
Exchanging Data amongst Linked Data applications

Carlos R. Rivero, Inma Hernández,
David Ruiz, Rafael Corchuelo

Abstract

The goal of data exchange is to populate the data model of a target application using data
that come from one or more source applications. It is common to address data exchange
building on correspondences that are transformed into executable mappings. The problem
that we address in this article is how to generate executable mappings in the con-text of
Linked Data applications, that is, applications whose data models are semantic-web
ontologies. In the literature, there are many proposals to generate executable mappings.
Most of them focus on relational or nested-relational data models, which cannot be applied
to our context; unfortunately, the few proposals that focus on ontologies have important
drawbacks, namely: they solely work on a subset of taxonomies, they require the target data
model to be pre-populated or they interpret correspondences in isolation, not to mention the
propos-als that actually require the user to handcraft the executable mappings. In this
article, we present MostoDE, a new automated proposal to generate SPARQL executable
mappings in the context of Linked Data applications. Its salient features are that it does not
have any of the previous drawbacks, it is computationally tractable and it has been
validated using a series of experiments that prove that it is very efficient and effective in
practice.

Keywords

 Knowledge and data engineering · Data exchange · Linked Data · Executable mappings ·
SPARQL

C. R. Rivero (B) · I. Hernández · D. Ruiz · R. Corchuelo
University of Sevilla, ETSI Informática, Avda. Reina Mercedes, s/n, 41012 Seville, Spain
e-mail: carlosrivero@us.es

I. Hernández
e-mail: inmahernandez@us.es

D. Ruiz
e-mail: druiz@us.es

R. Corchuelo
e-mail: corchu@us.es

1 Introduction

As data become pervasive, there is an increasing need to integrate them [5,7,9,37]. Integration
is a common term by means of which researchers refer to a variety of problems, including:
data integration, which deals with answering queries posed over a target data model using
a number of source data models only [24,31]; model matching, aka model mapping, whose
goal is to unveil correspondences amongst the entities of two data models [17,49]; model
evolution, which focuses on the modifications of an existing data model in response to a need
for change [19,20,38]; or data exchange, which aims to populate the data model of a target
application using data that come from one or more source applications [4,16,18,33,34,41,
45,47].

This article focuses on data exchange, which has been paid much attention in the fields
of relational and nested-relational data models [4,18,45]. Recently, with the emergence of
the Semantic Web [57] and Linked Data applications [9,22], the problem is motivating many
authors to work on data exchange in the context of ontologies [16,33,34,41,47], that is, data
models that are represented using RDF, RDFS or OWL and queried using SPARQL [3,26,57].

Without an exception, data exchange has been addressed using mediators, which, in turn,
rely on so-called mappings [17,36]. In the literature, it is common to distinguish between two
kinds of mappings: correspondences and executable mappings [17,45,49,51]. A correspon-
dence is a hint that specifies which entities in the source and target data models correspond
to each other, that is, are somewhat related [17,49]; an executable mapping, aka operational
mapping, is an executable artefact that encodes how the correspondences must be interpreted,
that is, how to perform data exchange [45,51]. (By executable artefact, we mean a SPARQL
query, a Datalog rule, an XSLT script or other means to read, transform and output data). Note
that correspondences are inherently ambiguous since there can be many different executable
mappings that satisfy them, but generate different target data [2,8,16,45].

Creating mappings automatically is appealing because this relieves users from the bur-
den of handcrafting them [7,43,48,49]. Regarding correspondences, the literature provides
a number of proposals that help generate them (semi-) automatically [15,49], even in the
context of ontologies [12,13,17]. Generating executable mappings automatically in the con-
text of relational and nested-relational data models has been studied extensively [2,23,45].
Unfortunately, the proposals in this context are not applicable to ontologies due to the inher-
ent differences amongst these data models [35,38,51]. This has motivated several authors
to work on proposals that are specifically tailored towards ontologies, namely: Mergen and
Heuser [33] presented a proposal that can deal with only a subset of taxonomies; Qin et al.
[47] devised a proposal that requires the target model to be pre-populated; the proposal by
Mocan and Cimpian [34] may lead to incoherent target data since it interprets correspon-
dences in isolation, without taking their interrelationships into account; Dou et al. [16] and
Parreiras et al. [41] presented two proposals that require the user to handcraft the executable
mappings.

In this article, we present a proposal called MostoDE to automatically generate SPARQL
executable mappings in the context of ontologies that rely on quite a complete subset of the
OWL 2 Lite profile. The salient features of our proposal are as follows: it does not suffer
from any of the problems we mentioned before regarding other proposals in the literature;
it is computationally tractable, since O(es

4 et + es et
4 + es

2 et
2(es + et)) is an upper bound

to its worst-time complexity, where es and et denote the number of entities in the source
and target ontologies, respectively; furthermore, it has been validated using 3,783 non-trivial
experiments in which the time to execute our algorithms never exceeded one second, and the
exchanged data were as expected by experts in every case. These results suggest that it is

very efficient in practice and that the interpretation of correspondences that our executable
mappings encode is appropriate. We presented a preliminary 14-page version of these results
in [51]; in that version, we did not take incomplete data exchange problems into account
(cf. Sect. 4.4), which, together with our formalisation, analysis of complexity and validation,
constitute the major differences.

The rest of the article is organised as follows: in Sect. 2, we report on several related
proposals and compare them with ours; Sect. 3 introduces the conceptual framework on
which our proposal relies; Sect. 4 presents our algorithms; in Sect. 5, we first prove that
they are correct and then prove that they are computationally tractable; in Sect. 6, we present
the results of our validation; finally, we present our conclusions in Sect. 7. Appendix 8
characterises the subset of the OWL 2 Lite profile with which our proposal can deal.

2 Related work

The initial work on data exchange in the context of ontologies put the emphasis on defining the
problem and the strategies to address it, which mainly consisted in devising handcrafted cor-
respondences and performing data exchange using ad hoc techniques [32,39]. Later proposals
performed data exchange using reasoners [16,34,56] or SPARQL query engines [41,44,51]
instead of ad hoc techniques.

The majority of current proposals in the literature rely on correspondences and executable
mappings that interpret them; there are a few proposals, however, that require the user to
provide executable mappings using ad hoc languages. Correspondences can be handcrafted
using visual tools [1,48,50], or discovered automatically using model matching proposals [13,
12,15,17,30,40,49]. In either case, finding them is orthogonal to the problem of generating
executable mappings, which is the reason why we do not discuss them further; in the sequel,
we assume that a set of correspondences is available. The most closely related proposals in
the field of ontologies were presented by Mergen and Heuser [33], Qin et al. [47], Mocan
and Cimpian [34], Dou et al. [16] and Parreiras et al. [41]; Popa et al. [45] presented the
state-of-the-art proposal in the context of nested-relational data models. Below, we report on
these proposals and compare them to ours.

Mergen and Heuser [33] devised an automated proposal that works with a subset of
taxonomies in which there are only classes, data properties and single specialisations amongst
classes. Their algorithm analyses every class correspondence independently and tries to find
the set of correspondences that are involved in its properties and superclasses; this helps
identify data that must be exchanged together and the many possible exchanges that can
be performed. These subsets of correspondences are then translated into an ad hoc script
language that was devised by the authors. Contrarily, our proposal can deal with quite a
complete subset of ontologies that adhere to the OWL 2 Lite profile, which allows for object
properties and multiple specialisations between classes and properties. Furthermore, our
proposal generates executable mappings that are represented in standard SPARQL, which
allows to perform data exchange using a SPARQL engine.

Qin et al. [47] devised a semi-automatic proposal that relies on data mining. They first
require the user to select a subset of source and target data for each data property; these are
used to feed a mining algorithm that attempts to discover a set of queries that can exchange
these data; these queries are then sorted according to an ad hoc metric, and the top ones are
selected and transformed into Datalog rules, SWRL rules or Web-PDDL, an ad hoc language
that was designed by the authors. The most important problem with this proposal is that it
requires the target data model to be pre-populated so that the data mining algorithm can work,

which is not the case in common data exchange problems [2,7,18,45]; if the target cannot be
pre-populated with actual data, then the user must provide representative-enough synthetic
data. Furthermore, it requires the user to select appropriate subsets of data from both the
source and target data models, that is, subsets of data that capture variability well enough;
this is not a trivial task since the data have to be selected very carefully to avoid over-fitting,
that is, generating executable mappings that can deal with only the selected training data.
Contrarily, our proposal does not require the target data model to be pre-populated, and it
does not require the user to provide any additional data to compute the resulting executable
mappings.

Mocan and Cimpian [34] studied the problem of data exchange in the context of semantic-
web services. They presented a formal framework to describe correspondences in terms of
first-order logic formulae that can be mapped onto WSML rules very easily. Their proposal
is similar in spirit to the one by Omelayenko [39], whose focus was on B2B applications, and
the one by Maedche et al. [32], whose focus was on modelling correspondences in a general-
purpose setting. The main difference with the previous proposals is that Mocan and Cimpian
went a step beyond formalising correspondences and devised a mediator that executes them
using a WSML reasoner. Note that no attempt is made to identify groups of correspondences
that must be taken into account together, which may easily lead to incoherent target data,
that is, data that do not satisfy the constraints in the target ontology [2,8,45]. Contrarily, our
proposal identifies groups of correspondences that must be analysed together, which impedes
the resulting executable mappings from producing incoherent data.

Parreiras et al. [41] presented a proposal within the framework of model-driven engi-
neering. They extended the active template library (ATL) metamodel to support OWL 1
ontologies, which allows to express constraints on them using the object constraint language
(OCL). They devised a mapping language called MBOLT by means of which users can
express executable mappings that are later transformed into SPARQL and Java by means
of a library of ATL transformations. Their proposal does not build on correspondences, but
requires users to handcraft and maintain their executable mappings using MBOLT. This is
similar in spirit to the proposal by Dou et al. [16]; the difference is the language used to
represent the executable mappings. Contrarily to these proposals, ours is able to compute
the executable mappings automatically, which saves the user from the burden of designing
them.

The previous proposals have problems that hinder their applicability in practice: Mergen
and Heuser [33] deal with only a subset of taxonomies, Qin et al. [47] require the target model
to be pre-populated, Mocan and Cimpian [34] interpret correspondences in isolation, and Dou
et al. [16] and Parreiras et al. [41] require the user to handcraft executable mappings. This
motivated us to work on a new proposal to overcome these limitations. Our first step was to
study the literature on data exchange in the context of relational, nested-relational and XML
data models. Relational data models are a special case of nested-relational data models, which
is the reason why we do not provide any further details [45]. A nested-relational data model
is defined by means of a tree that comprises a number of nodes, which may be nested and
have a number of attributes. Furthermore, it is also possible to specify referential constraints
that relate attributes in this model. Fagin et al. [18] and Arenas and Libkin [4] presented
the theoretical foundations for performing data exchange using executable mappings in the
context of relational and XML data models, respectively.

