
CALA: ClAssifying Links Automatically based on their URL

Inma Hernández

a, ∗, Carlos R. Rivero

b, David Ruiz

a, Rafael Corchuelo

a

a University of Sevilla, ETSI Informática, Avda. Reina Mercedes s/n, Sevilla E-41012, Spain
b Rochester Institute of Technology, Department of Computer Science, 102 Lomb Memorial Dr., Rochester, NY 14623-5608, USA

Keywords:

Web page classification
URL patterns

a b s t r a c t

Web page classification refers to the problem of automatically assigning a web page to one or more

classes after analysing its features. Automated web page classifiers have many applications, and many re-

searchers have proposed techniques and tools to perform web page classification. Unfortunately, the ex-

isting tools have a number of drawbacks that makes them unappealing for real-world scenarios, namely:

they require a previous extensive crawling, they are supervised, they need to download a page before

classifying it, or they are site-, language-, or domain-dependent. In this article, we propose CALA, a tool

for URL-based web page classification. The strongest features of our tool are that it does not require a

previous extensive crawling to achieve good classification results, it is unsupervised, it is based exclu-

sively on URL features, which means that pages can be classified without downloading them, and it is

site-, language-, and domain-independent, which makes it generally applicable. We have validated our

tool with 22 real-world web sites from multiple domains and languages, and our conclusion is that CALA

is very effective and efficient in practice.

w

t

t

s

“

c

n

t

p

i

s

e

a

e

s

u

s

n

t

s
1. Introduction

Web page classification refers to the problem of automatically

assigning a web page to one or more classes after analysing its

features. Automated web page classifiers have many applications,

either for human decision support or to be integrated into an-

other automated processes. The most usual are the following:

(1) endowing Virtual Integration crawlers with the intelligence to

determine whether a web page may contain or not information

that is relevant to a query (Blanco et al., 2011; Li and Zhong,

20 04; Vidal et al., 20 08; Hernández et al., 2014), (2) applying the

most appropriate extraction model to retrieve information from a

certain web page (Crescenzi et al., 2001), (3) filtering web pages to

avoid certain types of contents, specially advertisements (Shih and

Karger, 2004), (4) devising parental control systems (Zhang et al.,

2006), detecting and canonicalising duplicated URLs (Bar-Yossef

et al., 2009; Koppula et al., 2010), (5) constructing, maintaining

or expanding web directories, e.g., dmoz.org or Yahoo! Directo-

ries (Dumais and Chen, 20 0 0; Shen et al., 2004), or (6) devising

focused crawlers that retrieve web pages on a certain topic in an

efficient way (Chakrabarti et al., 1999; Xu et al., 2014).
∗ Corresponding author. +34 954552770; fax: +34 954557139.

E-mail addresses: inmahernandez@us.es (I. Hernández), crr@cs.rit.edu (C.R.

a

i

fi

o

s

rRivero), druiz@us.es (D. Ruiz), corchu@us.es (R. Corchuelo).
Web page classifiers are usually learnt from a training set,

hich is a dataset of selected web pages. Depending on whether

he pages in the training set have a pre-defined class or not, the

echniques to learn classifiers are catalogued as supervised or un-

upervised. Note that it is very common to use the expression

a supervised classifier” or “an unsupervised classifier” to refer to

lassifiers that were learnt using supervised or unsupervised tech-

iques, respectively. In this article we use these expressions since

hey are so common that they cannot induce any confusion. Su-

ervised classifiers require the user to annotate the training set,

.e., they require the user to analyse every page in the training

et and assign it to one or more classes; this is usually consid-

red one of the main problems with supervised classifiers, since

nnotating the training set is usually tedious, time-consuming, and

rror-prone. Contrarily, unsupervised classifiers work on a training

et in which the web pages have not been pre-classified by the

sers (Jain and Dubes, 1988). This problem is far more difficult to

olve since there is no information about the classes. These tech-

iques are based on the concept of distance between the elements

o be classified (Deza and Deza, 2012); in general, they try to find a

et of classes such that the pages that belong to a class are as close

s possible to each other, but as distant as possible from the pages

n the other classes (Xu and Wunsch, 2005). Unsupervised classi-

ers are appealing insofar they relieve the users from the burden

f annotating the training set, but require them to analyse the re-

ulting classes and assigning a meaning to them (which hopefully

equires much less effort than annotating a training set).

http://dx.doi.org/10.1016/j.jss.2016.02.006
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2016.02.006&domain=pdf
mailto:inmahernandez@us.es
mailto:crr@cs.rit.edu
mailto:druiz@us.es
mailto:corchu@us.es
http://dx.doi.org/10.1016/j.jss.2016.02.006

R

i

H

2

B

v

v

e

a

2

2

2

T

t

i

i

b

b

t

l

f

t

t

h

p

w

U

w

e

i

2

G

s

d

2

p

g

l

h

t

e

a

2

n

w

s

e

b

t

l

m

t

r

t

n

p

i

r

t

T

t

h

r

t

r

o

t

v

f

2

w

a

i

s

a

w

a

t

t

i

t

n

l

w

fi

2

t

s

u

n

2

c

o

c

t

a

o

p

o

t

r

p

a

b

a

t

W

p

t

m

Y

a

s

t

i

a

a

t

t

The literature provides a variety of tools to classify web pages.

egarding the types of features used, they can be broadly classified

nto the following categories: term-based tools (Beil et al., 2002;

otho et al., 2002; Kwon and Lee, 2003; Selamat and Omatu,

004), structure-based tools (Bar-Yossef and Rajagopalan, 2002;

lanco et al., 2008; de Castro Reis et al., 2004; Vieira et al., 2006),

isual-based tools (Zhu et al., 2008; Fersini et al., 2008; Kovace-

ic et al., 2002), link-based tools (Bhagat et al., 2007; de Campos

t al., 2008; Getoor et al., 2001; Zhu et al., 2007; Xie et al., 2007),

nd URL-based tools (Brin, 1998; Kan and Thi, 2005; Baykan et al.,

011; Shih and Karger, 2004; Koppula et al., 2010; Vidal et al.,

008; Bar-Yossef et al., 2009; Blanco et al., 2011; Gollapalli et al.,

015; Kenekayoro et al., 2014; Abdallah and de la Iglesia, 2014).

he tools in the first three categories rely on content-based fea-

ures, i.e., they require to download a web page prior to analysing

ts terms, structure, or visual features; this makes them of little

nterest for real-world web sites, since downloading web pages

efore classifying them puts a load on the server, and consumes

andwidth, even if the page turns out to be irrelevant and needs

o be discarded. Link-based tools build on analysing the graph of

inks amongst the pages of a web site; thus, they require to per-

orm an extensive crawling in order to learn a classifier. This makes

he previous tools unappealing to deal with real-world web sites

hat usually comprise a significant number of web pages, which

as motivated many authors to focus on URL-based tools.

Classifying a web page building on features of its URL is ap-

ealing insofar it can be classified without actually downloading it,

hich has a positive impact on performance (Baykan et al., 2009).

nfortunately, after analysing the existing tools in the literature,

e have found that they have a number of drawbacks: almost ev-

ry tool that we have analysed requires a previous extensive crawl-

ng of the web site (Brin, 1998; Kan and Thi, 2005; Baykan et al.,

011; Vidal et al., 2008; Bar-Yossef et al., 2009; Blanco et al., 2011;

ollapalli et al., 2015; Kenekayoro et al., 2014), most of them are

upervised (Brin, 1998; Kan and Thi, 2005; Baykan et al., 2011; Vi-

al et al., 2008; Bar-Yossef et al., 2009; Abdallah and de la Iglesia,

014; Kenekayoro et al., 2014), while others need to download the

age to compute content-based features that help them achieve

ood performance (Blanco et al., 2011; Shih and Karger, 2004; Gol-

apalli et al., 2015; Kenekayoro et al., 2014). The previous issues

ave a negative impact on scalability. Furthermore, many of these

ools are either site-, language-, or domain-dependent (Baykan

t al., 2011; Kan and Thi, 2005; Shih and Karger, 2004; Abdallah

nd de la Iglesia, 2014; Gollapalli et al., 2015; Kenekayoro et al.,

014), which means that they cannot be used in a general context.

