banach space
whose norm is uniformly Gâteaux differentiable, C ⊆ X a closed convex subset and
T : C → C a nonexpansive mapping with Fix (T ) 6= ∅. Define a sequence {xn} in C
by the explicit scheme

xn+1 = αnu+ (1− αn)(λTxn + (1− λ)xn), n ≥ 0, (1.1.21)

where u ∈ C, λ ∈ (0, 1) and the sequence {αn} ⊂ [0, 1] satisfies (1) and (2). Assume
that {xt} defined as in (1.1.18) converges strongly to z ∈ Fix (T ) as t → 0. Then
{xn} converges strongly to z.

In particular, the following result holds true.

Corollary 1.1.34. Let X be a uniformly smooth Banach space, C ⊆ X a closed
convex subset and T : C → C a nonexpansive mapping with Fix (T ) 6= ∅. Let {αn}
satisfy conditions (1) and (2) and let λ ∈ (0, 1). Then the sequence {xn} defined
by (1.1.21) converges strongly to Q(u), where Q is the unique sunny nonexpansive
retraction from C onto Fix (T ).
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Conditions (1) and (2) are also necessary for the convergence of algorithm
(1.1.21), as it is showed in [108] with an example.
Remark 1.1.35. It is not hard to see that the conclusions in Theorem 1.1.33 and
Corollary 1.1.34 remain true if the parameter λ in the definition of xn+1 is replaced
with λn satisfying

0 < lim inf
n→∞

λn ≤ lim sup
n→∞

λn < 1.

Viscosity approximation method

Given a nonexpansive self-mapping T on a closed convex subset C, a real number
t ∈ (0, 1] and a contraction ψ on C, define the mapping Tt : C → C by

Ttx = tψ(x) + (1− t)Tx, x ∈ C.

It is easily seen that Tt is a contraction; hence Tt has a unique fixed point which is
denoted by xt. That is, xt is the unique solution to the fixed point equation

xt = tψ(xt) + (1− t)Txt, t ∈ (0, 1]. (1.1.22)

The explicit iterative discretization of (1.1.22) is

xn+1 = αnψ(xn) + (1− t)Txn, n ≥ 0, (1.1.23)

where {αn} ⊂ [0, 1]. Note that these two iterative processes (1.1.22) and (1.1.23)
have Browder and Halpern iterations as special cases by taking ψ(x) = u ∈ C for
any x ∈ C.

The viscosity approximation method of selecting a particular fixed point of a
given nonexpansive mapping was proposed by Moudafi [79] in the framework of a
Hilbert space. The convergence of the implicit (1.1.22) and explicit (1.1.23) algo-
rithms has been the subject of many papers because under suitable conditions these
iterations converge strongly to the unique solution q ∈ Fix (T ) of the variational
inequality

〈(I − ψ)q, J(x− q)〉 ≥ 0 ∀x ∈ Fix (T ), (1.1.24)

where J is the normalized duality mapping. This fact allows us to apply this method
to convex optimization, linear programming and monotone inclusions. See [123]
and references therein for convergence results regarding viscosity approximation
methods.
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1.2 Alternative iterative methods

Let us focus on the problem of finding a fixed point of the nonexpansive mapping
T : C → C with Fix (T ) 6= ∅. Recall the implicit iterative method defined by the
approximating curve (1.1.18), presented by Browder, which indeed converges to a
fixed point of T . In this direction, Combettes and Hirstoaga [34] introduced a new
type of approximating curve for fixed point problems in the setting of Hilbert spaces.
This curve whose iterative scheme is a more general version of the implicit formula

xt = T (tu+ (1− t)xt), (1.2.1)

was proved to converge to the best approximation to u from Fix (T ). Now let us
recover from Section 1.1.2 the viscosity method of approximating the particular
fixed point of T which is the unique solution of certain variational inequality. As a
generalization of the implicit formula (1.2.1), and motivated by the viscosity iterative
algorithm (1.1.22), given a contraction ψ : C → C, we define the approximation
curve

xt = T (tψ(xt) + (1− t)xt), (1.2.2)

that is, for any t ∈ (0, 1], xt is the unique fixed point of the contraction Tt =
T (tψ + (1− t)I), which constitutes a hybrid method of the ones mentioned above.

From the explicit discretized iteration

xn+1 = T (αnψ(xn) + (1− αn)xn), (1.2.3)

with the sequence {αn} ⊂ [0, 1], we can obtain the so-called hybrid steepest descent
method

xn+1 = Txn − αng(Txn). (1.2.4)

This latter procedure was suggested by Yamada [117] as an extension of the viscosity
approximation method for solving the variational inequality VIP(g,Fix (T ))

〈g(p), x− p〉 ≥ 0 ∀x ∈ Fix (T ), (1.2.5)

in the case when g is strongly monotone and Lipschitz continuous (see also [118, 71]).
However, we can get the convergence of the algorithm (1.2.4) just requiring I − µg
to be a contraction for some µ > 0, which is satisfied in the particular case when g
is strongly monotone and Lipschitz continuous.
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In this chapter, we aim to analyze the behavior of these alternative iterative
methods motivated mainly by the purpose of solving variational inequality problems
and finding zeros of accretive operators as we will show in Section 1.4.

First of all, note that a simple manipulation shows that the classical implicit
viscosity iteration (1.1.22) and the approximating curve (1.2.2) just defined are
equivalent in the sense that the convergence of one of them implies the convergence
of the other. Indeed, if xt = T (tψ(xt) + (1− t)xt), let us denote

yt := tψ(xt) + (1− t)xt, (1.2.6)

which implies xt = T (yt). Therefore, the curve (1.2.6) turns into

yt = tψ ◦ T (yt) + (1− t)T (yt), (1.2.7)

which is actually the implicit viscosity iteration (1.1.22) for the contraction ψ ◦ T .
Thus the curve {yt} converges to the fixed point of T which satisfies the variational
inequality (1.1.24) and so does the curve {xt} by the nonexpansivity of T . Con-
versely, it would be analogous. The same reasoning works for the explicit case.
Then, since the viscosity method was proved to converge in uniformly smooth Ba-
nach spaces, this proves the convergence of these alternative methods in this setting.

Our contribution is the convergence of the alternative methods in the framework
of reflexive Banach spaces with weakly continuous duality mapping, and provide a
different proof in uniformly smooth Banach spaces avoiding the use of Banach limits
as it was done in [123] for the viscosity method.

1.2.1 Implicit algorithm

In this section we prove the convergence of the implicit algorithm (1.2.2) in two
different frameworks. The result is gathered in the following theorem.

Theorem 1.2.1. Let X be either a reflexive Banach space with a weakly continuous
duality mapping Jφ or a uniformly smooth Banach space, C a nonempty closed con-
vex subset of X, T : C → C a nonexpansive mapping with fixed point set Fix (T ) 6= ∅
and ψ : C → C a ρ-contraction. Then the approximating curve {xt} ⊂ C defined by

xt = T (tψ(xt) + (1− t)xt), t ∈ (0, 1] (1.2.8)
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converges strongly, as t→ 0, to the unique solution q ∈ Fix (T ) of the inequality

〈(ψ − I)q, Jφ(x− q)〉 ≤ 0, ∀x ∈ Fix (T ); (1.2.9)

that is, q is the unique fixed point of the contraction Q ◦ ψ, where Q is the unique
sunny nonexpansive retraction from C to Fix (T ).

Proof. First of all, note that if Q : C → Fix (T ) is the unique sunny nonexpansive
retraction whose existence is assured by Theorem 1.1.30, by the characterization
Lemma 1.1.9, q ∈ C is the unique fixed point of Q ◦ψ if and only if q ∈ Fix (T ) sat-
isfies the variational inequality (1.2.9). Throughout the proof, when X is uniformly
smooth, the duality mapping is Jφ for any gauge φ.

We observe that we may assume that C is separable. To see this, consider the
set K defined by

K0 := {q},
Kn+1 := co(Kn ∪ T (Kn) ∪ ψ(Kn)),
K :=

⋃
nKn.

Then K ⊆ C is a nonempty convex closed and separable set. Moreover K is invariant
under T , ψ and, therefore, Tt = T (tψ+(1−t)I). Then {xt} ⊂ K and we may replace
C with K.

We will prove that {xt} converges, as t → 0, to the point q ∈ Fix (T ) which is
the unique solution of the inequality (1.2.9).

The sequence {xt} is bounded. Indeed, given p ∈ Fix (T ),

‖xt − p‖ = ‖T (tψ(xt) + (1− t)xt)− Tp‖
≤ ‖t(ψ(xt)− ψ(p)) + (1− t)(xt − p) + t(ψ(p)− p)‖
≤ (tρ+ (1− t))‖xt − p‖+ t‖ψ(p)− p‖.

Then, for any t ∈ (0, 1],

‖xt − p‖ ≤
1

1− ρ
‖ψ(p)− p‖.

Take an arbitrary sequence {tn} ⊂ (0, 1] such that tn → 0, as n → 0, and denote
xn = xtn for any n ≥ 0. Let Γ := lim supn→∞〈ψ(q)− q, Jφ(xn − q)〉 and {xnk} be a
subsequence of {xn} such that

lim
k→∞
〈ψ(q)− q, J(xnk − q)〉 = Γ.
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Since {xnk} is bounded, by Lemma 1.1.26, there exists a subsequence, which also
will be denoted by {xnk} for the sake of simplicity, satisfying that

g(x) := lim
k→∞

‖xnk − x‖

exists for all x ∈ C.
We define the set

A := {z ∈ C : g(z) = min
x∈C

g(x)}

and note that A is a nonempty bounded, closed and convex set since g is a continuous
convex function and lim‖x‖→∞ g(x) =∞. Moreover,

‖xnk − Tz‖ ≤ tnk‖ψ(xnk)− xnk‖+ ‖xnk − z‖,

for any z ∈ C. Since the sequence {tnk} converges to 0 as k → ∞, we deduce that
g(Tz) ≤ g(z) for any z ∈ C. Then T (A) ⊆ A, in other words, T maps A into itself.

Since A is a nonempty bounded, closed and convex subset of either a reflexive
Banach space with a weakly continuous duality mapping Jφ or a uniformly smooth
Banach space, it has the fixed point property for nonexpansive mappings (see [47]),
that is Fix (T ) ∩A 6= ∅.

If X is reflexive with weakly continuous duality mapping Jφ, we can assume
that {xnk} has been chosen to be weakly convergent to a point x̄. Since X satisfies
Opial’s property, we have A = {x̄}. Then, since x̄ ∈ Fix (T ), we obtain by inequality
(1.2.9) that

Γ = 〈ψ(q)− q, Jφ(x̄− q)〉 ≤ 0.

If X is uniformly smooth, let x̄ ∈ Fix (T ) ∩ A. Then x̄ minimize g over C and,
since the norm is uniformly Gâteaux differentiable, by Lemma 1.1.27,

lim sup
k→∞

〈x− x̄, Jφ(xnk − x̄)〉 ≤ 0 (1.2.10)

holds, for all x ∈ C, and in particular for x = ψ(x̄).
We shall show that {xnk} converges strongly to x̄. Denote

δk := 〈ψ(x̄)− x̄, Jφ(tnk(ψ(xnk)− xnk) + (xnk − x̄))− Jφ(xnk − x̄)〉.
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Since J is norm-to-norm uniformly continuous on bounded sets, then limk→∞ δk = 0.
Moreover, since Φ is convex and nondecreasing, from the subdifferential inequality
(1.1.4) we deduce that

Φ(‖xnk − x̄‖) ≤ Φ(‖tnk(ψ(xnk)− ψ(x̄)) + (1− tnk)(xnk − x̄) + tnk(ψ(x̄)− x̄)‖)
≤ Φ(‖tnk(ψ(xnk)− ψ(x̄)) + (1− tnk)(xnk − x̄)‖) + tnkδk

+tnk〈ψ(x̄)− x̄, Jφ(xnk − x̄)〉
≤ (1− (1− ρ)tnk)Φ(‖xnk − x̄‖) + tnkδk

+tnk〈ψ(x̄)− x̄, Jφ(xnk − x̄)〉.
(1.2.11)

From (1.2.11) and by (1.2.10), we obtain

lim
k→∞

Φ(‖xnk − x̄‖) ≤ lim sup
k→∞

1
1− ρ

(
δk + 〈ψ(x̄)− x̄, Jφ(xnk − x̄)〉

)
≤ 0.

Bearing in mind that Φ is positive and Φ(0) = 0, this implies that lim
k
xnk = x̄.

Since x̄ is a fixed point of T , we also have

Γ = lim
k→∞
〈ψ(q)− q, Jφ(xnk − q)〉 = 〈ψ(q)− q, Jφ(x̄− q)〉 ≤ 0.

By applying (1.2.11) to {xn} and q, since Γ ≤ 0 in both cases, we obtain

lim
n→∞

xn = q

as required.

1.2.2 Explicit algorithm

We next analyze the explicit (1.2.3) and hybrid steepest descent (1.2.4) algorithms
in the setting of Banach spaces, whose convergence results generalize in some sense
or constitute a different approach for proving the previously stated results by Com-
bettes and Hirstoaga [34], Xu [123], Yamada [117], and Xu and Kim [127].

The following lemma collects some properties of the iteration (1.2.3) in the set-
ting of normed spaces.
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Lemma 1.2.2. Let X be a normed space and {xn} be the sequence defined by the
explicit algorithm (1.2.3).

(1) For all n ≥ 0,

‖ψ(xn)− xn‖ ≤ (1 + ρ)‖xn − x0‖+ ‖ψ(x0)− x0‖, (1.2.12)
‖xn − Txn‖ ≤ ‖xn+1 − xn‖+ αn‖ψ(xn)− xn‖. (1.2.13)

(2) For all n ≥ 1,

‖xn+1 − xn‖ ≤ (1− (1− ρ)αn)‖xn − xn−1‖
+ |αn − αn−1| ‖ψ(xn−1)− xn−1‖.

(1.2.14)

(3) If Fix (T ) 6= ∅, then {xn} is bounded for every x0 ∈ C.

Proof.

(1) Let n ≥ 0. Thanks to the definition of the sequence {xn} and since T is
nonexpansive and ψ a contraction, the following inequalities hold.

‖ψ(xn)− xn‖ ≤ ‖ψ(xn)− ψ(x0)‖+ ‖ψ(x0)− x0‖+ ‖x0 − xn‖
≤ (1 + ρ)‖xn − x0‖+ ‖ψ(x0)− x0‖.

‖xn − Txn‖ ≤ ‖xn+1 − xn‖+ ‖xn+1 − Txn‖
≤ ‖xn+1 − xn‖+ ‖αnψ(xn) + (1− αn)xn − xn‖
= ‖xn+1 − xn‖+ αn‖ψ(xn)− xn‖.
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(2) For any n ≥ 1, it follows that

‖xn+1 − xn‖ = ‖T (αnψ(xn) + (1− αn)xn)
−T (αn−1ψ(xn−1) + (1− αn−1)xn−1)‖

≤ ‖αnψ(xn) + (1− αn)xn − αn−1ψ(xn−1)
− (1− αn−1)xn−1‖

= ‖αn(ψ(xn)− ψ(xn−1)) + (1− αn)(xn − xn−1)
+ (αn − αn−1)(ψ(xn−1)− xn−1)‖

≤ αnρ‖xn − xn−1‖+ (1− αn)‖xn − xn−1‖
+ |αn − αn−1| ‖ψ(xn−1)− xn−1‖

= (1− (1− ρ)αn)‖xn − xn−1‖
+ |αn − αn−1| ‖ψ(xn−1)− xn−1‖.

(3) Let p be a fixed point of T .

‖xn+1 − p‖ = ‖T (αnψ(xn) + (1− αn)xn)− Tp‖
≤ ‖αnψ(xn) + (1− αn)xn − p‖
= ‖αn(ψ(xn)− ψ(p)) + (1− αn)(xn − p) + αn(ψ(p)− p)‖
≤ αnρ‖xn − p‖+ (1− αn)‖xn − p‖+ αn‖ψ(p)− p‖

= (1− (1− ρ)αn)‖xn − p‖+ (1− ρ)αn
‖ψ(p)− p‖

1− ρ

≤ max
{
‖xn − p‖,

‖ψ(p)− p‖
1− ρ

}
.

By induction, we obtain that for all n ≥ 0,

‖xn − p‖ ≤ max
{
‖x0 − p‖,

‖ψ(p)− p‖
1− ρ

}
,

thus {xn} is bounded.
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Theorem 1.2.3. Let X be either a reflexive Banach space with a weakly continuous
duality mapping Jφ or a uniformly smooth Banach space, C a nonempty closed
convex subset of X, T : C → C a nonexpansive mapping with Fix (T ) 6= ∅, ψ : C →
C a ρ-contraction and {αn} a sequence in [0, 1] satisfying

(H1) limn→∞ αn = 0

(H2)
∑∞

n=1 αn =∞

(H3)
∑∞

n=1 |αn+1 − αn| <∞ or limn→∞
αn
αn+1

= 1.

Then, for any x0 ∈ C, the sequence {xn} defined by

xn+1 = T (αnψ(xn) + (1− αn)xn) (1.2.15)

converges strongly to the unique solution q ∈ Fix (T ) of the inequality

〈(ψ − I)q, Jφ(x− q)〉 ≤ 0, ∀x ∈ Fix (T ); (1.2.16)

that is, q is the unique fixed point of the contraction Q ◦ ψ, where Q is the unique
sunny nonexpansive retraction from C to Fix (T ).

Proof. As we justified in the proof of the previous theorem if Q : C → Fix (T ) is
the unique sunny nonexpansive retraction whose existence is assured by Theorem
1.1.30, by the characterization Lemma 1.1.9, q ∈ C is the unique fixed point of Q◦ψ
if and only if q ∈ Fix (T ) satisfies the variational inequality (1.2.9). Throughout the
proof, when X is uniformly smooth, the duality mapping is Jφ for any gauge φ.

Since T has fixed points, by Lemma 1.2.2 (3) we have that {xn} is bounded,
and therefore so are {T (xn)} and {ψ(xn)}. The fact that {xn} is asymptotically
regular is a consequence of Lemma 1.2.2 (2). Indeed, by hypothesis we have that∑∞

n=1(1− ρ)αn−1 =∞ and either
∑∞

n=1 |αn − αn−1| <∞ or

lim sup
n→∞

|αn − αn−1|
αn

= lim
n→∞

∣∣∣∣1− αn−1

αn

∣∣∣∣ = 0. (1.2.17)

Then inequality (1.2.14)

‖xn+1 − xn‖ ≤ (1− (1− ρ)αn)‖xn − xn−1‖+ |αn − αn−1| ‖ψ(xn−1)− xn−1‖
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allows us to use Lemmas 1.1.21 and 1.1.22(b) to deduce that

lim
n→∞

‖xn+1 − xn‖ = 0. (1.2.18)

Then, by using inequality (1.2.13) and hypothesis (H1) we get

lim
n→∞

‖xn − Txn‖ ≤ lim
n→∞

‖xn+1 − xn‖+ lim
n→∞

αn‖ψ(xn)− xn‖ = 0. (1.2.19)

Distinguishing both cases according to the underlying space we will see now that

lim sup
n→∞

〈ψ(q)− q, Jφ(xn − q)〉 ≤ 0, (1.2.20)

where φ will be the identity function, that is, Jφ = J will be the normalized duality
mapping in the case of a uniformly smooth Banach space.

Assume first that X is a reflexive Banach space with weakly continuous duality
mapping Jφ. Take a subsequence {nk} of {n} such that

lim sup
n→∞

〈ψ(q)− q, Jφ(xn − q)〉 = lim
k→∞
〈ψ(q)− q, Jφ(xnk − q)〉.

Since X is reflexive and {xn} bounded, we may assume that xnk ⇀ x̄. From Theorem
1.1.5 we know that X satisfies Opial’s property, therefore Demiclosedness principle
for nonexpansive mappings holds (see Theorem 1.1.12). Since {(I−T )xn} converges
to 0 from (1.2.19), this implies that x̄ ∈ Fix(T ). Then by inequality (1.2.16) and
the weak-to-weak∗ uniform continuity of Jφ,

lim sup
n→∞

〈ψ(q)− q, Jφ(xn − q)〉 = lim
k→∞
〈ψ(q)− q, Jφ(xnk − q)〉

= 〈ψ(q)− q, Jφ(x̄− q)〉
≤ 0.

If X is uniformly smooth we proceed as follows. Let {βk} be a null sequence in
(0, 1) (i.e., {βk} → 0, as k →∞) and define {yk} by

yk := T (βkψ(yk) + (1− βk)yk).

We have proved in Theorem 1.2.1 that {yk} converges strongly to q. For any n, k ≥ 0
define

δn,k := ‖xn − Txn‖2 + 2‖xn − Txn‖‖yk − Txn‖
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and

εk := sup
n≥0
{‖ψ(yk)− xn‖‖J(βk(ψ(yk)− xn) + (1− βk)(yk − xn))− J(yk − xn)‖}.

For any fixed k ∈ N, by (1.2.19), limn→∞ δn,k = 0. Moreover limk→∞ εk = 0 because
of the uniform continuity of J over bounded sets. By using inequality (1.1.5) and
the nonexpansivity of T we obtain

‖yk − xn‖2 ≤ (‖Txn − xn‖+ ‖yk − Txn‖)2

= ‖xn − Txn‖2 + 2‖xn − Txn‖‖yk − Txn‖+ ‖yk − Txn‖2

≤ δn,k + ‖(1− βk)(yk − xn) + βk(ψ(yk)− xn)‖2

≤ δn,k + (1− βk)2‖yk − xn‖2

+2βk〈ψ(yk)− xn, J(βk(ψ(yk)− xn) + (1− βk)(yk − xn))〉
≤ δn,k + (1− βk)2‖yk − xn‖2 + 2βk〈ψ(yk)− xn, J(yk − xn)〉

+2βkεk
= δn,k + (1− βk)2‖yk − xn‖2 + 2βk〈yk − xn, J(yk − xn)〉

+2βk〈ψ(yk)− yk, J(yk − xn)〉) + 2βkεk
= δn,k + ((1− βk)2 + 2βk)‖yk − xn‖2 + 2βkεk

2βk〈ψ(yk)− yk, J(yk − xn)〉

Then we deduce that

〈ψ(yk)− yk, J(xn − yk)〉 ≤
1
2

(
δn,k
βk

+ βk‖yk − xn‖2 + 2εk),

and therefore

lim sup
n→∞

〈ψ(yk)− yk, J(xn − yk)〉 ≤
βk
2

lim sup
n→∞

‖yk − xn‖2 + εk. (1.2.21)

On the other hand

〈ψ(q)− q, J(xn − q)〉 = 〈ψ(q)− q, J(xn − q)− J(xn − yk)〉
+〈(ψ(q)− q)− (ψ(yk)− yk), J(xn − yk)〉
+〈ψ(yk)− yk, J(xn − yk)〉.

(1.2.22)
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Note that
lim
k→∞

(sup
n≥0
{〈ψ(q)− q, J(xn − q)− J(xn − yk)〉}) = 0 (1.2.23)

because J is norm to norm uniformly continuous on bounded sets. By using (1.2.21),
(1.2.23) and passing first to lim supn→∞ and then to limk→∞, from (1.2.22) we obtain

lim sup
n→∞

〈ψ(q)− q, J(xn − q)〉 ≤ 0. (1.2.24)

Finally we prove that {xn} converges strongly to q. Set

ηn := ‖ψ(q)− q‖ ‖Jφ(αnψ(xn) + (1− αn)xn − q)− Jφ(xn − q)‖.

Hypothesis (H1) implies that ηn → 0, as n → ∞. By using the nonexpansivity
of T , subdifferential inequality 1.1.4, the convexity of Φ and the fact that ψ is a
contraction we obtain that

Φ(‖xn+1 − q‖) ≤ Φ(‖αnψ(xn) + (1− αn)xn − q‖)
= Φ(‖αn(ψ(xn)− ψ(q)) + (1− αn)(xn − q) + αn(ψ(q)− q)‖)
≤ Φ(‖αn(ψ(xn)− ψ(q)) + (1− αn)(xn − q)‖)

+αn〈ψ(q)− q, Jφ(αnψ(xn) + (1− αn)xn − q)〉
≤ Φ(‖αn(ψ(xn)− ψ(q)) + (1− αn)(xn − q)‖)

+αn(〈ψ(q)− q, Jφ(xn − q)〉+ ηn)
≤ (1− (1− ρ)αn)Φ(‖xn − q‖) + αnbn,

where bn = 〈ψ(q)−q, Jφ(xn−q)〉+ηn. If X is a reflexive Banach space with a weakly
continuous duality mapping Jφ, thanks to (1.2.20) we deduce that lim supn→∞ bn ≤
0. Thus from Lemma 1.1.21 we obtain that {xn} converges strongly to q, since Φ is
positive and Φ(0) = 0. In the case of a uniformly smooth Banach space the previous
inequalities for the normalized duality mapping J , with Φ(t) = t2/2, turn into

‖xn+1 − q‖2 ≤ (1− (1− ρ)αn)‖xn − q‖2 + 2αnbn,

where lim supn→∞ bn ≤ 0 since (1.2.24) holds. Thus the result follows from Lemma
1.1.21 as well.
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Corollary 1.2.4. Let X be either a reflexive Banach space with a weakly continuous
duality mapping Jφ or a uniformly smooth Banach space, C a nonempty closed
convex subset of X, T : C → C a nonexpansive mapping with Fix (T ) 6= ∅ and
g : C → C a mapping such that I − µg is a contraction for some µ > 0. Assume
that {αn} is a sequence in [0, 1] satisfying hypotheses (H1)-(H3) in Theorem 1.2.3.
Then the sequence {xn} defined by the iterative scheme

xn+1 = Txn − αng(Txn), (1.2.25)

converges strongly to the unique solution q ∈ Fix (T ) of the inequality problem

〈g(q), Jφ(x− q)〉 ≥ 0, ∀x ∈ Fix (T ). (1.2.26)

Proof. Consider the sequence {zn} defined by zn = Txn, for any n ≥ 0. Then

zn+1 = T (Txn − αng(Txn))

= T (zn −
αn
µ
µg(zn))

= T (α′n(I − µg)zn + (1− α′n)zn),

where α′n = αn
µ for all n ≥ 0, so the sequence {α′n} satisfies hypotheses (H1)-(H3).

Since ψ := I − µg is a contraction, Theorem 1.2.3 implies the strong convergence of
{zn} to the unique solution q ∈ Fix (T ) of the inequality problem

〈(I − ψ)q, Jφ(x− q)〉 ≥ 0, ∀x ∈ Fix (T ),

which is equivalent to (1.2.26). Therefore, from the iteration scheme (1.2.25) we
deduce that the sequence {xn} converges strongly to q.

In Section 1.4.2 we will show how to apply this previous result for approximating
solutions to variational inequality problems and therefore to minimization problems.

Remark 1.2.5. It is easily seen that the conclusions in Theorems 1.2.1, 1.2.3 and
Corollary 1.2.4 remain true if the uniform smoothness assumption of X is replaced
with the following two conditions:

(a) X has a uniformly Gâteaux differentiable norm;

(b) X has Reich’s property (see Theorem 1.1.30).
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1.3 Perturbation techniques

In this section we present a new approach for the problem of finding a fixed point of
a nonexpansive mapping T : C → C with Fix (T ) 6= ∅. In some applications, as we
will see in Section 1.4.3, the involved mapping T is often the projection PC onto the
closed convex set C in a Hilbert space H. The complexity in the computations of
the projection PC may bring difficulties, due to the fact that projections may lack to
have a closed form (unless C is as simple as a closed ball or a half-space). There exist
some perturbation techniques to avoid this inconvenience with the implementation.
These methods consist of considering a sequence {Cn} of closed convex subsets of
H, instead of the original set C, in the hope that the projections PCn are relatively
easy to compute and converge in some sense to the projection PC .

The first appearance of this idea is due to Yang and Zhao, in [130, 128], who
proved the convergence of a Mann type algorithm in a finite-dimensional Hilbert
space assuming the convergence in the sense of Mosco of {Cn} to C. They mainly
applied their results to approximate solutions to the split feasibility problem (see
Section 1.4.3). Motivated by this approach, Xu, in [124], studied a more general
algorithm which generates a sequence {xn} according to the recursive formula

xn+1 = (1− αn)xn + αnTnxn, n ≥ 0, (1.3.1)

where {Tn} is a sequence of nonexpansive mappings defined on a Banach space X
tending to the mapping T in some sense. Then, under assumptions

(i)
∑∞

n=0 αn(1− αn) =∞,

(ii)
∑∞

n=0 αnDρ(Tn, T ) <∞, for every ρ > 0,

where Dρ(Tn, T ) = sup{‖Tnx − Tx‖ : ‖x‖ ≤ ρ}, he proved that in the setting of a
uniformly convex Banach space X having a Fréchet differentiable norm the sequence
{xn} weakly converges to a fixed point of T . It is worth mentioning that Xu’s result
contains Theorem 2 by Reich in [94].

Aiming to get strong convergence to a fixed point of T by means of this tech-
nique, we present a Halpern type iterative scheme, considering a sequence {Tn} of
nonexpansive self-mappings of C which are viewed as perturbations and will be as-
sumed to converge in some sense to the originally given mapping T . Our iterative
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algorithm is then defined to generate a sequence {xn} according to the recursive
formula

xn+1 = αn+1u+ (1− αn+1)Sn+1xn, n ≥ 0, (1.3.2)

where x0, u ∈ C are arbitrary points, {αn} is a sequence in [0, 1] and, for each integer
n ≥ 0, Sn is the averaged mapping defined by Sn = (1− λ)I + λTn, with λ ∈ (0, 1)
fixed. Then, under certain conditions on the sequence {Tn}, we can prove the strong
convergence of {xn} to a fixed point of T in the setting of either reflexive Banach
spaces having a weakly continuous duality mapping Jφ or uniformly smooth Banach
spaces.

Theorem 1.3.1. Let X be a reflexive Banach space having a weakly continuous du-
ality mapping Jφ, C a nonempty closed convex subset of X, T : C → C a nonexpan-
sive mapping such that Fix (T ) 6= ∅, {Tn} a sequence of nonexpansive self-mappings
defined on C and {αn} a sequence in [0, 1]. Assume that the following conditions
are satisfied.

(i) limn→∞ ‖Tnyn − Tyn‖ = 0, ∀{yn} ⊂ C bounded;

(ii)
∑∞

n=0 ‖Tnp− Tp‖ <∞, ∀p ∈ Fix (T );

(H1) limn→∞ αn = 0;

(H2)
∑∞

n=0 αn =∞.

Then the sequence {xn} generated by the algorithm (1.3.2) converges strongly to
Q(u), where Q is the unique sunny nonexpansive retraction from C onto Fix (T ).

Proof. First of all, note that by Theorem 1.1.30 the unique sunny nonexpansive
retraction Q : C → Fix (T ) is given by Q(u) = limt→0 zt where zt = tu+ (1− t)Tzt
for each t ∈ (0, 1).

We prove the theorem in the following steps.

Step 1. {xn} is bounded.
Let p ∈ Fix (T ). By the nonexpansivity of Sn+1,

‖xn+1 − p‖ ≤ αn+1‖u− p‖+ (1− αn+1)‖Sn+1xn − p‖

≤ αn+1‖u− p‖+ (1− αn+1)
(
‖xn − p‖+ ‖Sn+1p− p‖

)
≤ (1− αn+1)‖xn − p‖+ αn+1‖u− p‖+ λ‖Tn+1p− Tp‖
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where
∑∞

n=0 ‖Tnp − Tp‖ < ∞ by (ii). Thus, by Lemma 1.1.22(a), we obtain that
{xn} is a bounded sequence.

Moreover, since

‖Sn+1xn − p‖ ≤ λ‖Tn+1xn − p‖+ (1− λ)‖xn − p‖

≤ λ
(
‖xn − p‖+ ‖Tn+1p− Tp‖

)
+ (1− λ)‖xn − p‖

= ‖xn − p‖+ λ‖Tn+1p− Tp‖,

where {‖xn − p‖} is bounded and {‖Tn+1p − Tp‖} tends to 0, we conclude that
{Sn+1xn} and {Tn+1xn} are bounded.

Step 2. limn→∞ ‖xn+1 − xn‖ = 0.
We can write

xn+1 = αn+1u+ (1− αn+1)
(
λTn+1xn + (1− λ)xn

)
= αn+1u+ (1− αn+1)λTn+1xn + (1− αn+1)(1− λ)xn
= γnyn + (1− γn)xn,

where, for n ≥ 0,

γn = αn+1 + (1− αn+1)λ

and

yn =
αn+1u+ (1− αn+1)λTn+1xn

γn
=
αn+1

γn
u+

(
1− αn+1

γn

)
Tn+1xn.