Popa et al. [45] devised the state-of-the-art proposal regarding data exchange in nested-
relational data models. Although it seems efficient and effective enough to be used in practical
applications, it cannot be applied in the context of ontologies. The main reason is that it
builds on computing primary paths from the root node of a data model to every attribute

Fig. 1 A running example: exchanging data from DBpedia 3.2 to DBpedia 3.6

in this model and then applying a variation of the well-known Chase algorithm that takes
referential constraints into account [14]. In general, an ontology is not a tree, but a graph in
which there is not a root node, which prevents us from computing primary paths, and it can
contain cycles, which prevents us from using the Chase algorithm. There are more differences
between nested-relational data models and ontologies [35,38,51]. One of the most important
is that executable mappings are encoded using XQuery or XSLT in the nested-relational
context; these languages build on the structure of the XML documents on which they are
executed; contrarily, in an ontology, these mappings must be encoded in a language that is
independent from the structure of the documents used to represent it, since the same ontology
may be serialised to multiple languages, e.g., XML, N3 or Turtle.

3 Conceptual framework

In this section, we present the conceptual framework that we use to describe our proposal.
We first define its foundations, triples, ontologies, executable mappings and data exchange
problems; then, we define precisely what satisfying a constraint or a correspondence means.
To illustrate our proposal, we use a non-trivial, real-world data exchange problem that is
based on the evolution from DBpedia 3.2 to DBpedia 3.6 [10], which involved many major
structural changes (cf. Fig. 1).

3.1 Foundations

Entities lay at the heart of every ontology, and they are denoted by means of URIs. Entities
can be classified into classes and properties; the latter can be further classified into data
properties and object properties. We denote the sets of classes, data properties and object
properties as follows:

[Class, DataProperty, ObjectProperty]

and define the set of entities and properties as follows:

Enti t y == Class ∪ Property

Property == Data Property ∪ Object Property

Ontologies also build on resources, which refer to everything that can be identified by
means of a URI, literals, which denote values of simple data types, and blank nodes, which
denote anonymous data. We denote these sets as follows:

[Resource, Literal, Blank Node]
Enti t y is a subset of Resource, and Resource, Literal, and Blank Node are pairwise

disjoint sets [28]:

Example 1 In Fig. 1, we denote entities as rounded boxes, for example, dbp32:Person is
a class, dbp32:academyaward is a data property, dbp32:starring is an object property,
and they all are represented by means of URIs. We use the W3C notation to represent
literals and blank nodes; for instance, ‘Best Actor ’ˆ̂ xsd:string is a sample literal, and
_:Best Actor Award is a sample blank node.

3.2 Triples

Triples are three-tuples in which the first element is called subject, the second predicate and
the third object. They help describe both the structure and data of ontologies. We define the
set of all triples as follows:

T riple == Subject × Predicate × Object

Subject == Resource ∪ Literal ∪ Blank Node

Predicate == Property ∪ Built I nConstruct

Object == Resource ∪ Literal ∪ Blank Node

Note that there is a contradiction between the RDF and the SPARQL recommendations.
On the one hand, the RDF recommendation does not allow to use literals in the subject of a
triple [28]; on the other hand, the SPARQL recommendation actually allows to use literals
in the subject of a triple [46]. Therefore, we can build triples in which the subject is a literal
using SPARQL. Since our research focuses on SPARQL queries, we have decided to include
literals in the subject of triples.

Note, too, that a predicate can be a property or a built-in construct. By built-in construct,
we mean a URI that denotes one of the predefined RDF, RDFS and Mosto constructs with
which we deal. (In the sequel, we use prefix mosto: to refer to the constructs that we have
defined in our proposal). We define these sets as follows:

Built I nConstruct == {rd f :t ype} ∪ ConstraintConstruct ∪
CorrespondenceConstruct

ConstraintConstruct == {rd f s:subClassO f, rd f s:subPropertyO f,

rd f s:domain, rd f s:range,

mosto:strongDomain, mosto:strongRange}
CorrespondenceConstruct == {mosto:classT oClass, mosto:dataT oData,

mosto:objectT oObject, mosto:dataT oClass}
ConstraintConstruct does not actually include every possible construct in the OWL 2
Lite profile, but the minimal subset of constraints with which we deal. Section 3.6 pro-
vides additional details regarding the semantics of this subset of constraints, and ‘Appen-
dix 8’ provides additional details on how to translate other constructs into this minimal
subset.

Set CorrespondenceConstruct includes the correspondence constructs with which we
can deal. They allow to establish correspondences from classes to classes, data proper-
ties to data properties, object properties to object properties and data properties to classes.
Section 3.7 provides additional details regarding the semantics of these constructs.

For the sake of convenience, we also define the following subsets of triples:

Constraint == Subject × ConstraintConstruct × Object

Correspondence == Subject × CorrespondenceConstruct × Object

Example 2 The following are examples of triples:

(dbp32:starring, rd f s:domain, dbp32:Film)

(dbp32:Un f orgiven, rd f :t ype, dbp32:Film)

(dbp32:Un f orgiven, dbp32:starring, dbp32:Clint Eastwood)

(dbp32:starring, mosto:objectT oObject, dbp36:starring)

The first triple asserts that dbp32:starring is an object property whose domain is class
dbp32:Film; the second triple asserts that dbp32:Un f orgiven is of type dbp32:Film;
the third triple asserts that dbp32:Un f orgiven is related to dbp32:Clint Eastwood by
means of object property dbp32:starring; the fourth triple asserts that object prop-
erty dbp32:starring in DBPedia 3.2 is related to object property dbp36:starring in
DBPedia 3.6.

In Fig. 1, we represent constraint constructs by means of labelled arrows and
correspondences by means of labelled dashed arrows. Note that data properties like
dbp32:academyaward do not have an explicit range since the OWL 2 Lite profile states
that the object of a triple with the rd f s:range construct must be a class [6]; data properties
are then implicitly assumed to range over the set of literals.

3.3 Ontologies

An ontology is a representation of a data model, which comprises a description of the structure
of the data and the data themselves. For the purpose of this article, we just need the description
of the structure. An ontology can thus be defined by means of a two tuple that consists of
a set of entities and a set of constraints. We then define the set of all ontologies as follows,
where P denotes powerset:

Ontology == {E : PEnti t y; C : PConstraint |
∀s : Subject; p : ConstraintConstruct; o : Object ·

(s, p, o) ∈ C ⇒ {s, o} ⊆ E}
For the sake of convenience, we define the following projection functions:

Furthermore, we introduce the concept of path in an ontology, which comprises a sequence
of one or more entities:

Path == seq1 Enti t y

Given an ontology, we may wish to compute the set of all paths in that ontology, which is
formally defined by the following function:

An ontology is connected if there is a path between any two entities, or there exists an
intermediate entity that is connected to them by means of two paths. This is formally defined
by the following predicate:

Example 3 In Fig. 1, the ontology on the left is not connected, for example, there are not any
paths that connect entities dbp32:academyawards and dbp32:imdbI d , and there does not
exist another entity that has a path to them both. Note, however, that the ontology formed
by entities dbp32:academyawards and dbp32:Actor , together with their rd f s:domain
constraint is connected.

3.4 Executable mappings

In our proposal, executable mappings are SPARQL conjunctive queries of the construct type.
Such queries consist of a construct clause that specifies which triples have to be constructed
in the target ontology, and a where clause that specifies which triples should be retrieved
from the source ontology. These clauses can then be represented as sets of triple patterns
that are implicitly connected by means of a logical. A triple pattern generalises the concept
of triple by allowing the subject, the predicate and/or the object to be variables. In the rest of
this article, we refer to triple patterns as patterns for the sake of brevity. We denote the set
of all variables as follows:

[V ar i able]

Fig. 2 A sample executable mapping

and define the set of all patterns as follows:

Pattern == Subject? × Predicate? × Object?

Subject? == Subject ∪ V ariable

Predicate? == Predicate ∪ V ariable

Object? == Object ∪ V ariable

An executable mapping can thus be represented as a two tuple in which the first compo-
nent corresponds to the set of patterns in the construct clause, and the second component
corresponds to the set of patterns in the where clause. We then define the set of all executable
mappings as follows:

ExecutableMapping == PPattern × PPattern

For the sake of convenience, we define an instance of a class as a pattern of the form:
(s, rd f :t ype, c), in which s ∈ Subject?; c ∈ Class; and an instance of a property as a pattern
of the form: (s, p, o), in which s ∈ Subject?; p ∈ Property; o ∈ Object?. Furthermore,
we define the following projection functions:

Note that T riple ⊆ Pattern, which implies that instances may refer to both triples and
patterns, and that the previous projection functions can be applied to both triples and patterns.

Example 4 Figure 2 shows a sample executable mapping that comprises four patterns in
the construct clause and three patterns in the where clause. In this example, ?x and ?y are
variables, and _:a is a blank node. This executable mapping retrieves source instances whose
type is dbp32:W ork and dbp32:Film, which are related to the instances of dbp32:imdbI d;
it builds target instances of type dbp36:W ork and dbp36:Film, which are related to the
instances of dbp36:imdbI d and dbp36:abstract . Note that the object of the instance of
property dbp32:imdbI d is copied to the object of the instance of property dbp36:imdbI d;

however, the object of the instance of property dbp36:abstract does not exist in the source;
therefore, we use a blank node to generate anonymous data.

3.5 Data exchange problems and kernels

A data exchange problem consists of a source ontology, a target ontology and a set of corre-
spondences between some of their entities. We define the set of all data exchange problems
as follows:

DataExchangeProblem == {o1, o2 : Ontology; V : P Correspondence |
∀v : Correspondence · v ∈ V ⇒

subject (v) ∈ enti ties(o1) ∧
object (v) ∈ enti ties(o2)}

For the sake of convenience, we define the following projection functions:

Given two data exchange problems, it may be necessary to determine if the former is
contained into the latter, that is, if the entities, constraints and correspondences of the former
are included in the entities, constraints and correspondences of the latter. We formally define
the containment relation as follows:

A kernel describes the structure of a subset of data in the source ontology that needs to
be exchanged as a whole, and the structure of a subset of data in the target ontology that
needs to be created as a whole; in other words, if more or less data are considered, then the
exchanged data would not satisfy target constraints and/or correspondences. Intuitively, a
kernel is contained in a given data exchange problem, its source and target ontologies are
connected, and there are not any source constraints, or target constraints, or correspondences
in the data exchange problem that can be added to it.

At a first glance, it might be surprising that we take source constraints into account, since
source data should ideally satisfy them; however, in the decentralised environment of Linked

(a)

(b)

Fig. 3 Sample data exchange problems. a A sample data exchange problem that is not a kernel. b A sample
kernel

Data applications, it is common that real-world ontologies have data that do not satisfy their
constraints [11].