In this article, we present CALA, a tool that helps software engi-

eers in generating URL patterns that allow to classify web pages

ithout having to download them previously. Our tool does not

uffer from the previous drawbacks: First, it does not require an

xtensive crawling of the site to build the classification model,

ut only a small subset of hub pages, which are automatically ex-

racted from the web site by a lightweight crawler (hub pages are

ink-rich web pages that are returned when a web form is sub-

itted). Furthermore, it is not supervised, since it does not require

he hub pages to be labelled by the user. To fill in the forms and

etrieve the hubs, we use keywords that can be extracted from

he same site automatically, hence no dictionary or user input is

eeded. Furthermore, it is based exclusively on URL features, so

ages do not have to be downloaded prior to be classified. Finally,

t is site-, language-, and domain-independent, since it does not

equire any details regarding the site, the language or the domain

hat the site pages belong to in order to make it work properly.

herefore, our tool is both scalable and generally applicable. Fur-

hermore, our tool provides a GUI that allows to gather the sets of

ub pages from a particular web site, to generate the patterns that

epresent the different classes of pages in that site, and to evaluate
he classification performance of the patterns in terms of precision,

ecall and F 1 score. Although we have identified some limitations

f CALA when dealing with certain types of web sites, these limita-

ions are easy to overcome, as we report on Section 5.2 . We have

alidated our tools using a collection of 22 real-world web sites,

rom which we extracted 100 hubs. CALA never took more than

 min to learn patterns, and they could be applied in a time that

as negligible; furthermore, the F 1 score reveals that the precision

nd the recall that our tool can achieve are very high.

We have previously published some preliminary

deas (Hernández et al., 2012), a report on a preliminary ver-

ion of our tool (Hernández et al., 2011), and a formalisation of the

lgorithms behind our tool (Hernández et al., 2014). In this article,

e present the final architecture of our tool in detail, and we give

n account of its implementation. Also, we present an algorithm

o reconstruct the patterns, which are created without considering

he URL separator tokens such as ‘/’ and ‘?’, and transform them

nto wildcarded URLs.

The rest of the article is organised as follows: Section 2 presents

he related work; Section 3 reports on some preliminaries that are

ecessary to understand our tool; Section 4 describes the under-

ying data model and algorithms of CALA; Section 5 presents how

e implemented our tool and the results of our experimentation;

nally, Section 6 recaps on our main conclusions.

. Related work

In this section, we present other existing tools that are related

o CALA, since they focus on web page classification. We present

ome tools that are based on content-based features, others that

se link-based features, and others that use URL-based features. Fi-

ally, we analyse and discuss the drawbacks of these tools.

.1. Content-based tools

Content-based classification tools analyse features that can be

omputed from the contents of the web page to be classified; obvi-

usly, these tools require the pages to be downloaded before they

an be classified. Content-based features for classification include

he collection of terms of each page, its structure, and its visual

spect once rendered by a web browser.

Term-based classifiers usually represent web pages as vectors

f terms, i.e., vectors containing the stems of the words that ap-

ear in the page, once the stop words have been removed. Some

f these tools are based on the well-known bag of terms approach

hat is frequently used in text processing. According to it, a page is

epresented as a map from terms onto their frequency; later, a pro-

osal to learn a classifier from these frequencies can be used, such

s neural networks (Selamat and Omatu, 2004), k -nearest neigh-

ours (Kwon and Lee, 2003), or support vector machines (Dumais

nd Chen, 20 0 0). Some tools that use the term vector represen-

ation are FTC (Beil et al., 2002), COSA (Hotho et al., 2002), or

PCM (Selamat and Omatu, 2004).

Structure-based classifiers build on the idea of template. Web

ages are usually generated by means of server-side templates

hat provide the structure of the pages and have placeholders that

ust be filled in with data by means of server-side scripts (Bar-

ossef and Rajagopalan, 2002). As a consequence, web pages that

re generated by the same template are likely to belong to the

ame class; to classify a new web page it must be compared to

he different templates and assigned to the class whose template

s more similar. Some tools that are based on the page structure

re TPM (Blanco et al., 2008), Local Template Detection (Bar-Yossef

nd Rajagopalan, 2002), RTDM (de Castro Reis et al., 2004), and

he tool devised by Vieira et al. (2006) , which is a variation from

he latter.

p

n

t

d

p

a

t

p

o

t

s

w

o

p

c

m

t

a

r

m

u

i

s

a

a

t

h

i

t

n

i

m

l

l

s

a

U

b

d

a

t

p

f

t

t

f

U

r

f

a

t

t

p

o

t

u

Finally, visual-based classifiers use features that can only be

computed when a web page is rendered by a browser, e.g., the po-

sition of an image on the screen, its bounding box, the distance to

other elements in the page, and so on. Visual features are used to

distinguish between different areas or vision blocks in a web page,

which are sections of the page that represent a single unit with a

certain functionality or topic. Then, the classification of web pages

is based on the idea that pages that belong to the same class usu-

ally organise their vision blocks similarly. Therefore, to classify a

web page, it is compared against other annotated pages, and as-

signed the class of the page that distributes its vision blocks more

similarly. Visual-based classification is not a very researched area;

the only related tool that we have found is the one devised by Zhu

et al. (2008) .

2.2. Link-based tools

Link-based tools classify web pages not only considering the

web page itself, but also the links to and from other web pages.

Usually, these tools represent the Web as a graph in which nodes

are web pages, and edges are links from one web page to another.

Following this approach, Bhagat et al., 2007 proposed a semi-

supervised link-based classifier that focuses on blogs, i.e., web

pages in which users publish personal information about their lives

and interests. It is based on the idea that people usually include

in their blogs links to the blogs of other people with whom they

share some common interests or demographical attributes (e.g.,

age, location, or gender). Their tool takes a web page graph in

which some nodes are pre-classified as input, and uses the infor-

mation provided by classified nodes to predict the classes of the

other nodes. de Campos et al. (2008) explored the same idea to

classify web pages (not only blogs) using a Bayesian network. Fi-

nally, some tools do not use link-based features in isolation, but

together with other types of features to improve the classification.

As an example, Getoor et al. (2001) ; Zhu et al. (2007) and Xie et al.

(2007) included link-based features into a term-based web page

classifier, which helped them achieve significant improvements re-

garding the precision of their classifier.

2.3. URL-based tools

A naïve approach to URL-based web page classification is

to use clustering techniques; they rely on a distance function

and return a number of clusters that verify that the inter-

distance is maximum, whereas the intra-distance is minimum.

Since URLs can be naturally represented as strings, the idea

would be to use a string distance. Unfortunately, it has been

noticed that using classic string distances does not work well

to classify URLs (Blanco et al., 2011) since two close URLs may

provide information about two different classes, whereas dis-

tant URLs may be related to web pages of the same class. For

instance, there is a minimum distance between URLs 1 http:

// 〈 MSAS 〉 /Detail?entitytype=2&searchtype=2&id=35096884 and

http:// 〈 MSAS 〉 /Detail?entitytype=1&search-type=5&id=35096884 ,

but they reference web pages that are likely to be classi-

fied in different classes (publications of an author and ci-

tations made to that author’s papers). Contrarily, URLs like

http:// 〈 MSAS 〉 /Author/2542366/charles-antony-richard-hoare and

http:// 〈 MSAS 〉 /Author/10540585/yu-li are far more distant but

belong to the same class (authors). It remains unexplored whether

using non-classic distances might improve the results.
1 For the sake of brevity, hereinafter, in our examples we use

< MSAS > as an abbreviation for Microsoft Academic Search domain name,

academic.research.microsoft.com .

B

o

U

r

c

Beyond the previous naïve approach, other authors have pro-

osed a number of ad-hoc tools that are built on different tech-

iques to classify web pages based on their URL.

Brin (1998) presented DIPRE , a supervised tool to extract struc-

ured information from web pages. It considers the Web as a

atabase of unstructured information, and it aims at gathering tu-

les from it (e.g., books). This tool takes a set of sample tuples

s input, and it performs an incremental process that consists of

he following steps: first, it looks for occurrences of the sample tu-

les in the Web, i.e., it looks for web pages where the attributes

f one of the tuples occur near to each other. For each occurrence,

he URL of the web page on which it appears and the text that

urrounds it are considered the context of the occurrence. After-

ards, DIPRE uses these contexts to generate patterns that match

ccurrences with a similar context. These patterns include a URL

refix, which is the longest common prefix to the URLs of the oc-

urrences, and a text pattern, which is a regular expression that

atches the text surrounding the occurrences. Finally, it looks for

uples in the Web matching the new patterns. The process iter-

tes until enough patterns have been generated. Note that DIPRE

equires performing an extensive crawling of the Web to gather as

any tuples of the target relation as possible.

