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Abstract. Spiking neural P systems and artificial neural networks are
computational devices which share a biological inspiration based on the
flow of information among neurons. In this paper we present a first model
for Hebbian learning in the framework of spiking neural P systems by
using concepts borrowed from neuroscience and artificial neural network
theory.

1 Introduction

When an axon of cell A is near enough to excite cell B or repeatedly
or persistently takes part in firing it, some growth process or metabolic
change takes place in one or both cells such that A’s efficiency, as one
of the cells firing B, is increased.

D. O. Hebb (1949) [12]

Neuroscience has been a fruitful research area since the pioneering work of 
Ramón y Cajal in 1909 [20] and after a century full of results on the man and the 
mind, many interesting questions are still unanswered. Two of such problems of 
current neuroscience are the understanding of neural plasticity and the neural 
coding.

The first one, the understanding of neural plasticity, is related to the changes 
in the amplitude of the postsynaptic response to an incoming action potential. 
Electrophysiological experiments show that the response amplitude is not fixed 
over time. Since the 1970’s a large body of experimental results on synaptic 
plasticity has been accumulated. Many of these experiments are inspired by 
Hebb’s postulate (see above). In the integrate-and-fire formal spiking neuron 
model [8] and also in artificial neural networks [11], it is usual to consider a 
parameter w as a measure of the efficacy of the synapse from a neuron to another.

The second one, the neural coding, is related to the way in which one neuron 
sends information to other ones and it is interested in the information contained 
in the spatio-temporal pattern of pulses and on the code used by the neurons to 
transmit information. This research area wonders how other neurons decode the



signal or whether the code can be read by external observers who can understand
the message. At present, a definite answer to these questions is not known.

Since all spikes (short electrical pulses) of a given neuron look alike, the form
of the action potential does not carry any information. Rather, it is the number
and the timing of spikes what matters. Traditionally, it has been thought that
most, if not all, of the relevant information was contained in the mean firing rate
of the neuron. The concept of mean firing rates has been successfully applied
during the last decades (see, e.g., [17] or [13]) from the pioneering work of Adrian
[1,2]. Nonetheless, more and more experimental evidence has been accumulated
during recent years which suggests that a straightforward firing rate concept
based on temporal averaging may be too simplistic to describe brain activity. One
of the main arguments is that reaction times in behavioral experiment are often
too short to allow long temporal averages. Humans can recognize and respond
to visual scenes in less than 400ms [21]. If at each processing steps, neurons
had to wait and perform a temporal average in order to read the message of the
presynaptic neurons, the reaction time would be much longer. Many other studies
show the evidence of precise temporal correlations between pulses of different
neurons and stimulus-dependent synchronization of the activity in populations
of neurons (see, for example, [9] or [5]). Most of these data are inconsistent with
a concept of coding by mean firing rates where the exact timing of spikes should
play no role. Instead of considering mean firing rates, we consider the realistic
situation in which a neuron abruptly receives an input and for each neuron the
timing of the first spike after the reference signal contains all the information
about the new stimulus.

Spiking neural P systems (SN P systems, for short) were introduced in [14]
with the aim of incorporating in membrane computing (more information can
be found at [22]) ideas specific to spike-based neuron models. The intuitive goal
was to have a directed graph were the nodes represent the neurons and the edges
represent the synaptic connections among the neurons. The flow of information is
carried by the action potentials, which are encoded by objects of the same type,
the spikes, which are placed inside the neurons and can be sent from presynaptic
to postsynaptic neurons according to specific rules and making use of the time
as a support of information.

The paper is organized as follows: first we discuss about SN P systems with
input and delay and a new computational device called Hebbian SN P system
unit is presented. In Section 3 we present our model of learning with SN P
systems based on Hebb’s postulate. An illustrative experiment carried out with
a corresponding software is shown in Section 4. Finally, some conclusions are
given in the last section.