We define the function that identifies the kernels of a given data exchange problem as
follows:

Example 5 Figure 1 shows a sample data exchange problem that is not a kernel, since
its source and target ontologies are not connected, for example, there are not any paths
that connect entities dbp32:academyawards and dbp32:imdbI d . Figure 3a shows a data
exchange problem that is contained in the data exchange problem in Fig. 1; it is connected,
but it is not a kernel since it includes entity dbp32:Actor but does not include constraint
(dbp32:Actor, rd f s:subClassO f, dbp32:Artist). Furthermore, Fig. 3b shows a sample
kernel since it is contained in the data exchange problem in Fig. 1, both the source and target
ontologies are connected, and there are not any further entities, constraints or correspondences
that can be added to this problem.

3.6 Satisfaction of constraints

Given an executable mapping, it is important to know whether it satisfies a given constraint or
not. This prevents us from retrieving or constructing data that does not satisfy the constraints in
the source or the target of a data exchange problem, respectively. In the following paragraphs,
we describe how to infer whether a set of patterns in the construct or the where clause of an
executable mapping satisfies a given constraint or not. We use symbol |� to denote satisfaction,
T to denote a set of patterns, c, c1, and c2 to denote classes, and p, p1 and p2 to denote
properties.

Subclassification constraints: A set of patterns satisfies a subclass or a subproperty con-
straint if, for every instance of a given class or property, we may find another instance of the
corresponding subclass or subproperty, respectively. The following inference rules formalise
this idea:

[SC] ∀s : Subject? · (s, rd f :t ype, c1) ∈ T ⇒ (s, rd f :t ype, c2) ∈ T

T |� (c1, rd f s:subClassO f, c2)

[SP] ∀s : Subject?; o : Object? · (s, p1, o) ∈ T ⇒ (s, p2, o) ∈ T

T |� (p1, rd f s:subPropertyO f, p2)

Domain and range constraints: A set of patterns satisfies a domain or a range constraint
regarding a property if, for every property instance that states that a subject is related to an
object, there are additional class instances that state that the type of the subject or the object
are the appropriate classes, respectively. The following inference rules formalise this idea:

[D] ∀s : Subject?; o : Object? · (s, p, o) ∈ T ⇒ (s, rd f :t ype, c) ∈ T

T |� (p, rd f s:domain, c)

[R] ∀s : Subject?; o : Object? · (s, p, o) ∈ T ⇒ (o, rd f :t ype, c) ∈ T

T |� (p, rd f s:range, c)

Strong domain and strong range constraints: We deal with two additional con-
straints to which we refer to as strong domain (mosto:strongDomain) and strong range
(mosto:strongRange). Intuitively, if a class is the strong domain of a property, that means
that this property has a minimum cardinality of one regarding that class; similarly, if a class is
the strong range of a property, that means that for every instance of that class, there must be a
subject that is related to that instance by means of the property. Note that these semantics are
expressed in OWL 2 as a combination of several triples. For the sake of simplicity, we intro-
duced mosto:strongDomain and mosto:strongRange as shorthands, cf. ‘Appendix 8’ for
further details. The following inference rules formalise the satisfaction of these constraints:

[SD] ∀s : Subject? · (s, rd f :t ype, c) ∈ T ⇒ ∃o : Object? · (s, p, o) ∈ T

T |� (c, mosto:strongDomain, p)

[SR] ∀o : Object? · (o, rd f :t ype, c) ∈ T ⇒ ∃s : Subject? · (s, p, o) ∈ T

T |� (c, mosto:strongRange, p)

Example 6 To illustrate the satisfaction of constraints, we use the following sample triples:

(dbp32:Clint Eastwood, rd f :t ype, dbp36:Artist)
(dbp32:Clint Eastwood, rd f :t ype, dbp36:Actor)

(dbp32:Un f orgiven, rd f :t ype, dbp36:W ork)

(_:Best Actor Award, rd f :t ype, dbp36:Award)

(dbp32:Un f orgiven, dbp36:starring, dbp32:Clint Eastwood)

Every instance of type dbp36:Actor is also of type dbp36:Artist ; every instance of
property dbp36:starring has an instance of type dbp36:W ork as subject. Therefore, the
following constraints are satisfied by the previous set of triples:

(dbp36:Actor, rd f s:subClassO f, dbp36:Artist)
(dbp36:starring, rd f s:domain, dbp36:W ork)

Additionally, there are not any instances of type dbp36:Person; the object of the
instance of property dbp36:starring is not of type dbp36:Person; furthermore, blank

node _:Best Actor Award is not related to any instance of property dbp36:academy Award .
As a conclusion, the following constraints are not satisfied in the previous set of triples:

(dbp36:Artist, rd f s:subClassO f, dbp36:Person)

(dbp36:starring, rd f s:range, dbp36:Person)

(dbp36:Award, mosto:strongRange, dbp36:academy Award)

3.7 Satisfaction of correspondences

Given an executable mapping, it is also important to know whether it satisfies a given corre-
spondence or not. This prevents the executable mapping from constructing data that do not
satisfy the correspondences in a data exchange problem.

In the next paragraphs, we describe how to infer whether an executable mapping satisfies a
correspondence or not. We use symbol |� to denote satisfaction, TC to denote a set of patterns
in a construct clause, TW to denote a set of patterns in a where clause, c, c1 and c2 to denote
classes, p, p1 and p2 to denote data properties, and q1 and q2 to denote object properties.

Class-to-class correspondences: These correspondences specify that an instance of a class
in the source has to be reclassified in the target. We formalise this idea as follows:

[C2C] ∀s : Subject? · (s, rd f :t ype, c1) ∈ TW ⇒ (s, rd f :t ype, c2) ∈ TC

(TC , TW) |� (c1, mosto:classT oClass, c2)

Data property to data property correspondences: Such a correspondence specifies that, if
there is an instance of a data property in the source, then there must be another instance of
the corresponding data property in the target that must have the same object. Note that the
correspondence itself cannot specify what the subject is. This idea is formalised as follows:

[D2D] ∀s : Subject?; o : Object? · (s, p1, o) ∈ TW ⇒ ∃s′ : Subject? · (s′, p2, o) ∈ TC

(TC , TW) |� (p1, mosto:dataT oData, p2)

Object property to object property correspondences: These correspondences specify that,
for every instance of an object property in the source, there must exist another instance of
the corresponding object property in the target. Note that the correspondence itself cannot
specify which the subjects and the objects are. This idea is described formally as follows:

[O2O] ∀s : Subject?; o : Object? · (s, q1, o) ∈ TW ⇒ ∃s′ : Subject?; o′ : Object? · (s′, q2, o′) ∈ TC

(TC , TW) |� (q1, mosto:objectT oObject, q2)

Data property to class correspondences: A correspondence of this kind specifies that the
object of every instance of a data property in the source must be reclassified in the target.
The following inference rule formalises this idea:

[D2C] ∀s : Subject?; o : Object? · (s, p, o) ∈ TW ⇒ (o, rd f :t ype, c) ∈ TC

(TC , TW) |� (p, mosto:dataT oClass, c)

Example 7 To illustrate the satisfaction of correspondences, we use the following sample
triples in the where clause:

(dbp32:Clint Eastwood, rd f :t ype, dbp32:Person)

(dbp32:Clint Eastwood, rd f :t ype, dbp32:Artist)
(dbp32:Un f orgiven, dbp32:imdbI d, ‘0105695’ˆ̂ xsd:string)

(dbp32:PaleRider, dbp32:imdbI d, ‘0089767’ˆ̂ xsd:string)

(dbp32:Un f orgiven, dbp32:starring, dbp32:Clint Eastwood)

(dbp32:Un f orgiven, dbp32:director, dbp32:Clint Eastwood)

(dbp32:Clint Eastwood, dbp32:academyawards, dbp32:Best Actor Award)

And the following sample triples in the construct clause:

(dbp32:Clint Eastwood, rd f :t ype, dbp36:Artist)
(dbp32:PaleRider, dbp36:imdbI d, ‘0105695’ˆ̂ xsd:string)

(dbp32:PaleRider, dbp36:imdbI d, ‘0089767’ˆ̂ xsd:string)

(dbp32:Un f orgiven, dbp36:starring, dbp32:Clint Eastwood)

(dbp32:Best Actor Award, rd f :t ype, dbp36:Award)

Every instance of type dbp32:Artist in the where clause is reclassified as an instance of
type dbp36:Artist in the construct clause; for every instance of property dbp32:imdbI d
in the where clause, there exists an instance of property dbp36:imdbI d in the construct
clause, and both instances have the same object in common; for every instance of property
dbp32:starring in the where clause, there exists an instance of property dbp36:starring
in the construct clause; furthermore, for every instance of property dbp32:academyawards
in the where clause, there exists an instance of type dbp36:Award , and the object of the
former is the same as the object of the latter. Therefore, the following correspondences are
satisfied in the previous sets of triples:

(dbp32:Artist, mosto:classT oClass, dbp36:Artist)
(dbp32:imdbI d, mosto:dataT oData, dbp36:imdbI d)

(dbp32:starring, mosto:objectT oObject, dbp36:starring)

(dbp32:academyawards, mosto:dataT oClass, dbp36:Award)

Additionally, every instance of type dbp32:Person in the where clause is not reclassified
as dbp36:Person in the construct clause; for every instance of property dbp32:director in
the where clause, there does not exist an instance of property dbp36:director in the construct
clause. As a conclusion, the following correspondences are not satisfied in the previous sets
of triples:

(dbp32:Person, mosto:classT oClass, dbp36:Person)

(dbp32:director, mosto:objectT oObject, dbp36:director)

4 Description of our proposal

Our proposal relies on the algorithm in Fig. 4. It takes a data exchange problem as input and
outputs a set of executable mappings. The algorithm loops through the set of correspondences;
the first step allows to compute every kernel of the input data exchange problem; later, these
kernels are transformed into executable mappings by means of the following steps: computing
initial executable mappings, computing variable links in the previous mappings, computing
and applying substitutions. In the following subsections, we provide additional details on
each step.

4.1 Step 1: computing kernels

For every correspondence in the data exchange problem being analysed, our algorithm
constructs a kernel; for instance, Fig. 5 presents the kernel that is associated with the corre-
spondence between property dbp32:academyaward and class dbp36:Award in our run-
ning example, which specifies that, for every instance of property dbp32:academyaward
that is found in the source ontology, the object of this instance must be classified as
dbp36:Award in the target ontology. But property dbp32:academyaward has a domain
constraint that relates it to class dbp32:Actor , which has a subclassing constraint that

Fig. 4 Algorithm to generate executable mappings

Fig. 5 A sample kernel

relates it to class dbp32:Artist , which has an additional subclassing constraint that
relates it to class dbp32:Person. As a conclusion, the object of an instance of prop-
erty dbp32:academyaward cannot be exchanged in isolation, but in the context of an
instance of class dbp32:Actor that acts as the subject, which is also an instance of classes
dbp32:Artist and dbp32:Person. Similarly, we cannot simply classify the object of prop-
erty dbp32:academyaward as an instance of class dbp36:Award in the target data model,
since this class is the strong range of property dbp36:academy Award , which in turn is
related to class dbp36:Artist by means of domain constraints, and to dbp36:Person by
means of a subclassing constraint. As a conclusion, the instance of dbp36:Award cannot be

Fig. 6 Algorithm to find subontologies

Fig. 7 Algorithm to find the correspondences between two subontologies

constructed in isolation, but in the context of an instance of property dbp36:academy Award
that has an instance of classes dbp36:Artist and dbp36:Person as subject.