Shih and Karger (2004) proposed Learn - RD and Learn - WW , two

nsupervised web page classification tools that are based on the

dea that two visually nearby elements probably belong to the

ame class and, likewise, similar URLs probably have similar pages

s target. Their tools tokenise a set of training URLs using the char-

cters ‘ / ’, ‘ & ’, and ‘ ? ’ as separators, and insert the tokens in a

ree structure. The root of the tree contains the first token (e.g.,

ttp:), and the other tokens are progressively inserted in order

n the tree, each of them as a child of the previous tokens. Then,

he tools build a Bayesian network from the tree as follows: each

ode in the tree is initially assigned a class so that the probabil-

ty of a token belonging to the same class as the parent token is

aximised; to prevent overfitting, a mutation probability that al-

ows a child token to change its class is introduced. Then, some

eaves in the tree are assigned the class they have in a trained

et of annotated URLs, and the classes of other nodes in the tree

re updated according to their mutation probability. Finally, each

RL is assigned the class of its associated leaf node. Both tools are

ased on the same algorithm, but they differ on the URL training

atasets. Their tools combine URL features with other features that

re found inside a web page, such as the anchor text or the loca-

ion of a link inside de page. Note that these features require the

age to be downloaded beforehand.

Kan and Thi (2005) proposed a supervised web page classifier

or pages in different web sites that is based exclusively on fea-

ures computed from the tokenisation of their URLs. The URLs are

okenised using the standard RFC 3986 format for URIs; then, more

eatures are computed, such as the position of each token in the

RL, the length of the URL, or the lexical type of token (e.g., if it

epresents a number, a word, or a non-alphabetical symbol). These

eatures are used as input to an entropy maximisation algorithm,

 well-known machine learning approach that is usually applied to

ext classification (Berger et al., 1996; Nigam et al., 1999). To build

he classifier, they use large training sets of URLs to achieve good

recision and recall, which requires a previous extensive crawling

f the sites that are being analysed.

Baykan et al. (2011) presented a supervised web page classifica-

ion tool that creates feature vectors by tokenising URLs and then

ses those features to build a support vector machine and a naïve–

ayes classifier. In their experiments, they use large training sets

f URLs, and they require the user to provide a list of words and

RLs that are representative of every class; furthermore, they also

equire a sample set of URLs that are not representative of each

lass.

http://%3CMSAS%3E/Detail?entitytype=2cesearchtype=2ceid=35096884
http://%3CMSAS%3E/Detail?entitytype=1cesearch-type=5ceid=35096884
http://%3CMSAS%3E/Author/2542366/charles-antony-richard-hoare
http://%3CMSAS%3E/Author/10540585/yu-li

c

r

a

s

i

t

p

r

T

D

o

r

l

t

t

t

t

U

r

r

s

p

c

c

e

p

p

t

t

U

a

f

t

t

2

s

e

t

t

q

c

f

a

o

b

p

b

r

t

a

m

b

t

t

w

c

t

h

p

e

l

w

f

t

p

p

a

c

p

i

b

e

p

i

b

m

b

t

fi

r

i

E

2

w

p

a

t

s

Table 1

Comparison of current web classification tools. F 1 = Lightweight crawling;

F 2 = unsupervision; F 3 = classify without downloading; F 4 = site indepen-

dent; F 5 = language independent; F 6 = domain independent.

Tools F 1 F 2 F 3 F 4 F 5 F 6
Content-based tools

Beil et al. (2002) ✕
√

✕
√ √ √

Hotho et al. (2002)
√ ∼ ✕

√

✕ ✕

Kwon and Lee (2003) ✕ ✕ ✕
√ √ √

Selamat and Omatu (2004) ✕ ✕ ✕
√ √ √

Bar-Yossef and Rajagopalan (2002) ✕
√

✕
√ √ √

Blanco et al. (2008)
√

✕ ✕
√ √ √

de Castro Reis et al. (2004) ✕
√

✕
√ √ √

Vieira et al. (2006) ✕
√

✕
√ √ √

Zhu et al. (2008)
√

✕ ✕
√ √ √

Link-based tools

Bhagat et al., 2007 ✕ ∼ √

✕
√

✕

de Campos et al. (2008) ✕ ✕
√ √ √ √

Getoor et al. (2001) ✕ ✕ ✕
√

✕
√

Zhu et al. (2007) ✕ ✕ ✕
√ √ √

Xie et al. (2007) ✕ ✕ ✕
√ √ √

URL-based tools

Brin (1998) ✕ ✕
√ √ √ √

Shih and Karger (2004)
√

✕ ∼ ✕ ✕
√

Kan and Thi (2005) ✕ ✕
√ √

✕
√

Vidal et al. (2008) ✕ ✕
√ √ √ √

Bar-Yossef et al. (2009) ✕
√ √ √ √ √

Koppula et al. (2010) ✕
√ √ √ √ √

Baykan et al. (2011) ✕ ✕
√ √

✕ ✕

Blanco et al. (2011) ✕
√ ∼ √ √ √

Abdallah and de la Iglesia (2014) ∼ ✕
√ √

✕
√

Gollapalli et al. (2015) ✕ ∼ ✕ ✕ ✕ ✕

Kenekayoro et al. (2014) ✕ ✕ ∼ ✕ ✕ ✕

CALA
√ √ √ √ √ √
Vidal et al. (2008) proposed URLPattern , a supervised tool to

lassify web pages. URLPattern takes a sample page as input, and

eturns a set of URL patterns that match the URLs of pages that

re structurally similar to the sample page. It is based on two

teps: site mapping and pattern generation. Site mapping consists

n building a map of the web site, which requires to crawl the en-

ire site starting from its home page and following every possible

ath. They keep a record of the paths in the map that lead (di-

ectly or indirectly) to pages that are similar to the sample page.

he similarity is measured using a tree-edit distance between the

OM trees underlying the pages. Then, pattern generation consists

f generalising the URLs of the pages in the former paths using

egular expressions, and then selecting the path that leads to the

argest number of target pages.

Bar-Yossef et al. (2009) proposed DustBuster , a supervised tool

o detect web pages with different URLs that have the same con-

ents, which has a negative impact on crawling efficiency. To solve

his problem, they classify URLs according to the contents of their

arget, and they build regular expressions to define each class of

RLs. Then, those URLs are normalised using a rule mining algo-

ithm. They need to have a large collection of URLs to achieve good

esults, which means that a previous extensive crawling of the web

ite must be performed to gather them. A similar tool was pro-

osed by Koppula et al. (2010) .

Blanco et al. (2011) proposed MDL - UC , an unsupervised tool to

lassify web pages that combines URL-based features with optional

ontent-based features. Their tool is based on the idea that ev-

ry web site is created by populating a number of HTML tem-

lates with data from a database, and that the URLs of those

ages are created by populating a URL template with data from

he same database. Therefore, pages created from the same HTML

emplate have similar contents and URLs generated from the same

RL template link to pages with similar contents. They proposed

n algorithm that combines web page contents and URL-based

eatures to cluster web pages so that each cluster contains pages

hat were created using a certain template. Their tool is based on

he well-known minimum description length method (Grünwald,

005). They require a large training set, so they crawl the entire

ite in their experiments. Note that to improve the classification

fficiency, content-based features can be used, which means that

he page must be downloaded previously in some cases.

Abdallah and de la Iglesia (2014) proposed another supervised

ool to classify URLs based on splitting them into n -grams, i.e., se-

uences of n characters. They create a language model for each

lass as the probability distribution of n -grams in the training set

or that class. Then, to classify a URL u , it is first split into n -grams,

nd then assigned the class that maximises the probability value

f its set of n -grams. This tool is based on the language model

uilt from the training set, so the resulting classifier is highly de-

endent on the language used to create the URL. Moreover, it is

ased on a supervised technique, which means that it requires to

etrieve a training set; however, the experimental results show that

his training set does not have to be significantly large in order to

chieve good classification results.