Note that the sequence {yn} is bounded because it is the convex combination of two
bounded sequences, and the sequence {γn} satisfies

lim
n→∞

γn = λ ∈ (0, 1). (1.3.3)
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We estimate

‖yn+1 − yn‖ ≤
∣∣∣αn+2

γn+1
− αn+1

γn

∣∣∣‖u‖+
∣∣∣1− αn+2

γn+1
− 1− αn+1

γn

∣∣∣‖Tn+1xn‖+

+
1− αn+2

γn+1
λ‖Tn+2xn+1 − Tn+1xn‖

≤
∣∣∣αn+2

γn+1
− αn+1

γn

∣∣∣‖u‖+
∣∣∣1− αn+2

γn+1
− 1− αn+1

γn

∣∣∣‖Tn+1xn‖+

+
1− αn+2

γn+1
λ
(
‖xn+1 − xn‖+ ‖Tn+2xn − Tn+1xn‖

)
.

We denote

βn =
∣∣∣αn+2

γn+1
− αn+1

γn

∣∣∣‖u‖+
∣∣∣1− αn+2

γn+1
− 1− αn+1

γn

∣∣∣‖Tn+1xn‖+

+
1− αn+2

γn+1
λ‖Tn+2xn − Tn+1xn‖.

By (H1), (1.3.3), (i) and the fact that {Tn+1xn} is bounded, we obtain

lim
n→∞

βn = 0.

Then it follows that

‖yn+1 − yn‖ − ‖xn+1 − xn‖ ≤ βn +
(1− αn+2

γn+1
λ− 1

)
‖xn+1 − xn‖,

and, since {xn} is bounded, we obtain that

lim sup
n→∞

(‖yn+1 − yn‖ − ‖xn+1 − xn‖) ≤ 0.

Now, by Lemma 1.1.25, we deduce that limn→∞ ‖yn − xn‖ = 0, which implies that

lim
n→∞

‖xn+1 − xn‖ = lim
n→∞

γn‖yn − xn‖ = 0.

Step 3. limn→∞ ‖xn − Txn‖ = 0.
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Indeed, we can write

‖xn − Txn‖ ≤ ‖xn − xn+1‖+ ‖xn+1 − Tn+1xn‖+ ‖Tn+1xn − Txn‖

where

‖xn+1 − Tn+1xn‖ ≤ αn+1‖u− Sn+1xn‖+ ‖Sn+1xn − Tn+1xn‖
= αn+1‖u− Sn+1xn‖+ (1− λ)‖xn − Tn+1xn‖
≤ αn+1‖u− Sn+1xn‖+

+(1− λ)
(
‖xn − Txn‖+ ‖Tn+1xn − Txn‖

)
.

Then

‖xn − Txn‖ ≤
1
λ

(
αn+1‖u− Sn+1xn‖+ (2− λ)‖Tn+1xn − Txn‖+ ‖xn+1 − xn‖

)
.

Therefore, by step 2, (i), (H1) and the boundedness of {Sn+1xn},

lim
n→∞

‖xn − Txn‖ = 0.

Step 4. lim supn→∞〈u−Q(u), Jφ(xn −Q(u))〉 ≤ 0, where Q the unique sunny
nonexpansive retraction from C onto Fix (T ).

Take a subsequence {nk} of {n} such that

lim sup
n→∞

〈u−Q(u), Jφ(xn −Q(u))〉 = lim
k→∞
〈u−Q(u), Jφ(xnk −Q(u))〉.

Since X is reflexive and {xn} bounded, we may assume that xnk ⇀ x.
Step 3 combined with the demiclosedness principle (Theorem 1.1.12) implies that

x ∈ Fix (T ). Then by Lemma 1.1.9(c′)

lim sup
n→∞

〈u−Q(u), Jφ(xn −Q(u))〉 = lim
k→∞
〈u−Q(u), Jφ(xnk −Q(u))〉

= 〈u−Q(u), Jφ(x−Q(u))〉
≤ 0.

Step 5. xn → Q(u).
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Using the subdifferential inequality (1.1.4) and the nonexpansivity of Sn we
obtain

Φ(‖xn −Q(u)‖) = Φ(‖αn(u−Q(u)) + (1− αn)(Snxn−1 −Q(u))‖)
≤ Φ((1− αn)‖Snxn−1 −Q(u)‖) + αn〈u−Q(u), Jφ(xn −Q(u))〉
≤ (1− αn)Φ(‖xn−1 −Q(u)‖+ ‖SnQ(u)−Q(u)‖) +

+αn〈u−Q(u), Jφ(xn −Q(u))〉
≤ (1− αn)Φ(‖xn−1 −Q(u)‖)

+Φ(‖xn−1 −Q(u)‖+ ‖SnQ(u)−Q(u)‖)− Φ(‖xn−1 −Q(u)‖)
+αn〈u−Q(u), Jφ(xn −Q(u))〉

≤ (1− αn)Φ(‖xn−1 −Q(u)‖) + φ(a)‖SnQ(u)−Q(u)‖
+αn〈u−Q(u), Jφ(xn −Q(u))〉

≤ (1− αn)Φ(‖xn−1 −Q(u)‖)
+αn〈u−Q(u), Jφ(xn −Q(u))〉+ λφ(a)‖TnQ(u)−Q(u)‖,

where a is such that

a = sup
n≥1
{‖SnQ(u)−Q(u)‖+ ‖xn−1 −Q(u)‖} <∞.

Therefore, by using Lemma 1.1.22(b), Step 4 and condition (ii), we conclude that
xn → Q(u).

Remark 1.3.2. Condition (i) in Theorem 1.3.1 equivalently says that the sequence
{Tn} converges to T uniformly over any bounded subset of C; that is,

lim
n→∞

sup{‖Tnx− Tx‖ : x ∈ D} = 0,

where D is any given bounded subset of C. This condition is satisfied if we take Tn
as the average of the identity I and T , that is,

Tn = βnI + (1− βn)T, (1.3.4)

where {βn} is a positive null sequence in (0, 1). For this choice of {Tn}, condition
(ii) is fulfilled automatically.
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We next prove a convergence result for the iterative algorithm (1.3.2) in the
setting of uniformly smooth Banach spaces. This setting looks more natural than
the setting of Banach spaces which have a weakly continuous duality mapping since
the former setting includes both lp and Lp spaces for 1 < p < ∞, while the latter
excludes Lp for 1 < p <∞, p 6= 2.

Theorem 1.3.3. Let X be a uniformly smooth Banach space, C a closed convex
subset of X, T : C → C a nonexpansive mapping such that Fix (T ) 6= ∅, {Tn} a
sequence of nonexpansive self-mappings defined on C and {αn} a sequence in [0, 1].
Assume that the following conditions are satisfied.

(i) limn→∞ ‖Tnyn − Tyn‖ = 0, ∀{yn} ⊂ C bounded;

(ii)
∑∞

n=0 ‖Tnp− Tp‖ <∞ ∀p ∈ Fix (T );

(H1) limn→∞ αn = 0;

(H2)
∑∞

n=0 αn =∞.

Then the sequence {xn} generated by the algorithm (1.3.2) converges strongly to
Q(u), where Q is the unique sunny nonexpansive retraction from C onto Fix (T ).

Proof. As in the proof of Theorem 1.3.1, we divide this proof into the following
steps:

Step 1. {xn} is bounded,

Step 2. limn→∞ ‖xn+1 − xn‖ = 0,

Step 3. limn→∞ ‖xn − Txn‖ = 0,

Step 4. lim supn→∞〈u−Q(u), J(xn −Q(u))〉 ≤ 0,

Step 5. xn → Q(u) in norm.

Step 1. - Step 3. can be similarly proved as in the proof of Theorem 1.3.1.
The proof of Step 4. is however different since we do not have weak continuity of
the duality map, so instead we will tactically utilize the uniform smoothness of X.
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We proceed as follows. Recall that zt satisfies the equation (1.1.18) which leads to
the identity zt − xn = t(u− xn) + (1− t)(Tzt − xn). Using (1.1.5), we derive that

‖zt − xn‖2 ≤ (1− t)2‖Tzt − xn‖2 + 2t〈u− xn, J(zt − xn)〉
≤ (1− t)2

(
‖zt − xn‖+ ‖Txn − xn‖

)2 +
+2t〈u− zt, J(zt − xn)〉+ 2t‖zt − xn‖2

≤ (1 + t2)‖zt − xn‖2 + 2t〈u− zt, J(zt − xn)〉+
+(1− t)2‖Txn − xn‖

(
‖Txn − xn‖+ ‖zt − xn‖

)
.

Therefore, setting

βn = ‖Txn − xn‖
(
‖Txn − xn‖+ ‖zt − xn‖

)
,

we get

〈u− zt, J(xn − zt)〉 ≤
t

2
‖zt − xn‖+

1
2t
βn. (1.3.5)

Besides, by Step 3 and the fact that {xn} and {zt} are bounded, we get

βn → 0 as n→∞ (uniformly in t ∈ (0, 1)),

and
∃L > 0 such that ‖zt − xn‖ ≤ L ∀t ∈ (0, 1), ∀n ≥ 0.

It follows from (1.3.5) that

lim sup
n→∞

〈u− zt, J(xn − zt)〉 ≤
t

2
L. (1.3.6)

Since the normalized duality mapping J is norm-to-norm uniformly continuous on
bounded sets of X, we have J(xn − zt)→ J(xn −Q(u)) as t→ 0+ uniformly for all
n ≥ 0. This suffices for us to derive from (1.3.6) that

lim sup
n→∞

〈u−Q(u), J(xn −Q(u))〉 ≤ 0. (1.3.7)
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Finally we prove Step 5.; that is, xn → Q(u). Using the subdifferential inequal-
ity (1.1.5) and the nonexpansivity of Sn we obtain

‖xn −Q(u)‖2 = ‖αn(u−Q(u)) + (1− αn)(Snxn−1 −Q(u))‖2

≤ (1− αn)‖Snxn−1 −Q(u)‖2 + 2αn〈u−Q(u), J(xn −Q(u))〉

≤ (1− αn)
(
‖xn−1 −Q(u)‖+ ‖SnQ(u)−Q(u)‖

)2

+2αn〈u−Q(u), J(xn −Q(u))〉
= (1− αn)‖xn−1 −Q(u)‖2 + 2αn〈u−Q(u), J(xn −Q(u))〉+

+‖SnQ(u)−Q(u)‖
(
‖SnQ(u)−Q(u)‖+ 2‖xn−1 −Q(u)‖

)
≤ (1− αn)‖xn−1 −Q(u)‖2 + 2αn〈u−Q(u), J(xn −Q(u))〉

+λM‖TnQ(u)−Q(u)‖,

where M is such that

sup
n≥0
{‖SnQ(u)−Q(u)‖+ 2‖xn−1 −Q(u)‖} ≤M,

which exists by the boundedness of {xn} and (i). Then, using Lemma 1.1.22(b), by
step 4 and (ii) we get xn → Q(u).

Remark 1.3.4. It is easily seen that the conclusion of Theorem 1.3.3 remains true if
the uniform smoothness assumption of X is replaced with the two weaker conditions

(a) X is uniformly Gâteaux differentiable

(b) X has Reich’s property.

Note that if the fixed point set of T is contained in the common fixed point set
of the mappings {Tn}, then condition (ii) is trivially satisfied and both Theorems
1.3.1 and 1.3.3 can be rewritten as follows.

Theorem 1.3.5. Let X be either a reflexive Banach space having a weakly continu-
ous duality mapping Jφ or a uniformly smooth Banach space. Let C be a nonempty
closed convex subset of X. Let T : C → C be a nonexpansive mapping and assume
that {Tn} is a sequence of nonexpansive self-mappings defined on C such that
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(i) limn→∞ ‖Tnyn − Tyn‖ = 0, ∀{yn} ⊂ C bounded,

(iii)
⋂
n≥0 Fix (Tn) ⊇ Fix (T ) 6= ∅.

Let {αn} ⊂ [0, 1] satisfy (H1) and (H2) in Theorem 1.3.1. Then the sequence {xn}
generated by the algorithm (1.3.2) converges strongly to Q(u), where Q is the unique
sunny nonexpansive retraction from C onto Fix (T ).

As a consequence of Theorem 1.3.1 and Theorem 1.3.3 we deduce the following
convergence result. It will be applied to approximate a solution to the convex
feasibility problems studied in Section 1.4.

Corollary 1.3.6. Let X be either a reflexive Banach space having a weakly continu-
ous duality mapping Jφ or a uniformly smooth Banach space and C ⊆ X a nonempty
closed convex set. Assume that T : C → C is a nonexpansive self-mapping such that
Fix (T ) 6= ∅ and {Tn} is a sequence of nonexpansive self-mappings defined on C
satisfying

∞∑
n=0

Dρ(Tn, T ) <∞, ∀ρ > 0, (1.3.8)

where
Dρ(Tn, T ) = sup{‖Tnx− Tx‖ : x ∈ C, ‖x‖ ≤ ρ}.

Let {αn} ⊂ [0, 1] satisfy (H1) and (H2) in Theorem 1.3.1. Then the sequence {xn}
generated by the algorithm (1.3.2) converges strongly to Q(u), where Q is the unique
sunny nonexpansive retraction from C onto Fix (T ).

Proof. It suffices to prove that (1.3.8) implies conditions (i) and (ii) in Theorem
1.3.1.

(i) Let {yn} be a bounded sequence. Then there exists a constant ρ > 0 such
that ‖yn‖ ≤ ρ, ∀n ≥ 0. Therefore

lim
n→∞

‖Tnyn − Tyn‖ ≤ lim
n→∞

sup
‖x‖≤ρ

‖Tnx− Tx‖ = lim
n→∞

Dρ(Tn, T ) = 0.

(ii) Obviously, for every p ∈ Fix (T ),
∞∑
n=0

‖Tnp− Tp‖ ≤
∞∑
n=0

sup
‖x‖≤‖p‖

‖Tnx− Tx‖ =
∞∑
n=0

D‖p‖(Tn, T ) <∞.
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1.4 Applications

1.4.1 Zeros of accretive operators

Let X be a real Banach space and A : X → 2X a set-valued m-accretive operator
with domain D(A) and range R(A) in X. The problem of finding a zero of A in
D(A) consist of

finding z ∈ D(A) such that 0 ∈ Az. (1.4.1)

When C = D(A) is convex, this problem has extensively been investigated due to its
many applications in solving related problems; for instance, minimization problems,
variational inequality problems and nonlinear evolution equations. Let us denote
the zero set of A by

A−1(0) = {z ∈ D(A) : 0 ∈ Az}.

By Theorem 1.1.17, we know that the resolvent of A is a firmly nonexpansive map-
ping from X to D(A). It is straightforward to see that A−1(0) coincides with the
fixed point set of Jλ, for any λ > 0. Therefore an interesting approach for solving
the problem of finding a zero of A is via iterative methods for approximating a fixed
point of nonexpansive mappings.

As a consequence of the convergence of the implicit iterative scheme (1.2.8)
presented in Section 1.2, we obtain Reich’s result (cf. [95]) for approximating zeros
of accretive operators in uniformly smooth Banach spaces. However, the following
theorem in the setting of reflexive Banach spaces with weakly continuous duality
mapping constitutes a new approach.

Theorem 1.4.1. Let A be an m-accretive operator in a reflexive Banach space X
with a weakly continuous duality mapping Jφ. Then, for each x ∈ X, the sequence
{Jλ(x)} converges strongly, as λ → ∞, to the unique zero of A, q ∈ A−1(0), which
satisfies the variational inequality

〈x− q, Jφ(y − q)〉 ≤ 0 ∀y ∈ A−1(0). (1.4.2)

Proof. Given x ∈ X we consider the approximating curve {xt} such that xt = J1/tx,
for any t ∈ (0, 1). By definition of the resolvent of A, we obtain the following
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equivalence:

xt = (I +
1
t
A)−1x ⇔ x ∈ xt +

1
t
Axt

⇔ t(x− xt) ∈ Axt
⇔ xt + t(x− xt) ∈ (I +A)xt
⇔ xt = (I +A)−1(xt + t(x− xt))
⇔ xt = T (tf(xt) + (1− t)xt),

where T = (I + A)−1 is the nonexpansive resolvent of order 1, and f = x is a
constant mapping which is a contraction. Therefore, Theorem 1.2.1 implies the
strong convergence of {xt}, as t → 0, to the unique solution to the inequality
(1.2.9); in other words, {Jλx} strongly converges, as λ → ∞, to the unique zero
q ∈ A−1(0) which is solution to the inequality (1.4.2).

Remark 1.4.2. If we define the mapping Q : X → A−1(0) such that, for any x ∈ X,

Qx = lim
λ→∞

Jλx,

then, since Qx satisfies the inequality (1.4.2), by Lemma 1.1.9 we can claim that Q
is the unique sunny nonexpansive retraction from X to A−1(0).

In [38], the authors studied a different iterative method for m-accretive operators
in a uniformly smooth Banach space with a weakly continuous duality mapping.
They proved the strong convergence of the Halpern type algorithm

xn+1 = αnu+ (1− αn)Jrnxn, n ≥ 0, (1.4.3)

where {αn} satisfies conditions (1) and (2) in Section 1.1.2, and {rn} ⊂ (0,+∞) is
such that

lim
n→∞

rn =∞.

The inspiration for this method is Rockafellar’s proximal point algorithm, formulated
by

xn+1 = Jrnxn, n ≥ 0,
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for maximal monotone operators in Hilbert spaces [103]. Early results on the prox-
imal point algorithm in Banach spaces (which take into account computational er-
rors) can be found in [20, 85]. More recent results were obtained in [6].

Xu, in [125], presented an improvement of the previous result by removing either
the uniform smoothness of X or the assumption of a weakly continuous duality
mapping.

Using Theorem 1.3.5, we get strong convergence of a modified algorithm under
better conditions. To this end, we need the following lemma.

Lemma 1.4.3. (Miyadera [77]) Let A : D(A) → 2X be an accretive operator. If
x ∈ D(Jλ), then, for any λ > 0 and any µ > 0,

µ

λ
x+

(
1− µ

λ

)
Jλx ∈ D(Jµ)

and
Jλx = Jµ

(µ
λ
x+

(
1− µ

λ

)
Jλx

)
.

Theorem 1.4.4. Let X be either a reflexive Banach space having a weakly con-
tinuous duality mapping Jφ or a uniformly smooth Banach space. Let A be an
m-accretive operator with A−1(0) 6= ∅. If {xn} is the sequence generated by the
algorithm

xn+1 = αn+1u+ (1− αn+1)((1− λ)xn + λJrn+1xn), n ≥ 0, (1.4.4)

where λ > 0, the sequence {αn} satisfies conditions (H1) and (H2) in Theorem 1.3.1
and

lim
n→∞

rn = r ∈ (0,+∞),

then {xn} converges strongly to x ∈ A−1(0).

Proof. Since A is m-accretive, by Theorem 1.1.17 we have that the resolvent Jλ is
firmly nonexpansive for any λ > 0, in particular, nonexpansive. Then define, for
any n > 0, Tn = Jrn and T = Jr. Since Fix (Jrn) = Fix (Jr) for all n ≥ 0, we have⋂

n≥0

Fix (Tn) = Fix (T ) = A−1(0) 6= ∅.
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We next verify that condition (i) of Theorem 1.3.5 holds. Indeed, given {yn}
bounded, since Jrn is nonexpansive, we can find a constant ρ > 0 such that

sup
n≥0
{‖yn‖+ ‖Jrnyn‖} ≤ ρ.

By using Lemma 1.4.3 and the nonexpansivity of the resolvent, we obtain

‖Tnyn − Tyn‖ = ‖Jrnyn − Jryn‖

= ‖Jrnyn − Jrn
(rn
r
yn +

(
1− rn

r

)
Jryn

)
‖

≤ ‖yn −
(rn
r
yn +

(
1− rn

r

)
Jryn

)
‖

≤ (1− rn
r

)‖yn‖+ (1− rn
r

)‖Jryn‖

≤ (1− rn
r

)ρ.

Since rn → r, as n→ 0, we obtain

lim
n→∞

‖Tnyn − Tyn‖ = 0.

Therefore we can now apply Theorem 1.3.5 to prove the strong convergence of {xn}.

Remark 1.4.5. The previous result remains true in a reflexive Banach space with a
uniformly Gâteaux differentiable norm and Reich’s property.

Kamimura and Takahashi, in [55], provided a perturbed version with errors of
the iteration (1.4.3) for a maximal monotone operator A in a Hilbert space H with
D(A) = H. They proved the strong convergence of the sequence defined by the
algorithm

xn+1 = αnu+ (1− αn)yn, n ≥ 0,

where ‖yn − Jrnxn‖ ≤ en with
∑

n≥0 en < ∞, and rn → ∞. In this regard, by
Theorems 1.3.1 and 1.3.3 we have the following result.

Theorem 1.4.6. Let X, A, λ, {αn} and {rn} be as in Theorem 1.4.4. Let the
sequence {xn} be generated by the algorithm

xn+1 = αn+1u+ (1− αn+1)
(
(1− λ)xn + λTn+1xn

)
, n ≥ 0, (1.4.5)
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where for each n ≥ 0, Tn is given by

Tn = Jrn + en

and the sequence of errors {en} satisfies the condition∑
n≥0

‖en‖ <∞.

Then {xn} converges strongly to a point of A−1(0).

Proof. Let T = Jr = (I + rA)−1.
We need to prove that conditions (i) and (ii) in Theorem 1.3.1 hold.
(i) Given a bounded sequence {yn}, we have

‖Tnyn − Tyn‖ = ‖Jrnyn + en − Jryn‖ ≤ ‖Jrnyn − Jryn‖+ ‖en‖.

In Theorem 1.4.4 we proved that limn→∞ ‖Jrnxn − Jrxn‖ = 0. This, together with
the hypothesis limn→∞ ‖en‖ = 0, implies that

lim
n→∞

‖Tnyn − Tyn‖ = 0.

(ii) Let p ∈ Fix (T ). Since Fix (Jrn) = Fix (Jr) = Fix (T ), for all n ≥ 0,

‖Tnp− Tp‖ = ‖Jrnp+ en − Jrp‖ = ‖en‖.

Hence
∞∑
n=0

‖Tnp− Tp‖ =
∞∑
n=0

‖en‖ <∞.

Therefore, the strong convergence of the sequence {xn} generated by (1.4.5) is an
immediate consequence of Theorems 1.3.1 and 1.3.3.

In a Hilbert space H, the concept of maximal monotone operators coincides with
that of m-accretive operators. If we consider the problem of minimizing a proper
lower semicontinuous convex function f : H → R, it is known that

z ∈ arg min
x∈H

f(x)⇔ 0 ∈ ∂f(z),

and that T = ∂f is a maximal monotone operator. Then the iteration scheme (1.4.4)
is a method for minimizing f .
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1.4.2 Variational inequality problems

In this section let us assume that the underlying space H is a Hilbert space and
C ⊆ H is a closed convex set. Given a monotone operator A : H → H, the
variational inequality problem VIP (A,C) consists of finding p ∈ C such that

〈Ap, p− x〉 ≤ 0, ∀x ∈ C. (1.4.6)

If f : H → R is a lower semicontinuous convex function, a necessary and sufficient
condition for the constrained convex minimization problem

min
x∈C

f(x), (1.4.7)

is the VIP (A,C), where the operator A is the subdifferential of f , ∂f , which is
a maximal monotone operator by Theorem 1.1.19. This means that solving the
minimization problem (1.4.7) is equivalent to finding a solution of a variational
inequality. Thus, in order to solve a broad range of convexly constrained nonlinear
inverse problems in real Hilbert space, Yamada [117] presented an hybrid steepest
descent method for approximating solutions to the variational inequality problem
VIP(g,Fix (T )), for an operator g and the fixed point set of a nonexpansive mapping
T : C → C. In particular, he proved that, when g is strongly monotone and Lipschitz
continuous, the sequence {xn} defined by the algorithm

xn+1 = Txn − αng(Txn), n ≥ 0, (1.4.8)

converges strongly to the fixed point of T , q, which is the unique solution to the
inequality

〈g(q), x− q〉 ≥ 0 ∀x ∈ Fix (T ). (1.4.9)

As a consequence of Corollary 1.2.4 we get a more general result.

Theorem 1.4.7. Let T : C → C be a nonexpansive mapping with Fix (T ) 6= ∅ and
g : C → C a mapping such that I − µg is a contraction for some µ > 0. Assume
that {αn} is a sequence in [0, 1] satisfying hypotheses

(H1) limn→∞ αn = 0;

(H2)
∑∞

n=1 αn =∞;
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(H3)
∑∞

n=1 |αn+1 − αn| <∞ or limn→∞
αn
αn+1

= 1.

Then the sequence {xn} defined by the iterative scheme (1.4.8) converges strongly to
the unique solution q ∈ Fix (T ) of the VIP (g,Fix (T )) (1.4.9).

Indeed this theorem improves Yamada’s result since for any Lipschitz and strongly
monotone operator g there exists µ > 0 such that I − µg is a contraction as it is
stated in the following lemma.

Lemma 1.4.8. Let A : H → H be a single-valued L-Lipschitz and η-strongly mono-
tone operator and ψ a ρ-contraction. Then,

(i) for any 0 < µ < 2η/L2, the mapping I − µA is an α-contraction with
α =

√
1− µ(2η − µL2);

(ii) for any γ < η/ρ, the mapping A− γψ is R-Lipschitz and δ-strongly monotone
with R = L+ γρ and δ = η − γρ.

Proof.

(i) By applying the L-Lipschitz continuity and η-strong monotonicity of A we
obtain

‖(I − µB)x− (I − µB)y‖2 = ‖x− y‖2 + µ2‖Bx−By‖2

−µ〈x− y,Bx−By〉
≤ ‖x− y‖2 + µ2L2‖x− y‖2 − 2µη‖x− y‖2

= (1− µ(2η − µL2))‖x− y‖2.

Then, for any 0 < µ < 2η/L2, the mapping I − µA is a contraction with
constant

√
1− µ(2η − µL2).

(ii) Since A is L-Lipschitz and ψ is a ρ-contraction,

‖(A− γψ)x− (A− γψ)y‖ ≤ ‖Ax−Ay‖+ γ‖ψx− ψy‖ ≤ (L+ γρ)‖x− y‖,
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that is, A−γψ is Lipschitz with constant R = L+γρ. The strong monotonicity
of A − γψ is consequence of the strong monotonicity of A as it is showed as
follow.

〈(A− γψ)x− (A− γψ)y, x− y〉 = 〈Ax−Ay, x− y〉 − γ〈ψx− ψy, x− y〉
≥ η‖x− y‖2 − γ‖ψx− ψy‖‖x− y‖
≥ (η − γρ)‖x− y‖2,

where δ = η − γρ > 0.

Let us consider now the following particular variational inequality problem. Let
T : H → H be a nonexpansive mapping with Fix (T ) 6= ∅, ψ : H → H be a
contraction and A be a Lipschitz self-operator on H which is strongly monotone.
Then the VIP (A− γψ,Fix (T ))

〈(A− γψ)q, q − x〉 ≤ 0, ∀x ∈ Fix (T ), (1.4.10)

where γ > 0, is the optimality condition for the minimization problem

min
x∈Fix (T )

f(x)− h(x)

where f is a differentiable function with subdifferential ∂f = A and h is a potential
function for γψ (i.e. h′(x) = γψ(x) for x ∈ H). Marino and Xu [73] presented
an iterative method to solve the VIP (A− γψ,Fix (T )) for a linear bounded opera-
tor. Lemma 1.4.8 and Theorem 1.4.7 allow us to apply the hybrid steepest descent
method (1.4.8) to solve such variational inequality dispensing with the linear con-
dition on the operator A.

Theorem 1.4.9. Let T be a nonexpansive mapping with nonempty fixed point set
Fix (T ), A an L-Lipschitz and η-strongly monotone operator and ψ a ρ-contraction
on a Hilbert space. Then, for any 0 < γ < η/ρ, the sequence {xn} defined by the
iterative scheme

xn+1 = Txn − αn(A− γψ)Txn,

where {αn} ⊂ [0, 1] satisfies hypotheses (H1)-(H3) in Theorem 1.4.7, converges
strongly to the unique solution to the variational inequality (1.4.10).
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Proof. Note that, for any 0 < γ < η/ρ, Lemma 1.4.8 implies that there exists µ > 0
such that I − µg is a contraction, where g = A − γψ. Then, by Theorem 1.4.7 we
obtain the strong convergence of the sequence {xn} to the unique solution to the
variational inequality (1.4.10).

1.4.3 Multiple-set split feasibility problem

The intensity-modulated radiation therapy (IMRT) is an advanced mode of high-
precision radiotherapy that utilizes computer-controlled linear accelerators to deliver
precise radiation doses to a malignant tumor or specific areas within the tumor. Two
problems are pertinent to this medical treatment. The first one is to calculate the
radiation dose absorbed in the irradiated tissue based on a given distribution of
beamlet intensities. The second one is the inverse problem of the first one, that is to
find a distribution of radiation intensities (radiation intensity map) deliverable by all
beamlets which would result in a clinically acceptable dose distribution; that is, the
dose to each tissue should be within the desired upper and lower bounds which are
prescribed based on medical diagnosis, knowledge and experience. The latter which
has received a great deal of attention recently can mathematically be formulated
as a multiple-sets split feasibility problem (MSSFP); see [24, 22, 25] and references
therein. Our aim is to provide a theoretical background of algorithmic developments
and convergence results for iteratively solving the MSSFP by means of optimization
and fixed point approaches. Different methods and aspects of the problem, such
as random iterations, minimum-norm solutions or perturbation techniques, will be
investigated.

For the sake of generality we consider the multiple-sets split feasibility problem
(MSSFP) in general Hilbert spaces (not necessarily finite-dimensional). Thus the
MSSFP is formulated as finding a point x∗ with the property

x∗ ∈ C :=
N⋂
i=1

Ci and Ax∗ ∈ Q :=
M⋂
j=1

Qj (1.4.11)

where N,M ≥ 1 are integers, {Ci}Ni=1 and {Qj}Mj=1 are closed convex subsets of
Hilbert spaces H1 and H2, respectively, and A : H1 → H2 is a bounded linear
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operator. This problem was first investigated by Censor et al. in order to model
the inverse problem of IMRT; see [22, 24, 25].

The case where N = M = 1, called split feasibility problem (SFP), was in-
troduced by Censor and Elfving [23], modeling phase retrieval and other image
restoration problems, and further studied by many researchers; see, for instance,
[21, 130, 124].

From now on, we assume that MSSFP is consistent, i.e., it is solvable, and S
denotes its solution set, otherwise it will be pointed out.

The Gradient-Projection Method

Consider the convex minimization problem

min
x∈C

f(x) (1.4.12)

where C is a closed convex subset of a Hilbert space H and f : C → R is a
differentiable convex function, with gradient ∇f . The convexity of f implies the
monotonicity of ∇f .

For this smooth convex minimization problem, as we mention in the previous
Section 1.4.2, a necessary and sufficient condition so that a point x∗ ∈ C is an
optimal solution to (1.4.12) is the following variational inequality

〈∇f(x∗), x− x∗〉 ≥ 0, x ∈ C. (1.4.13)

That is, the VIP (∇f , C) is equivalent to the minimization problem (1.4.12).
If we consider the mapping T = PC(I−γ∇f) for some γ > 0, from the inequality

(1.1.11) which characterizes the projection PC , we deduce that x∗ is a fixed point
of T if and only if

〈x− x∗, x∗ − (x∗ − γ∇f(x∗)〉 = γ〈x− x∗,∇f(x∗)〉 ≥ 0.

Then, likewise the VIP (∇f, C) (1.4.13) is equivalent to the fixed point problem for
T .

Lemma 1.4.10. Let f : C → R be a differentiable convex function such that its
gradient ∇f is an L-Lipschitz mapping. Then, for any 0 < γ < 2/L, the mapping
T = PC(I − γ∇f) is (2 + γL)/4-averaged.
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Proof. If ∇f is L-Lipschitz, Lemma 1.1.20 implies that ∇f is 1/L-ism and from
Proposition 1.1.18 we deduce that I − γ∇f is γL/2-averaged. Thus, since the
projection PC is firmly-nonexpansive, from Proposition 1.1.7 we obtain that the
composition is averaged. In fact, the mapping T is (2 + γL)/4-averaged.

This lemma allows us to use the fixed point iterative methods for averaged
mappings to approximate a minimizer of the function f . In particular, from this
fact it was born the gradient-projection method (GPM) which generates a sequence
{xn} via the iterative algorithm

xn+1 = PC(I − γn∇f)xn (1.4.14)

where the initial guess x0 ∈ C is arbitrarily chosen and {γn} is a sequence of positive
stepsizes.