In the algorithm in Fig. 4, the computation of the kernel that is associated with a correspon-
dence is performed at lines 10–12. Given correspondence v, we first find the subontologies
that are associated with the subject and the object of v and then find the correspondences
between them.

We present the algorithm to compute subontologies in Fig. 6. It works on an input entity
e and an input ontology o, and returns an ontology (E, C) that results from exploring e in
depth. The algorithm iterates over a set of entities Q that is initialised to {e}; intuitively,
Q stores the entities that remain to be explored. In each iteration of the main loop, the
algorithm removes an entity f from set Q and then computes the subset of constraints whose
subject is f , which is immediately added to the resulting set of constraints C ; note, however,
that we only add to Q the objects that have not been explored so far to prevent the algorithm
from looping forever in the many common cases in which the ontology has cycles; set E
keeps record of the entities that have been explored so far.

We present the algorithm to compute the correspondences between two subontologies in
Fig. 7. It takes two ontologies o1 and o2 and a set of correspondences V as input. The output
is computed as the subset of correspondences from V whose subject belongs to the entities
of ontology o1, and the object belongs to the set of entities of ontology o2.

(a) (b)

Fig. 8 Sample initial executable mapping and variable links

4.2 Step 2: computing initial executable mappings

A kernel is just a starting point; it needs to be transformed into an executable mapping. This
requires to transform its source and its target subontologies into two sets of initial patterns.
The set that corresponds to the where clause must include a pattern to retrieve every instance
of an entity in the source ontology of the kernel, whereas the set that corresponds to the
construct clause must include a pattern to construct an instance of every entity in the target
ontology of the kernel.

Figure 8a presents the initial executable mapping of the kernel in Fig. 5. For exam-
ple, to retrieve the instances of class dbp32:Actor , we need a pattern of the form
(?y3, rd f :t ype, dbp32:Actor), where ?y3 denotes a fresh variable. Similarly, there is a
property called dbp32:academyaward , which requires a pattern of the form (?y4, dbp32:
academyaward, ?y5), where ?y4 and ?y5 denote fresh variables, as well. Note that, intu-
itively, we should link variables ?y3 and ?y4 since the subject of an instance of property
dbp32:academyaward must be an instance of class dbp32:Actor ; the initial executable
mapping does not take these links into account, since computing them is the goal of the next
step.

In the algorithm in Fig. 4, the computation of the initial executable mapping is performed
at lines 14 and 15. We present the algorithm to initialise the patterns in Fig. 9. It takes a set
of entities E as input and returns a set of patterns T . The resulting set is initialised to the
empty set, and then the algorithm iterates over the set of entities. In each iteration, it adds a
new pattern to the result set according to the type of entity being analysed, namely: for every
class c, it adds a pattern of the form (?x, rd f :t ype, c), where ?x denotes a fresh variable;
and for every property p, it adds a pattern of the form (?y, p, ?z), where ?y and ?z denote
two fresh variables.

4.3 Step 3: computing variable links

The variables in the patterns generated by the previous step are pairwise distinct. This step is
responsible for finding links amongst these variables. To find them, we need to analyse the
constraints and the correspondences in the kernel that is associated with the correspondence
being analysed.

Fig. 9 Algorithm to initialise patterns

Figure 8b presents the variable links regarding the initial executable mapping in Fig. 8a.
Note that links can be naturally represented as an undirected graph in which the nodes
are variables, and the edges indicate which variables are linked. For example, property
dbp32:academyaward in our running example has a constraint of type rd f s:domain that
indicates that its domain is class dbp32:Actor ; this means that we need to locate the pattern
that we generated for these entities and link their corresponding subjects, i.e., ?y3 and ?y4.
Similarly, there is a correspondence between property dbp32:academyaward and class
dbp36:Award; this means that we need to locate the pattern that we generated for these
entities and link ?y5 and ?x3.

We formally define the sets of links as follows:

Link == V ariable × V ariable

In the algorithm in Fig. 4, the computation of variable links is performed at lines 17–19.
We first find the links that are due to the constraints in the source ontology, then the links that
are due to the constraints in the target ontology, and finish the process by finding the links
that are due to the correspondences.

We present the algorithms to find the variable links due to constraints and correspondences
in Figs. 10 and 11, respectively. They both operate very similarly: they iterate over the set
of input constraints or correspondences, find the patterns associated with their subjects and
objects and create the appropriate links. The only feature that requires a little explanation
is that correspondences between object properties do not result in any links. The reason is
that, according to inference rule O2O (cf. Sect. 3.7), an object property to object property
correspondence does not specify how to link the subject or the object of the target instance;
it only specifies that an instance of the source property must exist in the source patterns, and
an instance of the target property must exist in the target patterns.

The algorithm to find the pattern that is associated with an entity is presented in Fig. 12.
Note that, due to the way we initialise patterns, their subject is always a variable; only the
predicate or the object can be entities. This is the reason why this algorithm does not check
the subject of the patterns it examines.

4.4 Step 4: computing and applying substitutions

The result of the previous step is a graph in which every connected component includes a
group of variables that are linked, that is, a group of variables that should actually be the

Fig. 10 Algorithm to find variable links using constraints

Fig. 11 Algorithm to find variable links using correspondences

Fig. 12 Algorithm to find a pattern of an entity

(a) (b)

Fig. 13 Resulting substitution and executable mapping

same. Consequently, the next step is to transform this graph into a substitution in which every
variable in every connected component is replaced for the same fresh variable and then apply
it to the initial executable mapping that we computed in the second step.

Figure 13a highlights the two connected components in the variable links in Fig. 8b;
the substitution maps the variables in each connected component to fresh variables ?z1 and
?z2, respectively. Figure 13b shows the executable mapping that results from applying the
previous substitution to the initial executable mapping in Fig. 8a.

In this example, every variable in the construct clause is linked to a variable in the where
clause. There can be, however, cases in which there exists a variable in the construct clause
that is not linked to any variables in the where clause. Whenever this happens, the interpreta-
tion is that the set of correspondences is not complete enough to describe the data exchange
problem that is being analysed. In some situations, the set of correspondences can be com-
pleted to solve the problem, but there are others in which this is not possible because the
target ontology provides more information than the source ontology; for instance, DBPe-
dia 3.6 provides information about work abstracts (property dbp36:abstract), which is not
present in DBpedia 3.2. In these cases, it makes sense to generate a blank node that acts
as a placeholder; in other words, instead of failing to exchange any data due to this prob-
lem, we can exchange as much data as possible and highlight special cases using blank
nodes. These placeholders are known as labelled nulls in the context of nested-relational data
models [18].

We formally define a substitution as a finite map from variables onto variables and blank
nodes, namely:

Substi tution == V ariable � �→ V ariable ∪ Blank Node

In the algorithm in Fig. 4, the computation and the application of substitutions are per-
formed at lines 21–23. We first find the substitution that corresponds to the variable links
that we have found in the third step and then apply it to both the initial set of patterns in the
construct and the where clauses that we computed in the second step.

We present the algorithm to find substitutions in Fig. 14. It takes a set of links L and a
set of patterns TW as input and returns a substitution S; we implicitly assume that TW is
the set of triples in the where clause of an executable mapping. The algorithm first invokes
f indConnectedComponents to find the set of connected components CC in the input

Fig. 14 Algorithm to find substitutions

variable links; we do not provide any additional details on this algorithm since it is well
known in the literature [25]. It then initialises S to the empty set and iterates through the set
of connected components CC . In each iteration, it checks whether a component K includes
variables from both the construct and the where clause, in which case a fresh variable is
created; otherwise, we have found a group of variables for which there is not a correspondence
that assigns values to them, which justifies the creation of a fresh blank node. Immediately
after, it updates the resulting substitution S by mapping every pair of variables to the fresh
variable or blank node that was created previously.

We present the algorithm to apply a substitution in Fig. 15. It takes a substitution S and
a set of patterns T as input and returns a new set of patterns T ′ that results from applying
substitution S to every subject and object in T .

Fig. 15 Algorithm to apply substitutions

5 Analysis of our proposal

In this section, we analyse our proposal to prove that it is correct and we also prove that its
worst-case complexity is computationally tractable.

5.1 Analysis of correctness

In the following theorem and propositions, we prove that our algorithm is correct. This
requires us to prove the following: (1) that the kernels our algorithm computes are actually
kernels; (2) that the executable mappings it generates retrieve source data that satisfy the
source constraints and exchanges them into target data that satisfy the target constraints and
the correspondences.

Theorem 1 (Kernel satisfaction) Each data exchange problem created at lines 10–12 in
Algorithm generateExecutableMappings is a kernel.

Proof Let k be the data exchange problem created at lines 10–12 in Algorithm generate
ExecutableMappings. Note that o1 is the source ontology, o2 is the target ontology and V
is the set of correspondences of k. According to the definition of kernel (cf. Sect. 3.5), k must
be contained in d, that is, the entities, constraints and correspondences of k must be present in
d . As it can be checked, algorithms f ind SubOntology and f indCorrespondences always
iterate over the entities, constraints and correspondences of d; therefore, k is contained in
d since we do not use any external entity, constraint or correspondence. Furthermore, the
source (target) ontology of k must be connected; for every two entities e1 and e2 in the source
(target) ontology, we can discern the following cases:

– There exists a path that has e1 as the first entity and e2 as the last entity: Algorithm
f ind SubOntology would find this path since, starting from e1, it adds a new entity if
there exists a constraint that relates the previous entity with the next entity in the path,
ending in e2.

– There exists a path that has e2 as the first entity and e1 as the last entity: Algorithm
f ind SubOntology would find this path as we have analysed in the previous case.

– There exists an entity e3 and two paths p1 and p2, such that p1 has e3 as the first entity
and e1 as the last entity, and p2 has e3 as the first entity and e2 as the last entity: Algorithm
f ind SubOntology would find paths p1 and p2 in isolation as we have analysed in the
first case.

Another implication of the definition of kernel is that d must not contain a source (target)
constraint c that does not belong to k, but the subject of c belongs to the entities of k; if this
constraint c exists, algorithm f ind SubOntology would add it to k (cf. line 12 in Fig. 6). The
final implication of the definition of kernel is that d must not contain a correspondence v that
does not belong to k, but the subject and object of v belong to the source and target entities
of k, respectively; if this correspondence v exists, algorithm f indCorrespondences would
add it to k.