2 SN P Systems with Input and Decay

An SN P system consists of a set of neurons placed in the nodes of a directed
graph and capable of sending signals (called spikes) along the arcs of the graph
(called synapses) according to specific rules. The objects evolve according to



a set of rules (called spiking rules). The idea is that a neuron containing a
certain amount of spikes can consume some of them and produce other ones.
The produced spikes are sent (maybe with a delay of some steps) to all adjacent
neurons from the neuron where the rule was applied. A global clock is assumed
and in each time unit, each neuron which can use a rule should do it, but only (at
most) one rule is used in each neuron. One distinguished neuron is considered to
be the output neuron, and its spikes are also sent to the environment (a detailed
description of SN P systems can be found in [19] and the references therein).

In this section we introduce the Hebbian SN P system unit which is an SN P
system with m + 1 neurons (m presynaptic neurons linked to one postsynaptic
neuron) endowed with input and decay. At the starting point all the neurons are
inactive. At rest, the membrane of biological neurons has a negative polarization
of about −65mV , but we will consider the inactivity by considering the number
of spikes inside the neuron is zero. The dynamics of a Hebbian SN P system unit
is quite natural. At the starting point, all neurons are at rest and in a certain
moment the presynaptic neurons receive enough spikes to activate some rules.
The instant of the arrival of the spikes can be different for each presynaptic
neuron. These spikes activate one rule inside the neurons and the presynaptic
neurons send spikes to the postsynaptic neuron. In the postsynaptic neuron a
new rule can be triggered or not, depending on the arrival of spikes and it may
send a spike to the environment.

2.1 The Input

The basic idea in SN P systems taken from biological spiking neuron models is
that the information is encoded in time. The information in a Hebbian SN P
system unit is also encoded in the time in which the spikes arrive to the neuron
and the time in which the new spikes are emitted. The input will be also encoded
in time. The idea behind this codification is that the presynaptic neurons may
not be activated at the same moment. If we consider a Hebbian SN P system
unit as part of a wide neural network, it is quite natural to think that the spikes
will not arrive to the presynaptic neurons (and consequently, their rules are not
activated) at the same time. In this way, if we consider a Hebbian SN P system
unit with m presynaptic neurons {u1, . . . , um}, an input will consist of a vector
x = (x1, . . . , xm) of non-negative integers where xi represents the time unit of
the global clock in which the neuron ui is activated.

2.2 The Decay

The effect of a spike on the postsynaptic neuron can be recorded with an intra-
cellular electrode which measures the potential difference between the interior of
the cell and its surroundings. Without any spike input, the neuron is at rest cor-
responding to a constant membrane potential. After the arrival of the spike, the
potential changes and finally decays back to the resting potential. The spikes,
have an amplitude of about 100mV and typically a duration of 1-2 ms. This
means that if the total change of the potential due to the arrival of spikes is not



Fig. 1. Dynamics of one spike

enough to activate the postsynaptic neuron, it decays after some milliseconds
and the neuron comes back to its resting potential (see Fig. 1).

This biological fact is not implemented in current SN P systems, where the
spikes can be inside the neuron for a long time if they are not consumed by
any rule. In the Hebbian SN P system unit, we introduce the decay in the
action potential of the neurons. When the impulse sent by a presynaptic neuron
arrives to the postsynaptic neuron, if it is not consumed for triggering any rule
in the postsynaptic neuron it decays and its contribution to the total change of
potential in the postsynaptic neuron decreases with time. This decayed potential
is still able to contribute to the activation of the postsynaptic rule if other spikes
arrive to the neuron and the addition of all the spikes trigger any rule. If this one
does not occur, the potential decays and after a short time the neuron reaches
the potential at rest. Figure 2 shows the changes of potential in the postsynaptic
neuron until reaching the threshold for firing a response.

In order to formalize the idea of decay in the framework of SN P systems we
introduce a new type of extended rules: the rules with decay. They are rules of
the form E/ak → (ap, S); d where, E is a regular expression over {a}, k and
p are natural numbers with k ≥ p ≥ 0, d ≥ 0 and S = (s1, s2, . . . , sr) is a
finite non-increasing sequence of natural numbers called the decaying sequence
where s1 = k and sr = 0. If E = ak, we will write ak → (ap, S); d instead of
ak/ak → (ap, S); d.