Kenekayoro et al. (2014) proposed a supervised tool to auto-

atically classify academic web pages from the United Kingdom

ased on two machine learning techniques: decision tree induc-

ion and support vector machines. Its goal is to identify the poten-

ial relationship that exists between pages from different academic

eb sites that are connected through a hyperlink, by analysing the

lasses of both the referring and the referred page. To compose a

raining set of URLs, their tool relies on a crawler that starts at the

omepages of a given set of universities web sites in the UK, and it

erforms an exhaustive crawling on those web sites to locate the

xisting links between their pages. The crawler stops visiting the

inks from a web site when it has visited 20 0 0 web pages in that
eb site without finding any link. Their classifier uses two types of

eatures: words from the page title and words from the page URL;

herefore, this tool is site-, language-, and domain-dependent.

Gollapalli et al. (2015) proposed a semi-supervised tool that

erforms focused crawling to retrieve academic researcher home-

ages. This tool is built on a technique that combines term-

nd URL-based features to classify each web page visited by the

rawler, in order to guide it towards finding the researcher home-

ages as soon as possible. Their tool is based on co-training, i.e.,

t requires two different sets of features (content-based and URL-

ased features), that provide complementary information about

ach example in the training set, and two sets of training exam-

les, a small labelled set and a larger unlabelled set. One classifier

s trained for each set of features using labelled examples. Then,

oth classifiers are used to classify unlabelled examples, and the

ost confident predictions of each classifier are added to the la-

elled examples set. Finally, this process is repeated iteratively un-

il every example has been labelled. Since this tool is designed to

nd researcher homepages, it is domain dependent. Moreover, it

equires URLs to be written using identifiable terms, which makes

t site dependent. Finally, it is only able to deal with web sites in

nglish. Therefore, it is site-, language-, and domain-dependent.

.4. Discussion

Table 1 summarises the comparison of current tools to classify

eb pages. In this table the
√

symbol denotes that the tool sup-

orts a feature, symbol ✕ denotes that the tool does not support

 feature, symbol N/A denotes that this feature is not applicable

o the tool, and the ∼ symbol entails that the feature is partially

upported. The features we have analysed are the following:

F 1 : This feature determines if a tool is able to create a classifi-

cation model based on a previous lightweight crawling, i.e.,

one that does not need to crawl a significantly large portion

d

e

2

d

e

s

t

t

t

e

t

s

3

e

m

3

r

f

t

p

3

a

b

d

a

d

a

c

a

a

a

t

?
t
of the collection of web pages in a web site to achieve good

classification results.

F 2 : This feature determines if a tool is unsupervised, i.e., if it is

able to perform the classification without requiring any pre-

classified web page sample from the user.

F 3 : This feature determines whether or not a tool is able to clas-

sify a web page without downloading it previously.

F 4 : This feature determines if a tool is site-independent, i.e., if

it is not tailored to deal with just a number of specific web

sites.

F 5 : This feature determines if a tool is language-independent,

i.e., if it is able to deal with web sites written in different

languages.

F 6 : This feature determines if a tool is domain-independent, i.e.,

if it is able to deal with web sites belonging to different do-

mains.

These features have been selected since they allow assessing if

a given classification tool can be successfully applied in real-world

scenarios, which is our focus. To achieve this, the tools should be

scalable, efficient, and generally applicable. The first requirement is

neither fulfilled by tools that need to perform an extensive crawl-

ing to gather a training set, nor by supervised tools, since they

are based on a handcrafted training set, which is a costly proce-

dure; the second requirement is not fulfilled by tools that need to

download a page before classifying it; the third requirement is not

fulfilled by tools that are site-, language-, or domain-dependent.

Most of the tools that we have analysed, except for the ones

by Shih and Karger (2004) , Blanco et al. (2008) , Hotho et al. (2002) ,

Zhu et al. (2008) , and Abdallah and de la Iglesia (2014) , require a

previous extensive crawling of the web site under analysis, to cre-

ate a training dataset. Such a crawl could interfere with the nor-

mal operation of the site, which is not desirable. Furthermore, web

sites change frequently (Fetterly et al., 2004; Koehler, 1999) and

it is not uncommon that these changes render the classifier ob-

solete. Therefore, the classifier must be learnt not once but sev-

eral times and performing an extensive crawling that covers a large

portion of a web site becomes unfeasible. Contrarily, our tool does

not require an extensive crawling of the site under analysis, but a

lightweight crawling that retrieves a small number of pages from

the site, which does not interfere with the normal operation of the

site, and makes it scalable.

Regarding the degree of supervision, most of the analysed

tools are supervised, which means that a person needs to pre-

classify each page in the training set, which is an effort-consuming

and error-prone task. This renders supervised tools unappealing

for real-world web sites, since they shall not scale well to the

Web (Madhavan et al., 2008). Contrarily, our tool is unsupervised;

it is trained on an unlabelled set of pages that is automatically re-

trieved by a lightweight crawler, which saves time and human ef-

fort, and makes it scalable.

Regarding the type of features, the tools by Getoor et al. (2001) ,

Xie et al. (2007) , and Zhu et al. (2007) are link-based tools, but

they require some content-based features to work well. The tools

by Blanco et al. (2011) , Gollapalli et al. (2015) , Kenekayoro et al.

(2014) , and Shih and Karger (2004) are URL-based tools, but they

also require some content-based features, which implies that they

all require to download the pages to be classified. Downloading

a web page puts a load on the server, takes time, and consumes

bandwidth. That is, it is important that a classifier relies exclu-

sively on external features of a page in order to classify it, since

it would be inefficient for practical purposes otherwise (Kan and

Thi, 2005). Contrarily, our tool uses exclusively URL-based fea-

tures, which avoids having to download a page before classifying

it.
Finally, some tools are either site-, language-, or domain-

ependent (Shih and Karger, 2004; Kan and Thi, 2005; Baykan

t al., 2011; Getoor et al., 2001; Bhagat et al., 2007; Hotho et al.,

002; Kenekayoro et al., 2014; Gollapalli et al., 2015; Abdallah and

e la Iglesia, 2014), which means that they are not applicable to

very site in the Web. Contrarily, our tool has been used to clas-

ify web pages in a number of different real-world sites belonging

o diverse domains, and we report on our results in Section 5 . Note

hat our analysis includes sites in English and German for evalua-

ion purposes only, since we had to be able to identify the class of

ach page to evaluate the tool precision and recall; however, our

ool is able to deal just as well with sites in different languages,

ince it does not rely on lists of words or thesauri.

. Preliminaries

Next, we introduce some preliminary concepts that are nec-

ssary to understand our tool in Section 3.1 , and the conceptual

odel on which our tool is based in Section 3.2 .

.1. Research methodology

Our research methodology builds on the Open Unified Process

eference framework (Kruchten, 2003), which we have been using

or several years, both for research and technology transfer. Within

his general framework, the project is divided into the following

hases:

1. Identifying research context: previous to this piece of research

work, we identified that classifying web pages automatically

was an interesting topic, and came to the conclusion that to

classify a web page in the real-world context, it should not be

necessary to download it beforehand. Therefore, we decided to

focus on the URL-based web page classification.

2. Systematic review of the bibliography. We identified the exist-

ing tools and techniques to perform web page classification.

3. Identifying comparison features: we identified those features

that are common to existing tools in our research context.

These features are described in Section 2.4 .

4. Identifying drawbacks: using the previous features, we analysed

existing tools in the bibliography regarding whether they have

these features or not. The conclusion was that, to the best of

our knowledge, no tool has all of the features.

5. Design and implementation of our tool: we devised CALA to

take all of the identified features into account.

6. Design of the experiments: every tool should be tested using

real-world scenarios to evaluate its effectiveness and efficiency.

We identified 22 real-world web sites amongst the most visited

sites in the Web to test our tool (see Section 5.1).