Theorem 2 (Generating executable mappings) Let d be a data exchange problem. The exe-
cutable mappings generated by generateExecutableMappings(d) satisfy the following
properties: i) every source triple it retrieves satisfies the constraints of source(d); ii) every
target triple it generates satisfies the constraints of target (d); and iii) they satisfy the cor-
respondences in the kernels from which they originate.

Proof The proof builds on Propositions 1, 2 and 3, in which we prove each property of the
resulting executable mappings independently.

Proposition 1 (Source constraint satisfaction) Let d be a data exchange problem and
m = (TC , TW) any of the executable mappings that are returned by generateExecutable
Mappings(d). m retrieves data that satisfy the constraints of the source ontology of d.

Proof The proof follows from reductio ad absurdum: assume that z is a constraint in the
source of d , and that TW does not satisfy it. Depending on the predicate of z, we may
distinguish the following cases:

– If constraint z is of the form (c1, rd f s:subClassO f, c2), where c1 and c2 denote two
classes, then the initial patterns are of the form (?x1, rd f :t ype, c1) and (?x2, rd f :t ype,
c2); thus, the algorithm to find constraint links must return a link between variables ?x1 and
?x2, which, after computing the corresponding substitution and applying it to the initial
patterns, results in two patterns of the form (?x, rd f :t ype, c1) and (?x, rd f :t ype, c2).
According to inference rule SC (cf. Sect. 3.6), TW satisfies constraint z.

– If z is of the form (p1, rd f s:subPropertyO f, p2), where p1 and p2 denote two prop-
erties, then the initial patterns are of the form (?x1, p1, ?y1) and (?x2, p2, ?y2); thus,
the algorithm to find constraint links must return a link between variables ?x1 and ?x2,
and another link between variables ?y1 and ?y2, which, after computing the correspond-
ing substitution and applying it to the initial patterns, result in two patterns of the form
(?x, p1, ?y) and (?x, p2, ?y). According to inference rule S P (cf. Sect. 3.6), TW satisfies
constraint z.

– If z is of the form (p, rd f s:domain, c), where p denotes a property and c denotes
a class, then the initial patterns are of the form (?x1, p, ?y1) and (?x2, rd f :t ype, c);
thus, the algorithm to find constraint links must return a link between variables ?x1 and
?x2, which, after computing the corresponding substitution and applying it to the initial
patterns, results in two patterns of the form (?x, p, ?y1) and (?x, rd f :t ype, c). According
to inference rule D (cf. Sect. 3.6), TW satisfies constraint z.

– If z is of the form (p, rd f s:range, c), where p denotes a property and c a class, then the
initial patterns are of the form (?x1, p, ?y1) and (?x2, rd f :t ype, c); thus, the algorithm
to find constraint links must return a link between variables ?y1 and ?x2, which, after
computing the corresponding substitution and applying it to the initial patterns, results
in two patterns of the form (?x1, p, ?y) and (?y, rd f :t ype, c). Therefore, according to
inference rule R (cf. Sect. 3.6), TW satisfies constraint z.

– If z is of the form (c, mosto:strongDomain, p), where c denotes a class and p a property,
then the initial patterns are of the form (?x1, rd f :t ype, c) and (?x2, p, ?y2); thus, the
algorithm to find constraint links must return a link between variables ?x1 and ?x2, which,
after computing the corresponding substitution and applying it to the initial patterns,
results in two patterns of the form (?x, rd f :t ype, c) and (?x, p, ?y2). According to
inference rule SD (cf. Sect. 3.6), TW satisfies constraint z.

– If z is of the form (c, mosto:strongRange, p), where c denotes a class and p a property,
then the initial patterns are of the form (?x1, rd f :t ype, c) and (?x2, p, ?y2); thus, the
algorithm to find constraint links must return a link between variables ?x1 and ?y2, which,
after computing the corresponding substitution and applying it to the initial patterns,
results in two patterns of the form (?y, rd f :t ype, c) and (?x2, p, ?y). According to
inference rule S R (cf. Sect. 3.6), TW satisfies constraint z.

Since we have found a contradiction in every case, we can conclude that the initial hypoth-
esis is wrong. As a conclusion, m retrieves data that satisfies the constraints of the source
ontology of d .

Proposition 2 (Target constraint satisfaction) Let d be a data exchange problem and
m = (TC , TW) any of the executable mappings that are returned by generateExecutable
Mappings(d). m constructs data that satisfy the constraints of the target ontology of d.

Proof The proof follows straightforwardly using the same reasoning as in the previous propo-
sition.

Proposition 3 (Correspondence satisfaction) Let d be a data exchange problem and m =
(TC , TW) any of the executable mappings that are returned by generateExecutable
Mappings(d). Assume that v is the correspondence from which generateExecutable
Mappings generated m, and that k is the kernel associated with v. m satisfies the sub-
set of correspondences in k.

Proof The proof follows from reductio ad absurdum: assume that v is a correspondence in
correspondences(k), and that m does not satisfy it. Depending on the predicate of v, we
may distinguish the following cases:

– If v is of the form (c1, mosto:classT oClass, c2), where c1 and c2 denote two classes, the
initial patterns of the where and the construct clauses contain two patterns of the form
(?x1, rd f :t ype, c1) and (?y1, rd f :t ype, c2), respectively; the algorithm to find corre-
spondence links must then find a link between variables ?x1 and ?y1, which, after comput-
ing the corresponding substitution and applying it, results in patterns (?x, rd f :t ype, c1)

and (?x, rd f :t ype, c2). According to inference rule C2C (cf. Sect. 3.7), m satisfies this
correspondence.

– If v is of the form (p1, mosto:dataT oData, p2), where p1 and p2 denote two data
properties, the initial patterns of the where and the construct clauses contain two pat-
terns of the form (?x1, p1, ?y1) and (?x1, p2, ?y2), respectively; the algorithm to find
correspondence links must then find a link between variables ?y1 and ?y2, which, after
computing the corresponding substitution and applying it, results in patterns (?x1, p1, ?y)

and (?x2, p2, ?y). According to inference rule D2D (cf. Sect. 3.7), m satisfies this cor-
respondence.

– If v is of the form (p1, mosto:objectT oObject, p2), where p1 and p2 denote two object
properties, the initial patterns of the where and the construct clauses contain two patterns
of the form (?x1, p1, ?y1) and (?x1, p2, ?y2), respectively; note that the algorithm to
find correspondence links ignores this kind of correspondences and that, according to
inference rule O2O (cf. Sect. 3.7), the initial patterns satisfy this correspondence.

– If v is of the form (p, mosto:dataT oClass, c), where p denotes a data property and c
denotes a class, the initial patterns of the where and the construct clauses contain two
patterns of the form (?x1, p, ?y1) and (?x2, rd f :t ype, c), respectively; the algorithm to
find correspondence links must then find a link between variables ?y1 and ?x2, which, after
computing the corresponding substitution and applying it, results in patterns (?x1, p, ?y)

and (?y, rd f :t ype, c). According to inference rule D2C (cf. Sect. 3.7), m satisfies this
correspondence.

Since we have found a contradiction in every case, we can conclude that the initial hypoth-
esis is wrong. As a conclusion, m satisfies the correspondences in the kernel that is
associated with the correspondence from which it originated.

5.2 Analysis of complexity

In the following theorem and propositions, we analyse the worst-case complexity of our
algorithm and its subalgorithms. The worst case is a data exchange problem in which every
entity of the source ontology has a correspondence with every entity of the target ontology.
Furthermore, the source and target ontologies are complete graphs, that is, every pair of
entities are connected by a constraint. As a conclusion, in the worst-case problem, v =
es et , cs = (e2

s − es)/2, and ct = (e2
t − et)/2, where es and et denote the number of entities

in the source and target ontologies, v denotes the number of correspondences, and cs and ct

denote the number of source and target constraints, respectively.
In our proofs, we assume that simple set operations like invoking a projection function,

checking for membership, merging two sets, or constructing a tuple can be implemented in
O(1) time with regard to the other operations. We also implicitly assume that data exchange
problems must be finite, that is, the sets of entities, constraints and correspondences involved
are finite.

Theorem 3 (Generating executable mappings, cf. Fig. 4) Let d be a data exchange problem.
O(e4

s et +es e4
t +e2

s e2
t (es +et)) is an upper bound for the worst-time complexity of algorithm

generateExecutableMappings(d), where es and et denote the number of entities in the
source and target of d, respectively.

Proof Algorithm generateExecutableMappings(d) has to iterate through the whole set
of correspondences in d. It calls f ind SubOntology two times for each correspondence
(lines 10 and 11): the first time is to compute the source subontology and the second time to
compute the target subontology, which, according to Proposition 4, terminates in O(es cs)

and O(et ct) time, respectively, where cs = (e2
s − es)/2 is the number of source constraints

and ct = (e2
t − et)/2 is the number of target constraints. In the next step, the algorithm

calls f indCorrespondences (line 12), which, according to Proposition 5, terminates in
O(v) time, where v = es et denotes the number of correspondences of d. Furthermore, the
algorithm calls ini tialisePatterns two times (lines 14 and 15): the first time is to compute
the initial source patterns and the second time to compute the initial target patterns, which,
according to Proposition 6, terminates in O(es) and O(et) time, respectively. In the following
steps, the algorithm calls f indConstraint Links two times (lines 17 and 18): the first time is
to compute the links that are related to the source constraints and the second time to compute
the links that are related to the target constraints, which, according to Proposition 7, terminate
in O(cs tw) and O(ct tc) time, where cs = (e2

s − es)/2 is the number of source constraints,
tw = es is the number of patterns in the where clause, which is equal to the whole set of source
entities in the worst case, ct = (e2

t − et)/2 is the number of target constraints and tc = et is
the number of patterns in the construct clause, which is equal to the whole set of target entities
in the worst case. In the next step, the algorithm calls f indCorrespondenceLinks (line 19),
which, according to Proposition 8, terminates in O(v (tw + tc)) time, where v = es et denotes
the number of correspondences of d, tw = es is the number of patterns in the where clause,
and tc = et is the number of patterns in the construct clause. In the next step, the algorithm
calls f ind Substi tution (line 21), which, according to Proposition 10, terminates in O(l)
time, where l = 2 cs +2 ct +v = e2

s − es + e2
t − et + es et is the total number of links which,

in the worst case, involves two links for each source and target constraint (subproperty con-
straint), and a link for each correspondence. Finally, the algorithm calls applySubsti tution
two times (lines 22 and 23): the first time is to compute the substitution of the where clause
and the second time to compute the substitution of the construct clause, which, according

to Proposition 11, terminates in O(tw) and O(tc) time, respectively, where tw = es is the
number of patterns in the where clause and tc = et is the number of patterns in the construct
clause.