Theorem 1.4.11. Assume that the minimization problem (1.4.7) has a solution. If
the gradient ∇f of f is L-Lipschitz and the sequence {γn} satisfies the property

0 < lim inf
n→∞

γn ≤ lim sup
n→∞

γn <
2
L
,

then the sequence {xn} generated by the GPM (1.4.14) converges weakly to a mini-
mizer of the function f .

For the proof of this theorem, the reader can consult [89] for the case of finite-
dimensional Hilbert spaces and [126] for the general case of infinite-dimensional
Hilbert spaces.

Optimization Approach

The MSSFP consists of finding a point x∗ satisfying two properties:

(i) the distance d(x∗, Ci) = 0 for all i = 1, · · · , N ;

(ii) the distance d(Ax∗, Qj) = 0 for all j = 1, · · · ,M .
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This motivated Censor et al. [24] to consider the minimization problem (1.4.12) for
the proximity function

f(x) =
1
2

N∑
i=1

αid
2(x,Ci) +

1
2

M∑
j=1

βjd
2(Ax,Qj)

=
1
2

N∑
i=1

αi‖x− PCix‖2 +
1
2

M∑
j=1

βj‖Ax− PQjAx‖2, (1.4.15)

where {αi} and {βj} are positive real numbers, and PCi and PQj are the metric
projections onto Ci and Qj , respectively.

It is evident that x∗ is a solution to the MSSFP (1.4.11) if and only if f(x∗) = 0;
that is, if x∗ is a minimizer of f over H1, since f(x) ≥ 0 for all x ∈ H1.

The proximity function f is convex and differentiable with gradient

∇f(x) =
N∑
i=1

αi(I − PCi)x+
M∑
j=1

βjA
∗(I − PQj )Ax, (1.4.16)

where A∗ is the adjoint of A. See [24] for details.
Since, for every closed convex subsetK of a Hilbert space, I−PK is nonexpansive,

we get that the gradient ∇f(x) is L-Lipschitz continuous with constant

L =
N∑
i=1

αi +
M∑
j=1

βj‖A‖2. (1.4.17)

Therefore, we can use the gradient-projection method (1.4.14) to solve the constraint
minimization problem

min
Ω
f(x) (1.4.18)

where Ω is a closed convex subset of H1 whose intersection with the solution set of
the MSSFP is nonempty, and get a solution of the so-called constrained multiple-sets
split feasibility problem (CMSSFP)

x∗ ∈ Ω such that x∗ solves (1.4.11). (1.4.19)

No matter we are dealing with either the MSSFP or the CMSSFP, S will also denote
the solution set.
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Theorem 1.4.12. Define a sequence {xn} by the gradient-projection algorithm as
follows

xn+1 = PΩ

xn − γn
 N∑
i=1

αi(I − PCi)xn +
M∑
j=1

βjA
∗(I − PQj )Axn

 , (1.4.20)

where the sequence {γn} of stepsizes is such that

0 < lim inf
n→∞

γn ≤ lim sup
n→∞

γn <
2
L

(1.4.21)

with L given by (1.4.17). Then {xn} converges weakly to a solution to the CMSSFP
(1.4.19).

Proof. Since the algorithm (1.4.20) can be rewritten as

xn+1 = PΩ(xn − γn∇f(xn)), (1.4.22)

where the mapping ∇f is L-Lipschitz, condition (1.4.21) allows us to apply Theorem
1.4.11 to conclude that the sequence {xn} converges weakly to a minimizer of f over
Ω which is a solution to the CMSSFP.

Remark 1.4.13. Censor et al. [24] considered the algorithm (1.4.20) in the case of
constant stepsizes, γn = γ for all n ≥ 0.

Remark 1.4.14. Recall that the solution set S = Fix (T ) where T : C → C is the
mapping T = PC(I − γ∇f). If ∇f is an L-Lipschitz mapping and 0 < γ < 2/L,
then T is nonexpansive by Lemma 1.4.10. Therefore, since the fixed point set of a
nonexpansive mapping defined on a closed convex set is closed and convex, so is S.

Fixed Point Approach

For the special case where N = M = 1, that is the split feasibility problem (SFP),
it is known that x∗ is a solution of the SFP if and only if x∗ solves the fixed point
equation

x∗ = PC1(I − γA∗(I − PQ1)A)x∗ (1.4.23)

where γ > 0 is any parameter.
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It occurs to us that the MSSFP (1.4.11) is equivalent to a common fixed point
problem of finitely many nonexpansive mappings, as we show below.

We decompose the MSSFP into the following N subproblems. For any 1 ≤ i ≤
N , we want to find

x∗i ∈ Ci and Ax∗i ∈ Q :=
M⋂
j=1

Qj . (1.4.24)

In order to solve these subproblems, we define the function g : H1 → R+ by

g(x) =
1
2

M∑
j=1

βj‖Ax− PQjAx‖2 (1.4.25)

with βj > 0 for all 1 ≤ j ≤ M . Note that this function is a particular case of the
proximity function (1.4.15). Thus it is convex and differentiable with gradient

∇g(x) =
M∑
j=1

βjA
∗(I − PQj )Ax, (1.4.26)

which is L′-Lipschitz continuous with constant

L′ =
M∑
j=1

βj‖A‖2. (1.4.27)

Then, if we define the mapping Ti : H1 → H1 by

Ti = PCi(I − γi∇g) = PCi

I − γi M∑
j=1

βjA
∗(I − PQj )A

 , (1.4.28)

for each 1 ≤ i ≤ N , the solution set Si of the subproblem (1.4.24) coincides with
Fix (Ti), and therefore the solution set S of the MSSFP coincides with the common
fixed point set of the mappings Ti’s; that is,

S =
N⋂
i=1

Fix (Ti).
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Therefore algorithms for finding common fixed points of a finite family of nonex-
pansive mappings may apply to solve the MSSFP. In particular, from Lemma 1.4.10
we deduce that, if 0 < γi < 2/L′, Ti is (2 + γiL

′)/4-averaged, for any 1 ≤ i ≤ N .
Therefore, by Proposition 1.1.7 we have that the composition and the weighted sum
of the finitely family {Ti}1≤i≤N are averaged mappings. Moreover,

S = Fix (TN · · ·T2T1) = Fix

(
N∑
i=1

λiTi

)
, (1.4.29)

where {λi}Ni=1 is a set of real numbers in (0, 1] satisfying
∑N

i=1 λi = 1. Thus the
well-known weak convergence of Mann iteration (1.1.16) implies the validity of some
simple iterative methods. For instance,

(i) the composition iteration

xn+1 = TN · · ·T2T1xn; (1.4.30)

(ii) the parallel iteration

xn+1 =
N∑
i=1

λiTixn =
N∑
i=1

λiPCi

I − γi M∑
j=1

βjA
∗(I − PQj )A

xn, (1.4.31)

where {λi}Ni=1 is a set of real numbers in (0, 1] satisfying
∑N

i=1 λi = 1;

(iii) the cyclic iteration

xn+1 = T[n+1]xn = PC[n+1]

I − γn+1

M∑
j=1

βjA
∗(I − PQj )A

xn, (1.4.32)

where, for each n ≥ 0, T[n] = TnmodN with the mod function taking values in
{1, 2, · · · , N}.

Theorem 1.4.15. (Xu [124]) The sequence {xn} generated by any one of the algo-
rithms (1.4.30)-(1.4.32) converges weakly to a solution to the MSSFP.
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Approach by random iterations

Let Ti be defined as in (1.4.28) for any 1 ≤ i ≤ N . We assume that 0 ≤ γi ≤ 2/L′

so that each Ti is an averaged mapping by Lemma 1.4.10. Then we know that the
solution set S of the MSSFP is the common fixed point set of these mappings, i.e.,

S =
N⋂
i=1

Fix (Ti).

In previous subsections we have developed some iterative algorithms that con-
verge weakly to a solution to the MSSFP in the deterministic sense that each map-
ping Ti is repeated regularly. The purpose of this section is to present a random
iteration process in which each Ti may occur irregularly; the only requirement is
that each Ti has to occur infinitely many times in the full process of iterations.

Let r : N → {1, 2, · · · , N} be a mapping from the set N of positive integers to
the index set {1, 2, · · · , N} such that it assumes each value infinitely often. Define
a sequence {xn} by the random iterative algorithm

xn+1 = Tr(n)xn, (1.4.33)

where x0 ∈ H1 is arbitrary. The convergence of this random iteration algorithm is
given below. Related convergence of random products of nonexpansive mappings
can be found in literature, for instance, [112, 39].

Theorem 1.4.16. If H1 is finite-dimensional, then the sequence {xn} generated by
the random iteration algorithm (1.4.33) converges to a solution to the MSSFP.

Proof. Let p ∈ S the solution set of the MSSFP. Since p is a common fixed point of
the mappings Ti’s, which are nonexpansive, we get

‖xn+1 − p‖ = ‖Tr(n)xn − p‖ ≤ ‖xn − p‖.

Hence, {xn} is Fejér monotone with respect to S; therefore, by Lemma 1.1.24, {xn}
is bounded. Put

a = lim
n→∞

‖xn − p‖.

Since H1 is finite-dimensional, {xn} contains convergent subsequences. Let {xnj} be
such a convergent subsequence with limit x̂, that is, x̂ is a cluster point of {xn}. Since
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the pool of mappings is finite, we may further assume, without loss of generality,
that

Tr(nj) = Tr, for some 1 ≤ r ≤ N.

It follows that
xnj+1 = Tr(nj)xnj = Trxnj → Trx̂.

Hence
lim
n→∞

‖xn − p‖ = lim
j→∞

‖xnj+1 − p‖ = ‖Trx̂− p‖.

On the other hand, we also have

lim
n→∞

‖xn − p‖ = lim
j→∞

‖xnj − p‖ = ‖x̂− p‖.

So we must have
‖Trx̂− p‖ = ‖x̂− p‖. (1.4.34)

Since Tr is averaged, Tr = (1− α)I + αV , where α ∈ (0, 1) and V is nonexpansive.
Noting Fix (Tr) = Fix (V ) and (1.4.34), we obtain

‖x̂− p‖2 = ‖Trx̂− p‖2

= ‖(1− α)(x̂− p) + α(V x̂− p)‖2

= (1− α)‖x̂− p‖2 + α‖V x̂− p‖2 − α(1− α)‖x̂− V x̂‖2

≤ ‖x̂− p‖2 − α(1− α)‖x̂− V x̂‖2.

This implies that

α(1− α)‖x̂− V x̂‖2 ≤ 0 ⇒ x̂ = V x̂.

Therefore, x̂ ∈ Fix (Tr).
We next show that x̂ is indeed a common fixed point of the mappings Ti’s, that

is, x̂ ∈ S. We reason by contradiction. Suppose on the contrary that x̂ is not a
common fixed point. Then, after renumbering the mappings Ti’s, we may assume
that there is an integer 2 ≤ k ≤ N such that

Tix̂ = x̂ for i < k, Tix̂ 6= x̂ for i ≥ k. (1.4.35)
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For each j, since {r(n)} takes each value of the index set {1, 2, · · · , N} infinitely
often, there is a minimal mj ≥ nj such that r(l) < k for any nj ≤ l ≤ mj − 1 and
r(mj) = k. Then, by the nonexpansivity of each Ti, it follows that

‖xmj − x̂‖ = ‖Tr(mj−1)xmj−1 − x̂‖
≤ ‖xmj−1 − x̂‖ ≤ · · ·
≤ ‖xnj − x̂‖ → 0.

Hence
xmj → x̂.

Without loss of generality (extracting a further subsequence if necessary), we may
assume that

r(mj) = k for all j.

Hence, xmj+1 = Tr(mj)xmj = Tkxmj → Tkx̂. It follows that

a = lim
n→∞

‖xn − p‖ = lim
j→∞

‖xmj+1 − p‖ = ‖Tkx̂− p‖.

In the meanwhile, we have

a = lim
j→∞

‖xmj − p‖ = ‖x̂− p‖.

Therefore,
‖Tkx̂− p‖ = ‖x̂− p‖.

Following the same reasoning used for (1.4.34) we deduce that Tkx̂ = x̂ which
contradicts (1.4.35).

Since x̂ is an arbitrary cluster point, by Lemma 1.1.24 we get that {xn} converges
to a solution to the MSSFP.

Perturbation Techniques

Consider the consistent CMSSFP (1.4.19) with nonempty solution set S. As we
mentioned in Section 1.3, the projection PC , where C is a closed convex subset
of H, may bring difficulties in computing it, unless C has a simple form (e.g., a
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closed ball or a half-space). Therefore some perturbed methods in order to avoid
this inconvenience are presented.

We first establish a convergence result using approximate sets defined by means
of the subdifferential, when {Ci}, {Qj} and Ω are level sets of convex functionals.
See [43, 119, 25] for other works on this approach.

Then, for each i ∈ {1, 2, · · · , N} and j ∈ {1, 2, · · · ,M}, we consider

Ci = {x ∈ H1 : ci(x) ≤ 0}, Qj = {y ∈ H2 : qj(y) ≤ 0},

Ω = {x ∈ H1 : ω(x) ≤ 0},

where ci, ω : H1 → R and qj : H2 → R are convex functions.
We iteratively define a sequence {xn} as follows. The initial x0 ∈ H1 is arbitrary;

once xn has been defined, we define the (n+ 1)th iterate xn+1 by

xn+1 = PΩn

xn − γn
 N∑
i=1

αi(I − PCni )xn +
M∑
j=1

βjA
∗(I − PQnj )Axn

 (1.4.36)

where

Ωn = {x ∈ H1 : ω(xn) + 〈ζn, x− xn〉 ≤ 0}, (ζn ∈ ∂ω(xn)), (1.4.37)

Cni = {x ∈ H1 : ci(xn) + 〈ξni , x− xn〉 ≤ 0}, (ξni ∈ ∂ci(xn)), (1.4.38)

Qnj = {y ∈ H2 : qj(Axn) + 〈ηnj , y −Axn〉 ≤ 0} (ηnj ∈ ∂qj(Axn)), (1.4.39)

and {αi} and {βj} are families of positive real numbers.

Lemma 1.4.17. Let f : H → R be a convex function which is bounded on bounded
sets. (Note that this condition is automatically satisfied if H is finite-dimensional.)
Suppose {xn} is a bounded sequence in H and {x∗n} is another sequence in H such
that x∗n ∈ ∂f(xn) for each n ≥ 0. Then {x∗n} is bounded.
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Proof. The subdifferential inequality implies that

f(xn + y)− f(xn) ≥ 〈x∗n, y〉 (1.4.40)

for all y ∈ H. Let

M = sup{|f(xn + y)− f(xn)| : n ≥ 1, ‖y‖ ≤ 1}.

Then M < ∞ by assumption. It follows from (1.4.40) that ‖x∗n‖ ≤ M for all
n ≥ 0.

Theorem 1.4.18. Assume that each of the functions {ci}Ni=1 and ω, and {qj}Mj=1

satisfies the property: it is bounded on every bounded subset of H1 and H2, respec-
tively. (Note that this condition is automatically satisfied in a finite-dimensional
Hilbert space.) Then the sequence {xn} generated by the algorithm (1.4.36) converges
weakly to a solution to the CMSSFP, provided that the sequence {γn} satisfies

0 < lim inf
n→∞

γn ≤ lim sup
n→∞

γn <
2
L
, (1.4.41)

where the constant L is given by (1.4.17).

Proof. Given n ≥ 1, if we consider the differentiable function

fn(x) :=
1
2

N∑
i=1

αi‖x− PCni x‖
2 +

1
2

M∑
j=1

βj‖Ax− PQnj Ax‖
2,

with gradient

Vn = ∇fn =
N∑
i=1

αi(I − PCni ) +
M∑
j=1

βjA
∗(I − PQnj )A, (1.4.42)

then xn+1 can be rewritten as

xn+1 = PΩn(xn − γnVnxn). (1.4.43)

Hence Vn is L-Lipschitz continuous with L given by (1.4.17) and, therefore, PΩn(I−
γnVn) is nonexpansive (averaged indeed). It is easily seen that, for each integer
n ≥ 1,
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• Ω ⊆ Ωn;

• Ci ⊆ Cni for 1 ≤ i ≤ N ;

• Qj ⊆ Qnj for 1 ≤ j ≤M .

Indeed, if x ∈ Ω (i.e., ω(x) ≤ 0), using the subdifferential inequality, we get

ω(xn) + 〈ξn, x− xn〉 ≤ ω(x) ≤ 0.

This shows that x ∈ Ωn. The other two inclusion relations are similarly proved.
Since any x∗ ∈ S belongs to Ωn and PΩn is nonexpansive, we deduce that

‖xn+1 − x∗‖2 = ‖PΩn(I − γnVn)xn − x∗‖2

≤ ‖(I − γnVn)xn − x∗‖2

= ‖(xn − x∗)− γnVnxn‖2

= ‖xn − x∗‖2 − 2γn〈xn − x∗, Vnxn〉+ γ2
n‖Vnxn‖2. (1.4.44)

Since Vn is (1/L)-ism by Lemma 1.1.20 and Vnx
∗ = 0, we get

〈xn − x∗, Vnxn〉 = 〈xn − x∗, Vnxn − Vnx∗〉 ≥
1
L
‖Vnxn‖2.

It follows from (1.4.44) that

‖xn+1 − x∗‖2 ≤ ‖xn − x∗‖2 − γn
(

2
L
− γn

)
‖Vnxn‖2. (1.4.45)

This implies that the sequence {xn} is Fejér monotone with respect to S, therefore,
by Lemma 1.1.24, it is bounded. On the other hand, we deduce that

‖Vnxn‖ =

∥∥∥∥∥∥
N∑
i=1

αi(I − PCni )xn +
M∑
j=1

βjA
∗(I − PQnj )Axn

∥∥∥∥∥∥→ 0. (1.4.46)

By Proposition 1.1.8, since x∗ ∈ Cni and Ax∗ ∈ Qnj , we get

〈(I − PCni )xn, xn − x∗〉 = 〈(I − PCni )xn, xn − PCni xn〉
+〈(I − PCni )xn, PCni xn − x

∗〉
≥ ‖(I − PCni )xn‖2 (1.4.47)
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and

〈(I − PQnj )Axn, Axn −Ax∗〉 = 〈(I − PQnj )Axn, Axn − PQnj Axn〉
+〈(I − PQnj )Axn, PQnj Axn −Ax

∗〉

≥ ‖(I − PQnj )Axn‖2. (1.4.48)

Combining (1.4.47) and (1.4.48) we obtain

〈xn − x∗, Vnxn〉 =
N∑
i=1

αi〈xn − x∗, (I − PCni )xn〉+
M∑
j=1

βj〈xn − x∗, A∗(I − PQnj )Axn〉

≥
N∑
i=1

αi‖(I − PCni )xn‖2 +
M∑
j=1

βj‖(I − PQnj )Axn‖2.

This together with (1.4.46) ensures that, for each 1 ≤ i ≤ N and 1 ≤ j ≤M ,

lim
n→∞

‖(I − PCni )xn‖ = 0, lim
n→∞

‖(I − PQnj )Axn‖ = 0. (1.4.49)

Now, since xn+1 = PΩn(xn − γnVnxn), by Proposition 1.1.8, we have

〈(xn − γnVnxn)− xn+1, x
∗ − xn+1〉 ≤ 0.

It turns out that, using (1.4.46),

〈xn − xn+1, x
∗ − xn+1〉 ≤ γn〈Vnxn, x∗ − xn+1〉 ≤ γn‖x∗ − xn+1‖‖Vnxn‖ → 0.

Therefore, the identity

‖xn+1 − xn‖2 = ‖xn − x∗‖2 − ‖xn+1 − x∗‖2 + 2〈xn − xn+1, x
∗ − xn+1〉

implies that
‖xn+1 − xn‖ → 0. (1.4.50)

Remember that ωw(xn) is the set of all weak accumulation points of the bounded
sequence {xn}. We now prove

• Claim ωw(xn) ⊆ S.
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As a matter of fact, take x̂ ∈ ωw(xn) and let {xnk} be a subsequence of {xn}
such that xnk ⇀ x̂. Then xnk+1 ⇀ x̂.

To prove that x̂ ∈ S, we must check that x̂ ∈ Ci and Ax̂ ∈ Qj for any 1 ≤ i ≤ N
and 1 ≤ j ≤ M . To see this, we first show that x̂ ∈ Ω. Indeed, the fact that
xnk+1 ∈ Ωnk yields that

ω(xnk) ≤ 〈ζnk , xnk+1 − xnk〉. (1.4.51)

Since ω is bounded on bounded subsets, by Lemma 1.4.17, {ζn} is bounded. Hence,
from (1.4.50) and (1.4.51) together with the weak lower semicontinuity of ω, it turns
out

ω(x̂) ≤ lim inf
k→∞

ω(xnk) ≤ lim inf
k→∞

‖ζnk‖ ‖xnk+1 − xnk‖ = 0.

Namely, x̂ ∈ Ω.
By definition of Cnki and Qnkj , we have that

ci(xnk) + 〈ξnki , PCnki
xnk − xnk〉 ≤ 0 (1.4.52)

and
qj(Axnk) + 〈ηnkj , PQnkj

Axnk −Axnk〉 ≤ 0. (1.4.53)

Since {ξn} and {ηn} are bounded by virtue of Lemma 1.4.17, using (1.4.49) and the
weak lower semicontinuity of ci and qj , we derive from (1.4.52) and (1.4.53) that

ci(x̂) ≤ lim inf
k→∞

ci(xnk+1) ≤ lim inf
k→∞

‖ξnk‖ ‖PCnki xnk − xnk‖ = 0

and

qj(Ax̂) ≤ lim inf
k→∞

qj(Axnk+1) ≤ lim inf
k→∞

‖ηnk‖ ‖PQnkj Axnk −Axnk‖ = 0.

Hence x̂ ∈ Ci and Ax̂ ∈ Qj , for any 1 ≤ i ≤ N and 1 ≤ j ≤M . Thus x̂ ∈ S.
Therefore, due to the Fejér monotonicity of {xn} with respect to S (see (1.4.45)),

we can apply Lemma 1.1.24 to conclude that {xn} converges weakly to a point in
S.
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Now we present general perturbation techniques in the direction of the ap-
proaches studied in Section 1.3. These techniques consist of taking approximate
sets which involve the ρ-distance between two closed convex sets A and B of a
Hilbert space,

dρ(A,B) = sup{‖PAx− PBx‖ : x ∈ H, ‖x‖ ≤ ρ}.

Let Ωn, {Cni } and {Qnj } be closed convex sets which are viewed as perturbations
for the closed convex sets Ω, {Ci} and {Qj}, respectively. Define functions f and
fn by

f(x) =
1
2

N∑
i=1

αi‖x− PCix‖2 +
1
2

M∑
j=1

βj‖Ax− PQj (Ax)‖2 (1.4.54)

and, respectively,

fn(x) =
1
2

N∑
i=1

αi‖x− PCni x‖
2 +

1
2

M∑
j=1

βj‖Ax− PQnj (Ax)‖2, (1.4.55)

where {αi} and {βj} are families of positive real numbers. Recall that these functions
are convex and differentiable with gradients

∇f(x) =
N∑
i=1

αi(I − PCi)x+
M∑
j=1

βjA
∗(I − PQj )Ax (1.4.56)

and, respectively,

∇fn(x) =
N∑
i=1

αi(I − PCni )x+
M∑
j=1

βjA
∗(I − PQnj )Ax. (1.4.57)

Furthermore, ∇f and ∇fn are both Lipschitz mappings with the same Lipschitz
constant L given by (1.4.17). Then, given x0 ∈ H1 we define the sequence {xn}
generated by the perturbed Mann type iterative algorithm

xn+1 = (1− γn)xn + γnPΩn(I − γ∇fn)xn
= (1− γn)xn (1.4.58)

+γnPΩn

xn − γ
 N∑
i=1

αi(I − PCni )xn +
M∑
j=1

βjA
∗(I − PQnj )Axn

 .
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Theorem 1.4.19. Assume that the following conditions are satisfied.

(i) 0 < γ < 2/L.

(ii) γn ∈ [0, 4/(2 + γL)] for all n ≥ 0 (note that γn may be bigger than one since
0 < γ < 2/L) and

∞∑
n=0

γn

(
4

2 + γL
− γn

)
=∞. (1.4.59)

(iii) for each ρ > 0, 1 ≤ i ≤ N , and 1 ≤ j ≤M , there hold
∑∞

n=0 γndρ(Ωn,Ω) <∞,∑∞
n=0 γndρ(C

n
i , Ci) <∞, and

∑∞
n=0 γndρ(Q

n
j , Qj) <∞.

Then {xn} generated by the algorithm (1.4.58) converges weakly to a solution to the
CMSSFP.

Proof. Define the mappings T and Tn by

Tx = PΩ(I − γ∇f)x and Tnx = PΩn(I − γ∇fn)x. (1.4.60)

Thus the algorithm (1.4.58) can be rewritten as

xn+1 = (1− γn)xn + γnTnxn. (1.4.61)

Since 0 < γ < 2/L, both T and Tn are α-averaged with

α =
2 + γL

4
< 1. (1.4.62)

Therefore, we can write

T = (1− α)I + αU, Tn = (1− α)I + αUn, (1.4.63)

where U and Un are nonexpansive.
Note that the solution set S of the CMSSFP (1.4.19) is the fixed point set Fix (T )

of T (and of Fix (U)). Besides, the algorithm (1.4.61) can further be rewritten as

xn+1 = (1− τn)xn + τnUnxn, (1.4.64)
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where τn = αγn ∈ (0, 1) for all n ≥ 0 and satisfies the property (by virtue of
(1.4.59)):

∞∑
n=1

τn(1− τn) =∞.

Recall that the ρ-distance between two mappings T ′ and T̃ is defined as

Dρ(T ′, T̃ ) = sup{‖T ′x− T̃ x‖ : ‖x‖ ≤ ρ}.

We now compute the ρ-distance from Un to U for ρ > 0,

αDρ(Un, U) = Dρ(Tn, T )
= sup{‖PΩn(I − γ∇fn)x− PΩ(I − γ∇f)x‖ : ‖x‖ ≤ ρ}
≤ sup{‖PΩn(x− γ∇fn(x))− PΩn(x− γ∇f(x))‖ : ‖x‖ ≤ ρ}

+ sup{‖PΩn(x− γ∇f(x))− PΩ(x− γ∇f(x))‖ : ‖x‖ ≤ ρ}
≤ γ sup{‖∇fn(x)−∇f(x)‖ : ‖x‖ ≤ ρ}+ sup{‖PΩny − PΩy‖ : ‖y‖ ≤ ρ̃}

≤ γ

N∑
i=1

αi sup{‖PCni x− PCix‖ : ‖x‖ ≤ ρ}

+γ‖A∗‖
M∑
j=1

βj sup{‖PQnj Ax− PQjAx‖ : ‖x‖ ≤ ρ}+ dρ̃(Ωn,Ω)

≤ γ
N∑
i=1

αidρ(Cni , Ci) + γ‖A‖
M∑
j=1

βjd‖A‖ρ(Q
n
j , Qj) + dρ̃(Ωn,Ω) (1.4.65)

where
ρ̃ = sup{‖x− γ∇f(x)‖ : ‖x‖ ≤ ρ} <∞.

By assumption (iii), it follows that
∑∞

n=0 τnDρ(Un, U) <∞.
Therefore, we can apply Corollary 2.3 of [124] to the algorithm (1.4.64) to con-

clude that the sequence {xn} converges weakly to a fixed point of U (and of T )
which is a solution to the CMSSFP (1.4.19).

Finally, by using the results provided in Section 1.3, we present a perturbation
iterative method which converges strongly to a solution to the CMSSFP.
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Given an initial guess x0 ∈ H1 and a positive sequence {γn}∞n=0, let {xn} be
generated by the perturbed iterative algorithm

xn+1 = γnu+ (1− γn)Tnxn, (1.4.66)

where u ∈ H1 and the mappings Tn and T are defined by (1.4.60).

Theorem 1.4.20. Assume that the following conditions are satisfied.

(a) limn→∞ γn = 0 and
∑∞

n=0 γn =∞;

(b) for each ρ > 0, 1 ≤ i ≤ N , and 1 ≤ j ≤ M , there hold
∑∞

n=0 dρ(Ωn,Ω) <∞,∑∞
n=0 dρ(C

n
i , Ci) <∞, and

∑∞
n=0 dρ(Q

n
j , Qj) <∞;

(c) 0 < γ < 2/L, where L =
∑N

i=1 αi + ‖A‖2
∑M

j=1 βj is the Lipschitz constant of
∇f and ∇fn.

Then {xn} generated by the algorithm (1.4.66) converges strongly to the solution to
CMSSFP (1.4.19) which is the nearest to u.

Proof. As we proved in Theorem 1.4.19 the mappings Tn and T can be rewritten as
in (1.4.63). Then algorithm (1.4.66) turns into

xn+1 = γnu+ (1− γn)((1− α)xn + αUnxn). (1.4.67)

where {Un} is a family of nonexpansive mapping satisfying that, for any ρ > 0,

∞∑
n=1

Dρ(Un, U) <∞,

thanks to inequality (1.4.65) and hypothesis (b). On the other hand, recall that
Fix(T ) = Fix(U). Thus Corollary 1.3.6 allows us to conclude that the sequence
{xn} converges strongly to x∗ = PFix (T )u, the solution to CMSSFP (1.4.19) which
is the closest to u.
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Minimum-Norm Solution

Let us focus now on the problem of finding the minimum-norm solution to the
MSSFP, that is the solution x† to the MSSFP which has the least norm among all
solutions. In other words,

‖x†‖ = min{‖x‖ : x ∈ S}. (1.4.68)

We claim that x† exists and is unique because S is closed and convex (see Remark
1.4.14) and x† = PS(0). Therefore, the fact that x† = PS(0) means that we can
approximate the minimum-norm solution to the MSSFP by means of the Halpern
type iterative methods which converge strongly to the closest solution to the problem
to the arbitrary point u ∈ H1, just considering u = 0. An example of this is the
following result.

Theorem 1.4.21. (Xu [124]) Assume that 0 < γ < 2/L′ with L′ given by (1.4.17).
Let {γn} be a sequence in (0, 1) satisfying the conditions

(i) limn γn = 0;

(ii)
∑

n γn =∞;

(iii)
∑

n |γn − γn+N | <∞ or limn(γn/γn+N ) = 1.

Define a sequence {xn} by the iterative algorithm

xn+1 = (1− γn+1)PC[n+1]

I − γ M∑
j=1

βjA
∗(I − PQj )A

xn. (1.4.69)

Then {xn} converges strongly to the minimum-norm solution x† to the MSSFP.

It is straightforward to see that the sequence defined by γn = 1/n, for all n ≥ 1,
satisfies conditions (i)-(iii).

We now propose a different way to approximate x† by regularization. Consider
the constrained problem CMSSFP (1.4.19), imposing that the solution belongs to a
closed convex subset Ω. Then we want to find x† satisfying (1.4.68) where now S
denotes the solution set of the CMSSFP.
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Let f be the function given by (1.4.15) with gradient ∇f given by (1.4.16). Then

S = argmin
x∈Ω

{f(x)} (1.4.70)

Note that in general the minimization problem (1.4.18), equivalent to the CMSSFP,
is ill-posed. So regularization is necessary. For each parameter α > 0, consider the
regularized objective function

fα(x) = f(x) +
1
2
α‖x‖2 =

1
2

N∑
i=1

αi‖x−PCix‖2 +
1
2

M∑
j=1

βj‖Ax−PQjAx‖2 +
1
2
α‖x‖2.

(1.4.71)
The gradient of fα is

∇fα(x) =
N∑
i=1

αi(I − PCi)x+
M∑
j=1

βjA
∗(I − PQj )Ax+ αx. (1.4.72)

It is easily seen that ∇fα is Lα-Lipschitz continuous with constant

Lα := α+
N∑
i=1

αi +
M∑
j=1

βj‖A‖2. (1.4.73)

Moreover, we can prove that ∇fα is also strongly monotone.
It turns out that the regularized minimization problem

min
x∈Ω

fα(x) (1.4.74)

has a unique solution which is denoted by xα.

Theorem 1.4.22. Let {xα} be the net defined by (1.4.74). Then, as α → 0, {xα}
converges strongly to x†, the minimum-norm solution to the CMSSFP.