.2. Conceptual model

A URL is a sequence of characters that identifies a resource

nd describes its access protocol. The URL syntax was defined

y the IETF in RFC 3986 (IETF) . According to this recommen-

ation, a URL is composed of different types of segments: first,

 protocol (e.g., html, ftp, and so on); then, an authority or

omain name (e.g., academic.research.microsoft.com);
fterwards a sequence of path segments separated by slash

haracters (e.g., /Detail); and finally two optional sections:

 question mark symbol followed by a query string, and/or

 sharp symbol followed by a fragment. A query string is

 structure that provides information about the names and

he values of the parameters sent to the web server (e.g.,

entitytype = 1&searchtype = 5&id = 48814179), whereas

he fragment is a sequence of characters that indicates a specific

Fig. 1. Conceptual model.

s

c

s

t

a

i

p

i

s

fi

a

t

p

i

s

c

m

s

h

p

r

b

i

a

U

s

i

s

f

c

Fig. 2. Overview of our web page classification process.

t

H

m

t

4

U

c

t

C

t

s

p

c

c

p

s

a

s

t

s

t

f

b

t

b

t

s

m

U

p

s

v

s

i

c

h

s

t

(

S

ection inside a page. We denote any of the subsequences of

haracters in a URL that is limited by separators as a token, where

eparators are ‘ / ’, ‘ ? ’, ‘ # ’, ‘ & ’, ‘ = ’ and ‘ : ’.
We define a pattern as a sequence of URL tokens and wildcards,

hat ends with a $ symbol. A wildcard, which we denote as � , is

 placeholder that accounts for any token. Note that given a URL,

t is straightforward to transform it into a pattern; thus, we do not

rovide any additional details on this procedure. Also, since encod-

ng special characters in a URL is a well-known procedure, we can

afely assume that patterns do not include special characters.

A prefix refers to a subsequence of a pattern, that starts on the

rst token and extends up to any token in the pattern. Note that

 pattern is similar to a prefix, since they both are sequences of

okens and wildcards; the only difference between them is that a

attern ends with $. We introduce both terms for the sake of clar-

ty since prefix emphasises that it is a subsequence of the larger

equence that is the pattern. We formally define the previous con-

epts as follows:

[URL]
[T oken]
P refix == seq (T oken ∪ { � })
P attern == { p : P refix · p � 〈 $ 〉}

A hub page is a special kind of web page that results from sub-

itting a search form using some words as query, and provides

ummaries and links to other pages (Kleinberg, 1999). Note that

ub pages usually contain a larger number of URLs than other

ages in a web site since their goal is to offer the users as many

esults related to their queries as possible. Therefore, the proba-

ility that they contain a sufficiently representative set of URLs

s higher than for other pages. Regarding our tool, a hub can be

bstracted as a set of patterns that result from transforming the

RLs in the links provided by that hub page. Note that we con-

ider search forms that consist of a unique text field that is filled

n with words. A hubset is a collection of hubs that result from

ubmitting several times a search form using different words. We

ormally define the previous concepts as follows:

[W ord]
[W ebP age]
Hub == set P attern

Hubset == set Hub

Fig. 1 presents a UML-like conceptual model, in which a Hubset

omprises a set of Hubs . Each Hub is a specific type of Webpage
Fig. 3. Search form in the
hat is retrieved as a result of submitting a form using a Word . A

ub comprises a set of Prefixes , each of which is a sequence of ele-

ents that can be either Tokens , or Wildcards . A Pattern is a special

ype of Prefix that ends with a $ and matches a number of URLs .

. CALA

Our tool takes the URL of the entry point to a web site, i.e., the

RL of a web page that contains a keyword-based search form that

an be filled and submitted in order to retrieve hub pages. Usually,

he web site home page fulfils this requirement.

To illustrate the automated classification of web pages using

ALA, we provide a running example that consists of classifying

he web pages in the Microsoft Academic Search web site. It is an

cholarly web site that offers information about items that include

apers, authors, citations, and publishing hosts, such as journals or

onferences. As an example, Fig. 3 displays the search form that

onstitutes the entry point to the < MSAS > web site.

Once the tool has retrieved a hubset, it builds a number of URL

atterns that represent the different classes of URLs of that web

ite. It is expected that the user has to annotate those URL patterns

 posteriori. Note that the size of the set of patterns is significantly

maller than the set of pages in a site, so the cost of annotating

hem is negligible.

Fig. 2 presents an overview of CALA, which comprises four

teps, namely: (1) “Lightweight crawling” takes the URL of the en-

ry point to a web site, and automatically gathers a set of hubs

rom that web site. (2) “Pattern building” uses the former set to

uild a set of patterns that represent the URLs in that site. (3) “Pat-

ern annotation” relies on the user to annotate each URL pattern,

y assigning them a semantic label. (4) “URL classification” uses

he set of annotated patterns to classify new web pages from the

ame site by finding which pattern, if any, matches its URL. If no

atch is possible, this means that we have found a page whose

RL deviates largely from the URLs from which we learned the

atterns, which is likely to be due to a reorganisation of the web

ite. In such cases, it is necessary to learn the patterns again.

Of these four steps, step (3) is manual, although we have de-

ised an ancillary tool to support the annotation process, by as-

igning different colours to the different URL patterns, and colour-

ng the URLs that match each pattern with the corresponding

olour. This makes it easier for the user to identify the class be-

ind each pattern. Step (4) is trivial, since to classify a web page it

uffices to compare the web page URL to the URL patterns to find

he best match. Therefore, in this article, we focus on steps (1) and

2). However, we provide some details about our ancillary tool in

ection 5 .
 running example.

Fig. 4. Component diagram of CALA.

Fig. 5. Class diagram of the crawler.

Fig. 6. Algorithm to gather hubs starting from a form page of a web site.

Table 2

Summary of the global constants used

by our algorithms and the values that

we suggest for them in the illustrating

example.

Constant Suggested value

M 100

T 5

N 20

α 0.05

s

s

h

a

k

T

w

p

h

t

t

l

i

c

i

t

s

b

t

t

o

m

o
Fig. 4 presents the architecture of our tool. Our tool comprises

three components: first, the main CALA component, that includes

the lightweight crawler, URL pattern builder and the graphical in-

terface, all of which is supported by an Oracle database. CALA also

includes a DAO layer to deal with the persistence. Then, the Deep

Web access component that handles the automatised access to the

Web, form filling and submission, and managing the extracted key-

words. Finally, the Tokeniser, that is responsible for parsing URLs

and transforming them into sequences of tokens. This component

is based on the TDG Tokeniser, devised by some members of our

research group (Sleiman and Corchuelo, 2013).

In the next subsections, we first describe the lightweight

crawler in Section 4.1 ; then, we describe the pattern builder in

Section 4.2 . Finally, we discuss on the implementation of our tool

in Section 5 .

4.1. Lightweight crawler

The architecture of the crawler is presented in Fig. 5 . Class

Crawler , which provides function gatherHubsets to gather a set of

hubs, has to interact with a keyword-based search form. Therefore,

it needs a number of keywords, which are provided by class Key-

wordAnalyser . This class analyses the pages of a web site to gather

the keywords by tokenising their pages into words. This tokeni-

sation is provided by class Tokeniser . The interaction with the web

site is performed by interface IDownloader , which is responsible for

handling the HTML requests. Finally, an outlier detection technique

is needed to discard empty hubs, i.e., hubs that do not contain any

result relevant to the query, which is provided by class OutlierDe-

tector .

Function gatherHubsets orchestrates the other elements of the

architecture. Fig. 6 presents the main algorithm that implements
uch function. It takes the URL of a page with a keyword-based

earch form with at least one text field as input and outputs a

ubset. First, the downloader downloads the page and the keyword

nalyser chooses the words with a lower frequency in the page as

eywords that can be used to issue queries from the search form.

hen, the downloader finds a text field in the search form, fills it

ith the keywords and submits the form, which yields some hub

ages as a response. These pages are processed twofold: on one

and, the crawler processes them to compute the patterns that

hey contain and to create hubs; on the other hand, they are used

o compute more keywords. Finally, the crawler applies an out-

ier detection technique based on the well-known Cantelli inequal-

ty (Mallows and Richter, 1969) to discard empty hubs. This pro-

ess is repeated until enough hubs have been retrieved. The result

s a hubset that contains a representative collection of URLs from

he web site. We assume that the following constants have been

et before executing this algorithm: M , which refers to the num-

er of hubs the algorithm is expected to return; T , which refers to

he maximum number of attempts that the algorithm is allowed

o make in order to gather M hubs; N , which refers to the number

f keywords that we select from each page; and α, which deter-

ines the fraction of elements in a distribution that are considered

utliers when applying the Cantelli inequality. Table 2 provides a

Fig. 7. Hub in the running example, retrieved after submitting the form with keyword Search .

s

v

a

f

e

s

t

h

i

w

o

e

t

fi

l

w

(

i

k

s

t

t

E

o

i

f

t

a

n

S

H

a

s

t

u

r

w

k

w

e

Fig. 8. Empty hub in the running example.