Therefore, we get the following expression: O(es et (es /2 (es
2−es)+et /2 (et

2−et)+es et +
es +et +es /2 (es

2 −es)+et /2 (et
2 −et)+es et (es +et)+es

2 −es +et
2 −et +es et +es +et)) =

O(es
4 et +es et

4 +2 es
2 et

2 +es
3 et

2 +es
2 et

3 +es
2 et +es et

2), in which es
4 et > es

2 et , es et
4 > es et

2,
and es

2 et
3 > 2 es

2 et
2. As a conclusion, O(es

4 et + es et
4 + es

2 et
2(es + et)) is an upper bound for

the worst-time complexity of algorithm generateExecutableMappings(d).

Proposition 4 (Finding subontologies, cf. Fig. 6) Let f be an entity and o an ontology.
f ind SubOntology(f, o) terminates in O(e c) time in the worst case, where e and c denote
the number of entities and constraints in ontology o, respectively.

Proof In the worst case, f ind SubOntology(f, o) has to iterate through the whole set of
entities in o; additionally, in each iteration, it has to iterate through the whole set of
constraints. As a conclusion, f ind SubOntology(f, o) terminates in O(e c) time in the
worst case.

Proposition 5 (Finding correspondences, cf. Fig. 7) Let o1 and o2 be two ontologies, and
V a set of correspondences. f indCorrespondences(o1, o2, V) terminates in O(v) time in
the worst case, where v denotes the number of correspondences in set V .

Proof Algorithm f indCorrespondences has to iterate through the whole set of correspon-
dences V to find the ones whose subject belongs in o1 and whose object belongs in o2. As a

conclusion, f indCorrespondences(o1, o2, V) terminates in O(v) time in the worst case.

Proposition 6 (Initialising patterns, cf. Fig. 9) Let E be a set of entities. ini tialise
Patterns(E) terminates in O(e) time in the worst case, where e denotes the number of
entities in set E.

Proof Algorithm ini t ial isePatterns has to iterate through the whole set of entities E . As
a conclusion, ini t ial isePatterns(E) terminates in O(e) time in the worst case.

Proposition 7 (Finding constraint links, cf. Fig. 10) Let T be a set of patterns, and C a set
of constraints, f indConstraint Links(T, C) terminates in O(c t) time in the worst case,
where t denotes the number of patterns in T and c denotes the number of constraints in C.

Proof Algorithm f indConstraint Links iterates over the whole set of input constraints C .
In each iteration, it invokes f ind Pattern on T twice, and each invocation terminates in
O(t) time in the worst case according to Proposition 9. As a conclusion, f
indConstraints(T, C) terminates in O(c t) time in the worst case. Proposition 8 (Finding
correspondence links, cf. Fig. 11) Let TW and TC be two sets of pat-terns, and V an arbitrary
set of correspondences. f indCorrespondenceLinks(TW , TC , V) terminates in O(v (tw +
tc)) time in the worst case, where v denotes the number of corre-spondences in V , and tw
and tc denote the number of patterns in TW and TC , respectively.

Proof Algorithm f indCorrespondenceLinks iterates through the whole set of input cor-
respondences V . In each iteration, it calls algorithm f ind Pattern on both TW and TC ; these
invocations terminate in O(tw + tc) time in the worst case according to Proposition 9. As
a conclusion, algorithm f indCorrespondenceLinks terminates in O(v (tw + tc)) time in
the worst case.

Proposition 9 (Finding patterns, cf. Fig. 12) Let e be an entity, and T a set of patterns.
f ind Pattern(e, T) terminates in O(t) time in the worst case, where t denotes the number
of patterns in T .

Proof Algorithm f ind Pattern iterates through the whole set of patterns T , as long as it
does not find the pattern that refers to e in its predicate or its object. In the worst case, this
triple is the last one. As a conclusion, f ind Pattern , terminates in O(t) time in the worst
case.

Proposition 10 (Finding substitutions, cf. Fig. 14) Let L be a set of variable links
and TW a set of patterns. O(l) is an upper bound for the worst-time complexity of
f ind Substi tution(L , TW), where l denotes the number of links in L.

Proof Algorithm f indConnectedComponents terminates in O(max{a, l}) time in the
worst case [25], where a denotes the number of variables in L . The algorithm then iter-
ates through the set of connected components in L; note that it is not easy to characterise the
worst case, but it is safe to assume that l must be an upper bound to the number of connected
components that is returned by f indConnectedComponents since a graph with l edges
may have a maximum of l connected components. Therefore, O(max{a, l} + l) is an upper
bound to the worst-case time complexity of algorithm f ind Substi tution. If max{a, l} = a,
then the upper bound is O(a + l); contrarily, if max{a, l} = l, then the upper bound is
O(l). Therefore, O(a + l) is also an upper bound for the worst-case time complexity of this
algorithm. Note that, in the worst case, a = 2 l since all variables related by the links are
pairwise distinct. As a conclusion, O(l) is an upper bound to the worst-case time complexity
of algorithm f ind Substitution.

Proposition 11 (Applying substitutions, cf. Fig. 15) Let T be a set of patterns and S a
substitution. applySubsti tution(T, S) terminates in O(t) time in the worst case, where t
denotes the number of patterns in T .

Proof Algorithm applySubstitution has to iterate through the whole set of patterns T . As
a conclusion, applySubstitution terminates in O(t) time in the worst case.

6 Validation of our proposal

Recall that an executable mapping encodes an interpretation of the correspondences in a data
exchange problem. It is then necessary to check whether our interpretation of correspondences
agrees with the interpretation of domain experts by means of experiments. Note that we
cannot compare our proposal to others in the literature from an empirical point of view: the
proposal by Popa et al. [45] cannot be applied since it focuses on nested-relational models,
which is not our case; the proposal by Mergen and Heuser [33] cannot be applied because
it focuses on a subset of taxonomies, and the data exchange problems on which we have
carried out our experimentation are far from such taxonomies; the proposal by Qin et al. [47]
requires the target ontology to be pre-populated, which is not the case of our repository, and
they require the ontologies to be expressed using Web-PDDL; unfortunately, there is not an
automatic translator from OWL into Web-PDDL. Mocan and Cimpian [34] automatically
generate WSML rules, so we cannot compare our SPARQL executable mappings with these

rules. Last, but not least, Dou et al. [16] and Parreiras et al. [41] require the user to handcraft
the executable mappings, whereas in our proposal, executable mappings are automatically
generated.

We report on the details of our repository of data exchange problems in Sect. 6.1, then
report on the validation process in Sect. 6.2 and the results of the validation are presented in
Sect. 6.3; finally, we report on the only limitation we have found in Sect. 6.4.

6.1 Repository

Unfortunately, there is not a standard repository of data exchange problems on which dif-
ferent proposals can be tested and compared in the context of Linked Data applications. To
address this problem, we have set-up a repository of representative real-world data exchange
problems that consist of three real-world data exchange problems and 3,780 synthetic prob-
lems that were produced using MostoBM [53,54]. This tool allows to fine tune the generation
of data exchange problems by means of seven parameters; it also provides executable map-
pings to perform data exchange in each problem it generates; these executable mappings
are automatically generated by instantiating parameterised templates that were devised by
human experts.

The real-world problems included the following: (DBP) exchanging data from DBpe-
dia 3.2 to DBPedia 3.6 [10], which is a typical ontology evolution problem; (O2M) exchanging
data from OWL-S 1.1 [27] to MSM 1.0 [42], which is a typical ontology adaptation problem;
(MO) exchanging data from both DBpedia 3.6 and Review 2.0 into a fictitious Movies On-
line ontology, which is a typical problem of ontology integration; (BBC) exchanging data
from Programmes Ontology 2009 [29] to DBPedia 3.7. The synthetic problems included 540
problems of each of the following categories [54]: (LP) Lift Properties, that is, moving data
properties from some source subclasses to a common target superclass; (SP) Sink Properties,
that is, moving some data properties of a source class to target subclasses; (ESB) Extract
Subclasses, that is, splitting a source class into several target subclasses and its data properties
amongst them; (ESP) Extract Superclasses, that is, splitting a source class into several target
superclasses and its data properties amongst them; (ERC) Extract Related Classes, that is,
spreading the data properties of a source class into several target classes, which are related to
the original by means of object properties; (SS) Simplify Specialisations, that is, flattening
a number of subclasses into a single target class; and (SRC) Simplify Related Classes, that
is, transforming several source classes that are related by means of object properties into a
single target class.

Our repository and an implementation of our proposal are publicly available at http://www.
tdg-seville.info/carlosrivero/MostoDE; a demo that provides more details about our imple-
mentation was published elsewhere [52]; a detailed description of the real-world problems
is presented in reference [55].

6.2 Validation process

We used our implementation to create a set of executable mappings for each data exchange
problem in the repository and then run these mappings and compared the results with the
expected ones.

Figure 16 shows our validation process: for each problem, we performed data exchange
using, on the one hand, the executable mappings output by MostoDE, and on the other
hand, the executable mappings output by MostoBM; finally, we compared whether or not the
resulting data are equal or not.

http://www.tdg-seville.info/carlosrivero/MostoDE
http://www.tdg-seville.info/carlosrivero/MostoDE

Fig. 16 Validation process

6.3 Experimental results

Table 1 summarises our results. The columns represent the data exchange problems and the
rows a number of measures; the first group of measures provides an overall idea of the ‘size’
of each data exchange problem, whereas the second group provides information about the
number of executable mappings, the time to generate them (Gen. time) and the time they
took to execute, that is, the time spent at performing the data exchange (Data ex.). In the case
of synthetic problems, we provide intervals that indicate the minimum and maximum value
of each measure.

The target data generated by the executable mappings of MostoBM were exactly the
same as the target data generated by executable mappings of MostoDE in every experiment
expect one: the BBC problem that is explained below (cf. Sect. 6.4). This reveals that the
interpretation of the correspondences that we encode in our executable mappings captures
the intuition behind them. In the DBP problem, it is worth noting that BDpedia 3.6 provides
more data than DBpedia 3.2; in this case, whether source and target data are equal or not
were measured on the subset of DBpedia 3.6 that can be exchanged from DBpedia 3.2, since
the remaining data resulted, obviously, in blank nodes.

The time our proposal took to generate the mappings was less than one second in all cases;
since timings are imprecise in nature, we repeated each experiment 25 times and averaged the
results after discarding roughly 0.01 % outliers using the well-known Chevischev’s inequality.
The experiments were run on a computer that was equipped with a single 2.66 GHz Core 2 Duo
CPU and 4 GB RAM, Windows XP Professional (SP3), JRE 1.6.0, Jena 2.6.4, ARQ 2.8.8,
and Oracle 11g.

We also measured the time our executable mappings took to exchange data. Although
these timings depend largely on the technology being used, that is, the database used to
persist triples and the SPARQL engine used to query them, we think that presenting them
is appealing insofar they prove that the queries we generate can be executed on reasonably
large ontologies in a sensible time.