Proof. For any x̂ ∈ S, we have

f(x̂) +
α

2
‖xα‖2 ≤ f(xα) +

α

2
‖xα‖2 = fα(xα) ≤ fα(x̂) = f(x̂) +

α

2
‖x̂‖2.
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It follows that, for all α > 0 and x̂ ∈ S,

‖xα‖ ≤ ‖x̂‖. (1.4.75)

Therefore {xα} is bounded. Assume αj → 0 is such that xαj ⇀ x̃. Then the weak
lower semicontinuity of f implies that, for any x ∈ Ω,

f(x̃) ≤ lim inf
j→∞

f(xαj ) ≤ lim inf
j→∞

fαj (xαj )

≤ lim inf
j→∞

fαj (x) = lim inf
j→∞

[
f(x) +

αj
2
‖x‖2

]
= f(x).

This means that x̃ ∈ S. Since the norm is weak lower semicontinuous, we get from
(1.4.75) that ‖x̃‖ ≤ ‖x̂‖ for all x̂ ∈ S; hence x̃ = x†. This is sufficient to ensure that
xα ⇀ x†. To see that the convergence is strong, noting that (1.4.75) holds for x†,
we compute

‖xα − x†‖2 = ‖xα‖2 − 2〈xα, x†〉+ ‖x†‖2

≤ 2(‖x†‖2 − 〈xα, x†〉).

Since xα ⇀ x†, we get ‖xα − x†‖2 → 0. Therefore xα → x†.

The advantage of the regularized solution xα lies in the fact that it can be
obtained via the Banach contraction principle. As a matter of fact, since the gradient
∇fα is α-strongly monotone and Lα-Lipschitz, xα is the unique fixed point in Ω of
the contraction

Tα := PΩ(I − γ∇fα) (1.4.76)

= PΩ

(1− αγ)I − γ
N∑
i=1

αi(I − PCi)− γ
M∑
j=1

βjA
∗(I − PQj )A

 ,

where 0 < γ < 2α/L2
α (see Lemma 1.4.8). It follows that, for any x0 ∈ Ω, Picard

iteration {Tnαx0} converges strongly to xα (see Lemma 1.4.8(i)).
Hence x† can be obtained via two steps: (i) getting xα through Picard iteration

{Tnαx0} and (ii) letting α go to 0 to get x† via Theorem 1.4.22. Next we show that
these two steps can be combined to create an iterative method that generates a
sequence converging in norm to x†.
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Theorem 1.4.23. Given an initial point x0 ∈ Ω. Define a sequence {xn} by the
iterative algorithm

xn+1 = PΩ(I − γn∇fαn)xn (1.4.77)

= PΩ

(1− αnγn)xn − γn
N∑
i=1

αi(I − PCi)xn − γn
M∑
j=1

βjA
∗(I − PQj )Axn

 ,

where the sequences {αn} and {γn} satisfy the conditions:

(i) 0 < γn < αn/L
2
αn for all (large enough) n ≥ 0;

(ii) αn → 0 (hence γn → 0 as well);

(iii)
∑∞

n=1 αnγn =∞;

(iv) (|γn − γn−1|+ |αnγn − αn−1γn−1|)/(αnγn)2 → 0.

Then xn → x†.

Proof. Bearing in mind that by Lemma 1.4.8(i) the mapping PΩ(I − γ∇fα) is a
contraction with coefficient 1 − 1

2αγ whenever 0 < γ < α/L2
α, we deduce that, for

x̂ ∈ S,

‖xn+1 − x̂‖ = ‖PΩ(I − γn∇fαn)xn − PΩ(I − γn∇f)x̂‖
≤ ‖PΩ(I − γn∇fαn)xn − PΩ(I − γn∇fαn)x̂‖

+‖PΩ(I − γn∇fαn)x̂− PΩ(I − γn∇f)x̂‖

≤ (1− 1
2
αnγn)‖xn − x̂‖+ αnγn‖x̂‖

≤ max{‖xn − x̂‖, 2‖x̂‖}.

This implies by induction that

‖xn − x̂‖ ≤ max{‖x0 − x̂‖, 2‖x̂‖}, n ≥ 0.

Hence, (xn) is bounded.
Now let zn := zαn be the unique fixed point of the contraction Tαn defined by

(1.4.76). By Theorem 1.4.22, we have that zn → x†. It remains to prove that
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‖xn+1− zn‖ → 0. Using (1.4.77), the fact that zn = PC(I − γn∇fαn)zn and the fact
that PC(I − γn∇fαn) is a contraction with coefficient 1− 1

2αnγn, we derive that

‖xn+1 − zn‖ ≤ (1− 1
2
αnγn)‖xn − zn‖

≤ (1− 1
2
αnγn)‖xn − zn−1‖+ ‖zn − zn−1‖. (1.4.78)

On the other hand, we have

‖zn − zn−1‖ = ‖PC(I − γn∇fαn)zn − PC(I − γn−1∇fαn−1)zn−1‖
≤ ‖PC(I − γn∇fαn)zn − PC(I − γn∇fαn)zn−1‖

+‖PC(I − γn∇fαn)zn−1 − PC(I − γn−1∇fαn−1)zn−1‖

≤ (1− 1
2
αnγn)‖zn − zn−1‖

+‖(I − γn∇fαn)zn−1 − (I − γn−1∇fαn−1)zn−1‖

≤ (1− 1
2
αnγn)‖zn − zn−1‖+ |γn − γn−1|‖∇f(zn−1)‖

+|αnγn − αn−1γn−1|‖zn−1‖

≤ (1− 1
2
αnγn)‖zn − zn−1‖

+
M

2
(|γn − γn−1|+ |αnγn − αn−1γn−1|), (1.4.79)

where M is big enough so that M > 2 max{‖zn‖, ‖∇f(zn)‖} for all n ≥ 1. It follows
from (1.4.79) that

‖zn − zn−1‖ ≤M
|γn − γn−1|+ |αnγn − αn−1γn−1|

αnγn
. (1.4.80)

Substituting (1.4.80) into (1.4.78) we get

‖xn+1 − zn‖ ≤ (1− 1
2
αnγn)‖xn − zn−1‖+M

|γn − γn−1|+ |αnγn − αn−1γn−1|
αnγn

.

(1.4.81)
By virtue of the conditions (iii) and (iv), we can apply Lemma 1.1.21 to the relation
(1.4.81) to get ‖xn+1 − zn‖ → 0.
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Remark 1.4.24. If we take

αn =
1

(n+ 1)α
, γn =

1
(n+ 1)γ

,

where α and γ are such that 0 < α < γ < 1 and 2α+ γ < 1, then we can prove that
conditions (i)-(iv) of Theorem 1.4.23 are all satisfied.





Chapter 2

Iterative methods in Hadamard
manifolds

In this chapter, we develop a theory of monotone operators and approximation of
fixed points of nonexpansive mappings. We start by introducing the basic knowledge
of Riemannian geometry. Section 2.2 is devoted to introducing different classes of
monotone set-valued vector fields and proving the connection with upper semiconti-
nuity and accretivity. In Section 2.3 we study several nonexpansive type mappings,
in particular, firmly nonexpansive and pseudo-contractive mappings. In Section 2.4
we study the existence of singularities of monotone vector fields and establish the
equivalence of this problem with a fixed point problem by means of the concept of
a resolvent. We also analyze the asymptotic behavior of the resolvent by using the
notion and properties of the Yosida regularization; as a consequence we obtain some
existence results of singularities under boundary conditions. Regarding the approx-
imation of singularities, in Section 2.5, we provide a proximal point algorithm for
maximal monotone vector fields. In Section 2.6, we study the convergence of Picard
iteration for firmly nonexpansive mappings, Mann and Halpern iterations for non-
expansive mappings and a viscosity approximation method. In order to illustrate
the application of these methods, we provide some numerical examples for Mann
and Halpern iterations. Finally, Section 2.7 focuses on some applications to different
problems: minimization problems, minimax problems, variational inequalities and
equilibrium problems.

79
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2.1 Theoretical framework

The object of this section is to familiarize the reader with the classical language
and some fundamental theorems in Hadamard manifolds, needed to understand
the work presented in this chapter. To this end we introduce some concepts and
results on differential manifolds; then the basic notions of Riemannian geometry,
such as metric, geodesic and parallel transport; and finally the objects and facts
that characterize the Hadamard manifolds, which is the setting we will focus on to
develop our analysis. A complete description of these concepts can be found in any
textbook on Riemannian geometry, for instance [37, 105].

2.1.1 Differentiable manifolds

Definition 2.1.1. A differentiable manifold of dimension n is a set M and a family
of injective mappings xα : Uα →M of open sets Uα ⊆ Rn such that:

(1)
⋃
α xα(Uα) = M .

(2) For any pair α, β, with xα(Uα) ∩ xβ(Uβ) = W , the sets x−1
α (W ) and x−1

β (W )
are open sets in Rn and the mappings x−1

β ◦ xα are differentiable.

(3) The family {(Uα,xα)} is maximal relative to the conditions (1) and (2).

The pair (Uα,xα) (or the mapping xα) with x ∈ xα(Uα) is called a parametriza-
tion of M at x. A family {(Uα,xα)} satisfying (1) and (2) is called a differentiable
structure on M . In general, with a certain abuse of language, since given a differ-
entiable structure on M , we can easily complete it to a maximal one, we say that
a differentiable manifold is a set provided with a differentiable structure. Note that
a differentiable structure induces on M a natural topology defining A ⊆ M to be
an open set in M if and only if x−1

α (A ∩ xα(Uα)) is an open set in Rn for all α.
The Euclidean space Rn, with the differentiable structure given by the identity is a
trivial example.

Definition 2.1.2. Given two differentiable manifolds M1 and M2 of dimension n
and m respectively, a mapping φ : M1 → M2 is differentiable at x ∈ M1 if given a
parametrization y : V ⊆ Rm →M2 with φ(x) ∈ y(V ) there exists a parametrization
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x : U ⊆ Rn → M1 with x ∈ x(U) such that φ(x(U)) ⊆ y(V ) and the mapping
y−1 ◦ φ ◦ x : U ⊆ Rn → Rm is differentiable at x−1(x).

Once we have extended the idea of differentiability to mappings between mani-
folds, we can define the notion of tangent vector.

Definition 2.1.3. Let M be a differentiable manifold of dimension n. A curve in
M is a differentiable function γ : (−ε, ε)→M . A curve is said to be smooth if it is
of class C∞, that is infinitely differentiable. Suppose that γ(0) = x ∈M , and let D
be the set of functions on M that are differentiable at x. The tangent vector to the
curve γ at t = 0 is a function γ′(0) : D → R given by

γ′(0)f =
d(f ◦ γ)
dt

∣∣∣∣∣
t=0

, f ∈ D.

And we say that the tangent vector at x is the tangent vector at t = 0 of some curve
γ : (−ε, ε) → M with γ(0) = x. The set of all tangent vectors to M at x, denoted
by TxM , forms a vector space of dimension n called tangent space of M at x. The
set TM =

⋃
x∈M TxM provided with a differentiable structure is a differentiable

manifold and will be called the tangent bundle of M . A vector field A on M is
a mapping of M into the tangent bundle TM , that is, it associates to each point
x ∈M a vector A(x) ∈ TxM .

2.1.2 Riemannian manifolds

The Riemannian geometry can be seen as a natural development of the differential
geometry of surfaces in R3. Then, departing from a differentiable manifold M , we
can introduce a way of measuring the length of tangent vectors by means of an inner
product, which leads to special curves behaving as if they were “the straight lines”
of M .

Definition 2.1.4. A Riemannian metric on a differential manifold M is a cor-
respondence which associates to each point x of M an inner product 〈 , 〉, (that
is, a symmetric bilinear positive-definite form) on the tangent space TxM , which
varies differentiably in the following sense: for any vector fields A and B, which
are differentiable in a neighborhood V of M , the function 〈A,B〉 is differentiable on
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V . A differentiable manifold with a Riemannian metric will be called Riemannian
manifold and its corresponding norm will be denoted by ‖ · ‖.

Definition 2.1.5. Given a smooth curve γ : [a, b]→M joining x to y (i.e. γ(a) = x
and γ(b) = y), we can define the length of γ by using the metric as

L(γ) =
∫ b

a
‖γ′(t)‖dt.

Then the Riemannian distance d(x, y), which induces the original topology on M ,
is defined by minimizing this length over the set of all such curves joining x to y,

d(x, y) := inf{L(γ) : γ joining x to y}.

Remark 2.1.6. From now on, M is assumed to be connected so that the set of curves
joining x to y is always nonempty.

Definition 2.1.7. Let ∇ be the Levi-Civita connection associated to (M, 〈 , 〉) and
∇AB the covariant derivative of the vector fields A by B (see [105] for more details).
Given a smooth curve γ in M a vector field A is said to be parallel along γ if
∇γ′A = 0. If γ′ itself is parallel along γ, we say that γ is a geodesic, and in this case
‖γ′‖ is constant. When ‖γ′‖ = 1, γ is called normalized. A geodesic joining x to y
in M is said to be minimal if its length equals d(x, y).

Note that given a point x ∈ M and u ∈ TxM there exists a neighborhood U
of u in TxM such that for any v ∈ U we have a unique geodesic γ defined on an
interval satisfying γ(0) = x and γ′(0) = v. We denote this geodesic, starting at x
with velocity v, by γv(., x).

Definition 2.1.8. The parallel transport on the tangent bundle TM along γ with
respect to ∇ is defined by

Pγ,γ(b),γ(a)(v) := A(γ(b)), ∀a, b ∈ R and v ∈ Tγ(a)M,

where A is the unique vector field satisfying ∇γ′(t)A = 0 for all t and A(γ(a)) = v.
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Remark 2.1.9. It can be proved that for any a, b ∈ R, Pγ,γ(b),γ(a) is an isometry from
Tγ(a)M to Tγ(b)M . Note that, for any a, b, b1, b2 ∈ R,

Pγ,γ(b2),γ(b1) ◦ Pγ,γ(b1),γ(a) = Pγ,γ(b2),γ(a) and P−1
γ,γ(b),γ(a) = Pγ,γ(a),γ(b).

For the sake of simplicity, we will write Py,x instead of Pγ,y,x in the case when γ is
a minimal geodesic joining x to y and no confusion arises.

Definition 2.1.10. A Riemannian manifold M is said to be complete, if for any
point x ∈M , all geodesics emanating from x are defined for all t ∈ R.

By the Hopf-Rinow Theorem we know that if M is a complete Riemannian man-
ifold then any pair of points in M can be joined by a minimal geodesic. Moreover,
a complete Riemannian manifold (M,d) is a complete metric space and bounded
closed subsets are compact. The concept of completeness allows us to study the
global behavior of a Riemannian manifold M by looking at how geodesics run on
M .

Definition 2.1.11. Assuming that M is a complete Riemannian manifold, the
exponential map at x ∈M , expx : TxM →M is defined by

expx v = γv(1, x), v ∈ TxM,

where recall that γv(., x) is the geodesic starting at x with velocity v. Then, for any
value of t, expx tv = γv(t, x). Note that the map expx is differentiable on TxM for
any x ∈M .

2.1.3 Hadamard manifolds

The notion of sectional curvature in a Riemannian manifold plays an important role
in the development of geometry. This concept measures in some sense the amount
that a Riemannian manifold deviates from being Euclidean. It was introduced by
Riemann as a natural generalization of the Gaussian curvature of surfaces. A few
years later, an explicit formula was given by Christoffel by using the Levi-Civita
connection. We do not include the technical definition of sectional curvature; see
references given at the beginning of this chapter for explicit definitions. In particular,
we are interested in Riemannian manifolds of nonpositive sectional curvature, whose
basic geometrical characterization is gathered in Proposition 2.1.14.
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Definition 2.1.12. A complete simply connected Riemannian manifold of nonpos-
itive sectional curvature is called a Hadamard manifold.

Throughout the remainder of this chapter, we will always assume that M is
an m-dimensional Hadamard manifold. The following well-known result will be
essential for the development of this chapter. It can be found, for example, in [105,
pag. 221, Theorem 4.1].

Proposition 2.1.13. Let x ∈ M . Then, expx : TxM → M is a diffeomorphism,
and for any two points x, y ∈M there exists a unique normalized geodesic joining x
to y, which is a minimal geodesic.

This proposition says that M is diffeomorphic to the Euclidean space Rm. Thus,
M has the same topology and differential structure as Rm. Moreover, Hadamard
manifolds and Euclidean spaces have some similar geometrical properties.

One of the most important properties of Hadamard manifolds is described in
the following proposition, which can be taken from [105, pag. 223, Proposition
4.5]. Recall that a geodesic triangle ∆(x1, x2, x3) of a Riemannian manifold is a
set consisting of three points x1, x2, x3, and three minimal geodesics joining these
points.

Proposition 2.1.14. Let ∆(x1, x2, x3) be a geodesic triangle in M . Denote, for
each i = 1, 2, 3 (mod 3), by γi : [0, li] → M the geodesic joining xi to xi+1, and set
li := L(γi), αi := ∠(γ′i(0),−γ′i−1(li−1)). Then

α1 + α2 + α3 ≤ π, (2.1.1)

l2i + l2i+1 − 2lili+1 cosαi+1 ≤ l2i−1. (2.1.2)

In terms of the distance and the exponential map, the inequality (2.1.2) can be
rewritten as

d2(xi, xi+1) + d2(xi+1, xi+2)− 2〈exp−1
xi+1

xi, exp−1
xi+1

xi+2〉 ≤ d2(xi−1, xi), (2.1.3)

since
〈exp−1

xi+1
xi, exp−1

xi+1
xi+2〉 = d(xi, xi+1)d(xi+1, xi+2) cosαi+1.

The following lemma collects some properties of the exponential map and the
parallel transport, which will be very useful in the next sections. Its technical proof
can be found in [62].
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Lemma 2.1.15. Let x0 ∈ M and {xn} ⊂ M be such that xn → x0. Then the
following assertions hold.

(i) The differential of the exponential map at the origin,

d

dt

∣∣∣∣∣
t=0

expp tu = γ′u(0) = u,

is the identity.

(ii) For any y ∈M ,

exp−1
xn y → exp−1

x0
y and exp−1

y xn → exp−1
y x0.

(iii) If {vn} is a sequence such that vn ∈ TxnM and vn → v0, then v0 ∈ Tx0M .

(iv) Given the sequences {un} and {vn} satisfying un, vn ∈ TxnM , if un → u0 and
vn → v0 with u0, v0 ∈ Tx0M , then

〈un, vn〉 → 〈u0, v0〉.

(v) For any u ∈ Tx0M , the function F : M → TM defined by Fix (x) = Px,x0u
for each x ∈M is continuous on M .

Let us introduce in following sections some fundamental notions and results of
convex analysis in Hadamard manifolds, as well as some metric properties. Refer-
ences on this topic are [114, 113, 105, 91].

Projections onto convex sets

Definition 2.1.16. A subset C ⊆ M is said to be convex if for any two points x
and y in C, the geodesic joining x to y is contained in C, that is, if γ : [a, b] → M
is a geodesic such that x = γ(a) and y = γ(b), then γ((1 − t)a + tb) ∈ C for all
t ∈ [0, 1].

As in linear metric spaces, we can define a projection map onto closed convex
sets.



86 Iterative methods in Hadamard manifolds

Definition 2.1.17. The projection onto a set C is the set-valued mapping defined
by

PC(x) = {x0 ∈ C : d(x, x0) ≤ d(x, y) for all y ∈ C}, ∀x ∈M.

Proposition 2.1.18. (Walter [114]) For any point x ∈ M , given a closed convex
set C ⊆M , PC(x) is a singleton and the following inequality holds for all y ∈ C:

〈exp−1
PC(x) x, exp−1

PC(x) y〉 ≤ 0.

Corollary 2.1.19. (Ferreira et al. [41]) If M is a Hadamard manifold with constant
curvature, given x ∈M and v ∈ TxM , the set

Lx,v := {y ∈M : 〈exp−1
x y, v〉 ≤ 0}

is convex.

Remark 2.1.20. The previous result remains true if the curvature is nonconstant but
the dimension of the manifold is 2.

From now on, C will denote a nonempty closed convex set in M , unless explicitly
stated otherwise.

Convex functions

Definition 2.1.21. Let f : M → R be a proper extended real-valued function. The
domain of the function f is denoted by D(f) and defined by D(f) := {x ∈ M :
f(x) 6= +∞}. The function f is said to be convex if for any geodesic γ in M , the
composition function f ◦ γ : R→ R is convex, that is,

(f ◦ γ)(ta+ (1− t)b) ≤ t(f ◦ γ)(a) + (1− t)(f ◦ γ)(b)

for any a, b ∈ R and 0 ≤ t ≤ 1.

Definition 2.1.22. The subdifferential of a function f : M → R at x ∈ M is the
set-valued mapping ∂f : M → 2TM defined by

∂f(x) = {u ∈ TxM : 〈u, exp−1
x y〉 ≤ f(y)− f(x), ∀y ∈M},

and its elements are called subgradients.
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The subdifferential ∂f(x) at a point x ∈M is a closed convex (possible empty)
set. The existence of subgradients for convex functions is guaranteed by the following
proposition taken from [42].

Proposition 2.1.23. Let M be a Hadamard manifold and f : M → R a convex
function. Then, for any x ∈ M , the subdifferential ∂f(x) of f at x is nonempty.
That is, the domain of the subdifferential is D(∂f) = M .

Fix a point x ∈M and define the mapping ρx : M → R by

ρx(y) :=
1
2
d2(x, y).

Then this mapping is C∞ and satisfies the following property; see [105].

Proposition 2.1.24. In a Hadamard manifold M , the mapping ρx is strictly convex
and its gradient at y is

∂ρx(y) = − exp−1
y x.

Metric properties

The following proposition describes the convexity property of the distance function
(cf. [105, pag. 222, Proposition 4.3]).

Proposition 2.1.25. Let d : M ×M → R be the distance function. Then d(·, ·) is
a convex function with respect to the product Riemannian metric; that is, given any
pair of geodesics γ1 : [0, 1] → M and γ2 : [0, 1] → M , the following inequality holds
for all t ∈ [0, 1]:

d(γ1(t), γ2(t)) ≤ (1− t)d(γ1(0), γ2(0)) + td(γ1(1), γ2(1)).

In particular, for each x ∈M , the function d(·, x) : M → R is a convex function on
M .

The following relation between geodesic triangles and triangles in R2 can be
found in [11, pag. 24].

Lemma 2.1.26. Let ∆(x, y, z) be a geodesic triangle in M Hadamard space. Then,
there exists x′, y′, z′ ∈ R2 such that

d(x, y) = ‖x′ − y′‖, d(y, z) = ‖y′ − z′‖, d(z, x) = ‖z′ − x′‖.
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The triangle ∆(x′, y′, z′) is called the comparison triangle of the geodesic triangle
∆(x, y, z), which is unique up to isometry of M . The following lemma can be proved
from elementary geometry. This is also a direct application of the Alexandrov’s
Lemma in R2 (see [11, pag. 25]).

Lemma 2.1.27. Consider four distinct points x, y, z, q ∈ R2. Suppose that x and
y lie on opposite sides of the line through z and q. Consider the triangles ∆(z, x, q)
and ∆(z, y, q). Let β be the angle of ∆(z, y, q) at the vertex y, and let θ1 and θ2

be the angles of ∆(z, x, q) and ∆(z, y, q) at the vertex q, respectively. Let y′ be the
point such that d(z, y′) = d(z, y) and d(x, y′) = d(x, q) +d(q, y). Let β′ be the angles
of ∆(z, x, y′) at the vertex y′ (see Figure 2.1). If θ1 + θ2 ≥ π, then

β ≤ β′.

Figure 2.1

The next result shows a relationship between a geodesic triangle and its compar-
ison triangle which expresses the geometric idea of a manifold having nonpositive
sectional curvature.

Lemma 2.1.28. Let ∆(x, y, z) be a geodesic triangle in a Hadamard space M and
∆(x′, y′, z′) be its comparison triangle.

(1) Let α, β, γ (resp. α′, β′, γ′) be the angles of ∆(x, y, z) (resp. ∆(x′, y′, z′)) at
the vertices x, y, z (resp. x′, y′, z′). Then, the following inequalities hold:

α′ ≥ α, β′ ≥ β, γ′ ≥ γ. (2.1.4)
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(2) Let q be a point in the geodesic joining x to y and q′ its comparison point in
the interval [x′, y′]. Suppose that d(q, x) = ‖q′ − x′‖ and d(q, y) = ‖q′ − y′‖;
see Figure 2.2. Then the following inequality holds:

d(q, z) ≤ ‖q′ − z′‖. (2.1.5)

Figure 2.2

Proof. (1) We only prove the inequality β′ ≥ β. To do this, consider the triangle
∆(x′, y′, z′) in R2. Then, by the law of cosines we have that

‖z′ − y′‖2 + ‖y′ − x′‖2 − 2‖z′ − y′‖‖y′ − x′‖ cosβ′ = ‖z′ − x′‖2.

By (2.1.2), one has that

d2(z, y) + d2(y, x)− 2d(z, y)d(y, x) cosβ ≤ d2(z, x).

It follows from Lemma 2.1.26 that

cosβ ≤ cosβ′,

and β′ > β (because β, β′ ∈ [0, π]).
(2) We fix a geodesic joining q to z. Let θ1 and θ2 denote respectively the angles

of ∆(z, x, q) and ∆(z, y, q) at the vertex q. Let β and β′ be the angles of ∆(z, x, y)
and ∆(z′, x′, y′) at the vertex y and y′ respectively. See Figure 2.2.

Consider comparison triangles ∆(z̄, x̄, q̄) and ∆(z̄, ȳ, q̄) for the geodesic triangles
∆(z, x, q) and ∆(z, y, q) respectively, such that they share the same edge [z̄, q̄], and
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x̄, ȳ lie on opposite sides of the line which passes through z̄ and q̄. Let θ̄1 and θ̄2

be the angles of ∆(z̄, x̄, q̄) and ∆(z̄, ȳ, q̄) at the vertex q̄, respectively. Denote β̄ the
angle at the vertex ȳ. From the inequalities (2.1.4) we deduce that

θ̄1 + θ̄2 ≥ θ1 + θ2 = π.

Thus Lemma 2.1.27 is applicable to getting that β̄ ≤ β′. Therefore, using the law
of cosines, we have d(q, z) ≤ ‖q′ − z′‖.

The following lemma is a consequence of the inequality (2.1.5) and the parallel-
ogram identity in a Euclidean space Rn:

‖x− y‖2 + ‖x+ y‖2 = 2(‖x‖2 + ‖y‖2), (2.1.6)

for all x, y ∈ Rn.

Lemma 2.1.29. For all x, y, z ∈M and m ∈M with d(x,m) = d(y,m) = d(x, y)/2,
one has

d2(z,m) ≤ 1
2
d2(z, x) +

1
2
d2(z, y)− 1

4
d2(x, y). (2.1.7)

From the well-known “law of cosines” in R2 and inequality (2.1.5) we deduce the
following inequality, which is a general characteristic of the spaces with nonpositive
curvature (see [11]).

Proposition 2.1.30. For any x, y, z ∈M the following inequality holds,

〈exp−1
x y, exp−1

x z〉+ 〈exp−1
y x, exp−1

y z〉 ≥ d2(x, y).
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2.2 Monotone and accretive vector fields

Let X (M) denote the set of all set-valued vector fields A : M → 2TM such that
A(x) ⊆ TxM for each x ∈ D(A), where D(A) denotes the domain of A defined by

D(A) = {x ∈M : A(x) 6= ∅}.

The concepts of monotonicity and strict monotonicity of single-valued vector
fields defined on a Riemannian manifold were introduced by Németh in [81]. In
[36], the strong monotonicity was defined. The authors of [41] provided an example
of class of monotone vector fields, those which are gradients of convex functions.
The complementary vector field of a mapping was introduced and proved to be
monotone when T is nonexpansive in [80]. For more examples and relations between
different kinds of generalized monotone vector fields in Riemannian manifolds see
[81, 82, 83, 53].

The concept of monotone set-valued vector field was first introduced in [35] where
it was shown that the subdifferential operator of a Riemannian convex function is
a monotone set-valued vector field. We provide the notion of maximal monotonic-
ity for set-valued vector fields and gather the previous concepts in the setting of
Hadamard manifolds in the following definition. Note that they can be rewritten in
general Riemannian manifold in terms of geodesics.

Definition 2.2.1. A vector field A ∈ X (M) is said to be

• monotone if for any x, y ∈ D(A),

〈u, exp−1
x y〉 ≤ 〈v,− exp−1

y x〉, ∀u ∈ A(x) and ∀v ∈ A(y); (2.2.1)

• strictly monotone if for any x, y ∈ D(A) with x 6= y, the strict inequality in
(2.2.1) holds;

• strongly monotone if there exists ρ > 0 such that, for any x, y ∈ D(A),

〈u, exp−1
x y〉 − 〈v,− exp−1

y x〉 ≤ −ρd2(x, y), ∀u ∈ A(x) and ∀v ∈ A(y);
(2.2.2)
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• maximal monotone if it is monotone and for any x ∈ M and u ∈ TxM , the
following implication holds:

〈u, exp−1
x y〉 ≤ 〈v,− exp−1

y x〉, ∀y ∈ D(A) and v ∈ A(y) =⇒ u ∈ A(x).
(2.2.3)

Remark 2.2.2. By definition, if A is a monotone vector field and x ∈ int D(A) then,
for each v ∈ TxM , there exists a constant µ > 0 such that 〈u, v〉 ≤ µ for all u ∈ A(x).
This means that A(x) is bounded for any x ∈ int D(A).

In order to characterize maximal monotone vector fields, the notions of upper
semicontinuity and upper Kuratowski semicontinuity, as well as local boundedness,
for operators in Banach spaces, (cf. [107, pag. 55]) are extended to the setting of
Hadamard manifolds in the following definition.

Definition 2.2.3. Given A ∈ X (M) and x0 ∈ D(A), the vector field A is said to be

• upper semicontinuous at x0 if for any open set V satisfying A(x0) ⊆ V ⊆
Tx0M , there exists an open neighborhood U(x0) of x0 such that Px0,xA(x) ⊆ V
for any x ∈ U(x0);

• upper Kuratowski semicontinuous at x0 if for any sequences {xk} ⊂ D(A)
and {uk} ⊂ TM with each uk ∈ A(xk), the relations limk→∞ xk = x0 and
limk→∞ uk = u0 imply u0 ∈ A(x0);

• locally bounded at x0 if there exists an open neighborhood U(x0) of x0 such
that the set ∪x∈U(x0)A(x) is bounded.

• upper semicontinuous (resp. upper Kuratowski semicontinuous, locally bounded)
on M if it is upper semicontinuous (resp. upper Kuratowski semicontinuous,
locally bounded) at each x0 ∈ D(A).

Remark 2.2.4.

Remark 2.2.5. Clearly, the upper semicontinuity implies the upper Kuratowski semi-
continuity. The converse is also true if A is locally bounded on M . Indeed, from
the definition of upper semicontinuity we deduce that if A is locally bounded at x0

but is not upper semicontinuous at x0, then there exists {xn} ⊂M and vn ∈ A(xn)
for any n ≥ 0, such that xn → x0, vn → v0 ∈ Tx0M and v0 /∈ A(x0).
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The following proposition shows that the maximality implies the upper Kura-
towski semicontinuity. Let x0 ∈ D(A) and let T : Tx0M → 2Tx0M be the mapping
defined by

T (u) = Px0,expx0 u
A(expx0

u), ∀u ∈ Tx0M. (2.2.4)

Proposition 2.2.6. Let A ∈ X (M). Consider the following assertions.

(i) A is maximal monotone.

(ii) For each x0 ∈ D(A), the mapping T : Tx0M → 2Tx0M defined by (2.2.4) is
upper Kuratowski semicontinuous on Tx0M .

(iii) A is upper Kuratowski semicontinuous on M .

Then (i) =⇒ (ii) =⇒ (iii).

Proof. (i)=⇒(ii). Suppose that (i) holds. Let x0 ∈M and u0 ∈ Tx0M . Let {un} ⊂
Tx0M and {vn} ⊂ Tx0M with each vn ∈ T (un) be such that un → u0 and vn → v0 for
some v0 ∈ Tx0M . We have to verify that v0 ∈ T (u0). To this end, set xn = expx0

un
and v̄n = Pxn,x0vn for each n ≥ 0. Then by Lemma 2.1.15, xn → x̄ := expx0

u0 and
v̄n ∈ A(xn) for each n ≥ 0. Furthermore, we have that v̄n → Px̄,x0v0 because

Pxn,x0(vn − v0)→ 0, Pxn,x0v0 → Px̄,x0v0

and
v̄n = Pxn,x0(vn − v0) + Pxn,x0v0.