The idea behind the decaying sequence is the following. When the rule E/ak →
(ap, S); d is triggered at t0 we look in S = (s1, . . . , sr) for the least l such that
p ≥ sl. Such sl spikes are sent to the postsynaptic neurons according with the
delay d in the usual way. Notice that sl can be equal to p, so at this point this
new type of rule is a generalization of the usual extended rules.

This definition of decay can be seen as a generalization of the decaying spikes
presented in [6], where a decaying spike a is written in the form (a, e), where e ≥ 1
is the period. From the moment a pair (a, e) arrives to a neuron, e is decremented



Fig. 2. The potential at the postsynaptic neuron

by one in each step of computation. As soon as e = 0, the corresponding spike
is lost and cannot be used anymore.

In this way, a rule E/ak → ap; d (k > p) where ap are p decaying spikes (a, e)
can be seen with our notation as E/ak → (ap, S); d with S = (s1, . . . , se+2),
s1 = k, s2 = · · · = se+1 = p and se+2 = 0.

2.3 Hebbian SN P System Units

Hebbian SN P system units are SN P systems with a fixed topology endowed
with input and decay. They have the following common features:

– The initial number of the spikes inside the neurons is always zero in all
Hebbian SN P system units, so we do not refer to them in the description of
the unit.

– All the presynaptic neurons are linked to only one postsynaptic neuron and
these are all the synapses in the SN P system, so they are not provided in
the description.

– The output neuron is the postsynaptic one.

Bearing in mind these features, we describe a Hebbian SN P system unit in the
following way.

Definition 1. A Hebbian SN P system unit of degree (m, k, p) is a construct
HΠ = (O, u1, . . . , um, v), where:

– O = {a} is the alphabet (the object a is called spike);
– u1, . . . , um are the presynaptic neurons. Each presynaptic neuron ui has as-

sociated a set of rules Ri = {Ri1, . . . , Rili} where for each i ∈ {1, . . . , m}
and j ∈ {1, . . . , li}, Rij is a decaying rule of the form ak → (anij , S); dij



where k ≥ nij ≥ 0 and dij ≥ 0. We will call nij the presynaptic potential of
the rule and dij is the delay of the rule. Note that all rules are triggered by k
spikes. The sequence S = (s1, s2, . . . , sr) is a finite non increasing sequence
of natural numbers called the decaying sequence where s1 = k and sr = 0.

– v is the postsynaptic neuron which only contains1 the rule apa∗/ap → a; 0.
We will call p the threshold of the postsynaptic potential of the Hebbian SN
P system unit.

By considering the decaying sequences we can distinguish among three types of
Hebbian SN P system units:

– Hebbian SN P system units with uniform decay. In this case the decaying
sequence S is the same for all the rules in the presynaptic neurons.

– Hebbian SN P system units with locally uniform decay. In this case the
decaying sequence S is the same for all the rules in each presynaptic neuron.

– Hebbian SN P system units with non-uniform decay. In this case each rule
has associated a decaying sequence.

Definition 2. An input for a Hebbian SN P system unit of degree m is a vector
x = (x1, . . . , xm) of m non-negative integers xi.

A Hebbian SN P system unit with input is a pair (HΠ, x) where HΠ is
Hebbian SN P system unit and x is an input for it.

The intuitive idea behind the input is encoding the information in time. Each
component of the input represents the moment, according to the global clock,
in which k spikes are provided to the corresponding presynaptic neuron.

2.4 How It Works

Next we provide a description of the semantics of a Hebbian SN P system unit
of degree (m, k, p). As we saw before, each xi in the input x = (x1, . . . , xm)
represents the time in which k spikes are provided to the neuron ui. At the
moment xi in which the spikes arrive to the neuron ui one rule ak → (anij , S); dij

is chosen in a non-deterministic way among the rules of the neuron.
Applying it means that k spikes are consumed and we look in S = (s1, . . . , sr)

for the minimum l such that nij ≥ sl. Such sl spikes are sent to the postsynaptic
neurons according to the delay dij in the usual way, i.e., sl spikes arrive to the
postsynaptic neuron at the moment xi + dij + 1. The decay of such spikes is
determined by the decaying sequence. As we saw above, if the spikes are not
consumed by the triggering of a rule in the postsynaptic neuron, they decay
and at time xi + dij + 2 we will consider that sl − sl+1 spikes have disappeared
and we only have sl+1 spikes in the postsynaptic neuron. If the spikes are not
consumed in the following steps by the triggering of a postsynaptic rule, at time
x0 + dij + 1 + r − l the number of spikes will be decreased to sr = 0 and the