6.4 Limitations

The previous data exchange problems are representative of the many real-world problems
we face daily. We have found only a real-world problem in which the results of our technique
are not satisfactory. We found this limitation in the BBC data exchange problem, in which
property po:series relates a television serial (po:Brand) with its seasons (po:Series),
and both classes have the same superclass: po:Programme; unfortunately, the executable
mappings that we generate state that a television serial is equal to a season, which is usually
not true.

Ta
bl

e
1

Su
m

m
ar

y
of

ou
r

va
lid

at
io

n

D
B

P
O

2M
M

O
B

B
C

L
P

(5
40

)
SP

(5
40

)
E

SB
(5

40
)

E
SP

(5
40

)
E

R
C

(5
40

)
SS

(5
40

)
SR

C
(5

40
)

C
la

ss
es

12
72

9
11

[4
–8

4]
[4

–8
4]

[3
–4

5]
[3

–4
5]

[3
–4

5]
[3

–4
5]

[3
–4

5]

D
at

a
pr

op
er

tie
s

4
41

8
15

[5
0–

15
4]

[5
0–

15
4]

[5
0–

15
4]

[5
0–

15
4]

[5
0–

15
4]

[5
0–

15
4]

[5
0–

15
4]

O
bj

ec
tp

ro
pe

rt
ie

s
5

90
8

15
0

0
0

0
[1

–4
3]

0
[1

–4
3]

C
or

re
sp

on
de

nc
es

9
11

10
24

[2
7–

11
5]

[2
7–

11
5]

[2
6–

76
]

[2
6–

76
]

[2
7–

11
5]

[2
6–

76
]

[2
6–

76
]

Sr
c.

co
ns

tr
ai

nt
s

12
69

6
54

36
[2

6–
48

9]
[2

6–
48

9]
[2

5–
30

9]
[2

5–
30

9]
[2

5–
30

9]
[2

6–
48

9]
[2

9–
66

0]

T
gt

.c
on

st
ra

in
ts

49
11

8
58

32
[2

6–
48

9]
[2

6–
48

9]
[2

6–
48

9]
[5

1–
56

4]
[2

9–
66

0]
[2

5–
30

9]
[2

5–
30

9]

T
ri

pl
es

2,
10

7K
2,

53
6K

1,
09

3K
7,

27
5K

[8
71

–1
8K

]
[7

69
–1

4K
]

[7
76

–8
K

]
[7

76
–8

K
]

[7
76

–8
K

]
[8

72
–1

8K
]

[1
35

5–
17

K
]

E
xe

c.
m

ap
pi

ng
s

9
11

10
–

[2
7–

11
5]

[2
7–

11
5]

[2
6–

76
]

[2
6–

76
]

[2
7–

11
5]

[2
6–

76
]

[2
6–

76
]

G
en

.t
im

e
(s

ec
s)

0.
06

0.
25

0.
08

–
[0

.0
2–

0.
11

]
[0

.0
3–

0.
1]

[0
.0

2–
0.

06
]

[0
.0

2–
0.

15
]

[0
.0

2–
0.

34
]

[0
.0

2–
0.

09
]

[0
.0

2–
0.

34
]

D
at

a
ex

.(
se

cs
)

2.
95

55
.2

20
.6

2
–

[0
.1

4–
0.

69
]

[0
.1

4–
0.

72
]

[0
.1

4–
0.

63
]

[0
.1

4–
0.

63
]

[0
.1

7–
2.

42
]

[0
.1

4–
0.

44
]

[0
.1

6–
8.

31
]

As a conclusion, our proposal cannot deal well with data exchange problems in which we
must deal with more than one instance of the same class or superclass (except rd f s:Resource
and owl:T hing). The reason is that we assume that it is only necessary a single instance of a
hierarchy of classes to exchange source into target data. Although this problem is interesting
from a theoretical point of view, our experience suggests that it is not common at all in
practice.

7 Conclusions

In this article, we present MostoDE, a proposal that aims to automatically generate SPARQL
executable mappings in the context of ontologies that are represented in quite a complete
subset of the OWL 2 Lite profile. These mappings are executed over a source ontology
using a SPARQL query engine, and the source data are exchanged into data of a target
ontology.

Our proposal takes a data exchange problem as input, which comprises a source ontology,
a target ontology and a number of correspondences between them, and it outputs a SPARQL
executable mapping for each correspondence of the data exchange problem. These SPARQL
executable mappings are generated by means of kernels, each of which describes the structure
of a subset of data in the source ontology that needs to be exchanged as a whole, and the
structure of a subset of data in the target ontology that needs to be created as a whole: if more
or less data are considered, then the exchange would be incoherent.

Correspondences are inherently ambiguous since there can be many different executable
mappings that satisfy them, but generate different target data. Building on our valida-
tion, our technique seems promising enough for real-world data exchange problems: we
have validated it on three real-world and 3,780 synthetic data exchange problems. We
checked that the interpretation of correspondences that our technique encodes is coher-
ent with the expected results. Furthermore, the time taken to generate SPARQL exe-
cutable mappings by our technique did not exceed one second in any of the data exchange
problems of our validation. The only limitation that we have found to our proposal is
that it cannot deal well with data exchange problems in which it is necessary to han-
dle more than one instance of the same class or superclass (except rd f s:Resource and
owl:T hing).

Acknowledgments We would like to thank Dr. Alberto Pan, Dr. Paolo Papotti and Dr. Carlos Pedri-
naci for their helpful suggestions on an earlier draft of this article. We also thank our reviewers for their
insightful and valuable comments, which helped us improve the paper significantly. The work on which
we report was supported by the European Commission (FEDER), the Spanish and the Andalusian R&D&I
programmes (grants TIN2007-64119, P07-TIC-2602, P08-TIC-4100, TIN2008-04718-E, TIN2010-21744,
TIN2010-09809-E, TIN2010-10811-E, TIN2010-09988-E, and TIN2011-15497-E).

8 Subset of the OWL 2 Lite profile

The OWL 2 Lite profile specification provides a number of constructs that are classified into
the following groups [6]: RDFS features, equality, restricted cardinality, property charac-
teristics, general property restrictions, class intersection and meta-information. We analyse
them in the following paragraphs. The conclusion is that out of the 43 constructs, the only
ones with which our proposal cannot deal are zero-cardinality restrictions, general property
restrictions and intersection of classes and restrictions. Our experience proves that this does

not hinder its practical applicability since the constructs with which we cannot deal are not
so common in real-world applications [21].

RDFS features: This group includes owl:Class, rd f s:subClassO f, rd f :Property,

rd f s:subPropertyO f, rd f s:domain, rd f s:range, and owl:I ndividual. The only one
that our proposal ignores is owl:I ndividual, since individuals are retrieved or constructed
by means of the executable mappings we generate, but need not be dealt with explicitly in
our proposal.

Equality and inequality: The constructs of this group are owl:equivalentClass,
owl:equivalent Property, owl:sameAs, owl:di f f erent From, owl:All Di f f erent , and
owl:distinct Members. The first two constructs need not be dealt with explicitly,
since they are actually abbreviations. If an ontology contains a triple of the form
(c1, owl:equivalentClass, c2), it can be replaced by the following triples, with which we
can deal natively:

(c1, rd f s:subClassO f, c2)

(c2, rd f s:subClassO f, c1)

Similarly, if it contains a triple of the form (p1, owl:equivalent Property, p2), we may
replace it by the following triples, with which we can also deal natively:

(p1, rd f s:subPropertyO f, p2)

(p2, rd f s:subPropertyO f, p1)

The remaining constructs in this category deal with individuals; thus, we may ignore them
for data exchange purposes.

Restricted cardinality: The constructs in this group allow to restrict the cardinality of a
property, namely: owl:minCardinali t y, owl:maxCardinali t y and owl:cardinali t y.

The owl:minCardinali t y construct can restrict the minimum cardinality of a property
p with respect to a class c to be zero as follows:

(c, rd f s:subClassO f, _:x)

(_:x, rd f :t ype, owl:Restriction)

(_:x, owl:minCardinali t y, ‘0’ˆ̂ xsd:int)
(_:x, owl:on Property, p)

Note that, by default, all data and object properties have a minimum cardinal-
ity of zero. Therefore, it does not require any special treatment. Similarly, construct
owl:minCardinali t y can restrict the minimum cardinality of a property p with respect
to a class c to be one as follows:

(c, rd f s:subClassO f, _:x)

(_:x, rd f :t ype, owl:Restriction)

(_:x, owl:minCardinali t y, ‘1’ˆ̂ xsd:int)
(_:x, owl:on Property, p)

The previous set of triples can be replaced by (c, mosto:strongDomain, p), if property
p has class c as domain, or by (c, mosto:strongRange, p), if property p has class c as range.

Construct owl:maxCardinali t y can be used to restrict the maximum cardinality of a
property to zero or one. In the former case, the property is annulated, which is a case with
which our proposal cannot deal; we, however, have not found this to be a practical limitation
since it is not common at all to annulate a property. The later case is the default in the OWL 2
Lite profile; thus, it does not require a special treatment.

Construct owl:cardinali t y is a shorthand to combine the previous constructs; thus, nei-
ther does it require special treatment.

Property characteristics: This group includes constructs owl:Object Property and
owl:DatatypeProperty, with which we deal natively; owl:T ransi tiveProperty must
actually be dealt with by a semantic-web reasoner, that is, we can assume that their seman-
tics have been made explicit before using our technique; the rest of constructs are short-
hands, namely: owl:inverseO f, owl:SymmetricProperty, owl:Functional Property,
and owl:I nverseFunctional Property.

If an ontology contains a subset of triples of the form:

(p1, rd f s:domain, c1)

(p1, rd f s:range, c2)

(p1, owl:inverseO f, p2)

we can transform them into the following triples, with which we can deal natively:

(p2, rd f s:domain, c2)

(p2, rd f s:range, c1)

Furthermore, we can transform (p, rd f :t ype, owl:SymmetricProperty) into a triple
of the form (p, owl:inverseO f, p). Similarly, we can transform a triple of the form
(p, rd f :t ype, owl:Functional Property) into the following triples before using our tech-
nique:

(_:x, rd f :t ype, owl:Restriction)

(_:x, owl:minCardinali t y, ‘0’ˆ̂ xsd:int)
(_:x, owl:maxCardinali t y, ‘1’ˆ̂ xsd:int)
(_:x, owl:on Property, p)

Finally, if we find a subset of triples of the form:

(p1, owl:inverseO f, p2)

(p2, rd f :t ype, owl:I nverseFunctional Property)

we can transform it into the following triples before applying our technique:

(p1, rd f :t ype, owl:Functional Property)

(p2, rd f :t ype, owl:Functional Property)

General property restrictions: This group includes a number of constructors that allow
to express general constraints on properties, namely: owl:Restriction, owl:on Property,

owl:allV alues From and owl:someV alues From. We cannot deal with these constructs in
a general problem, but only in the cases that we have mentioned in the previous paragraphs,
that is, functional properties and cardinality restrictions.