On the other hand, by monotonicity,

〈v̄n, exp−1
xn y〉+ 〈v, exp−1

y xn〉 ≤ 0, ∀y ∈M and v ∈ A(y). (2.2.5)

Taking limit, as n→∞, (2.2.5) yields that

〈Px̄,x0v0, exp−1
x̄ y〉+ 〈v, exp−1

y x̄〉 ≤ 0, ∀y ∈M and v ∈ A(y). (2.2.6)

Since A is maximal monotone, Px̄,x0v0 ∈ A(x̄). Therefore, by the definition of T
and the fact that x̄ = expx0

u0, one has that v0 ∈ T (u0).
(ii)=⇒(iii). Let x0 ∈ M . By (ii), the mapping T : Tx0M → 2Tx0M defined by

(2.2.4) is upper Kuratowski semicontinuous on Tx0M . Since exp−1
x0

: M → Tx0M
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is a diffeomorphism, it follows that the composition T ◦ exp−1
x0

is upper Kuratowski
semicontinuous on M . Since

A(x) = Px,x0(T ◦ exp−1
x0

)(x), ∀x ∈M,

one sees that A is upper Kuratowski semicontinuous on M as Px,x0 is an isometry.

Recall the well-known result that maximal monotonicity and upper semicontinu-
ity are equivalent for a set-valued operator with closed and convex values in a Hilbert
space (cf. [87]). To extend this result to set-valued vector fields on Hadamard man-
ifolds, we first need to prove the following lemma.

Lemma 2.2.7. Suppose that A ∈ X (M) is maximal monotone and that D(A) = M .
Then A is locally bounded on M .

Proof. Let x0 ∈ M . Suppose on the contrary that A is not locally bounded at x0.
Then there exist sequences {xn} ⊂ D(A) and {vn} ⊂ TM with each vn ∈ A(xn)
such that, xn → x0 but ‖vn‖ → ∞. Note that A(x0) is bounded by Remark 2.2.2.
Hence

ρ := sup{‖u‖ : u ∈ A(x0)} <∞.
Taking v0 ∈ A(x0), we define

un = (1− tn)Pxn,x0v0 + tnvn, ∀n ≥ 1

where {tn} ⊂ [0, 1] such that ‖un‖ = ρ + 1 for each n ≥ 1. This means that {un}
is bounded and tn → 0. Without loss of generality, assume that un → u0 for some
u0 ∈ Tx0M . Then ‖u0‖ = ρ + 1 and u0 /∈ A(x0). On the other hand, for any
y ∈ D(A) and v ∈ A(y), one has that, for each n ≥ 1,

〈un, exp−1
xn y〉+ 〈v, exp−1

y xn〉 = (1− tn)
(
〈Pxn,x0v0, exp−1

xn y〉+ 〈v, exp−1
y xn〉

)
+tn

(
〈vn, exp−1

xn y〉+ 〈v, exp−1
y xn〉

)
≤ (1− tn)

(
〈Pxn,x0v0, exp−1

xn y〉+ 〈v, exp−1
y xn〉

)
,

where the last inequality holds because tn ≥ 0 and 〈vn, exp−1
xn y〉+ 〈v, exp−1

y xn〉 ≤ 0
thanks to the monotonicity of A. Now, letting n→∞, we get that

〈u0, exp−1
x0
y〉+ 〈v, exp−1

y x0〉 ≤ 〈v0, exp−1
x0
y〉+ 〈v, exp−1

x0
y〉 ≤ 0,
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by Lemma 2.1.15 and the monotonicity of A. Since A is maximal monotone, it
follows that u0 ∈ A(x0), which is a contradiction.

Theorem 2.2.8. Suppose that A ∈ X (M) is monotone and that D(A) = M . Then
the following statements are equivalent.

(i) A is maximal monotone.

(ii) For any x0 ∈ M , the mapping T : Tx0M → 2Tx0M defined by (2.2.4) is upper
semicontinuous on Tx0M , and T (u) is closed and convex for each u ∈ Tx0M .

(iii) A is upper semicontinuous on M , and A(x) is closed and convex for each
x ∈M .

Proof. (i)⇒(ii). Assuming that (i) holds, by Lemma 2.2.7, we have that A is locally
bounded. Given x0 ∈ M , let T be defined by (2.2.4). Then T is locally bounded
because the mapping expx0

: Tx0M →M is a diffeomorphism and the parallel trans-
port Px0,expx0

is an isometry. Furthermore, T is upper Kuratowski semicontinuous
on Tx0M by Proposition 2.2.6. Thus, bearing in mind Remark 2.2.5, we conclude
that T is upper semicontinuous on Tx0M .

It remains to prove that T (u) is closed and convex for each u ∈ Tx0M . To this
end, let u ∈ Tx0M and x = expx0

u. For the sake of simplicity, we use G(A) to
denote the graph of A defined by

G(A) := {(y, v) ∈M × TM : v ∈ A(y)}.

By the maximality of A, we see that

T (u) = Px0,xA(x) = Px0,x

⋂
(y,v)∈G(A)

{
w ∈ TxM : 〈w, exp−1

x y〉+ 〈v, exp−1
y x〉 ≤ 0

}
.

Therefore T (u) is closed and convex.
(ii)⇒(iii). Let x0 ∈ M . It suffices to prove that A is upper semicontinuous at

x0 because A(x0) = T (0) is closed and convex by (ii), where T : Tx0M → 2Tx0M

is defined by (2.2.4). For this purpose, consider the set-valued mapping S : M →
2Tx0M defined by

S(x) = Px0,xA(x), ∀x ∈M.
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It is clear that A is upper semicontinuous at x0 if and only if so is S. Since the
mapping T is upper semicontinuous on Tx0M by (ii) and since exp−1

x0
: M → Tx0M is

a diffeomorphism, it follows that the composition T ◦exp−1
x0

is upper semicontinuous
on M . Noting that

S(x) = Px0,xA(x) = (T ◦ exp−1
x0

)(x), ∀x ∈M,

one sees that S is upper semicontinuous on M and so at x0.
(iii)⇒(i). Suppose that (iii) holds but A is not maximal. Then there exist

x0 ∈M and u0 ∈ Tx0M \A(x0) such that

〈u0, exp−1
x0
y〉 ≤ 〈v,− exp−1

y x0〉, ∀y ∈M and ∀v ∈ A(y). (2.2.7)

Note that A(x0) is a convex closed set by (iii), so the well-known separation theorem
is applicable and there exists h ∈ Tx0M such that

〈u0, h〉 > α = sup
u∈A(x0)

〈u, h〉.

Define V := {u ∈ Tx0M : 〈u, h〉 < 〈u0, h〉}. Then V is an open set containing A(x0).
By (iii), A is upper semicontinuous at x0; thus there exists a neighborhood U(x0)
of x0 such that Px0,xA(x) ⊆ V for each x ∈ U(x0). Now, set xt := expx0

th for each
t > 0. Then xt → x0, as t→ 0. Hence xt ∈ U(x0) and Px0,xtA(xt) ⊆ V for all t > 0
small enough. This means that we can take some t > 0 such that

〈Px0,xtv, h〉 < 〈u0, h〉, ∀v ∈ A(xt).

Since th = exp−1
x0
xt, the previous inequality turns into

〈Px0,xtv, exp−1
x0
xt〉 < 〈u0, exp−1

x0
xt〉, ∀v ∈ A(xt).

Therefore, for each v ∈ A(xt),

〈v,− exp−1
xt x0〉 = 〈v, Pxt,x0 exp−1

x0
xt〉 = 〈Px0,xtv, exp−1

x0
xt〉 < 〈u0, exp−1

x0
xt〉,

which contradicts (2.2.7).

We now extend the classical definition of accretive operators on Banach spaces
to vector fields defined on Hadamard manifolds.
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Definition 2.2.9. Let A ∈ X (M) and α > 0. The vector field A is said to be

• accretive if for any x, y ∈ D(A) and each r ≥ 0 we have that

d(x, y) ≤ d(expx(ru), expy(rv)), for each u ∈ A(x) and v ∈ A(y); (2.2.8)

• strictly accretive if for any x, y ∈ D(A) with x 6= y and each r ≥ 0, the strict
inequality in (2.2.8) holds;

• α-strongly accretive if for any x, y ∈ D(A) and each r ≥ 0 we have that

(1 + αr)d(x, y) ≤ d(expx(ru), expy(rv)), for each u ∈ A(x) and v ∈ A(y);
(2.2.9)

• m-accretive if it is accretive and

⋃
x∈D(A)

 ⋃
u∈A(x)

expx u

 = M. (2.2.10)

Note that these definitions make also sense in the setting of Riemannian mani-
folds. However, it is in the particular case of a Hadamard manifold where the notions
of accretivity and monotonicity can be proved to be equivalent. The following lemma
is an essential tool to study this equivalence.

Lemma 2.2.10. Let x, y ∈M with x 6= y, u ∈ TxM and v ∈ TyM . Then(
d
ds
d(expx su, expy sv)

)
s=0

=
1

d(x, y)
(
−〈u, exp−1

x y〉+
〈
v,− exp−1

y x
〉)
. (2.2.11)

Proof. Let ε > 0 and f : (−ε, ε)× [0, 1]→M be the function defined by

f(s, t) = expexpx su
t(exp−1

expx su
expy sv), for each (s, t) ∈ (−ε, ε)× [0, 1].

Let γ be the geodesic joining x to y. It follows that

γ′(0) = exp−1
x y and γ′(1) = − exp−1

y x. (2.2.12)
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Since the exponential map is differentiable and f(0, t) = γ(t), f is a variation of γ
and V (t) = ∂f

∂s (0, t) is the variational field of f . In particular,

V (0) =
∂f

∂s
(0, 0) = u and V (1) =

∂f

∂s
(0, 1) = v. (2.2.13)

Note that, for each s ∈ (−ε, ε), the parameterized curve fs : [0, 1] → M given by
fs(t) = f(s, t) is a geodesic. Then

∥∥∥∂f∂t (s, t)
∥∥∥ is a constant. Moreover∥∥∥∥∂f∂t (s, t)

∥∥∥∥ = ‖ exp−1
expx su

expy sv‖ = d(expx su, expy sv). (2.2.14)

Define L : (−ε, ε)→ R by

L(s) =
∫ 1

0

∥∥∥∥∂f∂t (s, t)
∥∥∥∥dt, for each s ∈ (−ε, ε). (2.2.15)

Therefore, by [105, p. 38, Proposition 2.5],(
d
ds
L(s)

)
s=0

=
1
l(γ)

(
−
∫ 1

0

〈
V (t),

D
dt

dγ
dt

〉
dt
)

+
1
l(γ)

(〈
V (1),

dγ
dt

(1)
〉
−
〈
V (0),

dγ
dt

(0)
〉)

=
1

d(x, y)

(〈
∂f

∂s
(0, 1), γ′(1)

〉
−
〈
∂f

∂s
(0, 0), γ′(0)

〉)
(2.2.16)

where the second equality holds because γ is a geodesic and D
dt

dγ
dt = 0. Then, bearing

in mind that (
d
ds
d(expx su, expy sv)

)
s=0

=
(

d
ds
L(s)

)
s=0

,

equality (2.2.11) follows from (2.2.12), (2.2.13) and (2.2.16).

In view of the previous definitions and Lemma 2.2.10, we deduce the following
characterization of monotonicity.

Corollary 2.2.11. Let A ∈ X (M) and α > 0. Then the following assertions hold.
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(i) A is monotone if and only if for any x, y ∈ D(A),(
d

ds
d(expx(su), expy(sv))

)
s=0

≥ 0, for each u ∈ A(x) and v ∈ A(y).

(2.2.17)

(ii) A is strictly monotone if and only if for any x, y ∈ D(A) with x 6= y,(
d

ds
d(expx(su), expy(sv))

)
s=0

> 0, for each u ∈ A(x) and v ∈ A(y).

(2.2.18)

(iii) A is α-strongly monotone if and only if for any x, y ∈ D(A),(
d

ds
d(expx(su), expy(sv))

)
s=0

≥ αd(x, y), for each u ∈ A(x) and v ∈ A(y).

(2.2.19)

Remark 2.2.12. It is worth mentioning that, in [53], Iwamiya and Okochi defined
a monotone vector field A ∈ X (M) on a more general Riemannian manifold by
requiring that, for any x, y ∈ D(A) and for each u ∈ A(x), v ∈ A(y), the inequality(

d
ds
d(expx(su), expy(sv))

)
s=0

:= lim
s→0

d(expx(su), expy(sv))− d(x, y)
s

≥ 0

holds. When M is a Hadamard manifold, we deduce from Corollary 2.2.11 that this
definition coincides with the one we presented in this section.

Theorem 2.2.13. Let A ∈ X (M) and α > 0. Then the following assertions hold.

(i) A is accretive if and only if A is monotone.

(ii) A is α-strongly accretive if and only if A is α-strongly monotone.

(iii) If A is m-accretive, then A is maximal monotone.

Proof.
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(i) If A is accretive, for any x, y ∈ D(A) and each u ∈ A(x), v ∈ A(y), we have
that

d(x, y) ≤ d(expx(ru), expy(rv)), (2.2.20)

for all r ≥ 0, which implies that(
d
ds
d(expx(su), expy(sv))

)
s=0

≥ 0. (2.2.21)

Then, by Corollary 2.2.11, A is monotone. Assume now that A is monotone.
Let x, y ∈ D(A) and u ∈ A(x), v ∈ A(y). Define a mapping g : [0,+∞) →
[0,+∞) by

g(r) = d(expx ru, expy rv) for each r ∈ [0,+∞).

Since M is a Hadamard manifold, we get that g(·) is a convex function by
Proposition 2.1.25. Hence,(

d

dr
d(expx(ru), expy(rv))

)
r=0

= inf
r≥0

g(r)− g(0)
r

. (2.2.22)

By Corollary 2.2.11(i), we have that A is monotone if and only if(
d

dr
d(expx(ru), expy(rv))

)
r=0

≥ 0. (2.2.23)

Then, by (2.2.22), (2.2.23) is equivalent to

g(r)− g(0) ≥ 0, for each r ≥ 0,

which means that A is accretive.

(ii) If A is α-strongly accretive, for any x, y ∈ D(A) and each u ∈ A(x), v ∈ A(y),
we have that

(1 + αr)d(x, y) ≤ d(expx(ru), expy(rv)), (2.2.24)

for all r ≥ 0, which means that(
d
ds
d(expx su, expy sv)

)
s=0

≥ αd(x, y). (2.2.25)
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Then, by Corollary 2.2.11 A is strongly monotone. Assume that A is α-
strongly monotone. Let x, y ∈ D(A) and u ∈ A(x), v ∈ A(y). Define a
mapping g : [0,+∞)→ [0,+∞) by

g(r) = d(expx ru, expy rv)− α r d(x, y), for each r ∈ [0,+∞).

Then g(·) is a convex function. Hence,(
d

dr
d(expx(ru), expy(rv))

)
r=0

− αd(x, y) = inf
r≥0

g(r)− g(0)
r

. (2.2.26)

Recall that by Corollary 2.2.11(ii), we have that A is α-strongly monotone if
and only if (

d

dr
d(expx(ru), expy(rv))

)
r=0

− αd(x, y) ≥ 0. (2.2.27)

Then, by (2.2.26), (2.2.27) is equivalent to

g(r)− g(0) ≥ 0, for each r ≥ 0,

which means that A is α-strongly accretive.

(iii) Assume that A is m-accretive. In particular, A is accretive so by (i) A is
monotone. In order to prove the maximality we take x ∈ M and u ∈ TxM
such that, for any y ∈ D(A) and v ∈ A(y),

〈u, exp−1
x y〉 ≤ −〈v, exp−1

y x〉. (2.2.28)

Defining the vector field B : M → 2TM by B(y) = A(y) if x 6= y and B(x) = u,
since A is monotone, the inequality (2.2.28) implies that B is monotone. Then
B is accretive, so, for r = 1 in the definition, we have that

d(x, y) ≤ d(expx u, expy v), (2.2.29)

for any y ∈ D(B) and v ∈ B(y), since u ∈ B(x). On the other hand, since A
is m-accretive, by (2.2.10), there exists y ∈ D(A) and v ∈ A(y) such that

expx u = expy v. (2.2.30)

Then from inequality (2.2.29) we deduce that x = y and therefore u = v ∈
A(x), establishing that A is maximal monotone.
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Remark 2.2.14. The converse of assertion (iii) in the previous theorem is true when
D(A) = M . It will be proved in Corollary 2.4.5.
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2.3 Nonexpansive type mappings

In this section we study some properties of the nonexpansive type mappings that will
be essential to characterize the monotone vector fields. In particular, we introduce
the definition of firmly nonexpansive mappings on Hadamard manifolds and provide
an analysis of these mappings. By using the concept of complementary vector
field, we also establish a connection with the class of pseudo-contractive mappings
introduced by Reich and Shafrir, [101], in the more general setting of hyperbolic
spaces.

Recall that, given a subset C ⊆ M , T : C → M is a nonexpansive mapping if
for any x, y ∈ C,

d(T (x), T (y)) ≤ d(x, y). (2.3.1)

Let us denote the fixed point set of T by

Fix (T ) := {x ∈ C : x = T (x)}. (2.3.2)

From either Brouwer’s theorem or the fixed point property for CAT(0) spaces (cf.
[59]), the existence of fixed points is ensured provided that C is bounded. Kirk, in
[60], proved the following result in complete CAT(0) spaces. However, we include
the proof in the setting of Hadamard manifolds for the sake of completeness.

Proposition 2.3.1. Let T : C →M be a nonexpansive mapping defined on a closed
convex set C ⊆M . Then the fixed point set Fix (T ) is closed and convex.

Proof. Let us start by proving that Fix (T ) is closed. Let {xn} be a sequence in
Fix (T ) that converges to x ∈M . Then x ∈ C by closeness of C, and T (xn)→ T (x)
by continuity (nonexpansivity) of T . On the other hand, since {xn} ⊂ Fix (T ),
T (xn)→ x. Altogether, we have that T (x) = x. Therefore, Fix (T ) is closed.

In order to prove the convexity, let x, y ∈ Fix (T ) and let γ be the geodesic
joining x to y. Given a point q in the geodesic γ, that is q = γ(t) for some t ∈ [0, 1],
we just need to prove that q ∈ Fix (T ). Since C is convex, T (q) is well-defined.
Consider the geodesic triangle ∆(x, y, T q) with comparison triangle ∆(x′, y′, (Tq)′)
in R2, and the corresponding point to the point q, q′ = (1 − t)x′ + ty′; that is
d(x′, q′) = d(x, q) and d(q′, y′) = d(q, y), see Figure 2.2. On the other hand, recall
the fact that for any α ∈ R+ and any a, b ∈ R2, we have the equality

‖αa+ (1− α)b‖2 = α‖a‖2 + (1− α)‖b‖2 − α(1− α)‖a− b‖2. (2.3.3)
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Then, from Lemma 2.1.28, equality (2.3.3) and the nonexpansivity of T , we obtain

d2(q, T (q)) ≤ d2(q′, (T (q))′)
= ‖(1− t)(x′ − (T (q))′) + t(y′ − (T (q))′)‖2

= (1− t)‖x′ − (T (q))′‖2 + t‖y′ − (T (q))′‖2 − t(1− t)‖x′ − y′‖2

= (1− t)d2(x, T (q)) + td(y, T (q))− t(1− t)d2(x, y)
≤ (1− t)d2(x, q) + td(y, q)− t(1− t)d2(x, y)
= (1− t)‖x′ − q′‖2 + t‖y′ − q′‖2 − t(1− t)‖x′ − y′‖2

= ‖(1− t)x′ + ty′ − q′‖2

= 0.

So q = T (q) for any q in the geodesic joining x ∈ Fix (T ) to y ∈ Fix (T ), thus Fix (T )
is convex.

2.3.1 Firmly nonexpansive mappings

The notion of firm nonexpansivity was previously defined on a Banach space [17, 18]
and the Hilbert ball with the hyperbolic metric [48], so-called firmly nonexpansive
mapping of the first kind in the latter case. In fact, the following analysis shows
that in the framework of Hadamard manifolds this class of mappings verifies similar
properties to those ones well-known in Hilbert spaces.

Definition 2.3.2. Given a mapping T : C ⊆ M → M , we say that T is firmly
nonexpansive if for any x, y ∈ C, the function θ : [0, 1]→ [0,∞] defined by

θ(t) = d(γ1(t), γ2(t)), (2.3.4)

is nonincreasing, where γ1 and γ2 denote the geodesics joining x to T (x) and y to
T (y), respectively.

Remark 2.3.3. From the definition we readily deduce that any firmly nonexpansive
mapping T is nonexpansive.

Proposition 2.3.4. Let T : C ⊆ M → M . Then the following assertions are
equivalent.
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(i) T is firmly nonexpansive.

(ii) For any x, y ∈ C and t ∈ [0, 1]

d(T (x), T (y)) ≤ d(expx t exp−1
x Tx, expy t exp−1

y Ty). (2.3.5)

(iii) For any x, y ∈ C

〈exp−1
T (x) T (y), exp−1

T (x) x〉+ 〈exp−1
T (y) T (x), exp−1

T (y) y〉 ≤ 0. (2.3.6)

Proof. Given x, y ∈ C, let θ : [0, 1]→ [0,∞] be the function defined by (2.3.4). Note
that from Proposition 2.1.25 we deduce that θ is a convex function.

Let us start by proving that the derivative at 1− of the function θ can be for-
mulated as

(θ)′(1) = 〈exp−1
T (x) T (y), exp−1

T (x) x〉+ 〈exp−1
T (y) T (x), exp−1

T (y) y〉. (2.3.7)

Let u = exp−1
T (x) x ∈ TT (x)M and v = exp−1

T (y) y ∈ TT (y)M . Then the function θ can
be written as

θ(t) = d(expT (x)(1− t)u, expT (y)(1− t)v). (2.3.8)

Let γ be the geodesic joining T (x) to T (y), that is, for any r ∈ [0, 1]

γ(r) = expT (x) r exp−1
T (x) T (y). (2.3.9)

Given ε > 0 we define the function f : (−ε, ε)× [0, 1]→M by

f(s, r) = expexpTx su
r(exp−1

expTx su
expTy sv) for each (s, r) ∈ (−ε, ε)× [0, 1].

(2.3.10)
Note that f(0, r) = γ(r). Then, since the exponential map is differentiable and f is
a variation of γ, V (r) = ∂f

∂s (0, r) is the variational field of f . In particular,

V (0) =
∂f

∂s
(0, 0) = u and V (1) =

∂f

∂s
(0, 1) = v. (2.3.11)

Note that for each s ∈ (−ε, ε), the parameterized curve fs : [0, 1] → M given by
fs(r) = f(s, r) is a geodesic and therefore

∥∥∥∂f∂r (s, r)
∥∥∥ is a constant. In particular,
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from (2.3.8),∥∥∥∥∂f∂r (s, r)
∥∥∥∥ = ‖ exp−1

expT (x) su
expT (y) sv‖ = d(expT (x) su, expT (y) sv) = θ(1− s).

(2.3.12)
Define L : (−ε, ε)→ R by

L(s) =
∫ 1

0

∥∥∥∥∂f∂r (s, r)
∥∥∥∥dr, for each s ∈ (−ε, ε). (2.3.13)

Recall that
∥∥∥∂f∂t (s, r)

∥∥∥ is a constant, thus

L2(s) =
∫ 1

0

∥∥∥∥∂f∂t (s, t)
∥∥∥∥2

dt = θ2(1− s).

Therefore, by the first variation formula stated in [105, p. 89, Proposition 2.2]
(where E denotes the energy integral E(s) = 1

2L
2(s))

1
2

(
d
ds
L2(s)

)
s=0

= −
∫ 1

0

〈
V (r),

D
dr

dγ
dr

〉
dr −

〈
V (0),

dγ
dr

(0)
〉

+
〈
V (1),

dγ
dr

(1)
〉

= −
〈
∂f

∂s
(0, 0), γ′(0)

〉
+
〈
∂f

∂s
(0, 1), γ′(1)

〉
(2.3.14)

= −
〈

exp−1
T (x) x, exp−1

T (x) T (y)
〉

+
〈

exp−1
T (y) y,− exp−1

T (y) T (x)
〉
,

where the second equality holds because D
dr

dγ
dr = 0, since γ is a geodesic. Then the

fact that(
d
ds
L2(s)

)
s=0

= −
(

d
ds
θ2(t)

)
t=1

= −(θ2)′(1) = −2θ′(1), (2.3.15)

together with inequality (2.3.14), implies that equality (2.3.7) holds.
By definition the mapping T is firmly nonexpansive if and only if the convex

function θ is nonincreasing. On the one hand, this is equivalent to θ(1) ≤ θ(t),
for any t ∈ [0, 1], which is exactly the inequality (2.3.5), proving the equivalence
between (i) and (ii). On the other hand, since θ is differentiable at 1 and convex,
the definition of firmly nonexpansive mapping is equivalent to θ′(1) ≤ 0, and then
to inequality (2.3.6) because of equality (2.3.7). Then (i) is proved to be equivalent
to (iii).
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The following result provides us with an important example of class of firmly
nonexpansive mappings, the metric projection.

Corollary 2.3.5. The metric projection onto a closed convex subset C ⊆ M is a
firmly nonexpansive mapping.

Proof. Let T = PC be the metric projection onto C. For any x, y ∈M , by Proposi-
tion 2.1.18, we have that

〈exp−1
T (x) T (y), exp−1

T (x) x〉 ≤ 0 (2.3.16)

because T (y) ∈ C, and analogously, since T (x) ∈ C,

〈exp−1
T (y) T (x), exp−1

T (y) y〉 ≤ 0. (2.3.17)

By summing inequalities (2.3.16) and (2.3.17) we obtain inequality (2.3.6) which
implies the firmly nonexpansivity of PC by Proposition 2.3.4.

Given a nonexpansive mapping T , as it happens in Hilbert spaces, there exists
another example of class of firmly nonexpansive mappings constituted by an associ-
ated family of mappings {Gt : 0 ≤ t < 1}, whose fixed point set coincides with the
fixed point set of T .

Indeed, given T : C → C nonexpansive and x ∈ C, for any t ∈ [0, 1), let Tt be
the mapping defined by

Tty = expx t exp−1
x Ty, (2.3.18)

for any y ∈ C. It is straightforward to see that Tt is a contraction for any t ∈ [0, 1).
Then the Banach contraction principle implies that there exists a unique fixed point
of Tt, which is being denoted by xt. By means of the approximating curve {xt}, for
any t ∈ [0, 1), we define the mapping Gt : C → C by

Gt(x) =: xt = expx t exp−1
x T (Gt(x)),

for all x ∈ C. Then the following result holds.

Proposition 2.3.6. Let t ∈ [0, 1).

(i) The mapping Gt is firmly nonexpansive.
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(ii) Fix (Gt) = Fix (T ).

Proof.

(i) Let x, y ∈ K. From the convexity of the distance, we have that

d(Gt(x), Gt(y)) ≤ (1− t)d(x, y) + td(Gt(x), Gt(y)),

which implies the nonexpansivity of Gt. Now consider the geodesics γ1 and
γ2 joining x to Gt(x) and y to Gt(y), respectively. Let s ∈ [0, 1] and set
r := (1−s)t

1−st ∈ [0, 1). Then r ∈ [0, 1) and satisfies that

Gt(x) = expγ1(s) r exp−1
γ1(s) T (Gt(x)) (2.3.19)

and
Gt(y) = expγ2(s) r exp−1

γ2(s) T (Gt(y)). (2.3.20)

To show this fact, note that by the definition of the mapping Gt the geodesics
γ1 and γ2 are contained in the geodesics α1 and α2 joining x to T (Gt(x))
and y to T (Gt(y)), respectively. In particular, the point γ1(s) belongs to the
geodesic α1.

Since
d(x, γ1(s)) = s d(x,Gt(x)) = s td(x, T (Gt(x))), (2.3.21)

it follows that

d(γ1(s), T (Gt(x)))) = (1− st) d(x, T (Gt(x))). (2.3.22)

Therefore, using the definitions of γ1(s), inequalities (2.3.21) and (2.3.22), we
obtain that

d(γ1(s), Gt(x)) = (1− s) d(x,Gt(x))
= (1− s) td(x, T (Gt(x)))

= (1− s) t 1
1− st

d(γ1(s), T (Gt(x)))

= r d(γ1(s), T (Gt(x))).
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This means that (2.3.19) is satisfied. Similarly, (2.3.20) is satisfied. Thus, by
the convexity of the distance and the nonexpansivity of Gt, we obtain that

d(Gt(x), Gt(y)) ≤ (1− r) d(γ1(s), γ2(s)) + r d(Gt(x), Gt(y)).

This implies that, for any s ∈ [0, 1]

d(Gt(x), Gt(y)) ≤ d(γ1(s), γ2(s)). (2.3.23)

Hence, inequality (2.3.5) holds and Gt is firmly nonexpansive by Proposition
2.3.4.

(ii) The following equivalences prove the equality.

x = Gt(x) ⇔ x = expx(1− t) exp−1
x Tx

⇔ 0 = exp−1
x Tx

⇔ x = Tx.

2.3.2 Pseudo-contractive mappings

In the setting of the Hilbert spaces there is a class of nonexpansive type mappings,
the so called pseudo-contractive mappings, which are closely related to the class of
monotone operators. Given a subset C of a Hilbert space H, a set-valued mapping
T : C → 2H is said to be pseudo-contractive if for all x, y ∈ C, for any u ∈ T (x), v ∈
T (y) and r ≥ 0,

‖x− y‖ ≤ ‖(1 + r)(x− y)− r(u− v)‖.
This concept was introduced by Browder and Petryshyn, in [?], and they proved that
a mapping T is pseudo-contractive if and only if the operator I − T is monotone.
This means that the problem of solving an equation involving monotone operators
may be formulated as a fixed point problem for a pseudo-contractive mapping on a
Hilbert space.

We define the concept of pseudo-contractive mappings in the setting of Hadamard
manifolds, by using the notion of complementary vector field which was introduced
by Németh, in [80], in order to provide a relation between nonexpansive mappings
and monotone vector fields.
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Definition 2.3.7. [80] Let T : C ⊆ M → M . The vector field A ∈ X (M) defined
by

A(x) = − exp−1
x T (x), (2.3.24)

for any x ∈ C, is said to be the complementary vector field of T .

Definition 2.3.8. Let T : C ⊆M →M and α > 0. Then T is said to be

• pseudo-contractive if its complementary vector field is accretive;

• α-strongly pseudo-contractive if its complementary vector field is α-strongly
accretive.

Remark 2.3.9. The definition of pseudo-contractive mappings coincides with the one
introduced by Reich and Shafrir in the more general setting of hyperbolic spaces
[101].

In view of Definition 2.3.8 and Theorem 2.2.13, we deduce the following result.

Corollary 2.3.10. Let T : C ⊆M →M and α > 0. Then the following assertions
hold.

(i) T is pseudo-contractive if and only if its complementary vector field is mono-
tone.

(ii) If T is α-strongly pseudo-contractive, then its complementary vector field is
α-strongly monotone.

(iii) Conversely, if the complementary vector field of T is α-strongly monotone,
then T is α′-strongly pseudo-contractive, where 0 < α′ < α.

Remark 2.3.11. If T is a nonexpansive mapping, it was proved in [80] that the
complementary vector field of T is monotone. Hence, by Corollary 2.3.10, we deduce
that any nonexpansive mapping is pseudo-contractive.



Fixed point approximation methods for nonexpansive mappings 111

2.4 Singularities, resolvent and Yosida approximation
of vector fields

Let A ∈ X (M) be a set-valued vector field with domain D(A). The existence of
singularities of vector fields is a relevant problem with numerous applications in
other areas. In particular, it will be a crucial fact for the resolvent operator to be
well-defined in the setting of Hadamard manifolds.

Definition 2.4.1. Given a vector field A ∈ X (M), we say that x ∈ D(A) is a
singularity of A if 0 ∈ A(x). The set of all singularities of A is denoted by A−1(0).

2.4.1 Singularities of strongly maximal vector fields

Concerning the existence of singularities for monotone vector fields, as a direct
consequence of Definition 2.2.1, we first deduce the following proposition.

Proposition 2.4.2. Let A ∈ X (M) be strictly monotone. Then A has at most one
singularity.

In [36, 41] it was proved that differentiable strongly monotone single-valued
vector fields on Hadamard manifolds with D(A) = M have at least one singularity;
that is, since the strong monotonicity implies the strictly monotonicity, existence
and uniqueness are ensured. This result can be improved and extended to the set-
valued case for maximal strongly monotone vector fields, by using the equivalence
established in Theorem 2.2.8 and the following coercivity result for finite-dimensional
Banach spaces; see, for example, [87, pag. 115].