1 This rule is an adaptation of the concept of a rule from an extended spiking neural
P system with thresholds taken from [6].



spikes are lost. Formally, if the chosen rule at the membrane i is Rij ≡ ak →
(anij , S); dij with S = (s1, . . . , sr) and the rule is activated at time t = xi, then
the number of spikes sent by Rij occurring in the postsynaptic neuron at time
t = xi + dij + 1 + h is sk+h, if h ∈ {0, . . . , r − l} and zero otherwise. The index l
is the least index in {1, . . . , r} such that nij ≥ sl.

The potential on the postsynaptic neuron depends on the contributions of the
chosen rules in the presynaptic neurons. Such rules send spikes that arrive to the
postsynaptic neuron at different instants which depend on the input (the instant
in which the presynaptic neuron is activated) and the delay of the chosen rule.
The contribution of each rule to the postsynaptic neuron also changes along the
time due to the decay.

Formally, the potential of the postsynaptic neuron in a given instant is a
natural number calculated as a function R∗ which depends on the time t, on the
input x and on the rules chosen in each neuron R∗(R1i1 , . . . , Rmim , x, t) ∈ N.
Such a natural number represents the number of the spikes at the moment t in
the postsynaptic neuron and it is the result of adding the contributions of the
rules R1i1 , . . . , Rmim .

The Hebbian SN P system unit produces an output if the rule of the postsy-
naptic neuron v, apa∗/ap → a, is triggered, i.e., if at any moment t the amount
of spikes in the postsynaptic neuron is greater than or equal to the threshold p,
then the rule is activated and triggered. If there does not exist such t, then the
Hebbian SN P system unit does not send any spike to the environment.

Bearing in mind the decay of the spikes in the postsynaptic neuron, if any
spike has been sent out by the postsynaptic neuron after an appropriate number
of steps, any spike will be sent to the environment. In fact, we have a lower
bound for the number of steps in which the spike can be expelled, so we have a
decision method to determine if the input x produces or not an output2.

3 Learning

If we look at the Hebbian SN P system units as computational devices where
the target is the transmission of information, we can consider that the device
successes if a spike is sent to the environment and it fails if the spike is not sent.
In this way, the lack of determinism in the choice of rules is a crucial point in
the success of the devices because as we have seen above, if we provide several
times the same input, the system can succeed or not.

In order to improve the design of these computational devices and in a narrow
analogy with the Hebbian principle, we introduce the concept of efficacy in the
Hebbian SN P system units. Such efficacy is quantified by endowing each rule
with a weight that changes along the time, by depending on the contribution of
the rule to the success of the device.

According to [7], in Hebbian learning, a synaptic weight is changed by a
small amount if presynaptic spike arrival and postsynaptic firing coincides. This
simultaneity constraint is implemented by considering a parameter sij which
2 A detailed description and some examples can be found in [10].



is the difference between the arrival of the contribution of the rule Rij and the
postsynaptic firing. Thus, the efficacy of the synapses such that its contributions
arrive repeatedly shortly before a postsynaptic spike occurs is increased (see [3]
and [12]). The weights of synapses such that their contributions arrive to the
postsynaptic neuron after the postsynaptic spike is expelled are decreased (see
[4] and [15]). This is basically the learning mechanism suggested in [16].

3.1 The Model

In order to implement a learning algorithm in our Hebbian SN P system unit, we
need to extend it with a set of weights that measure the efficacy of the synapses.
The meaning of the weights is quite natural and it fits into the theory of artificial
neural networks [11]. The amount of spikes that arrives to the postsynaptic
neuron due to the rule Rij depends on the contribution of each rule and also on
the efficacy wij of the synapse. As usual in artificial neural networks, the final
contribution will be the contribution sent by the rule multiplied by the efficacy
wij . We fix these concepts in the following definition.