Fig. 9. Class diagram of the pattern builder.

c

k

r

p

u

4

C

p

t
ummary of the constants that are used by our algorithms and the

alues we suggest for them.

In some cases, a keyword may not retrieve any result, returning

n empty hub. Since empty hubs are not useful for our purposes,

unction getNonEmptyHubs discards those hubs that are likely to be

mpty, by applying an statistical approach. In the worst case, a web

ite may not return any non-empty hub, in which case, getNonEmp-

yHubs returns an empty hubset. In the next iteration, more empty

ubs are gathered and later discarded. If the algorithm keeps find-

ng keywords that yield empty hubs, it may never stop. Therefore,

e introduce a parameter T that represents the maximum number

f attempts. If the size of the hubset after T iterations is not large

nough to be useful for the pattern builder, then we must discard

hat web site.

This algorithm is supported by some functions that are not de-

ned in this article due to lack of space: download (u), which down-

oads a web page; computeKeywords (webPage), which tokenises a

eb page and extracts the list of keywords in the page content

excluding HTML tags); submit (webPage, kw), which locates an ex-

sting search form inside webPage , fills in the form using keyword

w , submits it, and gathers another web page as a result (note that

ubmit makes an inner call to download); and finally, computePat-

erns (webPage), which composes a Hub by extracting all of the pat-

erns (URLs) inside webPage .

xample 1. To illustrate this step, we assume that the constants in

ur algorithm have been set to the values suggested in Table 2 . The

nput variable fp takes the URL of the < MSAS > home page; there-

ore, the algorithm first downloads it and then retrieves the page

hat contains the search form that we presented in Fig. 3 . Then,

 maximum of 20 keywords are extracted from the page content,

amely: Search , Organi s ations, Fields, Publications, Business, Authors,

tudy, Science, Mathematics, Advanced, Economics, Geosciences, Arts,

umanities, Sign, Journals , and Keywords . They are used to fill in

nd submit the form. This results in a collection of hubs; for in-

tance, Fig. 7 shows the hub that is retrieved using keyword Search .

Further keywords are extracted from these hubs and are used

o fill in the form and to retrieve more hubs. The process contin-

es until at least 100 hubs have been retrieved, or until the crawler

uns out of keywords. Some of the hubs might be empty, i.e., the

eb server does not have information related to some particular

eywords, and the result of submitting the forms with these key-

ords is an informative page with no results. Fig. 8 depicts an

mpty hub from our running example web site.
After discarding empty hubs, less than 100 may remain; in that

ase, it is necessary to try again with the form submission and

eyword extraction, until the minimum number of hubs has been

eached, or the crawler has ran out of keywords. This process is re-

eated a maximum of 5 times; after that, if the crawler has been

nable to retrieve 100 hubs, it stops.

.2. Building URL patterns

The architecture of the pattern builder is presented in Fig. 9 .

lass PatternBuilder provides the functions needed to build a set of

atterns. We apply an outlier-based statistical technique to build

he patterns. Therefore, an outlier detection method is needed,

Fig. 10. Algorithm to build URL patterns.

Fig. 11. Algorithm to build a regular expression from a pattern.

W

e

fi

fi

fl

p

fi

f

i

h

p

t

f

t

w

a

t

E

w

p

P
m

C

c

U

i

i

c

m

a

f

p

E

p

5

i
which is provided by class OutlierDetector . This outlier detector is

based on the same outlier detection technique used by the crawler

(cf. Section 4.1).

Fig. 10 shows our algorithm that implements function buildPat-

terns . It takes a hubset hs gathered by the crawler as input and

outputs a set of patterns. First, it extracts the set of prefixes of size

greater than 1 for every pattern in every hub from hs ordered by

length. Then, it iterates on the set of prefixes P until it is empty.

In each iteration, the algorithm selects the shortest prefix in P . If

the selected prefix ends in $, which marks the end of a pattern,

it means that all prefixes in the pattern have already been pro-

cessed, and it can be added to the output set of patterns; other-

wise, the prefix has to be processed along with its siblings, i.e.,

the prefixes that share a common prefix with it, excluding its last

token. Then, the algorithm computes their probability estimators

building on their frequencies and calculates the threshold above

which a p-estimator is considered an upper outlier using the out-

lier detection technique. Later, prefixes with a probability estima-

tor smaller than a threshold are wildcarded, by replacing the token

that occupies their last position with a wildcard. Finally, prefix set

P is updated by withdrawing the prefixes that have already been

processed in this iteration and adding those of their descendants

that have been wildcarded. The result is a set of URL patterns that

represent the URLs of the different classes of pages in the web site.
e assume that constant α has been set to a proper value before

xecuting this algorithm.

This algorithm is supported by some functions that are not de-

ned in this article due to lack of space: function initialisePre-

xSet (hs) returns a sequence with the prefixes of the patterns in

at hs, ordered in increasing size order; function computeSiblings (hs,

) returns the set of prefixes in flat hs that share a common pre-

x with prefix p up to its penultimate element, including p itself;

unction p - estimators (hs, q) returns an estimator of the probabil-

ty of finding at least one pattern prefixed by prefix q in hubset

s ; function wildcardPrefixes (W, i) returns a set in which the input

refixes in set W have been wildcarded at the i th position, i.e., the

oken at this position has been changed into a wildcard; finally,

unction updatePrefixSet (P, W, W

′ , S, NS) returns a prefix set that is

he result of updating P by replacing the prefixes to be wildcarded

ith their wildcarded version in each iteration of the algorithm,

nd subtracting the sibling prefixes that have been processed in

hat iteration.

xample 2. In our running example, after processing the hubset

e get the following patterns:

p 1 = 〈 http , <MSAS > , Publication , �, � 〉 ,
p 2 = 〈 http , <MSAS > , Author , �, � 〉 ,
p 3 = 〈 http , <MSAS > , Journal , �, � 〉 , and

p 4 = 〈 http , <MSAS > , Detail , entityType , 1 , searchType , 5 , id , � 〉 .
Pattern p 1 matches the URLs of pages with information about

apers, i.e., it matches web pages belonging to semantic class

aper , pattern p 2 matches pages of class Author , pattern p 3
atches pages of class Journal and p 4 matches pages of class

itation in Microsoft Academic Search.

Note that the patterns output by Algorithm buildPatterns , do not

ontain URL separators, only tokens and wildcards. However, actual

RLs do contain separators; to use the patterns to classify URLs it

s then necessary to reconstruct the patterns and transform them

nto wildcarded URLs. Therefore, when the URLs are tokenised to

reate the initial patterns in function computePatterns (webPage), a

ap m is built that associates each pattern to the sequence of sep-

rators between each pair of tokens. This map is used to build the

ormer regular expression before using the patterns to classify web

ages, cf. algorithm in Fig. 11 .

xample 3. In our running example, after building the regular ex-

ressions associated to each pattern, we get the following:

p 1 = ̂ ht t p : // < MSAS > / Publication / � /� $,

p 2 = ̂ ht t p : // < MSAS > / Author / � /� $,

p 3 = ̂ ht t p : // < MSAS > / Journal / � /� $, and

p 4 = ̂ ht t p : // < MSAS > / Detail / ? entityType = 1 & searchType

= 5 & id = � $.

. Evaluation

Our tool is supported by a graphical interface that has been

mplemented using Java 1.6.0_25. Furthermore, we have used

G

O

c

p

G

U

o

i

s

d

d

n

n

2

t

f

t

t

v

s

U

t

t

a

a

u

t

U

a

l

p

m

t

e

g

a

t

a

t

c

c

l

F

t

s

a

b

u

u

b

u

t

m

U

e

p

u

u

a

t

Fig. 12. Screen shots from our tool.
uava 13.0.1 to implement ancillary set operations, Hibernate and

racle for persistency, and HTMLCleaner 2.1 to parse the HTML

ode of the web pages and produce well-formed versions of the

ages, which is essential for the evaluation process. Also, we used

NU-Regex for manipulating the regular expressions on which our

RL patterns are based. Furthermore, since our evaluation is based

n XPath, we used Xalan and a Firefox plug-in (Slesinsky, 2012) to

dentify XPaths of the links that led to each of the classes that we

elected for every site.