Proposition 2.4.3. Let X be a finite-dimensional Banach space and T : X → 2X
∗

be an upper semicontinuous set-valued operator. Suppose that D(T ) = X and that
T satisfies the following coercivity condition:

lim
‖z‖→∞

〈w, z〉
‖z‖

= +∞, ∀w ∈ T (z). (2.4.1)

Then, there exists x ∈ X such that 0 ∈ T (x).

Theorem 2.4.4. Let A ∈ X (M) be a maximal strongly monotone vector field with
D(A) = M . Then there exists a unique singularity of A.
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Proof. Since the strong monotonicity implies the strict monotonicity, the uniqueness
of the singularity follows from Proposition 2.4.2. Now we will prove the existence
of singularity. To this end, let x0 ∈ M and let T : Tx0M → 2Tx0M be defined by
(2.2.4), that is,

T (u) = Px0,expx0 u
A(expx0

u), ∀u ∈ Tx0M.

Then T is upper semicontinuous by Theorem 2.2.8. Moreover, by the strong mono-
tonicity, there exists ρ > 0 such that for any x ∈ D(A)

〈u, exp−1
x0
x〉 − 〈v,− exp−1

x x0〉 ≤ −ρd2(x0, x), ∀u ∈ A(x0) and ∀v ∈ A(x),

which is equivalent to

〈Px0,xv − u, exp−1
x0
x〉 ≥ ρd2(x0, x), ∀u ∈ A(x0) and ∀v ∈ A(x). (2.4.2)

Letting u ∈ Tx0M and w ∈ T (u), we set x = expx0
u and assume that w = Px0,xv

for some v ∈ A(x). Fix v0 ∈ A(x0). Then by (2.4.2), we get that

〈w, u〉 = 〈Px0,xv − v0, exp−1
x0
x〉+ 〈v0, exp−1

x0
x〉

≥ ρd2(x0, x) + 〈v0, exp−1
x0
x〉

≥ ρ‖u‖2 − ‖v0‖‖u‖.

Therefore,

lim
‖u‖→∞

〈w, u〉
‖u‖

= +∞, ∀w ∈ T (u).

This shows that T satisfies the coercivity condition (2.4.1). Consequently, Proposi-
tion 2.4.3 is applicable to concluding that there exists a point u ∈ Tx0M such that
0 ∈ T (u). Then, x := expx0

u ∈M is a singularity of A.

Corollary 2.4.5. Let A ∈ X (M) be maximal monotone with D(A) = M . Then A
is m-accretive.

Proof. Since A is monotone, by Theorem 2.2.13 (i), it is accretive as well. In order
to proved that A is m-accretive we need to show that (2.2.10) is true. To this end,
given y ∈M let us prove that

y ∈
⋃

x∈D(A)

 ⋃
u∈A(x)

expx u

 . (2.4.3)
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Define the set-valued vector field B : M → 2TM by

B(x) = A(x)− exp−1
x y for each x ∈M. (2.4.4)

It can be proved by Proposition 2.1.30 that B is maximal strongly monotone and
D(B) = M . Therefore, by Theorem 2.4.4, there exists a unique singularity x0 of
B; that is, 0 ∈ B(x0) = A(x0) − exp−1

x0
y. Hence there exists u0 ∈ A(x0) such that

u0 = exp−1
x0
y, which means that y = expx0

u0. Then (2.4.3) is true.

2.4.2 Resolvent and Yosida approximation of a vector field

We are now in a position to define the notions of the resolvent and the Yosida
approximation of a vector field A ∈ X (M).

Definition 2.4.6. Given λ > 0, the resolvent of A ∈ X (M) of order λ is the
set-valued mapping Jλ : M → 2M defined as

Jλ(x) = {z ∈M | x ∈ expz λAz}. (2.4.5)

Definition 2.4.7. For any λ > 0, the Yosida approximation A ∈ X (M) of order λ
is the set-valued vector field Aλ : M → 2TM defined as

Aλ(x) = − 1
λ

exp−1
x Jλ(x), (2.4.6)

in other words, it is the complementary vector field of the resolvent (cf. [81]) mul-
tiplied by the constant 1

λ .

Remark 2.4.8. Note that, for every λ > 0, the domains of the resolvent Jλ and the
Yosida approximation Aλ are the range of the vector field defined by x 7→ expx λAx.
We will denote this range as

R(exp· λA(·)) =
⋃

x∈D(A)

 ⋃
u∈A(x)

expx λu

 .

The resolvent and Yosida approximation were implicitly defined in the setting
of differential manifolds, in particular, in Finsler manifold by J. Hoyos in [51] and
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in Hilbert manifolds by Iwamiya and Okochi in [53]. As a matter of fact, these
two definitions can be proved to coincide with the corresponding concepts defined
on Hadamard manifolds. However, it turns out that in these settings where the
resolvent and the Yosida approximation are defined is still unknown, whereas we
are proving next that under certain monotonicity conditions these operators have
full domain in a Hadamard manifold. Moreover, in the following theorem the relation
between the firm nonexpansivity of the resolvent and the monotonicity of the vector
field is stated as well.

Theorem 2.4.9. Let A ∈ X (M). Then, for any λ > 0,

(i) the vector field A is monotone if and only if Jλ is single-valued and firmly
nonexpansive;

(ii) if D(A) = M , the vector field A is maximal monotone if and only if Jλ is
single-valued, firmly nonexpansive and the domain D(Jλ) = M ;

(iii) if A is monotone
Fix (Jλ) = A−1(0).

Proof.

(i) Given x ∈ D(Jλ), note that

z ∈ Jλ(x)⇔ x ∈ expz λAz ⇔ 0 ∈ λAz − exp−1
z x. (2.4.7)

This means that z ∈ M belongs to the resolvent of A at x if and only if it is
a singularity of the vector field B : M → TM defined as

B(y) = λAy − exp−1
y x (2.4.8)

for each y ∈M .

If we assume that A is monotone, from the definition of B and Proposition
2.1.30 we deduce that B is strictly monotone, which implies the uniqueness of
singularity as it can be readily seen. Then the resolvent is single-valued. To
prove the firm nonexpansivity, by Proposition 2.3.4, it suffices to verify that
for any x, y ∈M

〈exp−1
Jλ(x) Jλ(y), exp−1

Jλ(x) x〉+ 〈exp−1
Jλ(y) Jλ(x), exp−1

Jλ(y) y〉 ≤ 0. (2.4.9)
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Considering Jλ(x), Jλ(y) ∈M , by definition of resolvent we know that

exp−1
Jλ(x) x ∈ λA(Jλ(x)), exp−1

Jλ(y) y ∈ λA(Jλ(y)).

Thus the monotonicity of A implies that

〈exp−1
Jλ(x) Jλ(y),

1
λ

exp−1
Jλ(x) x〉+ 〈exp−1

Jλ(y) Jλ(x),
1
λ

exp−1
Jλ(y) y〉 ≤ 0,

and (2.4.9) is proved.

Conversely, suppose now that Jλ is firmly nonexpansive. To show that A is
monotone, for any x, y ∈ D(A) and u ∈ A(x), v ∈ A(y), by definition of the
resolvent JAλ , we can write x = Jλ(expx λu) and y = Jλ(expy λv). By using
the characterization (2.3.6) of firmly nonexpansive mappings considering the
points expx λu and expy λv we obtain that

〈exp−1
x y, λu〉+ 〈exp−1

y x, λv〉 ≤ 0,

which implies that

〈u, exp−1
x y〉 ≤ −〈v, exp−1

y x〉 ≤ 0,

and the monotonicity of A is proved.

(ii) Assuming thatD(A) = M , if A is maximal monotone, it can be proved that the
vector field B defined as (2.4.8) is strongly monotone and maximal monotone
(see [36]). Then, for any x ∈ M , Theorem 2.4.1 assures the existence and
uniqueness of a singularity of B, that is, an element of Jλ(x). Thus Jλ is single-
valued and firmly nonexpansive, as we proved in (i), and moreover D(Jλ) = M .

Now, suppose T is firmly nonexpansive and D(T ) = M . By (i) we know that
T = Jλ where A, the vector field defined in (2.4.10), is monotone. By Theorem
2.2.13 we deduce that A is accretive. So the full domain of the resolvent of
order λ = 1 implies that A is m-accretive. Again by Theorem 2.2.13 we have
that A is maximal monotone.

(iii) If A is monotone Jλ is single-valued and by the equivalence (2.4.7) we deduce
that z ∈ Fix (Jλ) if and only if 0 ∈ A(z).
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Remark 2.4.10. Note that in the previous theorem we have proved indeed that, for
each λ > 0, any firmly nonexpansive T with full domain D(T ) = M is the resolvent
JAλ of the maximal monotone vector field A defined by

A(x) :=
1
λ

exp−1
x T−1x, ∀x ∈M. (2.4.10)

Indeed, the resolvent of the vector field A is the mapping T :

Jλ(x) = {z ∈M |x ∈ expz λAz} = {z ∈M |x ∈ T−1z} = Tx.

From the proof of (ii) in Theorem 2.4.9 and remark 2.4.8, we can deduce the
following result which constitutes a counterpart of Minty’s theorem [76] in the setting
of Hadamard manifolds.

Corollary 2.4.11. Let A ∈ X (M) be monotone such that D(A) = M , and let
λ > 0. Then A is maximal monotone if and only if R(exp· λA(·)) = M .

As a byproduct of Theorem 2.4.9 (iii) we obtain the following result about the
structure of the set of singularities of a maximal monotone vector field. As far as
we know the only result of this type was proved in [41] under the assumption that
A is smooth.

Corollary 2.4.12. Let A ∈ X (M) be monotone with closed convex domain D(A)
such that D(A) ⊆ D(Jλ). Then A−1(0) is closed and convex.

Proof. Thanks to Theorem 2.4.9, the set A−1(0) coincides with the fixed point set
of the resolvent Jλ, for any λ > 0, which is firmly nonexpansive. Then the result
can be deduced from Proposition 2.3.1, since we have that if we set T = Jλ,

Fix (T ) = A−1(0) ⊆ D(A) ⊆ D(T ).

We present now some properties of the Yosida approximation of a vector field.
In particular, the relation with the resolvent will be fundamental for the study of
the asymptotic behavior of the resolvent as the order λ→ +∞ or λ→ 0.
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Proposition 2.4.13. Let A ∈ X (M) be monotone and let λ > 0. Then

(1) for any x ∈ D(Aλ)
Aλ(x) ∈ Px,Jλ(x)AJλ(x); (2.4.11)

(2) for any x ∈ D(Aλ)
⋂
D(A)

‖Aλ(x)‖ ≤ |Ax|, (2.4.12)

where |Ax| = inf{‖v‖ : v ∈ Ax};

(3) the Yosida approximation Aλ is a monotone vector field. Moreover, if A is
maximal then so is Aλ.

Proof. Note that D(Aλ) = D(Jλ) and, since A is monotone, its resolvent is single-
valued and so is its Yosida approximation.

(1) Let x ∈ D(Aλ) and v = Aλ(x). Then v = − 1
λ exp−1

x Jλ(x), which is equivalent
to write

−λv = exp−1
x Jλ(x) = −Px,Jλ(x) exp−1

Jλ(x) x.

But, by definition of resolvent, we have that x ∈ expJλ(x) λAJλ(x), or equiva-
lently, exp−1

Jλ(x) x ∈ λAJλ(x). Therefore,

v ∈ Px,Jλ(x)AJλ(x).

(2) Let x ∈ D(Aλ)
⋂
D(A). We know that

‖Aλ(x)‖ =
1
λ
‖ exp−1

x Jλ(x)‖ =
1
λ
d(x, Jλ(x)).

For any u ∈ A(x), which exists since x ∈ D(A), we can write x = Jλ(expx λu)
because it is equivalent to expx λu ∈ expx λA(x). Then, by the nonexpansivity
of the resolvent, we obtain

‖Aλ(x)‖ =
1
λ
d(Jλ(expx λu), Jλ(x)) ≤ 1

λ
d(expx λu, x) =

1
λ
‖ exp−1

x expx λu‖.

Then ‖Aλ(x)‖ ≤ ‖u‖ holds for any u ∈ A(x); hence, we obtain the inequality
required.
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(3) The nonexpansivity of the resolvent implies the monotonicity of the Yosida
approximation of any order λ > 0 because it is defined as its complementary
vector field multiplied by a constant, see [81]. Since the resolvent and the
exponential map are continuous, so is the Yosida approximation Aλ. Then,
assuming that A is maximal monotone with full domain, Aλ has full domain
and maximality is consequence of Theorem 2.2.8 thanks to the upper semi-
continuity and the fact that it is single-valued.

2.4.3 Asymptotic behavior of the resolvent of a vector field

Asymptotic behavior of Jλ as λ→∞

Let A ∈ X (M) be monotone. Recall that, by Theorem 2.4.9, for any λ > 0 the
resolvent Jλ is a single-valued and nonexpansive mapping. Given a point x ∈ D(Jλ),
we want to study the behavior of the sequence {Jλ} when we let λ go to +∞. This
question was solved in the setting of Banach spaces in relation with the problem of
approximating zeros of monotone and accretive operators, see [95, 111, 56]. Here, in
the framework of Hadamard manifolds, we provide a similar answer with the help
of the following lemma.

Lemma 2.4.14. Let A ∈ X (M) be monotone such that D(A) ⊆ D(Jr) for some
r > 0. Let x ∈ D(Jλ) for any λ > 0.

(i) If there exists a sequence {tn} with tn → ∞, such that lim
n→∞

Jtn(x) = y, then

the limit y ∈ A−1(0).

(ii) If there exist two sequences {tn} and {sn} with tn → ∞ and sn → ∞, such
that lim

n→∞
Jtn(x) = y and lim

n→∞
Jsn(x) = z, then y = z.

Proof.

(i) If the limit limn→∞ Jtn(x) = y exist, this means that the sequence {Jtn(x)}
is bounded and ‖ exp−1

x Jtn(x)‖ ≤ M for some M > 0. Let r > 0 such that
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D(A) ⊆ D(Jr). By using the definition of the Yosida approximation Ar and
the inequality (2.4.12), we obtain that

d(Jr(Jtn(x)), Jtn(x)) = ‖ exp−1
Jtn (x) Jr(Jtn(x))‖

= r‖Ar(Jtn(x))‖
≤ r|A(Jtn(x))|. (2.4.13)

From the property (2.4.11) in Proposition 2.4.13, Atn(x) ∈ PJtn (x),xAJtn(x),
or equivalently, Px,Jtn (x)Atn(x) ∈ AJtn(x). Then the norm |A(Jtn(x))| ≤
‖Px,Jtn (x)Atn(x)‖ = ‖Atn(x)‖ and from inequality (2.4.13) it follows that

d(Jr(Jtn(x)), Jtn(x)) ≤ r‖Atn(x)‖ =
r

tn
‖ exp−1

x Jtn(x)‖ ≤ r

tn
M.

Letting n→∞, we obtain that y = Jr(y), that is, y ∈ Fix (Jr) = A−1(0).

(ii) By the property (2.4.11) in Proposition 2.4.13, for any n ≥ 0, Px,Jtn (x)Atn(x) ∈
AJtn(x), and by (ii) we know that 0 ∈ A(z). Since A is monotone,

〈PJtn (x),xAtn(x), exp−1
Jtn (x) z〉 ≤ 0;

therefore, since Atn(x) = − exp−1
x Jtn(x),

〈exp−1
Jtn (x) x, exp−1

Jtn (x) z〉 ≤ 0.

Taking limit when n→∞ we obtain

〈exp−1
y x, exp−1

y z〉 ≤ 0. (2.4.14)

Changing the roles of tn with sn and z with y, we get the inequality

〈exp−1
z x, exp−1

z y〉 ≤ 0. (2.4.15)

Thus, by using Proposition 2.1.30, the law of cosines for Hadamard manifolds,
the previous inequalities (2.4.14) and (2.4.15) implies that

d2(y, z) ≤ 〈exp−1
y x, exp−1

y z〉+ 〈exp−1
z x, exp−1

z y〉 ≤ 0.
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Theorem 2.4.15. Let A ∈ X (M) be monotone with closed convex domain D(A)
such that D(A) ⊆ D(Jr) for some r > 0 and let x ∈ D(Jλ) for all λ > 0. Then,

(i) if A−1(0) 6= ∅,
lim
λ→∞

Jλ(x) = PA−1(0)(x),

where PA−1(0)(x) is the projection over the set of singularities A−1(0) of the
point x;

(ii) if A−1(0) = ∅,
lim
λ→∞

‖Jλ(x)‖ = +∞.

Proof.

(i) Assume that A−1(0) 6= ∅. Note that since A is monotone with closed convex
domain D(A) such that D(A) ⊆ D(Jλ), by Corollary 2.4.12, A−1(0) is closed
and convex. Therefore the metric projection over A−1(0) is well-defined on
M . The fact that Fix (Jλ) = A−1(0) 6= ∅, for all λ > 0, implies that there
exists p ∈ Fix (Jλ) such that

d(Jλ(x), p) ≤ d(x, p),

for any λ > 0. Therefore, the sequence {Jλ(x)} is bounded and we can ensure
the existence of {tn} with tn → ∞ and limn→∞ Jtn(x) = y, where y is a
cluster point belonging to A−1(0) by Lemma 2.4.14(i). Now, Lemma 2.4.14(ii)
ensures that y ∈ A−1(0) is the unique cluster point of the sequence {Jλ(x)}
and thus the convergence point. It remains to be proved that y = PA−1(0)(x).
By replacing z with PA−1(0)(x) in inequality (2.4.14) we obtain

〈exp−1
y x, exp−1

y PA−1(0)(x)〉 ≤ 0. (2.4.16)

Since y ∈ A−1(0), from the property of the projection in Proposition 2.1.18,
the inequality

〈exp−1
PA−1(0)(x) x, exp−1

PA−1(0)(x) y〉 ≤ 0 (2.4.17)
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holds. Then, Proposition 2.1.30 together with inequalities (2.4.16) and (2.4.17)
imply that

d2(y, PA−1(0)(x)) ≤ 〈exp−1
y x, exp−1

y PA−1(0)(x)〉
+〈exp−1

PA−1(0)(x) x, exp−1
PA−1(0)(x) y〉

≤ 0.

(ii) If A−1(0) = ∅, let us assume that limλ→∞ ‖Jλ(x)‖ 6= +∞. Then we can
consider a positive sequence {λn} such that λn →∞ and {Jλn(x)} is bounded.
This implies that the sequence {Jλn(x)} possesses a cluster point y which, by
Lemma 2.4.14, is forced to be in A−1(0) = ∅.

Asymptotic behavior of Jλ as λ→ 0

In this subsection, instead of letting λ → ∞ we make λ → 0, and then it turns
out that the behavior of the resolvent Jλ is completely different, as we prove in the
following theorem.

Theorem 2.4.16. Let A ∈ X (M) be monotone. Then, if x ∈ D(A)
⋂
D(Jλ), for

all λ > 0,
lim
λ→0

Jλ(x) = x.

Proof. By using the Yosida approximation Aλ and inequality (2.4.12), we have that

d(Jλx, x) = ‖ exp−1
x Jλx‖ = t‖Aλx‖ ≤ λ|Ax|.

Since |Ax| = inf{‖v‖ : v ∈ Ax}, there exists M > 0 such that |A(x)| ≤ M . Thus,
letting λ→ 0 the statement of the theorem is proved.

2.4.4 Singularities of monotone vector fields under boundary con-
ditions

The existence of singularities of a maximal monotone vector field was analyzed
in Section 2.4.1 under the strong monotonicity condition as it was established in
Theorem 2.4.4. Dealing with this problem, as a consequence of Lemma 2.4.14 and
Theorem 2.4.15 we obtain the following result.
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Theorem 2.4.17. Let A ∈ X (M) be monotone. Then the following assertions are
equivalent.

(i) A−1(0) 6= ∅;

(ii) {Jλ(x)} is bounded for each x ∈ D(Jλ) for all λ > 0;

(iii) lim infλ→∞ ‖Jλ(x)‖ <∞ for some x ∈ D(Jλ) for all λ > 0.

Proof. This proof is enclosed in the one of Theorem 2.4.15. But note that in this case
we do not need to require any condition on the domain. For the sake of completeness
we are including the reasoning here.

Let x ∈ D(Jλ). Assume that A−1(0) 6= ∅. Since A is monotone, by Theorem
2.4.9, Fix (Jλ) = A−1(0) 6= ∅. Then there exists p ∈ Fix (Jλ) such that

d(Jλ(x), p) ≤ d(x, p),

for any λ > 0. Then the sequence {Jλ(x)} is bounded, implying statement (ii). In
this situation, we can ensure the existence of {tn} with tn →∞ and limn→∞ Jtn(x) =
y ∈ M . However, Lemma 2.4.14 ensures that there exist a unique cluster point of
the sequence {Jλ(x)} and thus limλ→∞ ‖Jλ(x)‖ = y <∞. We assume now that (iii)
holds. This means that there exists {tn} with tn →∞ and limn→∞ Jtn(x) = y ∈M .
From Lemma 2.4.14 we obtain that y ∈ A−1(0) and (i) holds.

Next we provide a result of existence of singularities under some boundary con-
ditions. For that we need the following lemma and, given x0 ∈ M and ε > 0, we
denote

B(x0, ε) := {y ∈M : d(x, y) ≤ ε}

∂B(x0, ε) := {y ∈M : d(x, y) = ε}.

Lemma 2.4.18. Let A ∈ X (M) be maximal monotone with full domain D(A) = M .
Let x0 ∈M and ε > 0 such that

|A(x0)| < |A(x)| (2.4.18)

for any x ∈ ∂B(x0, ε). Then Jλ(x0) ∈ B(x0, ε) for all λ > 0.



Fixed point approximation methods for nonexpansive mappings 123

Proof. Let λ > 0. From Proposition 2.4.13 (i) we know thatAλ(x0) ∈ Px0,Jλ(x0)AJλ(x0).
Then, by Proposition 2.4.13 (ii), we deduce that

|A(Jλ(x0))| = |Px0,Jλ(x0)A(Jλ(x0))| ≤ ‖Aλ(x0)‖ ≤ |A(x0)|. (2.4.19)

So our boundary condition implies the fact that Jλ(x0) /∈ ∂B(x0, ε). By Theorem
2.4.16, the sequence {Jλ(x0)} converges to x0 ∈ B(x0, ε). Therefore if the function
λ 7→ Jλ(x0) is continuous it follows that Jλ(x0) ∈ B(x0, ε) for any λ > 0. Let
us prove the continuity of this function. For that, given a sequence λn → λ0 as
n → ∞, we need to show that zn = Jλn(x0) → z0 = Jλ0(x0). First of all, this
sequence {zn} is bounded. Indeed, by definition of the Yosida approximation and
Proposition 2.4.13 (ii),

d(zn, x0) = ‖exp−1
x0
Jλn(x0)‖ = λn|Aλ(x0)| ≤ λn‖A(x0)‖. (2.4.20)

As it was proved in Theorem 2.4.16 the set A(x0) is bounded. Then, since λn → λ0,
the sequence {zn} is bounded. This implies, by Lemma 2.4.14, that zn → z∗ ∈
A−1(0). It remains to prove that z∗ = z0; equivalently, that

x0 ∈ exp−1
z∗ λ0A(z∗). (2.4.21)

As zn = Jλn(x0), x0 ∈ exp−1
zn λnA(zn); that is,

x0 = exp−1
zn λnyn (2.4.22)

with yn ∈ A(zn). Since A is maximal monotone with full domain, Lemma 2.2.7
implies that A is locally bounded; that is, for x0 ∈ M , there exists an open neigh-
borhood U(x0) of x0 such that the set ∪x∈U(x0)A(x) is bounded. Then, by taking
a subsequence of {yn} if need be but using the same notation, we can assume that
{yn} is convergent to y ∈ M . On the other hand, the maximality of A implies
the upper semicontinuity by Theorem 2.2.8, which means that y ∈ A(z∗) because
zn → z∗, yn → y and yn ∈ A(zn). Therefore, taking limit in the equality (2.4.22)
we obtain that (2.4.21) holds.

Theorem 2.4.19. Let A ∈ X (M) be maximal monotone with full domain D(A) =
M . Let x0 ∈M and ε > 0 such that

|A(x0)| < |A(x)| (2.4.23)

for any x ∈ ∂B(x0, ε). Then there exists a singularity y ∈ B(x0, ε).



124 Iterative methods in Hadamard manifolds

Proof. From Lemma 2.4.18 we know that, for all λ > 0, Jλ(x0) ∈ B(x0, ε). This
means that the sequence {Jλ(x0)} is bounded. So by Lemma 2.4.14 we deduce
that {Jλ(x0)} converges to a singularity y ∈ B(x0, ε). However, since y ∈ A−1(0),
A(y) = 0 and, therefore, |A(y)| = 0. Then the boundary condition (2.4.23) implies
that y /∈ ∂B(x0, ε) because otherwise |A(x0)| < 0. Thus there exists a singularity
y ∈ B(x0, ε).

The following result of existence of fixed point for single-value continuous pseudo-
contractive mappings is the counterpart of Theorem 1 in [57], proved by Kirk and
Schöneberg in the setting of Hilbert spaces.

Corollary 2.4.20. Let T : M → M be a continuous pseudo-contractive mapping.
Let x0 ∈M and ε > 0 such that

d(x0, T (x0)) < d(x, T (x)) (2.4.24)

for any x ∈ ∂B(x0, ε). Then there exists a fixed point of T in B(x0, ε).

Proof. Let A be the complementary vector field of T ; that is, A(x) = − exp−1
x T (x),

for any x ∈ M . Since T is single-valued, so is A, then this means that |A(x)| =
‖ exp−1

x T (x)‖ = d(x, T (x)), for any x ∈ M . Therefore, by hypothesis (2.4.24),
condition (2.4.23) is satisfied. On the other hand, the fact that T is a continuous
pseudo-contractive mapping implies that A is maximal monotone. Thus Theorem
2.4.19 assures the existence of a singularity of A in B(x0, ε) which is a fixed point
of T .
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2.5 Proximal point algorithm for monotone vector fields

Let A ∈ X (M) be a set-valued vector field with domain D(A). In this section we
present an iterative method to approximate a singularity of A, which is motivated
by the proximal point algorithm introduced and studied in the setting of Hilbert
spaces by Martinet [75], Moreau [78] and Rockafellar [103]. Let x0 ∈ D(A) and
{λn} ⊂ R+. We define a sequence {xn} by means of the recursive formula

0 ∈ A(xn+1)− λn exp−1
xn+1

xn. (2.5.1)

Remark 2.5.1. Note that the algorithm (2.5.1) is an implicit method. So a basic
problem is study whether this algorithm is well-defined. For each n ≥, define the
vector field Bn ∈ X (M) by

Bn(x) := A(x)− λn exp−1
x xn, ∀x ∈ D(A).

In the case when A ∈ X (M) is monotone, each Bn can be proved to be strongly
monotone by Proposition 2.1.30. Moreover, if A is maximal monotone, it is readily
seen that so is each Bn. Thus, in view of Proposition 2.4.2 and Theorem 2.4.4, the
following assertions hold when A is monotone.

(i) The algorithm (2.5.1) is well-defined if and only if B−1
n (0) 6= ∅ for each n ≥ 0.

(ii) If D(A) = M and A is maximal monotone, then the algorithm (2.5.1) is well-
defined.

In the following theorem we prove the convergence of the algorithm 2.5.1 for up-
per Kuratowski semicontinuous monotone vector fields, provided that the algorithm
is well-defined.

Theorem 2.5.2. Let A ∈ X (M) be such that A−1(0) 6= ∅. Suppose that A is
monotone and upper Kuratowski semicontinuous. Let {λn} ⊂ R+ satisfy

sup{λn : n ≥ 0} <∞. (2.5.2)

Let x0 ∈ D(A) and suppose that the sequence {xn} generated by the algorithm (2.5.1)
is well-defined. Then {xn} converges to a singularity of A.
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Proof. We first prove that {xn} is Fejér monotone with respect to A−1(0). For this
purpose, let x ∈ A−1(0) and n ≥ 0. Then 0 ∈ A(x) and λn exp−1

xn+1
xn ∈ A(xn+1) by

(2.5.1). This together with the monotonicity of A implies that

〈λn exp−1
xn+1

xn, exp−1
xn+1

x〉 ≤ 〈0,− exp−1
x xn+1〉 = 0. (2.5.3)

Consider the geodesic triangle ∆(xn, xn+1, x). By inequality (2.1.3) of the Compar-
ison Theorem for triangles, we have that

d2(xn+1, x) + d2(xn+1, xn)− 2〈exp−1
xn+1

xn, exp−1
xn+1

x〉 ≤ d2(xn, x).

It follows from (2.5.3) that

d2(xn+1, x) + d2(xn+1, xn) ≤ d2(xn, x). (2.5.4)

This clearly implies that d2(xn+1, x) ≤ d2(xn, x); therefore {xn} is Fejér monotone
with respect to A−1(0). Furthermore, by (2.5.4), we get

d2(xn+1, xn) ≤ d2(xn, x)− d2(xn+1, x). (2.5.5)

Since the sequence {d(xn, x)} is bounded and monotone, it is also convergent. Hence
limn→∞ d(xn+1, xn) = 0 by (2.5.5).

Thus, by Lemma 1.1.24, to complete the proof, we only need to prove that any
cluster point of {xn} belongs to A−1(0). Let x̂ be a cluster point of {xn}. Then
there exists a subsequence {nk} of {n} such that xnk → x̂. Hence d(xnk , xnk+1)→ 0
by the assertion just proved and so xnk+1 → x̂. It follows that

unk+1 := λnk exp−1
xnk+1

xnk → 0 (2.5.6)

since {λn} is bounded by assumption (2.5.2). By the algorithm (2.5.1), we obtain
that unk+1 ∈ A(xnk+1) for each k. Combining this with (2.5.6) implies that 0 ∈ A(x̂)
because A is upper Kuratowski semicontinuous at x̂, that is, x̂ ∈ A−1(0).

In the case when D(A) = M , the maximal monotonicity is equivalent to the
upper semicontinuity by Theorem 2.2.8. Moreover the maximality implies that
{xn} generated by (2.5.1) is well-defined by Remark 2.5.1. Therefore the following
corollary is direct.
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Corollary 2.5.3. Let A ∈ X (M) be such that A−1(0) 6= ∅ and D(A) = M . Suppose
that A is maximal monotone. Let {λn} ⊂ R+ satisfy (2.5.2). Then, for any x0 ∈M ,
the sequence {xn} generated by the algorithm (2.5.1) is well-defined and converges
to a singularity of A.

This corollary is an extension to Hadamard manifolds of the corresponding con-
vergence theorem for the proximal point algorithm in Hilbert spaces (see [103]).
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2.6 Iterative algorithms for nonexpansive type mappings

The study of the asymptotic behavior of nonexpansive type mappings is one of the
most active research areas in nonlinear analysis. As we mentioned in Chapter 1,
most of the investigations in this direction have focused on the case when T is a
self-mapping defined on a closed convex subset C of a normed linear space. Besides
Picard iteration {Tn(x)} which converges when T is either a contraction or firmly
nonexpansive, basically two types of algorithms has been considered: Halpern and
Mann algorithms (see Chapter 1 Section 1.1.2). Because of the convex structure of
both algorithms, few results have been obtained out of the setting of linear spaces.
Our objective in this section is to study the convergence of different iterative meth-
ods for nonexpansive type mappings defined on Hadamard manifolds. First of all,
we prove the convergence of Picard iteration for firmly nonexpansive mappings.
Then we define and study Mann and Halpern iterations for nonexpansive mappings
defined on Hadamard manifolds. Finally a viscosity approximation method will be
presented in this framework. In order to illustrate the application of these methods,
in particular, Mann and Halpern iterations, we provide some numerical examples.

2.6.1 Picard iteration for firmly nonexpansive mappings

As it happens in Banach spaces and the Hilbert ball with the hyperbolic metric
[48, 100], the class of firmly nonexpansive mappings is characterized by the good
asymptotic behavior of the sequence of Picard iterates {Tnx}.

Theorem 2.6.1. Let T : C → C be a firmly nonexpansive mapping such that its
fixed point set Fix (T ) 6= ∅. Then for each x ∈ C, the sequence of iterates {Tn(x)}
converges to a fixed point of T .

Proof. Let xn = Tn(x) for any n ≥ 0. Note that C itself is a complete metric
space. Thus, by Lemma 1.1.24, it suffices to prove that {xn} is Fejér monotone with
respect to Fix (T ) and that all cluster points of {xn} belong to Fix (T ).To this end,
let n ≥ 0 and y ∈ Fix (T ) be fixed. Since T is nonexpansive,

d(xn+1, y) = d(T (xn), T (y)) ≤ d(xn, y).