Definition 3. An extended Hebbian SN P system unit of degree m is a construct
EHΠ = (HΠ, w11, . . . , wmlm), where:

– HΠ is a Hebbian SN P system unit of degree m and the rules of the presy-
naptic neuron ui are Ri = {Ri1, . . . , Rili} with i ∈ {1, . . . , m}.

– For each rule Rij with i ∈ {1, . . . , m} and j ∈ {1, . . . , li}, wij is a real
number which denotes the initial weight of the rule Rij.

Associating a weight to each rule means to consider an individual synapse for
each rule instead of a synapse associated to the whole neuron. The idea of consid-
ering several synapses between two neurons is not new in computational neuron
models. For example, in [18] the authors present a model for spatial and tempo-
ral pattern analysis via spiking neurons where several synapses are considered.
The same idea had previously appeared in [7]. Considering several rules in a
neuron and one synapse associated to each rule allows us to design an algorithm
for changing the weight (the efficacy) of the synapse according to the result of
the different inputs.

The concept of input of a extended Hebbian SN P system unit is similar to the
previous one. The information is encoded in time and the input of each neuron
denotes the moment in which the neuron is excited.

Definition 4. An extended Hebbian SN P system unit with input is a pair
(EHΠ, x), where HΠ is an Hebbian SN P system unit and x is an input for it.

The semantics. As we saw before, each xi in the input x = (x1, . . . , xm) repre-
sents the time in which the presynaptic neuron ui is activated. The formalization
of the activation of the neuron in this case differs from the Hebbian SN P system
units. The idea behind the formalization is still the same: the postsynaptic neu-
ron receives a little amount of electrical impulse according to the excitation time



of the presynaptic neuron and the efficacy of the synapsis. The main difference
is that we consider that there exist several synapses between one presynaptic
neuron and the postsynaptic one (one synapse for each rule in the neuron) and
the potential is transmitted along all these synapses according to their efficacy.

Extending the Hebbian SN P system units with efficacy in the synapses and
considering that there are electrical flow along all of them can be seen as a gen-
eralization of the Hebbian SN P system units. In Hebbian SN P system units
only one rule Rij is chosen in the presynaptic neuron ui and the contribution
emitted by Rij arrives to the postsynaptic neuron according to the decaying se-
quence. Since the weight wij multiplies the contribution in order to compute the
potential that arrives to the postsynaptic neuron, we can consider the Hebbian
SN P system unit as an extended Hebbian SN P system unit with the weight of
the chosen rule Rij equals to one and the weight of the remaining rules equals
to zero.

At the moment xi in the presynaptic neuron ui we will consider that all
rules ak → (anij , S); dij are activated. The potential on the postsynaptic neuron
depends on the contributions of the rules in the presynaptic neurons and the
efficacy of the respective synapses. Let us consider that at time xi the rule
ak → (anij , S); dij is activated and the efficacy of its synapse is represented by
the weight wij . When the rule ak → (anij , S); dij is triggered at the instant t0 we
look in S = (s1, . . . , sr) for the least l such that p × wij ≥ sl. Then sl spikes are
sent to the postsynaptic neurons according with the delay d in the usual way.

At time t0 + d + 1, the sl spikes arrive to the postsynaptic neurons. The
decay of such spikes is determined by the decaying sequence. If the spikes are
not consumed by the triggering of a rule in the postsynaptic neuron, they decay
and at time t0 + d + 2 we will consider that sl − sl+1 spikes have disappeared
and we only have sl+1 spikes in the postsynaptic neuron. If the spikes are not
consumed in the following steps by the triggering of a postsynaptic rule, at step
t0 + d + 1 + r− l the number of spikes will be decreased to sr = 0 and the spikes
are lost. The extended Hebbian SN P system unit produces an output if the rule
of the postsynaptic neuron v, apa∗/ap → a, is triggered.

3.2 The Learning Problem

Let us come back to the Hebbian SN P system units. In such units, provided an
input x, success can be reached or not (i.e., the postsynaptic rule is triggered or
not) depending on the non-deterministically rules chosen. In this way, the choice
of some rules is better than the choice of other ones, by considering that a rule
is better than another if the choice of the former leads us to the success with a
higher probability than the choice of the latter. Our target is to learn which are
the best rules according to this criterion.