Class intersection: This group includes a single construct: owl:intersectionO f . We
cannot deal with these constructs.

Meta-information: This category comprises three groups of constructs in the OWL 2 Lite
profile, namely: header information, versioning and annotation types. They include constructs
like owl:Ontology, owl:imports, owl:versionI n f o or owl:backwardCompatible
With, to mention a few. They provide meta-information about an ontology, which make
them irrelevant for data exchange purposes.

References

1. Alexe B, Chiticariu L, Miller RJ, Pepper D, Tan WC (2008a) Muse: A system for understanding and
designing mappings. In: SIGMOD, pp 1281–1284

2. Alexe B, Tan WC, Velegrakis Y (2008b) STBenchmark: towards a benchmark for mapping systems.
PVLDB 1(1):230–244

3. Antoniou G, van Harmelen F (2008) A semantic web primer, 2nd edn. The MIT Press, Cambridge
4. Arenas M, Libkin L (2008) XML data exchange: consistency and query answering. J ACM 55(2):1–72
5. Arjona JL, Corchuelo R, Ruiz D, Toro M (2007) From wrapping to knowledge. IEEE Trans Knowl Data

Eng 19(2):310–323
6. Bechhofer S, van Harmelen F, Hendler J, Horrocks I, McGuinness DL, Patel-Schneider PF, Stein LA

(2004) OWL web ontology language reference. Technical report, W3C. http://www.w3.org/TR/owl-ref/
7. Bernstein PA, Haas LM (2008) Information integration in the enterprise. Commun ACM 51(9):72–79
8. Bernstein PA, Melnik S (2007) Model management 2.0: manipulating richer mappings. In: SIGMOD,

pp 1–12
9. Bizer C (2009) The emerging Web of Linked Data. IEEE intelligent systems 5(3):87–92

10. Bizer C, Lehmann J, Kobilarov G, Auer S, Becker C, Cyganiak R, Hellmann S (2009) DBpedia: a
crystallization point for the Web of Data. J Web Semant 7(3):154–165

11. Bouquet P, Giunchiglia F, van Harmelen F, Serafini L, Stuckenschmidt H (2004) Contextualizing ontolo-
gies. J Web Semant 1(4):325–343

12. Candan KS, Kim JW, Liu H, Suvarna R (2006) Discovering mappings in hierarchical data from multiple
sources using the inherent structure. Knowl Inf Syst 10(2):185–210

13. Choi N, Song I-Y, Han H (2006) A survey on ontology mapping. SIGMOD Rec 35(3):34–41
14. Deutsch A, Nash A, Remmel JB (2008) The chase revisited. In: PODS, pp 149–158
15. Dorneles CF, Gonçalves R (2011) Approximate data instance matching: a survey. Knowl Inf Syst 27(1):

1–21
16. Dou D, McDermott DV, Qi P (2005) Ontology translation on the semantic web. J Data Semant 2:35–57
17. Euzenat J, Shvaiko P (2007) Ontology matching. Springer, Berlin
18. Fagin R, Kolaitis PG, Miller RJ, Popa L (2005) Data exchange: semantics and query answering. Theor

Comput Sci 336(1):89–124
19. Flouris G, Konstantinidis G, Antoniou G, Christophides V (2012) Formal foundations for RDF/S KB

evolution. Knowl Inf Syst 1–39. doi:10.1007/s10115-012-0500-2
20. Flouris G, Manakanatas D, Kondylakis H, Plexousakis D, Antoniou G (2008) Ontology change: classifi-

cation and survey. Knowl Eng Rev 23(2):117–152
21. Glimm B, Hogan A, Krötzsch M, Polleres A (2012) OWL: yet to arrive on the web of data? In: LDOW
22. Groza T, Grimnes G, Handschuh S, Decker S (2011) From raw publications to Linked Data. Knowl Inf

Syst 1–21. doi:10.1007/s10115-011-0473-6
23. Haas LM, Hernández MA, Ho H, Popa L, Roth M (2005) Clio grows up: From research prototype to

industrial tool. In: SIGMOD, pp 805–810
24. Halevy AY (2001) Answering queries using views: a survey. VLDB J 10(4):270–294
25. Hopcroft JE, Tarjan RE (1973) Efficient algorithms for graph manipulation [H] (Algorithm 447). Commun

ACM 16(6):372–378
26. Jing Y, Jeong D, Baik D-K (2009) SPARQL graph pattern rewriting for OWL-DL inference queries.

Knowl Inf Syst 20(2):243–262
27. Klusch M, Fries B, Sycara KP (2009) OWLS-MX: a hybrid semantic web service matchmaker for OWL-S

services. J Web Semant 7(2):121–133
28. Klyne G, Carroll JJ (2004) Resource description framework (RDF): concepts and abstract syntax. Tech-

nical report, W3C. http://www.w3.org/TR/rdf-concepts/
29. Kobilarov G, Scott T, Raimond Y, Oliver S, Sizemore C, Smethurst M, Bizer C, Lee R (2009) Media

meets semantic web: how the BBC uses DBpedia and Linked Data to make connections. In: ESWC,
pp 723–737

30. Leite M, Ricarte I (2012) Relating ontologies with a fuzzy information model. Knowl Inf Syst 1–33.
doi:10.1007/s10115-012-0482-0

31. Lenzerini M (2002) Data integration: A theoretical perspective. In: PODS, pp 233–246
32. Maedche A, Motik B, Silva N, Volz R (2002) MAFRA: A MApping FRAmework for distributed ontolo-

gies. In: EKAW, pp 235–250
33. Mergen SLS, Heuser CA (2006) Data translation between taxonomies. In: CAiSE, pp 111–124
34. Mocan A, Cimpian E (2007) An ontology-based data mediation framework for semantic environments.

Int. J Semant Web Inf Syst 3(2):69–98

http://www.w3.org/TR/owl-ref/
http://dx.doi.org/10.1007/s10115-012-0500-2
http://dx.doi.org/10.1007/s10115-011-0473-6
http://www.w3.org/TR/rdf-concepts/
http://dx.doi.org/10.1007/s10115-012-0482-0

35. Motik B, Horrocks I, Sattler U (2009) Bridging the gap between OWL and relational databases. J Web
Semant 7(2):74–89

36. Mrissa M, Ghedira C, Benslimane D, Maamar Z, Rosenberg F, Dustdar S (2007) A context-based medi-
ation approach to compose semantic web services. ACM Trans Internet Tech 8(1):4

37. Noy NF (2004) Semantic integration: a survey of ontology-based approaches. SIGMOD Rec 33(4):65–70
38. Noy NF, Klein MCA (2004) Ontology evolution: not the same as schema evolution. Knowl Inf Syst

6(4):428–440
39. Omelayenko B (2002) Integrating vocabularies: discovering and representing vocabulary maps. In: ISWC,

pp 206–220
40. Palopoli L, Rosaci D, Terracina G, Ursino D (2005) A graph-based approach for extracting terminological

properties from information sources with heterogeneous formats. Knowl Inf Syst 8(4):462–497
41. Parreiras FS, Staab S, Schenk S, Winter A (2008) Model driven specification of ontology translations.

In: ER, pp 484–497
42. Pedrinaci C, Domingue J (2010) Toward the next wave of services: linked services for the web of data.

J UCS 16(13):1694–1719
43. Petropoulos M, Deutsch A, Papakonstantinou Y, Katsis Y (2007) Exporting and interactively querying

web service-accessed sources: the CLIDE system. ACM Trans Database Syst 32(4):22
44. Polleres A, Scharffe F, Schindlauer R (2007) SPARQL++ for mapping between RDF vocabularies.

In: OTM, pp 878–896
45. Popa L, Velegrakis Y, Miller RJ, Hernández MA, Fagin R (2002) Translating web data. In: VLDB,

pp 598–609
46. Prud’hommeaux E, Seaborne A (2008) SPARQL query language for RDF. Technical report, W3C. http://

www.w3.org/TR/rdf-sparql-query/
47. Qin H, Dou D, LePendu P (2007) Discovering executable semantic mappings between ontologies.

In: ODBASE, pp 832–849
48. Raffio A, Braga D, Ceri S, Papotti P, Hernández MA (2008) Clip: A visual language for explicit schema

mappings. In: ICDE, pp 30–39
49. Rahm E, Bernstein PA (2001) A survey of approaches to automatic schema matching. VLDB J 10(4):

334–350
50. Ressler J, Dean M, Benson E, Dorner E, Morris C (2007) Application of ontology translation. In: ISWC,

pp 830–842
51. Rivero CR, Hernández I, Ruiz D, Corchuelo R (2011a) Generating SPARQL executable mappings to

integrate ontologies. In: ER, pp 118–131
52. Rivero CR, Hernández I, Ruiz D, Corchuelo R (2011b) Mosto: Generating SPARQL executable mappings

between ontologies. In: ER, pp 345–348
53. Rivero CR, Hernández I, Ruiz D, Corchuelo R (2011c) On benchmarking data translation systems for

semantic-web ontologies. In: CIKM, pp 1613–1618
54. Rivero CR, Hernández I, Ruiz D, Corchuelo R (2012) Benchmarking data exchange amongst semantic-

web ontologies. IEEE Trans Knowl Data Eng PP(99). doi:10.1109/TKDE.2012.175
55. Rivero CR, Ruiz D, Corchuelo R (2011d) Automatic generation of executable mappings: a semantic-web

technologies approach. Technical report TDG-247, University of Sevilla. http://www.tdg-seville.info/
Download.ashx?id=247

56. Serafini L, Tamilin A (2007) Instance migration in heterogeneous ontology environments. In: ISWC,
pp 452–465

57. Shadbolt N, Berners-Lee T, Hall W (2006) The semantic web revisited. IEEE Intell Syst 21(3):96–101

http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/rdf-sparql-query/
http://dx.doi.org/10.1109/TKDE.2012.175
http://www.tdg-seville.info/Download.ashx?id=247
http://www.tdg-seville.info/Download.ashx?id=247

	Exchanging Data amongst Linked Data applications
	Abstract
	1 Introduction
	2 Related work
	3 Conceptual framework
	3.1 Foundations
	3.2 Triples
	3.3 Ontologies
	3.4 Executable mappings
	3.5 Data exchange problems and kernels
	3.6 Satisfaction of constraints
	3.7 Satisfaction of correspondences

	4 Description of our proposal
	4.1 Step 1: computing kernels
	4.2 Step 2: computing initial executable mappings
	4.3 Step 3: computing variable links
	4.4 Step 4: computing and applying substitutions

	5 Analysis of our proposal
	5.1 Analysis of correctness
	5.2 Analysis of complexity

	6 Validation of our proposal
	6.1 Repository
	6.2 Validation process
	6.3 Experimental results
	6.4 Limitations

	7 Conclusions
	Acknowledgments
	8 Subset of the OWL 2 Lite profile
	References