In our implementation, we use an interface for the crawler

ownloader to abstract away from the technology. We tested two

ifferent implementations for interface IDownloader using Sele-

ium and WebDriver. WebDriver (Stewart and Burns, 2013; Sele-

ium, 2012) belongs to the Selenium project (Holmes and Kellogg,

006), but instead of injecting Javascript functions in the browsers

o execute the scripts, it calls their native APIs. An additional dif-

erence is that WebDriver executes the scripts without a user in-

erface.

Our tool has four modules, namely: Lightweight crawling, Pat-

ern building, URL classification, and Evaluation.

In the Lightweight crawling module (cf. Fig. 12 a), the user can

isualise the hubsets that have already been extracted from web

ites, remove them, or extract a new hubset by specifying a name,

RL of the web page that contains the form that acts as an en-

ry point of the web site, and the values for the parameters that

une the performance of the crawler, namely: the number of par-

llel threads, whether the extractor should be invisible to the user,

nd constants M, N , and T . Once a hubset has been extracted, the

ser is able to visualise the list of hubs that compose it. When

he user clicks on any of them, CALA displays the complete set of

RLs that have been extracted from the links in each hub and the

nchor text of those links. Furthermore, CALA displays a listing of

inks that have been discarded because they do not lead to HTML

ages (e.g., links to JavaScript functions, FTP server locations, or

ailto: links).

The Features module (cf. Fig. 12 b) allows the user to visualise

he p-estimators that have already been calculated in previous ex-

cutions, as well as to calculate a new set of p-estimators for a

iven hubset specifying the value for the α constant. The user may

s well choose to discard some of the URLs if they belong to the

emplate of the web site, i.e., if they are found in a high percent-

ge of hubs from the hubset. This might be useful, for example, if

he built URL patterns are used for guiding a crawler to look ex-

lusively for pages with data that are relevant to a query, in which

ase any URL that appears in almost every page in the site, regard-

ess of the query submitted, is likely not useful for the crawler.

inally, the user may choose to discard minor URL patterns, i.e.,

hose that match a significantly low number of URLs in the

ite.

The Classification module (cf. Fig. 12 c) allows the user to visu-

lise the information about the URL patterns that have been built

y the tool from a particular hubset, namely: their associated reg-

lar expression and their coverage. The user may choose to man-

ally select URL patterns to discard, besides those that might have

een discarded because of their low coverage. Furthermore, the

ser may combine two or more URL patterns, in which case the

ool combines their regular expressions into one. Finally, the user

ay choose to evaluate the classification performance of the set of

RL patterns, which activates the Evaluation module.

Finally, the Evaluation module (cf. Fig. 12 d) allows the user to

valuate the classification performance of a particular set of URL

atterns, in terms of precision, recall and F 1 score. To do so, the

ser may choose between two evaluation modes: supervised and

nsupervised. In the supervised mode, the user is able to define

 number of classes of URLs and to specify correspondences be-

ween the classes and the URL patterns. In the unsupervised mode,

Table 3

Results of the evaluation. P = Precision; R = Recall; F1 = F1 -score; LT = CPU learning time; HDT = hubset download time; MCT = mean

classification time, MDT = mean page download time. The timings are expressed in seconds.

Site URLs Tokens / URL P R F 1 LT HDT MCT MDT

Amazon 30,749 31 .11 1 .00 0 .98 0 .99 2 .78 16 .52 0 .08 0 .87

Anwers 13,840 12 .00 0 .96 1 .00 0 .98 2 .06 20 .38 0 .09 0 .50

Arxiv 33,748 23 .29 1 .00 0 .96 0 .98 5 .42 41 .06 0 .09 0 .12

Battle.net 4845 14 .13 1 .00 1 .00 1 .00 9 .48 22 .16 0 .09 0 .23

BBC 8096 15 .38 1 .00 0 .79 0 .87 8 .86 56 .30 0 .09 0 .22

Chip 16,698 14 .27 1 .00 1 .00 1 .00 7 .97 13 .77 0 .10 0 .36

DailyMail 30,300 21 .06 1 .00 0 .73 0 .81 3 .73 24 .91 0 .10 0 .64

DailyMotion 5039 15 .21 1 .00 1 .00 1 .00 8 .02 13 .63 0 .10 0 .13

Deviantart 14,262 13 .86 0 .97 0 .66 0 .74 2 .08 11 .86 0 .10 0 .48

Drupal 9700 9 .10 1 .00 0 .84 0 .91 20 .94 11 .23 0 .10 0 .20

Filestube 12,951 17 .55 1 .00 0 .94 0 .97 7 .59 57 .30 0 .10 0 .06

Fotolia 20,887 16 .83 1 .00 1 .00 1 .00 21 .55 15 .19 0 .10 0 .74

Indeed 9306 15 .06 1 .00 1 .00 1 .00 5 .28 13 .50 0 .11 0 .21

Livejournal 10,456 10 .88 1 .00 0 .64 0 .78 2 .08 41 .66 0 .11 0 .52

MsAcademic 6734 16 .57 1 .00 0 .92 0 .96 3 .41 28 .75 0 .02 0 .50

Netlog 7333 16 .39 1 .00 1 .00 1 .00 4 .47 18 .56 0 .11 0 .47

Newegg 47,464 28 .03 1 .00 1 .00 1 .00 6 .16 20 .78 0 .12 1 .34

Odesk 10,853 14 .18 1 .00 1 .00 1 .00 3 .00 50 .42 0 .12 0 .73

People 7811 19 .56 1 .00 0 .81 0 .83 3 .14 23 .84 0 .12 0 .63

Slideshare 5402 16 .44 0 .92 1 .00 0 .96 0 .66 85 .08 0 .12 0 .37

Squidoo 6192 12 .77 1 .00 1 .00 1 .00 1 .95 4 .63 0 .12 0 .53

Torrentz 9704 9 .27 1 .00 1 .00 1 .00 4 .25 14 .34 0 .12 0 .48

Fig. 13. Sample web page coloured with our ancillary tool.
the user does not define correspondences, but only classes. In this

mode, CALA applies a technique that is based on the proposal

by Marxer et al. (2007) to calculate precision and recall in a non-

supervised fashion; that is, not assuming an a-priori correspon-

dence between each URL pattern and one of the classes. Instead,

intermediate precision and recall are calculated for every possible

combination of pattern/class, and the final precision and recall are

the weighted means of the intermediate values, where the weight

is the number of URLs that the pattern and class of each combi-

nation have in common. By doing so, we are taking into account

the possibility that our patterns include URLs from more than one

class of pages, and vice versa.

Since CALA is based on an unsupervised technique, a person

must interpret the patterns that it outputs. The size of the set

of patterns is significantly smaller than the set of pages in a site,

so the cost of interpreting them is expected to be negligible. Fur-

thermore, to support the assignment of a class to each pattern,

we have developed an ancillary tool for graphically displaying URL

patterns. It displays the URLs that match each pattern on a sample

web page using different colours, so it helps to identify the class

behind each pattern. An algorithm chooses the colour palette so

that any two given colours are significatively different from each

other. Therefore, it is easy to distinguish between the URLs that

match two given URL patterns. A demo of this tool is available at

the author’s web page. 2 Fig. 13 displays a screen shot of our ancil-

lary tool.

Note that module Lightweight crawling supports the

Lightweight crawling step in our workflow (cf. Fig. 2), mod-

ules Features and Classification support the Pattern Building step,

and our ancillary tool supports the Pattern annotation step.

Our experiments were run on a cloud computer that was

equipped with a four-threaded 64-bit 2.93 GHz Intel i7 processor,

16GB of RAM, running on Windows 7 Pro 64-bit. In the rest of this

section, we present the effectiveness and efficiency evaluation (cf.

Section 5.1) and the limitations of our tool (cf. Section 5.2).
2 http://www.tdg-seville.info/inmahernandez/CALA+Demo . Fig. 14. Scatter plot showing the precision versus recall of CALA.

http://www.tdg-seville.info/inmahernandez/CALA+Demo

Fig. 15. Comparison between the average download time for a regular web page (light grey bars) and the average time that CALA takes to classify it (dark grey bars).