Formally, a learning problem is a 4-uple (EHΠ, X, L, ε), where:

– EHΠ is an extended Hebbian SN P system unit.
– X = {x1, . . . xn} is a finite set of inputs of EHΠ .



– L : Z → Z is a function from the set of integer numbers onto the set of
integer numbers. It is called the learning function.

– ε is a positive constant called the rate of learning.

The output of a learning problem is an extended Hebbian SN P system unit.

Informal description of the algorithm. Let us consider an extended Hebbian
SN P system EHΠ , a learning function L : Z → Z and a rate of learning ε. Let us
consider an input x and we will denote by tx the moment when the postsynaptic
neuron reaches the potential for the trigger of the postsynaptic neuron. If such
potential is not reached then tx = ∞.

On the other hand, for each rule Rij ≡ ak → (anij , S); dij of a presynaptic
neuron we can compute the moment txij in which its contribution to the postsy-
naptic potential arrives to the postsynaptic neuron. It depends on the input x
and the delay dij of the rule txij = xi + dij + 1 where xi is the i-th component
of x. We are interested in the influence of the rule Rij on the triggering of the
postsynaptic neuron. For that we need to know the difference between the arrival
of the contribution txij and the moment tx in which the postsynaptic neuron is
activated.

For each rule Rij and each input x, such a difference is sx
ij = tx − txij

– If sx
ij = 0, then the postsynaptic neuron reaches the activation exactly in the

instant in which the contribution of the rule Rij arrives to it. This fact leads
us to consider that the contribution of Rij to the postsynaptic potential has
had a big influence on the activation of the postsynaptic neuron.

– If sx
ij > 0 and it is small, then the postsynaptic neuron reaches the activation

a bit later than the arrival of the contribution of the rule Rij to it. This fact
leads us to consider that the contribution of Rij to the postsynaptic potential
has influenced on the activation of the postsynaptic neuron due to the decay,
but it is not so important as in the previous case.

– If sx
ij < 0 or sx

ij > 0 and it is not small, then the contribution of Rij has no
influence on the activation of the postsynaptic neuron.

The different interpretations of small or big influence are determined by the
different learning functions L : Z → Z. For each rule Rij and each input x,
L(sx

ij) ∈ Z measures de degree of influence of the contribution of Rij to the
activation of the postsynaptic neuron produced by the input x.

According to the principle of Hebbian learning, the efficacy of the synapses
such that their contributions influence on the activation of the postsynaptic
neuron must be increased. The weights of synapses such that their contributions
have no influence on the activation of the postsynaptic neuron are decreased.

Formally, given an extended Hebbian SN P system HΠ , a learning function
L : Z → Z, a rate of learning ε and an input x of HΠ , the learning algorithm
outputs a new extended Hebbian SN P system HΠ ′ which is equal to HΠ , but
the weights: each wij has been replaced by a new w′

ij according to

w′
ij = wij + ε · L(sx

ij)



Depending on the sign of L(sx
ij), the rule Rij will increase or decrease its

efficacy. Note that L(sx
ij) is multiplied by the rate of learning ε. This rate of

learning is usual in learning process in artificial neural networks. It is usually a
small number which guarantees that the changes on the efficacy are not abrupt.

Finally, given a learning problem (HΠ, X, L, ε), the learning algorithm takes
x ∈ X and outputs HΠ ′. In the second step, the learning problem (HΠ ′, X −
{x}, L) is considered and we get a new HΠ ′. The process finishes when all the
inputs has been consumed and the algorithm outputs the last extended SN P
system unit.

The use of weights needs more discussion. The weights are defined as real
numbers and membrane computing devices are discrete. If we want to deal with
discrete computation in all the steps of the learning process we have to choose
the parameters carefully. The following result gives a sufficient constraint for
having an integer number of spikes at any moment.

Theorem 1. Let a be the greatest non-negative integer such that for all presy-
naptic potential nij there exists an integer xij such that nij = xij · 10a.

Let b be the smallest non-negative integer such that for all initial weight wij

and for the rate of learning ε there exist the integers kij and k such that wij =
kij · 10−b and ε = k · 10−b.

