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Studies on the Synthesis of 2-Alkyl-5-aryl-1,3,4-oxadiazolines from 
N-Acylhydrazones
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Abstract: Reaction of N-acylhydrazones with benzyloxyacetyl
chloride in the presence of i-Pr2EtN affords new 1,3,4-oxadiazo-
lines in excellent yields (72–95%), under mild reaction conditions
and in short reaction times. The structures of the products were con-
firmed by single-crystal X-ray diffractometry. A plausible reaction
mechanism is proposed.
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Among five-membered heterocycles, 1,3,4-oxadiazolines
and derivatives have been the subject of chemical and bi-
ological studies on account of their interesting pharmaco-
logical properties, including antimicrobial,2 anti-
inflammatory,3 antiviral,4 and antitumor activities.5 Se-
lected structures 1–3, are outlined in Figure 1. As a conse-
quence of the significant biological activity, the synthesis
of new and easily accessible 1,3,4-oxadiazolines seems an
aim of great interest.

Previous synthetic methods reported for these compounds
involve cyclization of anionic N-acylhydrazones under
acylation conditions using acetic anhydride6 or acetyl

chloride.7 Other methods include oxidative cyclization of
aldazines using Pb(OAc)4.

8 On the other hand, the forma-
tion of similar structures is described for reactions involv-
ing ketenes (generated in situ) and N-acylhydrazones or
2,3-diaza-1,3-dienes (azines) either with moderate to
good yields or as by-products.9 The absence of reports for
the synthesis of simple 2-alkyl-5-arylderivatives is note-
worthy.

During the last few years, our research group has been in-
terested in the asymmetric synthesis of b-lactams by a
Staudinger-like reaction between aldehyde N,N-dialkyl-
hydrazones and functionalized benzyloxyketene10 (gener-
ated in situ from benzyloxyacetyl chloride 4 with a base)
or amino ketenes.11 Recently, we decided to explore the
behavior of more reactive N-acylhydrazones 5 as the imi-
ne component in the [2+2] cycloaddition. Taking advan-
tage of the high relative stability of hydrazones toward
enolization, we decided to focus on aliphatic derivatives.
Thus, the reaction of isovaleraldehyde benzoyl hydrazone
(5a) as a model substrate and benzyloxyacetyl chloride (4)
as the reagent, was chosen for preliminary experiments.
However, under our previously optimized conditions (2
equiv of 4, 4 equiv of Et3N in anhydrous toluene),10 the re-
action afforded no trace of the corresponding b-lactam 6,
instead, formation of oxadiazoline 7a in 80% yield was
observed after 24 hours at room temperature (Scheme 1).

Scheme 1 Formation of oxadiazoline 7a

Figure 1 Selected bioactive 1,3,4-oxadiazolines: 1 (antifungal),2 2
(anti-inflammatory),3 and 3a and 3b (antitumor)5a,c
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Using the same model reaction, further experiments were
performed to investigate the influence of the base and/or
the reaction temperature on the product distribution. To
this end, reactions performed at room temperature using
diisopropylethylamine and tribenzylamine were analyzed
after 24 hours and compared with the triethylamine-pro-
moted reaction. The results, collected in Table 1 (entries
1–3), indicate a slight improvement with diisopropylethy-
lamine and a significant drop of yield in the case of the
less basic tribenzylamine.12 Finally, performing the reac-
tions at 80 °C not only provided a slightly better yield, but
also led to a significant rate acceleration, leading to virtu-
ally complete reactions in only five hours (entries 4 and
5).

These optimized conditions [hydrazone (2 equiv), i-
Pr2EtN (4 equiv), anhydrous toluene, 80 °C] were then ap-
plied to the reaction of different N-acylhydrazones 5a–g
with benzyloxyacetyl chloride (4) for the synthesis of ad-
ducts 7a–g. The results, collected in Table 2, indicate the
efficiency of the reaction for primary (entries 1, 3, 6, and
7), secondary (entries 2 and 5), and even tertiary (entry 4)
aliphatic derivatives, although higher reaction tempera-
tures and longer reaction times were required in the latter
case. Examples that illustrate the compatibility with elec-
tron-withdrawing (entries 4–6) or electron-donating (en-
try 7) groups are included.