Hence {xn} is Fejér monotone with respect to Fix (T ). Now let x be a cluster point
of {xn}. Then there exists a subsequence {nk} of {n} such that xnk → x. On the
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other hand, one has that

d(x, T (x)) ≤ d(x, xnk) + d(xnk , T (xnk)) + d(T (xnk), T (x))
≤ 2d(xnk , x) + d(xnk , T (xnk)),

Then we just need to prove that

lim
n→∞

d(xn, T (xn)) = 0, (2.6.1)

because if so, taking limit, we obtain that d(x, Tx) = 0, which means that x ∈
Fix (T ).

Let y ∈ Fix (T ). Since {xn} is Fejér monotone with respect to Fix (T ), there
exists the limit limn→∞ d(xn, y) = limn→∞ d(T (xn), y) = d. Given n ≥ 0 fixed, let
γn : [0, 1] → M be the geodesic joining xn to T (xn). Then γn(1/2) = mn verifies
d(mn, xn) = d(mn, T (xn)) = d(xn, T (xn))/2. Since T is firmly nonexpansive

d(T (xn), y) ≤ d(mn, y) ≤ d(xn, y).

Then limn→∞ d(mn, y) = d. By inequality (2.1.7) of Lemma 2.1.29, we obtain

1
4
d2(xn, T (xn)) ≤ 1

2
d2(xn, y) +

1
2
d2(T (xn), y)− d2(mn, y).

Taking limit as n→∞ we have that (2.6.1) holds.

In the case when the mapping T is just nonexpansive, we know that in general
Picard iteration {Tn(x)} does not converge, as we can observe by considering the
Euclidean space R and the mapping T (x) = −x, since the sequence {Tn(x)} does
not convergence unless x = 0. However, we proved in Proposition 2.3.6 that there
exists a family of firmly nonexpansive mappings {Gt : 0 ≤ t < 1} whose fixed point
sets coincide with the fixed point set of the nonexpansive mapping T . Then we can
use the family {Gt} for approximating a fixed point of T , considering the sequence
defined by Picard iteration xn+1 = Gt(xn) for any t ∈ [0, 1).

Moreover, if we fix a point x ∈ C, the approximating curve {xt} defined by the
unique fixed point of the contraction Tt in (2.3.18) converges to a fixed point of T as
t → 1. In fact, this was proved by Kirk [59] in the more general setting of CAT(0)
spaces and constitutes an extension of the convergence of Browder algorithm (1.1.18)
as we mention in the following section.
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2.6.2 Halpern algorithm for nonexpansive mappings

Let C be a closed convex subset of M and T : C → C a nonexpansive mapping.
In order to solve the problem of finding a fixed point of T out of the setting of
linear spaces, Kirk, in [59], provided an implicit algorithm for approximating fixed
points of nonexpansive mappings. More precisely, he studied such an algorithm in a
complete CAT(0) space though the convergence result is formulated in the following
theorem for the special case of a Hadamard manifold.

Theorem 2.6.2. [59] Suppose that C ⊆ M is bounded besides closed and convex.
Let T : C → C be nonexpansive, x ∈ C, and for each t ∈ [0, 1), let xt be the unique
point such that

xt = expx(1− t) exp−1
x T (xt)

(which exists by the Banach contraction principle). Then limt→0 xt = x, the unique
nearest point to x in Fix (T ).

In an Euclidean space Rn, this iteration scheme turns into xt = (1−t)x+tT (xt),
which coincides with the implicit Browder iteration (1.1.18) seen in Chapter 1. We
also pointed out the existence of a host of works about the convergence of the explicit
Halpern iteration (1.1.17) in a Banach space X. We now present an analogue of
this algorithm to approximate fixed points for nonexpansive mappings on Hadamard
manifolds. Let x0, z ∈M and let {αn} ⊂ (0, 1). Consider the iteration scheme

xn+1 = expz(1− αn) exp−1
z T (xn), ∀n ≥ 0; (2.6.2)

or equivalently,
xn+1 = γn(1− αn), ∀n ≥ 0,

where γn : [0, 1] → M is the geodesic joining z to T (xn) (i.e. γ(0) = z and
γ(1) = T (xn)). Indeed, this algorithm coincides with Halpern algorithm in the
particular case of an Euclidean space, and we can prove its convergence under the
same conditions. Then we consider the following hypothesis.

(H1) limn→∞ αn = 0;
(H2)

∑
n≥0 αn =∞;

(H3)
∑

n≥0 |αn+1 − αn| <∞;
(H4) limn→∞(αn − αn−1)/αn = 0.
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Theorem 2.6.3. Let C be a closed convex subset of M and T : C → C a nonexpan-
sive mapping with Fix (T ) 6= ∅. Let z, x0 ∈ M . Suppose that {αn} ∈ (0, 1) satisfies
(H1), (H2) and, (H3) or (H4). Then the sequence {xn} generated by the algorithm
(2.6.2) converges strongly to PFix (T )z.

Proof. Let n ≥ 0 and let γn : [0, 1] → M denote the geodesic joining z to T (xn).
We divide the proof into four steps.

Step 1. {xn} and {T (xn)} are bounded.
We only prove the boundedness of {xn} since the boundedness of {ψ(xn)} is a

direct consequence. To this end, take x ∈ Fix (T ) and fix n ≥ 0. Then, by the
convexity of the distance function and the nonexpansivity of T , we have that

d(xn+1, x) = d(γn(1− αn), x)
≤ αnd(γn(0), x) + (1− αn)d(γn(1), x)
= αnd(z, x) + (1− αn)d(T (xn), x)
≤ αnd(z, x) + (1− αn)d(xn, x).

Then by mathematical induction we deduce that

d(xn+1, x) ≤ max{d(z, x), d(x0, x)}, n ≥ 0,

which implies the boundness of {xn} and, therefore, of {T (xn)}.

Step 2. limn→∞ d(xn+1, xn) = 0.
By Step 1, we can find a constant ρ such that

d(xn, xn−1) ≤ ρ and d(z, T (xn)) ≤ ρ, ∀n ≥ 0. (2.6.3)

By using the convexity of the distance function, we have that, for each n ≥ 0,

d(xn+1, xn) = d(γn(1− αn), γn−1(1− αn−1))
≤ d(γn(1− αn), γn−1(1− αn)) + d(γn−1(1− αn), γn−1(1− αn−1))
≤ (1− αn)d(T (xn), T (xn−1)) + |αn − αn−1|d(z, T (xn−1)).

This together with (2.6.3) and the nonexpansivity of T implies that

d(xn+1, xn) ≤ (1− αn)d(xn, xn−1) + ρ|αn − αn−1|, ∀n ≥ 0. (2.6.4)
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Thus, if (H4) holds, we apply Lemma 1.1.21 (with βn = αn and bn = ρ|αn−αn−1|/αn
for each n ≥ 0) to conclude that limn→∞ d(xn+1, xn) = 0. As to the case when (H3)
holds, let k ≤ n. By (2.6.4), one gets that

d(xn+1, xn) ≤
n∏
i=k

(1− αi)d(xk, xk−1) + ρ

n∑
i=k

|αi − αi−1|

≤ ρ

n∏
i=k

(1− αi) + ρ

n∑
i=k

|αi − αi−1|.

Letting n→∞ implies that,

lim
n→∞

d(xn+1, xn) ≤ ρ
∞∏
i=k

(1− αi) + ρ

∞∑
i=k

|αi − αi−1|. (2.6.5)

Condition (H2) implies that limk→∞
∏∞
i=k(1 − αi) = 0; while Condition (H3) im-

plies that limk→∞
∑∞

i=k |αi − αi−1| = 0. Hence, letting k → ∞ in (2.6.5), we get
limn→∞ d(xn+1, xn) = 0 in the case when (H3) holds.

Step 3. lim supn→∞〈exp−1
PFix (T )z

z, exp−1
PFix (T )z

T (xn)〉 ≤ 0.

By Step 1, {〈exp−1
PFix (T )z

z, exp−1
PFix (T )z

T (xn)〉} is bounded; hence its upper limit
exists. Thus we can find a subsequence {nk} of {n} such that

lim sup
n→∞

〈exp−1
PFix (T )z

z, exp−1
PFix (T )z

T (xn)〉 = lim
k→∞
〈exp−1

PFix (T )z
z, exp−1

PFix (T )z
T (xnk)〉.

(2.6.6)
Without loss of generality, we may assume that xnk → x̄ for some x̄ ∈ C because
{xn} is bounded by Step 1 and C is closed. By the convexity of the distance function
and the definition of the algorithm,

d(xnk+1, T (xnk)) ≤ αnd(z, T (xnk)).

Since {d(z, T (xnk))} is bounded by Step 1, it follows that limk→∞ d(xnk+1, T (xnk)) =
0 as αnk → 0 by (H1). Noting that

d(xnk , T (xnk)) ≤ d(xnk+1, xnk) + d(xnk+1, T (xnk)),
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one sees that limn→∞ d(xnk , T (xnk)) = 0. Therefore

d(x̄, T (x̄)) ≤ d(x̄, xnk) + d(xnk , T (xnk)) + d(T (xnk), T (x̄))→ 0,

which means that x̄ ∈ Fix (T ). Then, Proposition 2.1.18 implies that

〈exp−1
PFix (T )z

z, exp−1
PFix (T )z

x̄〉 ≤ 0.

Therefore

lim
k→∞
〈exp−1

PFix (T )z
z, exp−1

PFix (T )z
T (xnk)〉 = 〈exp−1

PFix (T )z
z, exp−1

PFix (T )z
x̄〉 ≤ 0.

Combining this with (2.6.6), we complete the proof of Step 3.

Step 4. limn→∞ d(xn, PFix (T )z) = 0.
Let us set

bn = αnd
2(z, PFix (T )z) + 2〈exp−1

PFix (T )z
z, exp−1

PFix (T )z
T (xn)〉, ∀n ≥ 0. (2.6.7)

Then limn→∞ bn ≤ 0 by Step 3. Thus, by Lemma 1.1.21, it suffices to verify that

d2(xn+1, PFix (T )z) ≤ (1− αn)d2(xn, PFix (T )z) + αnbn, ∀n ≥ 0. (2.6.8)

To this end, we fix n ≥ 0 and set p = T (xn), q = PFix (T )z. Consider the geodesic
triangle ∆(z, p, q) and its comparison triangle ∆(z′, p′, q′). Then

d(z, PFix (T )z) = d(z, q) = ‖z′ − q′‖ and d(T (xn), PFix (T )z) = d(p, q) = ‖p′ − q′‖.

Recall from (2.6.2) that xn+1 = expz(1 − αn) exp−1
z T (xn) = expz(1 − αn) exp−1

z p.
The comparison point of xn+1 is x′n+1 = αnz

′ + (1 − αn)p′. Let β and β′ denote
the angles at q and q′, respectively. Then β ≤ β′ by Lemma 2.1.28(1) and so
cosβ′ ≤ cosβ. Then, by Lemma 2.1.28(2) we have

d2(xn+1, PFix (T )z) ≤ ‖x′n+1 − q′‖2

= ‖αn(z′ − q′) + (1− αn)(p′ − q′)‖2

= α2
n‖z′ − q′‖2 + (1− αn)2‖p′ − q′‖2

+2αn(1− αn)‖z′ − q′‖‖p′ − q′‖ cosβ′

≤ α2
nd

2(z, PFix (T )z) + (1− αn)2d2(T (xn), PFix (T )z)
+2αn(1− αn)d(z, PFix (T )z)d(T (xn), PFix (T )z) cosβ

≤ (1− αn)d2(xn, PFix (T )z) + αnbn,
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where bn is defined by (2.6.7). Hence (2.6.8) is proved and the proof is complete.

2.6.3 Mann algorithm for nonexpansive mappings

Mann iteration (1.1.16) and some of the convergence results in Banach spaces pre-
sented in Chapter 1 have been extended to the framework of more general metric
spaces by Goebel-Kirk [58, 46] and Reich-Shafrir [101]. They provided an iterative
method for finding fixed points of nonexpansive mappings on spaces of hyperbolic
type which includes Hadamard manifolds as a particular case. The algorithm is
defined by

xn+1 ∈ [xn, T (xn)] such that d(xn, T (xn)) = (1− αn)d(xn, xn+1), (2.6.9)

where [xn, T (xn)] denotes the metric segment joining xn to T (xn). More precisely,
under the assumption that {αn} is bounded away from 0 and 1, Reich and Shafrir
proved the convergence of this iteration to a fixed point of T defined on the Hilbert
ball with the hyperbolic metric.

Motivated by these results, we introduce Mann iteration (2.6.9) in Hadamard
manifolds M by means of the recursive formula

xn+1 = expxn(1− αn) exp−1
xn T (xn), ∀n ≥ 0, (2.6.10)

We next prove that the sequence {xn} generated by Mann algorithm (2.6.10) con-
verges to a fixed point of T when {αn} satisfies the condition:

∞∑
n=0

αn(1− αn) =∞. (2.6.11)

Theorem 2.6.4. Let C ⊆ M be a closed convex set and T : C → C be a non-
expansive mapping with Fix (T ) 6= ∅. Suppose that {αn} ⊂ (0, 1) satisfy condition
(2.6.11). Then, for any x0 ∈ C, the sequence {xn} generated by algorithm (2.6.10)
converges to a fixed point of T .

Proof. Note that C itself is a complete metric space. Let n ≥ 0 and p ∈ Fix (T )
be fixed. Let γ : [0, 1] → M denote the geodesic joining xn to T (xn). Then



Fixed point approximation methods for nonexpansive mappings 135

xn+1 = γ(1−αn). By the convexity of the distance function and the nonexpansivity
of T , we have

d(xn+1, p) = d(γ(1− αn), p) ≤ αnd(xn, p) + (1− αn)d(T (xn), p) ≤ d(xn, p).

Hence {xn} is Fejér monotone with respect to Fix (T ). Thus, by Lemma 1.1.24, it
suffices to prove that all cluster points of {xn} belong to Fix (T ). To this end, let x
be a cluster point of {xn}. Then there exists a subsequence {nk} of {n} such that
xnk → x. We next prove that

lim
n→∞

d(xn, T (xn)) = 0. (2.6.12)

Let p ∈ Fix (T ) and n ≥ 0. Let ∆(xn, q, p) be the geodesic triangle with vertices
xn, q := T (xn) and p. From Lemma 2.1.26 there exists a comparison triangle
∆(x′n, q

′, p′) which preserves the length of the edge. Recall that xn+1 = γ(1 − αn)
and x′n+1 := (1− αn)x′n + αnq

′ is its comparison point. By Lemma 2.1.28(2),

d2(xn+1, p) ≤ ‖x′n+1 − p′‖2

= ‖αn(x′n − p′) + (1− αn)(q′ − p′)‖2

= αn‖x′n − p′‖2 + (1− αn)‖q′ − p′‖2 − αn(1− αn)‖x′n − q′‖2

= αnd
2(xn, p) + (1− αn)d2(T (xn), p)− αn(1− αn)d2(xn, T (xn))

≤ d2(xn, p)− αn(1− αn)d2(xn, T (xn)).

It follows that

αn(1− αn)d2(xn, T (xn)) ≤ d2(xn, p)− d2(xn+1, p)

and
∞∑
n=0

αn(1− αn)d2(xn, T (xn)) <∞, (2.6.13)

which implies that
lim inf
n→∞

d(xn, T (xn)) = 0 (2.6.14)

because otherwise, d(xn, T (xn)) ≥ a ∀n ≥ 0 for some a > 0, and then,
∞∑
n=1

αn(1− αn)d(xn, T (xn)) ≥ a
∞∑
n=1

αn(1− αn) =∞



136 Iterative methods in Hadamard manifolds

which is a contradiction with (2.6.13).
On the other hand, using the nonexpansivity of T and the convexity of the

distance function,

d(xn+1, T (xn+1)) ≤ d(xn+1, T (xn)) + d(T (xn), T (xn+1))
≤ d(xn+1, T (xn)) + d(xn, xn+1)
= αnd(xn, T (xn)) + (1− αn)d(xn, T (xn))
= d(xn, T (xn)).

This means that {d(xn, T (xn))} is a monotone sequence. By combining this and
(2.6.14) we get that (2.6.12) holds. Then, since

d(x, T (x)) ≤ d(x, xnk) + d(xnk , T (xnk)) + d(T (xnk), T (x))
≤ 2d(xnk , x) + d(xnk , T (xnk)),

by taking limit, we deduce that d(x, Tx) = 0, which means that x ∈ Fix (T ).

2.6.4 Viscosity approximation method for nonexpansive mappings

Recall that the viscosity approximation method of selecting a particular fixed point
of a nonexpansive mapping T was presented in Section 1.1.2 in the setting of Banach
spaces. It consists of two algorithms (implicit and explicit) that, under suitable
conditions, converge strongly to the unique fixed point of T , p ∈ Fix (T ), which
solves the variational inequality

〈(I − ψ)q, x− q〉 ≥ 0, ∀x ∈ Fix (T ), (2.6.15)

where ψ is a contraction.
The purpose of this section is to establish the convergence of a viscosity method

for nonexpansive mappings in the setting of a Hadamard manifold. Let C be a closed
convex subset of a Hadamard manifold M , T : C → C a nonexpansive self-mapping
and ψ : C → C a contraction. Assume that the fixed point set Fix (T ) is nonempty.
We next prove the convergence of an explicit algorithm to a fixed point of T which
solves the variational inequality

〈exp−1
x̄ ψ(x̄), exp−1

x̄ x〉 ≤ 0, ∀x ∈ Fix (T ). (2.6.16)
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Let x0 ∈M , {αn} ⊂ (0, 1). Consider the iteration scheme

xn+1 = expψ(xn)

(
(1− αn) exp−1

ψ(xn) T (xn)
)
, ∀n ≥ 0; (2.6.17)

or equivalently,

xn+1 = γn(1− αn), ∀n ≥ 0,

where γn : [0, 1]→M is the geodesic joining ψ(xn) to T (xn) (i.e. γ(0) = ψ(xn) and
γ(1) = T (xn)).

For the convergence theorem we consider the conditions (H1)-(H4) on the se-
quence {αn} enumerated in Section 2.6.2.

Theorem 2.6.5. Let C ⊆ M be a closed convex ser and T : C ⊆→ C a nonex-
pansive mapping with Fix (T ) 6= ∅. Let x0 ∈ M and ψ : C → C a ρ-contraction.
Suppose that {αn} ∈ (0, 1) satisfies (H1), (H2) and, (H3) or (H4). Then the se-
quence {xn} generated by the algorithm (2.6.17) converges to x̄ ∈ C, the unique fixed
point of the contraction PFix (T )ψ.

Moreover, the convergence point x̄ is a solution of the variational inequality
(2.6.16).

Proof. As a matter of fact, if x̄ ∈ C is the unique fixed point of PFix (T )ψ, then

〈exp−1
x̄ ψ(x̄), exp−1

x̄ x〉 = 〈exp−1
PFix (T )ψ(x̄) ψ(x̄), exp−1

PFix (T )ψ(x̄) x〉 ≤ 0,

by Proposition 2.1.18.
For n ≥ 0, let γn : [0, 1]→M denote the geodesic joining ψ(xn) to T (xn). Then

xn+1 = γn(1− αn).

We divide the proof into four steps.

Step 1. {xn} and {ψ(xn)} are bounded.
We only prove the boundedness of {xn} since the boundedness of {ψ(xn)} is a

direct consequence. To this end, take x ∈ Fix (T ) and fix n ≥ 0. Then, by the
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convexity of the distance function and the nonexpansivity of T , we have that

d(xn+1, x) = d(γn(1− αn), x)
≤ αnd(ψ(xn), x) + (1− αn)d(xn, x)
≤ αn(ρd(xn, x) + d(ψ(x), x)) + (1− αn)d(xn, x)
= (1− αn(1− ρ))d(xn, x) + αnd(ψ(x), x)

≤ max{d(xn, x),
1

1− ρ
d(ψ(x), x)}.

Then, by mathematical induction, for any n ≥ 0 we have that

d(xn+1, x) ≤ max{d(x0, x),
1

1− ρ
d(ψ(x), x)}.

Step 2. limn→∞ d(xn+1, xn) = 0.
Since {xn} is bounded by Step 1, we can find a constant L such that for all

n ≥ 0,
d(xn, xn−1) ≤ L and d(ψ(xn), xn) ≤ L. (2.6.18)

By using the convexity of the distance function, we have that

d(xn+1, xn) ≤ d(γn(1− αn), γn−1(1− αn−1))
≤ d(γn(1− αn), γn−1(1− αn)) + d(γn−1(1− αn), γn−1(1− αn−1))
≤ αnd(ψ(xn), ψ(xn−1)) + (1− αn)d(xn, xn−1)

+|αn − αn−1|d(ψ(xn−1), xn−1)
= (1− αn(1− ρ))d(xn, xn−1) + |αn − αn−1|d(ψ(xn−1), xn−1).

This together with (2.6.18) and denoting ᾱn = αn(1− ρ) implies that

d(xn+1, xn) ≤ (1− ᾱn)d(xn, xn−1) + L|αn − αn−1|. (2.6.19)

Thus, if (H4) holds, by Lemma 1.1.21 (with βn = ᾱn and bn = L|αn−αn−1|/αn for
each n ≥ 0) we conclude that limn→∞ d(xn+1, xn) = 0. As to the case when (H3)
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holds, let k ≤ n. By inequalities (2.6.19) and (2.6.18), one gets that

d(xn+1, xn) ≤
n∏
i=k

(1− ᾱi)d(xk, xk−1) + L

n∑
i=k

|αi − αi−1|

≤ L

n∏
i=k

(1− ᾱi) + L

n∑
i=k

|αi − αi−1|.

Letting n→∞ ,

lim
n→∞

d(xn+1, xn) ≤ L
∞∏
i=k

(1− ᾱi) + L
∞∑
i=k

|αi − αi−1|. (2.6.20)

Condition (H2) implies that limk→∞
∏∞
i=k(1− ᾱi) = 0; while by condition (H3) we

deduce that limk→∞
∑∞

i=k |αi−αi−1| = 0. Hence, letting k →∞ in (2.6.20), we get
limn→∞ d(xn+1, xn) = 0 in the case when (H3) holds.

Step 3. lim supn→∞〈exp−1
x̄ ψ(x̄), exp−1

x̄ xn〉 ≤ 0, where x̄ is the unique fixed
point of the contraction PFix (T )ψ.

By Step 1, {〈exp−1
x̄ ψ(x̄), exp−1

x̄ xn〉} is bounded; hence its upper limit exists.
Thus we can find a subsequence {nk} of {n} such that

lim sup
n→∞

〈exp−1
x̄ ψ(x̄), exp−1

x̄ xn〉 = lim
k→∞
〈exp−1

x̄ ψ(x̄), exp−1
x̄ xnk〉. (2.6.21)

Without loss of generality, we may assume that xnk → x∗ for some x∗ ∈M because
{xn} is bounded by Step 1. By the convexity of the distance function and the
definition of the algorithm,

d(xnk+1, T (xnk)) ≤ αnd(ψ(xnk), T (xnk)).

Since {d(ψ(xnk), T (xnk))} is bounded by Step 1, it follows that the limit
limk→∞ d(xnk+1, T (xnk)) = 0, as αnk → 0 by (H1). Noting that

d(xnk , T (xnk)) ≤ d(xnk+1, xnk) + d(xnk+1, T (xnk)),

one gets that limn→∞ d(xnk , T (xnk)) = 0. Therefore

d(x̄, T (x̄)) ≤ d(x̄, xnk) + d(xnk , T (xnk)) + d(T (xnk), T (x̄))→ 0,
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which means that x∗ ∈ Fix (T ). Then, since 〈exp−1
x̄ ψ(x̄), exp−1

x̄ x〉 ≤ 0 for any
x ∈ Fix (T ), we obtain that

lim
k→∞
〈exp−1

x̄ ψ(x̄), exp−1
x̄ xnk〉 = 〈exp−1

x̄ ψ(x̄), exp−1
x̄ x∗〉 ≤ 0.

Combining this with (2.6.21), we complete the proof of Step 3.

Step 4. limn→∞ d(xn, x̄) = 0.
We fix n ≥ 0 and set r = ψ(xn), p = T (xn), q = x̄. Consider the geodesic

triangle ∆(r, p, q) and its comparison triangle ∆(r′, p′, q′) ⊂ R2. Then

d(ψ(xn), x̄) = d(r, q) = ‖r′ − q′‖ and d(T (xn), x̄) = d(p, q) = ‖p′ − q′‖.

Recall that xn+1 = expr(1 − αn) exp−1
r p. The comparison point of xn+1 in R2 is

x′n+1 = αnr
′ + (1 − αn)p′. Let β and β′ denote the angles at q and q′, respec-

tively. Therefore β ≤ β′ by Lemma 2.1.28(1) and then cosβ′ ≤ cosβ. Thus, by
nonexpansivity of T and Lemma 2.1.28(2) we have

d2(xn+1, x̄) ≤ ‖x′n+1 − q′‖2

= ‖αn(r′ − q′) + (1− αn)(p′ − q′)‖2

= α2
n‖r′ − q′‖2 + (1− αn)2‖p′ − q′‖2

+2αn(1− αn)‖r′ − q′‖‖p′ − q′‖ cosβ′

≤ α2
nd

2(ψ(xn), x̄) + (1− αn)2d2(T (xn), x̄)
+2αn(1− αn)d(ψ(xn), x̄)d(T (xn), x̄) cosβ

≤ α2
nd

2(ψ(xn), x̄) + (1− αn)2d2(xn, x̄)
+2αn(1− αn)

(
d(ψ(x̄), x̄) + d(ψ(xn), ψ(x̄))

)
d(xn, x̄) cosβ

≤ α2
nd

2(ψ(xn), x̄) + (1− αn)2d2(xn, x̄)
+2αn(1− αn)

(
〈exp−1

x̄ ψ(x̄), exp−1
x̄ xn〉+ ρd2(xn, x̄)

)
= (1− 2αn + α2

n + 2αn(1− αn)ρ)d2(xn, x̄) + α2
nd

2(ψ(xn), x̄)
+2αn(1− αn)〈exp−1

x̄ ψ(x̄), exp−1
x̄ xn〉

= (1− γn)d2(xn, x̄) + γnbn,

where bn = 1/γn(α2
nd

2(ψ(xn), x̄) + 2αn(1 − αn)〈exp−1
x̄ ψ(x̄), exp−1

x̄ xn〉 and γn =
2αn − α2

n − 2αn(1 − αn)ρ. Then limn→∞ bn ≤ 0 by Step 3, lim γn = 0 by hy-
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pothesis (H1) and
∑∞

n=0 γn = ∞ by hypothesis (H2). Thus, by Lemma 1.1.21
limn→∞ d(xn, x̄) = 0 and the proof is complete.

2.6.5 Numerical example

Let Em,1 denote the vector space Rm+1 endowed with the symmetric bilinear form
defined by

〈x, y〉 =
m∑
i=1

xiyi − xm+1ym+1, ∀x = (xi), y = (yi) ∈ Rm+1.

This bilinear form is called the Lorentz metric. The hyperbolic m-space Hm is defined
by

{x = (x1, ..., xm+1) ∈ Em,1 : 〈x, x〉 = −1, xm+1 > 0};

that is the upper sheet of the hyperboloid {x ∈ Em,1 : 〈x, x〉 = −1}. Note that
xm+1 ≥ 1 for any x ∈ Hm, with equality if and only if xi = 0 for all i = 1, ...,m.
The metric of Hm is induced by the Lorentz metric 〈·, ·〉 and it will be denoted by
the same symbol. Then Hm is a Hadamard manifold with sectional curvature −1
(cf. [11] and [41]). Furthermore, the normalized geodesic γ : R→ Hm starting from
x ∈ Hm is given by

γ(t) = (cosh t)x+ (sinh t)v, ∀t ∈ R, (2.6.22)

where v ∈ TxHm is a unit vector; while the distance d on Hm is

d(x, y) = arccosh(−〈x, y〉), ∀x, y ∈ Hm. (2.6.23)

Then, the exponential map can be expressed as

expx(rv) = (cosh r)x+ (sinh r)v,

for any r ∈ R+, x ∈ Hm and any unit vector v ∈ TxHm. To get the expression of
the inverse exponential map, we write for any x, y ∈ Hm,

y = expx
(
d(x, y)

exp−1
x y

d(x, y)
)

= (cosh d(x, y))x+ (sinh d(x, y))
exp−1

x y

d(x, y)
.
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Therefore, by definition of the distance (2.6.23), we obtain

exp−1
x y = arccosh(−〈x, y〉) y + 〈x, y〉x√

〈x, y〉2 − 1
, ∀x, y ∈ Hm.

Thus, using this expressions, both algorithms in previous sections can be formulated
in a simple way in the hyperbolic space Hm. Write

r(x, y) = arccosh(−〈x, T (y)〉)

and

V (x, y) =
T (y) + 〈x, T (y)〉x√
〈x, T (y)〉2 − 1

.

Then Halpern algorithm (2.6.2) has the form

xn+1 = cosh((1− αn)r(u, xn))u+ sinh((1− αn)r(u, xn))V (u, xn), ∀n ≥ 0;

whereas Mann algorithm (2.6.10) has the form

xn+1 = cosh((1− αn)r(xn, xn))xn + sinh((1− αn)r(xn, xn))V (xn, xn), ∀n ≥ 0.

We present an example in H3, where these methods are implemented for two
concrete mappings.

Example 2.6.6. Let M = H3 and let T1, T2 : M → M be the nonexpansive map-
pings respectively defined by

T1(x) = (−x1,−x2,−x3, x4)

and
T2(x) = (−x1, x2, x3, x4),

for any x = (x1, x2, x3, x4) ∈ H3. Then Fix (T1) = {(0, 0, 0, 1)} and

Fix (T2) = {(x1, x2, x3, x4) ∈ H3 : x1 = 0, x2
2 + x2

3 = x2
4 − 1}.
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For both algorithms we are going to consider the sequence of parameters αn = 1
n+3 ,

for each n ≥ 0, and the point

u = (0.60379247919382, 0.27218792496996, 0.19881426776106, 1.21580374135624)

for Halpern iteration. We consider three random initial points x0:

x1
0 = (0.69445440978475, 1.01382609280137, 0.99360871330745, 1.87012527625153);

x2
0 = (0.82054041398189, 1.78729906182707, 0.11578260956854, 2.20932797928782);

x3
0 = (0.93181457846166, 0.46599434167542, 0.41864946772751, 1.50356127641534).

The numerical results are illustrated in the following graphics. We measure the
error of the nth step in both algorithms by means of the distance dn = d(xn, x∗),
where x∗ = (0, 0, 0, 1) is the unique fixed point of the mapping T1, in Graphic 1;
whereas in Graphic 2, dn = d(xn+1, xn) denotes the distance between two consecu-
tive iterates xn+1 and xn for the mapping T2.

From the numerical results, one can observe that Mann iteration seems to con-
verge much quicker than Halpern iteration. Moreover, as it is predicted from the
theoretical results, the measure of the errors in Graphic 1 shows that the sequence
{xn} is Fejér monotone with respect to Fix (T1) just in the case of Mann algorithm.
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Figure 2.1: Graphic 1

Figure 2.2: Graphic 2
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2.7 Applications

This section is devoted to some applications of the convergence result obtained
for the proximal point algorithm (2.5.1) and Picard iteration. The first one is on
constrained minimization problems, followed by the application on a minimax prob-
lem consisting of finding a saddle-point. Then variational inequality problems are
solved. Finally we define the resolvent of a bifunction and get convergence results
for equilibrium problems.

2.7.1 Constrained optimization problems

Some nonconvex constrained optimization problems can be solved after being writ-
ten as convex problems in Riemann manifolds, see for example [36, 41, 104, 113].
More specifically in [41] an algorithm that can be used for solving any constrained
problem in Rn with a convex objective function and constraint set being a constant
curvature Hadamard manifold is presented. Regarding the problem of how to de-
termine the sectional curvature of a manifold given in an implicit form, very nice
results have been recently obtained by Rapcsk in [91]. In this section we apply our
results to a constrained minimization problem.

Recall that M is a Hadamard manifold. Let f : M → R be a proper lower
semicontinuous convex function. For simplicity, we write C = D(f). Then C is
closed convex subset of M . Let x ∈M and let

TxC = {u ∈ TxM : expx tu ∈ C for some t > 0}.

Then TxC is a convex cone. Define the directional derivative of f at x in direction
u ∈ TxM by

f ′(x, u) = lim
t→0+

f(expx tu)− f(x)
t

.

It can be proved that f ′(x, ·) is subadditive and positively homogeneous on TxC.
Moreover, we have by definition that D(f ′(x, ·)) = TxC.