If a − b ≥ 0, then for all presynaptic potential nij and all the weights w
obtained along the learning process, nij · w is an integer number.

Proof. For the sake of simplicity, we denote by wr the update weight w after r
steps (and w0 is the initial weight). Then, it suffices to consider the recursive
generation of new weights wn+1 = wn + ε · L(sn), where sn is the corresponding
value in the step n, and therefore

wn+1 = w0 + ε · (L(s0) + · · · + L(sn)).

If we develop nij ·wn+1 according to the statement of the theorem, we have that
there exist the integers xij , k0 and k such that

nij · wn+1 = xij · 10a · [k0 · 10−b + (k · 10−b(L(s0) + · · · + L(sn)))]
= 10a−b · xij · [k0 + k(L(s0) + · · · + L(sn))]

Since xij · [k0 + k(L(s0) + · · · + L(sn))] is an integer number, if a − b ≥ 0 then
nij · wn+1 is an integer number.

4 A Case Study

Let us consider the Hebbian SN P system HΠ = (O, u1, u2, v) with uniform
decay, where:

– O = {a} is the alphabet;
– u1, u2 are the presynaptic neurons. The presynaptic neurons u1, u2 have asso-

ciated the sets of rules Ri, where R1 = {R11, R12, R13} and R2 = {R21, R22},
respectively, with



R11 ≡ a3000 → (a3000, S); 0 R21 ≡ a3000 → a1000; 0
R12 ≡ a3000 → (a2000, S); 1 R22 ≡ a3000 → a3000; 3
R13 ≡ a3000 → (a2000, S); 7

– The decaying sequence is S = (3000, 2800, 1000, 500, 0).
– v is the postsynaptic neuron which contains the rule a1200a∗/a1200 → a; 0.

Let EHΠ be the Hebbian SN P system unit HΠ extended with the initial
weights w11 = w12 = w13 = w21 = w22 = 0.5.

Let us consider the learning problem (EHΠ, X, L, ε) where

– EHΠ is the extended Hebbian SN P system unit described above,
– X is a set of 200 random inputs (x1

i , x
2
i ) with 1 ≤ i ≤ 200 and x1

i , x
2
i ∈

{0, 1, . . . , 5}
– L is the learning function L : Z → Z

L(s) =

⎧
⎨

⎩

3 if s = 0
1 if s = 1

−1 otherwise

– The rate of learning is ε = 0.001
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We have programmed an appropriate software for dealing with learning prob-
lems. After applying the learning algorithm, we obtain a new extended Hebbian
SN P system unit similar to EHΠ but with the weights w11 = 0.754, w12 =
0.992, w13 = 0.3, w21 = 0.454, w22 = 0.460. Figure 3 shows the evolution
of the weights of the synapses.

The learning process shows clearly the differences among the rules.

– The worst rule is R13. In a debugging process of the design of an SN P
system network such rule should be removed. The value of the weight has
decreased along all the learning process. This fact means that the rule has
never contributed to the success of the unit and then it can be removed.

– On the contrary, the best rules are R11 and R12. In most of the cases (not
all), these rules have been involved in the success of the unit.

– The other two rules R21 and R22 have eventually contributed to the success
of the unit but not so clearly as R11 and R21.

5 Conclusions and Future Work

The integration in a unique model of concepts from neuroscience, artificial neural
networks and spiking neural P systems is not an easy task. Each of the three fields
has its own concepts, languages and features. The work of integration consists
on choosing ingredients from each field and trying to compose a computational
device with the different parts. This means that some of the ingredients used in
the devices presented in this paper are not usual in the SN P systems framework.
Although the authors have tried to be as close to the SN P system spirit as
possible, a deeper study related to the input, the decay and the weights is needed.

More technical questions are related to the rate of learning and to the al-
gorithm of learning. Both concepts have been directly borrowed from artificial
neural networks and need a deeper study in order to adapt them to the specific
features of SN P systems.

As a final remark, we consider that this paper opens a promising line research
bridging SN P systems and artificial neural networks without forgetting the
biological inspiration and also opens a door to applications of SN P systems.
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