In addition to the usual spectroscopic characterization
(see the Supporting Information), single-crystal X-ray dif-
fraction analysis of adduct 7e (Figure 2)13 unequivocally
confirmed the proposed structure.

Two plausible reaction paths can be a priori proposed for
this reaction. As is the case in reactions with N,N-dialkyl-
hydrazones, benzyloxyacetyl chloride 4 could possibly re-
act first with the base to form the corresponding
benzyloxy ketene 8 after hydrogen chloride b-elimina-

tion. Ensuing nucleophilic addition of the sp2 imine nitro-
gen of 5 to the electron-deficient ketene central carbon
and spontaneous cyclization of the resulting zwitterionic
intermediate 10 would render the product 7 (Scheme 2,
blue path). A second possible path starts with the acyla-
tion of the imino nitrogen of the substrate by 4 to form
acyl immonium intermediate 9 from which deprotonation
by the base renders the final product 7 through the same
zwitterionic intermediate 10.

Several pieces of evidence suggest that the mechanism in-
volving ketene 8 can be disregarded. First, previous
studies11b indicate that the rate of ketene formation de-
creases in the order Et3N > i-Pr2EtN >> Bn3N, with the lat-
ter being much slower than the observed reaction rate.
Such a dependence on the base is not consistent with the
observed trend. Further evidence for 9 as a reaction inter-
mediate was obtained from the reaction of 5g with 4 in the

Table 1 Screening of Reaction Conditionsa

Entry Base Temp (°C) Time (h) Yield (%)b

1 Et3N r.t. 24 80

2 i-Pr2EtN r.t. 24 84

3 Bn3N r.t. 24 51

4 i-Pr2EtN 80 5 88

5 Bn3N 80 5 64

a Reactions performed at 0.5 mmol scale using 4 (2 equiv) and base (4 
equiv).
b Isolated yield after column chromatography.
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Table 2 Synthesis of Oxadiazolines 7a–g from N-Acylhydrazones 
5a–g

Entry 5 Ar R Time 
(h) 

7 Yield 
(%)a

1 5a Ph i-Bu 5 7a 88

2 5b Ph i-Pr 5 7b 86

3 5c Ph CH2CH2Ph 5 7c 89

4b 5d 4-O2NC6H4 t-Bu 16 7d 72

5 5e 4-O2NC6H4 i-Pr 5 7e 93

6 5f 4-O2NC6H4 i-Bu 4 7f 95

7 5g 4-MeOC6H4 i-Bu 4 7g 89

a Isolated yields after column chromatography.
b Reaction performed at 100 °C.
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Figure 2 X-ray crystal structure of oxadiazoline 7e. Hydrogen
atoms omitted for clarity. Thermal ellipsoids drawn at the 50% proba-
bility level.
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presence of a large excess of tribenzylamine (8 equiv) as
the base. Under these conditions, a moderate (50% yield)
amount of product 7g was obtained, along with a small
amount (22%) of enhydrazine by-product 11 (Scheme 3),
which is presumed to form by competitive deprotonation
of the acidic a-methylene from the same intermediate 9. 

Scheme 3 

In summary, use of diisopropylethylamine as the base en-
ables a mild and efficient synthesis of 5-alkyl-1,3,4-oxa-
diazolines 7a–g from N-acylhydrazones 5a–g and
benzyloxyacetyl chloride 4. Experimental evidence sug-
gests that the reaction proceeds through N-acyliminium
intermediates resulting from direct acylation of the hydra-
zone N(sp2) atom by acyl chloride 4.

Supporting Information for this article is available online at
http://www.thieme-connect.com/ejournals/toc/synlett.
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Scheme 2 Plausible reaction mechanisms
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(10) Å, c = 20.2932 (5) Å, a = 90.00°, b = 118.3420 (10)°, 
g = 90.00°; V = 3731.71 (14) Å3; T = 100 (2) K; space group 
C2/c; Z = 8; m(MoKa) = 0.100 mm–1; 34754 reflections 
measured, 5690 independent reflections (Rint = 0.0436). The 

final R1 values were 0.0474 (I > 2s(I)). The final wR(F2) 
values were 0.1106 (I > 2s(I)). The final R1 values were 
0.0941 (all data). The final wR(F2) values were 0.1314 (all 
data); goodness-of-fit: 1.030.
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