The subdifferential of f at x is defined by

∂f(x) = {u ∈ TxM : 〈u, exp−1
x y〉 ≤ f(y)− f(x), ∀y ∈M}.

Then ∂f(x) is a closed convex (possible empty) set, and

u ∈ ∂f(x)⇐⇒ 〈u, h〉 ≤ f ′(x, h) for each h ∈ TxM. (2.7.1)
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The proofs of the above assertions can be found in [113]. Furthermore, it is clear
from the definition that

∂f(x) = ∂(f ′(x, ·))(0). (2.7.2)

Throughout the whole subsection, we always assume that D(∂f) 6= ∅.

Theorem 2.7.1. Let f be a proper lower semicontinuous convex function on M .
The subdifferential ∂f(·) is a monotone and upper Kuratowski semicontinuous set-
valued vector field. Furthermore, if in addition D(f) = M , then the subdifferential
∂f of f is a maximal monotone vector field.

Proof. The monotonicity of ∂f is a consequence of the definition of the subdiffer-
ential, which was previously showed in [35]. Indeed, for any x, y ∈ D(f), u ∈ ∂f(x)
and v ∈ ∂f(y), we have that

〈u, exp−1
x y〉 ≤ f(y)− f(x) ≤ 〈v,− exp−1

y x〉.

To prove the upper Kuratowski semicontinuity, let x0 ∈ D(f), {xn} ⊂ D(f) and
{vn} ⊂ TM with each vn ∈ ∂f(xn) be such that xn → x0 and vn → v0 for some
v0 ∈ TM . Then, by definition,

〈vn, exp−1
xn y〉 ≤ f(y)− f(xn), ∀y ∈M.

Taking lower limits in the previous inequality, we get that

〈v0, exp−1
x0
y〉 ≤ f(y)− f(x0), ∀y ∈M (2.7.3)

because limn→∞〈vn, exp−1
xn y〉 = 〈v0, exp−1

x0
y〉 by Lemma 2.1.15 and, by the lower

semicontinuity of f , f(x0) ≤ lim infn→∞ f(xn). Thus (2.7.3) means that v0 ∈ ∂f(x0)
and proves the upper Kuratowski semicontinuity of ∂f .

Finally, we assume additionally that D(f) = M . By Theorem 2.2.8 and Remark
2.2.5, it suffices to prove that ∂f is locally bounded. To do this, let x0 ∈ M . By
[49], we know that f is locally Lipschitz. Therefore, there exist ε > 0 and L > 0
such that

|f(y)− f(x)| ≤ Ld(x, y), ∀x, y ∈ U(x0, ε), (2.7.4)

where U(x0, ε) denotes the open metric ball with center x0 and radius ε. For each
x ∈ U(x0, ε), there exists r > 0 such that U(x, r) ⊆ U(x0, ε). Hence, thanks to
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(2.7.4) and the definition of the subdifferential, we get, for each x ∈ U(x0, ε) and
each v ∈ ∂f(x),

〈v, exp−1
x y〉 ≤ |f(y)− f(x)| ≤ Ld(x, y) ≤ Lr, ∀y ∈ U(x, r).

This implies that ‖v‖ ≤ L and so ∂f is locally bounded because x ∈ U(x0, ε) and
v ∈ ∂f(x) are arbitrary. The proof is complete.

Recall that f : M → (−∞,+∞] is a proper lower semicontinuous convex func-
tion. Consider the non constrained minimization problem

min
x∈M

f(x). (2.7.5)

We use Sf to denote the solution set of (2.7.5), that is,

Sf := {x ∈M : f(x) ≤ f(y), ∀y ∈M}.

It is easy to check that
x ∈ Sf ⇐⇒ 0 ∈ ∂f(x). (2.7.6)

Applying the algorithm (2.5.1) to the set-valued vector field ∂f , we get the following
proximal point algorithm for optimization problem (2.7.5):

0 ∈ ∂f(xn+1)− λn exp−1
xn+1

xn, ∀n ≥ 0. (2.7.7)

Remark 2.7.2. Let y ∈ M and λ > 0. We define a real-valued convex function φλ,y
by

φλ,y(x) =
λ

2
d(y, x)2, ∀x ∈M.

Consider the following algorithm for finding a solution of the optimization problem
(2.7.5):

xn+1 ∈ Sf+φλn,xn
, ∀n ≥ 0, (2.7.8)

which was presented and studied by Ferreira and Oliveira in [42] in the special case
when f is a real-valued convex function on M . By [114], the derivative of φλ,y is
given by

φ′λ,y(x) = −λ exp−1
x y, ∀x ∈M.
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Using (2.7.1), it is a routine to verify that

∂(f + φλ,y)(x) = ∂f(x)− λ

2
exp−1

x y, ∀x ∈ D(f). (2.7.9)

Hence, by (2.7.6), the proximal point algorithms (2.7.7) and (2.7.8) are equivalent.

The following theorem on the convergence of the proximal point algorithm (2.7.7)
is a consequence of Theorem 2.5.2 (cf. [42, Theorem 6.1]).

Theorem 2.7.3. Let f : M → (−∞,+∞] be a proper lower semicontinuous con-
vex function with the solution set Sf 6= ∅. Let x0 ∈ M and {λn} ⊂ R+ satisfy
(2.5.2). Then, the sequence {xn} generated by the algorithm (2.7.7) is well-defined
and converges to one point x ∈ Sf , a minimizer of f in M .

Proof. By Theorem 2.7.1, ∂f is monotone and upper Kuratowski semicontinuous.
Thus, it suffices to show that the algorithm (2.7.7) is well-defined. Since Sf 6= ∅,
it follows that infx∈M f(x) > −∞. We claim that Sf+φλ,y 6= ∅ for each λ > 0 and
each y ∈M . In fact, let {xn} ⊂M be such that

lim
n→∞

(f(xn) + φλ,y(xn)) = inf
x∈M

(f(x) + φλ,y(x)).

Then {xn} is bounded because, otherwise, lim supn→∞(f(xn) + φλ,y(xn)) = +∞.
Hence, without loss of generality, we may assume that {xn} converges to a point x.
Then x ∈ Sf+φλ,y and Sf+φλ,y 6= ∅. This together with Remark 2.7.2 implies that
the algorithm (2.7.7) is well-defined and completes the proof.

Now let f : M → R be a convex function and C a closed and convex subset of
M . Consider the following optimization problem with constrains.

min
x∈C

f(x). (2.7.10)

Define fC := f + δC , where δC is the indicate function defined by δC(x) = 0 if
x ∈ C and δC(x) = +∞ otherwise. Then, a point x ∈ C is a solution of the problem
(2.7.10) if and only if it is a solution of the problem (2.7.5) with f replaced by fC .
Let NC(x) denote the normal cone of the set C at x ∈ C:

NC(x) := {u ∈ TxM : 〈u, exp−1
x y〉 ≤ 0, ∀y ∈ C}.
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Then
NC(x) = ∂δTxC(0) = ∂δC(x), ∀x ∈ C. (2.7.11)

To apply Theorem 2.7.3, we need to establish the following clear fact on the subd-
ifferential of fC .

Proposition 2.7.4. Let f : M → R be a convex function and C a closed and convex
subset of M . Then

∂fC(x) = ∂f(x) +NC(x), ∀x ∈ C. (2.7.12)

Proof. By definition it is obvious that

f ′C(x, u) = f ′(x, u) + δTxC(u), ∀u ∈ TxM.

Applying (2.7.2), we obtain that

∂fC(x) = ∂f ′C(x, ·)|u=0 and ∂f(x) = ∂f ′(x, ·)|u=0. (2.7.13)

Since f ′(x, ·) is a continuous convex function on TxM , it follows from the well-known
subdifferential sum rule (see for example [9]), that

∂f ′C(x, ·)|u=0 = ∂f ′(x, ·)|u=0 + ∂δTxC(0). (2.7.14)

According to (2.7.11), (2.7.13) and (2.7.14), we obtain (2.7.12) and the proof is
complete.

Consider the following algorithm with initial point x0 ∈ C:

0 ∈ ∂f(xn+1) +NC(xn+1)− λn exp−1
xn+1

xn, ∀n ≥ 0. (2.7.15)

Then the theorem below is a direct consequence of Corollary 2.5.3.

Theorem 2.7.5. Let f : M → R be a convex function and C be a closed convex set
of M such that the solution set of the optimization problem (2.7.10) is nonempty.
Let x0 ∈ M and {λn} satisfy (2.5.2). Then, the sequence {xn} generated by the
algorithm (2.7.15) is well-defined and converges to a solution of the optimization
problem (2.7.10).
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2.7.2 Saddle-points in a Minimax Problem

In the spirit of the works by Rockafellar ([102, 103]) on the convergence of the
proximal point algorithm in terms of an associated maximal monotone operator
for saddle-functions on the product Hilbert space H1 ×H2 , the present subsection
focused on the study of the convergence of the proximal point algorithm for saddle-
functions on Hadamard manifolds.

Let M1 and M2 be Hadamard manifolds. A function L : M1×M2 → R is called
a saddle-function if L(x, .) is convex on M2 for each x ∈M1 and L(., y) is concave,
i.e −L(., y) is convex, on M1 for each y ∈ M2. A point z̄ = (x̄, ȳ) ∈ M1 ×M2 is
called a saddle-point of L if

L(x, ȳ) ≤ L(x̄, ȳ) ≤ L(x̄, y), ∀z = (x, y) ∈M1 ×M2. (2.7.16)

Associated with the saddle-function L, define the set-valued vector field AL : M1 ×
M2 → 2TM1 × 2TM2 by

AL(x, y) = ∂
(
− L(·, y)

)
(x)× ∂

(
L(x, ·)

)
(y), ∀(x, y) ∈M1 ×M2. (2.7.17)

By [105, pag. 239, Problem 10], the product space M = M1×M2 is a Hadamard
manifold and the tangent space of M at z = (x, y) is TzM = TxM1 × TyM2. The
corresponding metric is given by

〈w,w′〉 = 〈u, u′〉+ 〈v, v′〉, ∀w = (u, v), w′ = (u′, v′) ∈ TzM.

Note also that a geodesic in the product manifold M is the product of two geodesics
in M1 and M2, respectively. Then, for any two points z = (x, y) and z′ = (x′, y′) in
M ,

exp−1
z z′ = exp−1

(x,y)(x
′, y′) = (exp−1

x x′, exp−1
y y′).

Therefore, in view of the definition of monotonicity, the set-valued vector field A :
M1 ×M2 → 2TM1 × 2TM2 is monotone if and only if for any z = (x, y), z′ = (x′, y′),
w = (u, v) ∈ A(z) and w′ = (u′, v′) ∈ A(z′),

〈u, exp−1
x x′〉+ 〈v, exp−1

y y′〉 ≤ 〈u′,− exp−1
x′ x〉+ 〈v′,− exp−1

y′ y〉. (2.7.18)

Theorem 2.7.6. Let L be a saddle-function on M = M1×M2 and AL the set-valued
vector field defined by (2.7.17). Then, AL is maximal monotone.
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Proof. Consider two points z = (x, y) and z′ = (x′, y′) inM , and w = (u, v) ∈ AL(z),
w′ = (u′, v′) ∈ AL(z′). Since ∂

(
−L(·, y)

)
and ∂

(
L(x, ·)

)
are monotone by Theorem

2.7.1, it follows from the definition of AL that

〈u, exp−1
x x′〉 ≤ 〈u′,− exp−1

x′ x〉 and 〈v, exp−1
y y′〉 ≤ 〈v′,− exp−1

y′ y〉.

Hence (2.7.18) holds and AL is monotone because z, z′ ∈ M and w ∈ AL(z), w′ ∈
AL(z′) are arbitrary.

To verify the maximality, let z = (x, y) ∈M1×M2 and w = (u, v) ∈ TxM1×TyM2

be such that

〈u, exp−1
x x′〉+ 〈v, exp−1

y y′〉 ≤ 〈u′,− exp−1
x′ x〉+ 〈v′,− exp−1

y′ y〉 (2.7.19)

for any z′ = (x′, y′) ∈ M1 ×M2, w′ = (u′, v′) ∈ AL(z′). We have to prove that
w ∈ AL(z), that is, u ∈ ∂

(
− L(·, y)

)
(x) and v ∈ ∂

(
L(x, ·)

)
(y). Taking y′ = y in

(2.7.19), we get

〈u, exp−1
x x′〉 ≤ 〈u′,− exp−1

x′ x〉, ∀x′ ∈M1 and u′ ∈ ∂
(
− L(·, y)

)
(x′). (2.7.20)

Note that ∂
(
− L(·, y)

)
is maximal by Theorem 2.7.1, hence (2.7.20) implies that

u ∈ ∂
(
− L(·, y)

)
(x). Similarly, taking x′ = x in (2.7.19), we get that v ∈ ∂

(
−

L(x, ·)
)
(y), as desired.

It is straightforward to check that a point z̄ = (x̄, ȳ) ∈M is a saddle point of L
if and only if it is a singularity of AL. Consider the following algorithm for AL,

0 ∈ AL(zn+1)− λn exp−1
zn+1

zn, (2.7.21)

where z0 ∈ M1 ×M2 and {λn} ⊂ R+. Thus applying Corollary 2.5.3 to the vector
field AL associated with the saddle-function L, we immediately obtain the following
theorem.

Theorem 2.7.7. Let L : M = M1 × M2 → R be a saddle-function and AL :
M1×M2 → 2TM1 × 2TM2 be the associated maximal monotone vector field. Suppose
that L has a saddle point. Let z0 ∈M and let {λn} ⊂ R+ satisfy (2.5.2). Then, the
sequence {zn} generated by the algorithm (2.7.21) is well-defined and converges to
a saddle point of L.
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2.7.3 Variational Inequalities

Let C be a convex subset of M and V : C → TM a single-valued vector field, that
is, V (x) ∈ TxM for each x ∈ C. Following [84], the problem of finding x ∈ C such
that

〈V (x), exp−1
x y〉 ≥ 0, ∀y ∈ C, (2.7.22)

is called a variational inequality on C. Clearly, a point x ∈ C is a solution of the
variational inequality (2.7.22) if and only if x satisfies that

0 ∈ V (x) +NC(x),

that is, x is a singularity of the set-valued vector field A := V +NC . Applying the
algorithm (2.5.1) to A, we get the following proximal point algorithm with initial
point x0 for finding solutions of the variational inequality (2.7.22):

0 ∈ V (xn+1) +NC(xn+1)− λn exp−1
xn+1

xn, ∀n ≥ 0. (2.7.23)

The remainder of this subsection is directed towards the study of the convergence of
algorithm (2.7.23). To apply Theorem 2.5.2, one need to prove that the algorithm
is well-defined. To this end and for the sake of completeness, we first include some
lemmas. One of them (Lemma 2.7.11) is an extension of the well-known Brouwer
fixed point Theorem to Hadamard manifolds. In [84] the author gives a similar but
incomplete proof of what we present below. The following proposition is a direct
consequence of [105, pag. 170, Theorem 5.5 and Lemma 5.4] (noting that M is a
Hadamard manifold).

Proposition 2.7.8. Let C be a convex compact subset of M . Then there exists a
totally geodesic submanifold N ⊆ C such that C = N , the closure of N , and the
following condition holds: for any q ∈ C \N and p ∈ N , expp t(exp−1

p q) ∈ N for all
t ∈ (0, 1) and expp t(exp−1

p q) /∈ C for any t ∈ (1,+∞).

Remark 2.7.9. Following [105], intC := N is called the interior of C and bdC :=
C \N the boundary of C. Moreover, if C is a compact convex set, then bdC 6= ∅.

Lemma 2.7.10. Let C be a convex compact subset of M and let p0 ∈ intC. Then

exp−1
p0 (bdC) = bd (exp−1

p0 C) and exp−1
p0 (intC) = int(exp−1

p0 C). (2.7.24)
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Proof. Let p0 ∈ intC. Since exp−1
p0 is bijection from C to exp−1

p0 C and (bdC) ∩
(intC) = ∅, it follows that

exp−1
p0 (C) = exp−1

p0 (bdC) ∪ exp−1
p0 (intC).

Thus, to complete the proof, it suffices to prove that

exp−1
p0 (bdC) ⊆ bd (exp−1

p0 C) and exp−1
p0 (intC) ⊆ int(exp−1

p0 C). (2.7.25)

To show the first inclusion, let q ∈ bdC. Then exp−1
p0 q ∈ exp−1

p0 C. By Proposi-
tion 2.7.8, we see that expp0 t(exp−1

p0 q) /∈ C for all t > 1. Hence t(exp−1
p0 q) /∈ exp−1

p0 C
for any t > 1. Therefore, exp−1

p0 q ∈ bd (exp−1
p0 C) and the inclusion exp−1

p0 (bdC) ⊆
bd (exp−1

p0 C) is proved.
Below we show the inclusion exp−1

p0 (intC) ⊂ int (exp−1
p0 C). For simplicity, we

use UE(x, ε) to denote the open ball at x ∈ E with center ε in a metric space E.
note that intC = N is the totally geodesic submanifold given by Proposition 2.7.8.
Then, by [105, pag. 171] (noting that M is a Hadamard manifold), for any q ∈ intC,

TqN = {v ∈ TqM \ {0} : expq tv/‖v‖ ∈ N for some t > 0} ∪ {0}. (2.7.26)

and expq is a local diffeomorphism at 0 from TqN to N (cf. [105]), that is there
exists an open ball UTqN (0, ε) ⊂ TqN at 0 such that expq(UTqN (0, ε)) ⊆ N . This
means that

q ∈ intC ⇐⇒ expq(UTqN (0, δ)) ⊆ intC for some δ > 0. (2.7.27)

Consequently, bdC is closed in M because C is closed. Let q ∈ intC and set
M0 = expp0(Tp0N). Then

ε := d(q,M0 \ C) > 0. (2.7.28)

In fact, otherwise, there exists a sequence {qk} ⊂M0 \C such that limk d(qk, q) = 0.
By Proposition 2.7.8 and (2.7.26) (Noting p0 ∈ N), we may assume that, for each
k, qk = expp0 tkuk, where tk ≥ 1 and uk ∈ Tp0N is such that expp0 un ∈ bdC. Since
{tkuk} is bounded and each tk ≥ 1, it follows that {uk} is bounded too. Since bdC
is closed, it follows that lim infk ‖uk‖ > 0. This together with the boundedness of
{tkuk} implies that {tk} is bounded. Without loss of generality, we may assume that
tk → t0 and uk → u0. Then t0 ≥ 1 and expp0 u0 ∈ bdC. Hence expp0 t0u0 /∈ N by
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Proposition 2.7.8, which is a contradiction because expp0(t0u0) = x ∈ N . Therefore,
(2.7.28) is proved.

Since expp0 is continuous on Tp0N , there exists δ > 0 such that

d(expp0 v, q) = d(expp0 v, exp−1
p0 q) <

ε

2
for each v ∈ UTp0N

(exp−1
p0 q, δ).

It follows from (2.7.28) that expp0(UTp0N
(exp−1

p0 q, δ)) ⊆ C. This implies that
expp0 q ∈ int (exp−1

p0 C) and the proof is complete.

Lemma 2.7.11. Let C be a compact convex subset of M . Let T : C → C be a
continuous mapping. Then T has a fixed point in C.

Proof. Note that the fixed point property is a topological property, i.e., if X and Y
are homeomorphic topological spaces and any continuous mapping on X has fixed
points, then does any continuous mapping on Y . Let p0 ∈ intC and, for simplicity,
write C̃ = exp−1

p0 C. Then, C is homeomorphic to C̃. By the Brouwer fixed point
Theorem, it suffices to prove that C̃ ⊂ Tp0N is homeomorphic to the closed unit
ball of Tp0N , denoted by B. We define the function φ : C̃ → R+ by

φ(x) =
{
‖0̂x

⋂
bd C̃‖ if x 6= 0,

1 if x = 0,

where 0̂x := {tx : t ≥ 0} is the straight half-line joining 0 to x. By Proposition
2.7.8, the geodesic joining p0 and expp0 x intersects bdC at just one point and
so, by Lemma 2.7.10, 0̂x intersects bd C̃ at just one point. This implies that φ is
well-defined and continuous at each point x 6= 0. Indeed, let x0 ∈ C̃ \ {0} and
denote x = 0̂x

⋂
bd C̃ for any x 6= 0. Then x = x

‖x‖φ(x). Let {xn} ⊂ C̃ be such
that xn → x0. Since φ is bounded, we can assume without lost of generality that
φ(xn)→ r ∈ R+. Then,

xn → y0 =
x0

‖x0‖
r ∈ bd C̃.

We must prove that r = φ(x0) to get the continuity of φ. To this end, write

y0 =
x0

‖x0‖
φ(x0)

r

φ(x0)
=

r

φ(x0)
x. (2.7.29)
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If r < φ(x0), then r
φ(x0) < 1. Thus, by Proposition 2.7.8 and Lemma 2.7.10, (2.7.29)

implies that y0 ∈ int C̃ because x ∈ bdC, which contradicts that y0 ∈ bd C̃. Sim-
ilarly, if r > φ(x0), we get that y0 /∈ C̃, which again contradicts that y0 ∈ bd C̃.
Therefore φ is continuous at each x 6= 0.

Now define the function h : C̃ → B by

h(x) =
1

φ(x)
x, ∀x ∈ C̃.

Note that ‖h(x)‖ = 1
‖φ(x)‖x‖ ≤ 1. Thus h is well-defined and continuous, whose

inverse function h−1(y) = φ(y)y is continuous too. Hence, h is a homeomorphism
from C̃ to B and the proof is complete.

Theorem 2.7.12. Let C be a closed convex subset of M and V : C → TM a single-
valued continuous monotone vector field. Let x0 ∈ C and {λn} ⊂ R+ satisfy (2.5.2).
Suppose that the variational inequality (2.7.22) has a solution. Then the sequence
{xn} generated by the algorithm (2.7.23) is well-defined and converges to a solution
of the variational inequality (2.7.22).

Proof. By Theorem 2.5.2 and Remark 2.5.1, we only need to prove that the sequence
{xn} generated by the algorithm (2.7.23) is well-defined. Let λ > 0 and y0 ∈ C.
Consider the following variational inequality:

〈V (x)− λ exp−1
x y0, exp−1

x y〉 ≥ 0, ∀y ∈ C. (2.7.30)

For fixed n ≥ 0, note that xn+1 satisfies (2.7.23) if and only if xn+1 is a solution
of the variational inequality (2.7.30) with λ = λn and y0 = xn. Thus, it suffices to
prove that the variational inequality (2.7.30) has a solution. The proof is standard,
see [84]. However, we keep the proof here for completeness. Let R > 0 be such that
‖V (y0)‖ − 2Rλ < 0 and set

CR = {x ∈ C : d(x, y0) ≤ R}.

Then CR is a compact convex subset of M . Let PCR : M → CR be the projection
to CR. Then, by [114], PCR is Lipschitz continuous and characterized by

〈exp−1
PCRx

x, exp−1
PCRx

y〉 ≤ 0, ∀x ∈M and y ∈ CR. (2.7.31)
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Consider the continuous map T : CR → CR defined by

T (x) := PCR(expx(−V (x)− λ exp−1
x y0), ∀x ∈ CR.

By Lemma 2.7.11, T has a fixed point xR. This together with (2.7.31) implies that

〈V (xR)− λ exp−1
xR
y0, exp−1

xR
y〉 ≥ 0 (2.7.32)

holds for any y ∈ CR. Since 〈V (x), exp−1
x y0〉 ≤ 〈−V (y0), exp−1

y0 x〉 by the mono-
tonicity and 〈exp−1

x y0, exp−1
x y0〉 = 〈exp−1

y0 x, exp−1
y0 x〉 = d(x, y0)2, it follows that

if d(x, y0) = R, then

〈V (x)− λ exp−1
x y0, exp−1

x y0〉 ≤ 〈V (y0), exp−1
y0 x〉 − 2λd(x, y0)2

≤ (‖V (y0)‖ − 2Rλ)R
< 0.

This means that d(xR, y0) < R. Below we shall show that (2.7.32) holds for any y ∈
C. Granting this the proof is complete. Indeed, given y ∈ C, yt = expxR t(exp−1

xR
y) ∈

CR for t > 0 sufficiently small. Consequently,

t〈V (xR)− λ exp−1
xR
y0, exp−1

xR
y〉 = 〈V (xR)− λ exp−1

xR
y0, exp−1

xR
yt〉 ≥ 0.

Thus, (2.7.32) holds for y ∈ C.

2.7.4 Equilibrium problem

Many practical problems can be formulated as the equilibrium problem of finding a
point x in a space X satisfying

F (x, y) ≥ 0, ∀y ∈ X, (2.7.33)

where F : X×X → R is a bifunction. A point x∗ which solves the problem (2.7.33)
is said to be an equilibrium point for the bifunction F. We denote the equilibrium
point set of F by EP(F ).

We present an approach to approximate an equilibrium point for a bifunction
F : M ×M → R in the framework of Hadamard manifolds. It involves the resolvent
of the bifunction F , which is a nonexpansive mapping whose fixed point set coincides
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with the equilibrium point set of F . This allows us to use the convergence results
for fixed points of nonexpansive mappings on Hadamard manifolds which exist in
the literature. In particular, such a mapping presents a stronger property, the
firm nonexpansivity, which was proved to imply the convergence of Picard iteration
{Tn(x)} in Section 2.6.1.

Resolvent of a bifunction

The definition of the resolvent of a bifunction in the setting of a Hilbert space H
appears implicitly in [8] and was first given in [33]. In order to distinguish the
resolvents of vector fields and the resolvents of bifunctions we denote the latter with
a supper index, JF .

Definition 2.7.13. Given a single-valued bifunction F : C×C → R, where C ⊆M
is a nonempty closed convex subset, the resolvent of F of order λ > 0 is the set-
valued vector field JF : M → 2C defined by

JF (x) = {z ∈ C | λF (z, y)− 〈exp−1
z x, exp−1

z y〉 ≥ 0, ∀y ∈ C }. (2.7.34)

Remark 2.7.14. The resolvent could be defined for a set-valued bifunction F : C ×
C → 2R as follows,

JFλ : M → 2C : x 7→ {z ∈ C | λu− 〈exp−1
z x, exp−1

z y〉 ≥ 0, ∀y ∈ C,∀u ∈ F (z, y) },

for any λ > 0, and the following theorem would remain true except for (iii) which
needs F to be single-valued.

Theorem 2.7.15. Let F : C × C → R be a bifunction satisfying the following
conditions:

(1) the bifunction F is monotone, that is, for any (x, y) ∈ C × C,

F (x, y) + F (y, x) ≤ 0;

(2) for each λ > 0, JFλ is properly defined, i. e., the domain D(JFλ ) 6= ∅.

Then, for any λ > 0,
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(i) the resolvent JFλ is single-valued;

(ii) the resolvent JFλ is firmly nonexpansive;

(iii) the fixed point set of JFλ is the equilibrium point set of F ,

Fix (JFλ ) = EP(F ).

Proof.

(i) We fix x ∈ D(JFλ ) and assume that there exist z1, z2 ∈ JFλ (x). By definition
this means that

λF (z1, z2)− 〈exp−1
z1 x, exp−1

z1 z2〉 ≥ 0, (2.7.35)

λF (z2, z1)− 〈exp−1
z2 x, exp−1

z2 z1〉 ≥ 0. (2.7.36)

Summing inequalities (2.7.35) and (2.7.36), by condition (1) and applying
Proposition 2.1.30, the law of cosines, we get

d2(z1, z2) ≤ 〈exp−1
z1 x, exp−1

z1 z2〉+ 〈exp−1
z2 x, exp−1

z2 z1〉 ≤ 0.

Therefore z1 = z2.

(ii) To prove that JFλ is firmly nonexpansive we consider x1, x2 ∈ D(JFλ ). By
definition of resolvent we get

λF (JFλ x1, J
F
λ x2)− 〈exp−1

JFλ x1
x1, exp−1

JFλ x1
JFλ x2〉 ≥ 0 (2.7.37)

λF (JFλ x2, J
F
λ x1)− 〈exp−1

JFλ x2
x2, exp−1

JFλ x2
JFλ x1〉 ≥ 0. (2.7.38)

If we sum inequalities (2.7.37) and (2.7.38), it results

〈exp−1
JFλ x1

x1, exp−1
JFλ x1

JFλ x2〉+ 〈exp−1
JFλ x2

x2, exp−1
JFλ x2

JFλ x1〉 ≤ 0,

for any x1, x2 ∈ D(JFλ ), which is equivalent to say that JFλ is firmly nonex-
pansive as we proved in Proposition 2.3.4.
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(iii) Given x ∈ D(JFλ ),

x = JFλ x⇔ F (x, y)−〈exp−1
x x, exp−1

x y〉 ≥ 0 (∀y ∈ C)⇔ F (x, y) ≥ 0 (∀y ∈ C).

So Fix (JFλ ) = EP(F ).

Remark 2.7.16. If D(JFλ ) is closed and convex, the equilibrium point set EP(F ) is
closed and convex by virtue of conditions (iii), (ii) and the fact that the fixed point
set of a nonexpansive mapping defined on a closed convex set is closed and convex,
proved in Proposition 2.3.1.

The previous theorem allows us to approximate a solution to the equilibrium
problem associated to a bifunction F , whenever it exists, by means of the resolvent
and the sequence of iterates {(JFλ )nx} whose convergence is assured by Theorem
2.6.1 for firmly nonexpansive mappings.

Theorem 2.7.17. Let F : C×C → R be a monotone bifunction such that EP(F ) 6=
∅. Let λ > 0 and assume that the resolvent of F , JFλ , is properly defined with
C ⊆ D(JFλ ). Then, for each x ∈ D(JFλ ), the sequence defined by

xn+1 = (JFλ )nx, n ≥ 0, (2.7.39)

converges to an equilibrium point of F .

Moreover, as in Hilbert spaces, the resolvent of a bifunction constitutes a gen-
eralization of the resolvent of a monotone vector field or the Moreau-Yosida reg-
ularization of a convex function. In these cases, as we will show in the following
examples, we know that the resolvent is properly defined and moreover, JFλ (x) 6= ∅
for any x ∈ C, that is D(JFλ ) = M .

Resolvent of a vector field

In the single-valued case the resolvent of a monotone vector field can be seen as the
resolvent of a bifunction. Indeed, given A ∈ X (M) define the bifunction

F : M ×M → 2R : (x, y) 7→ F (x, y) = 〈Ax, exp−1
x y〉. (2.7.40)
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The monotonicity of A implies the monotonicity of F . On the other hand, for any
x ∈M and λ > 0, the resolvent of F can be written as

JFλ (x) = {z ∈M | 〈λA(z)− exp−1
z x, exp−1

z y〉 ≥ 0, ∀y ∈M }.

Thus, if z ∈ JAλ (x) we have that λAz = exp−1
z x and then z ∈ JFλ (x), i.e.,

JAλ (x) ⊆ JFλ (x), ∀x ∈M.

Therefore the conditions in Theorem 2.7.15 hold for F defined as in (2.7.40), so the
fact that JFλ is single-valued implies that

JAλ (x) = JFλ (x), ∀x ∈M.

Moreau-Yosida regularization of a convex function

Let f : M → R be a convex function. The Moreau-Yosida regularization fλ : M →
M of f is defined by

fλ(x) = argmin
y∈M

{λf(y) +
1
2

d2(x, y)}. (2.7.41)

In [42] it was proved that there exists a unique point yλ = fλ(x) for any x ∈M and
λ ≥ 0, which is characterized by

exp−1
yλ
x ∈ ∂f(yλ). (2.7.42)

Then the mapping fλ is well-defined and single-valued. If we consider the set-valued
vector field A = ∂f , we know from Theorem 2.7.1 that A is maximal monotone with
full domain. By the characterization (2.7.42) we can readily check that the resol-
vent of A coincides with the Moreau-Yosida regularization, fλ = JAλ , and therefore
Theorem 2.4.9 recovers the fact that fλ has full domain, and implies its firm non-
expansivity.

On the other hand, the Moreau-Yosida regularization of a convex function is
the resolvent of the bifunction F : M ×M → R defined by F (x, y) = f(y) − f(x).
Indeed, given x ∈ M , let z = fλ(x). This means that 1

λ exp−1
z x ∈ δf(z), and by

definition of the subdifferential of f , for any y ∈M ,

1
λ
〈exp−1

z x, exp−1
z y〉 ≤ f(y)− f(x).
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Equivalently,
λF (x, y)− 〈exp−1

z x, exp−1
z y〉 ≥ 0,

so z ∈ JFλ (x). Then F is properly defined. Since F is monotone as well, Theorem
2.7.15 ensures that JFλ is single-valued, therefore we get that fλ = JFλ.
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