5

2

w

s

w

T

a

s

h

t

fi

w

t

t

t

h

w

t

h

w

r

a

t

o

e

f

i

e

s

t

m

e

p

i

m

p

w

a

v

t

t

t

t

8

t

r

i

p

t

s

l

o

t

m

M

t

t

e

h

t

s

5

a

a

r

b

i

a

s
.1. Effectiveness and efficiency evaluation

Repository. We have setup a repository of 22 real-world hubsets;

0 of them were chosen from the Alexa top 500 web sites that

ere written in English or German and provided a keyword-based

earch form. Since the Alexa ranking (Alexa, 2012) changes daily,

e fixed a reference date to select the sites (February 14, 2011).

he dataset included two additional academic sites, namely: Arxiv,

nd our running example Microsoft Academic Search. From each

ite, we downloaded 100 hubs to perform the experiments, i.e., we

ad 2200 pages available for experimentation.

Evaluation process. For each web site, we identified the classes

hat best described their pages. For instance, in Amazon, we identi-

ed the following classes: Product , Author , and Review . Since

e had 2200 pages, we decided to use a technique to automate

he labelling of the pages: for each hub, we used XPath-Checker

o identify the XPaths of the links that led to each of the classes

hat we selected for every site. The labelling took roughly 50 work

ours, whereas we estimated that labelling each page individually

ould have taken more than 1, 0 0 0 work hours, not to mention

hat this would have led to many classification errors and would

ave been difficult to scale. The XPath expressions, the dataset

ith the retrieved hubsets, and the lists of keywords that were

etrieved from each web site is available for downloading at the

uthor’s web site. 3

For the configuration of our crawler, we set the parameters to

he values suggested in Table 2 . Other things equal, increasing M, T ,

r N did not have an impact on the effectiveness of our tool; how-

ver, decreasing M, T , or N had a negative impact when analysing a

ew sites. Regarding α, we selected the most commonly used value

n the literature.

For each dataset, we used our pattern builder and evaluated its

ffectiveness. We used 50% of the hubs in each dataset to infer a

et of patterns (training set) and the remaining 50% to validate our

ool (test set).

Evaluation results. Table 3 reports on the results of our experi-

ents. The columns report on the number of URLs extracted from

ach site (URLs), mean number of tokens per URL (Tokens / URL),

recision (P), recall (R), F 1 score (F 1 = 2 P R
P+ R), CPU learning time

n seconds (LT), time to download each hubset in seconds (HDT),
3 http://www.tdg- seville.info/inmahernandez/Experiment- JSS .

i

o

f
ean time taken by CALA to classify a web page using the URL

atterns in seconds (MCT), and mean time spent downloading a

eb page from the site in seconds (MDT).

Regarding effectiveness, our main conclusion is that CALA

chieves good classification results, as indicated by the F 1 score

alues; the scatter plot in Fig. 14 illustrates this conclusion since

he majority of points that correspond to CALA are very close to

he upper right corner (P ≥ 0.90, R ≥ 0.90). Note that 71.43% of

he data points from CALA are located in this corner.

Regarding efficiency, the CPU learning times range from 0.66

o 20.94 s, while the hubset download times range from 4.63 to

5.08 s, which means that the total time spent creating the pat-

erns never exceeds 2 min. This makes CALA quite appealing for

eal-world web page classification problems. Note that this tim-

ngs correspond exclusively to the Lightweight crawling and URL

attern building steps, which only have to be executed once. Af-

er the patterns have been built, the mean time required to clas-

ify each page is negligible in almost every case, and significantly

ower than one second in every case. To compare the efficiency of

ur tool to other classifiers that are based on content-based fea-

ures and require to previously download the page, we provide the

ean time required to download a page in column MDT . Just the

DT is already significantly higher than CALA MCT , at least eight

imes higher in the best case, as illustrated in Fig. 15 ; this confirms

he hypothesis that URL-based classification is significantly more

fficient than content-based classification. We provide a compre-

ensive experimental evaluation of our tool and a comparison of

he efficiency and effectiveness of our tool to other tools in the

tate of the art elsewhere (Hernández et al., 2014).

.2. Limitations

Currently, our tool can only deal with web sites that provide

 keyword-based search form. The reason for this is that hubs

re rich in links, and they allow to gather a set of URLs that are

epresentative from the whole set of URLs in the web site, just

y downloading a significantly small number of web pages. This

s actually a soft limitation that does not hinder the practical

pplicability of our tool, since nowadays the majority of web

ites provide a keyword-based search form. In those rare cases

n which a web site does not provide one, this limitation can be

vercome. Algorithm buildPatterns works with any set of pages

rom the web site, although its results depend on those pages

http://www.tdg-seville.info/inmahernandez/Experiment-JSS

0

a

R

A

A

B

B

B

B

B

B

d

d

C

D

D

F

G

G

H

H

H

H

providing a representative set of URLs. Therefore, to deal with web

sites that do not provide a keyword-based search form, Algorithm

gatherHubsets can be modified to gather a set of pages from the

web site by other means, e.g., by using a traditional blind crawler

(Raghavan and Garcia-Molina, 2001). In this case, the set of pages

should provide CALA with a representative set of URLs in order to

build effective URL patterns.

Another limitation of our tool is that it does not work well

with shortened URLs, which are short versions of URLs that have

been very used lately, especially in the context of social media. The

small length of these URLs and the absence of significant terms

makes it difficult for CALA to create URL patterns for a partic-

ular site. As an example, consider a typical URL from our run-

ning example site: http://academic.research.microsoft.com/Author/

5201962/carlos- r- rivero . After applying a shortening service such

as TinyURL, the resulting URL is http://tinyurl.com/o2qxovm , which

has lost the structure and information of the original URL. How-

ever, this limitation can be easily overcome, since shortened URLs

are merely a translation of longer and structured URLs, and our

tool works well with the latter.

6. Conclusions

Web page classification is an interesting area that has been

extensively researched because of its many applications. Unfortu-

nately, most of the existing tools to automatically classify web

pages are not appealing for real world web sites due to a num-

ber of drawbacks, namely: they require a previous extensive crawl-

ing, which is not suitable for large web sites; they are supervised,

which has a negative impact on their scalability; they are based

on content-based features, which means that a web page has to

be downloaded before classifying it, which hinders their efficiency;

or they are either site-, language-, or domain-dependent, which

makes them non-generally applicable.

In this article, we present CALA, a tool to automatically generate

URL-based web page classifiers. Our tool takes the URL of a web

page with a keyword-based search form as input, and it outputs a

set of patterns that represent the URLs of pages that belong to each

semantic class. It builds on a statistical outlier detection technique

to decide which parts of a URL are significantly representative and

which parts can be abstracted. The strongest features of our tool

are that it does not require a previous extensive crawling, it is un-

supervised, it is able to classify a web page without actually down-

loading it, and it is site-, language-, and domain-independent.

We have validated our tool using a collection of datasets that

were gathered from 22 real-world web sites that we have made

publicly available. We have built a set of patterns for each web

site, and we have used them to classify further pages. Our valida-

tion results show that CALA is very effective in practice, as indi-

cated by the F 1 score values that it achieved. The times required

to build those patterns were reasonable and appealing for real-

world scenarios, since they never exceeded 2 min. Furthermore,

the classification times were negligible in almost every case; in the

worst cases, they were always significantly lower than one sec-

ond. These results suggest that our tool seems promising enough

for real-world web page classification, that it is efficient in prac-

tice, and that the patterns it builds are able to classify web pages

accurately, which makes it suitable for a real-world web page clas-

sification scenario.

Acknowledgements

Our work was supported by FEDER funds that were awarded

by the European Commission, the Spanish Government, and the

Andalusian government through contracts TIN2007-64119 , P07-TIC-

2602 , P08-TIC-410 0 , TIN20 08-04718-E , TIN2010-21744 , TIN2010-
9809-E , TIN2010-10811-E , TIN2010-09988-E , TIN2011-15497-E ,

nd TIN2013-40848-R .

eferences

bdallah, T.A., de la Iglesia, B., 2014. URL-based web page classification – a new

method for URL-based web page classification using n-gram language models.
In: Proceedings of KDIR, pp. 14–21. doi: 10.5220/0 0 0503050 0140 021 .

lexa, 2012. Alexa top 500 sites ranking. http://www.alexa.com/topsites (accessed
1.03.12).

ar-Yossef, Z. , Keidar, I. , Schonfeld, U. , 2009. Do not crawl in the dust: different URLs
with similar text. Trans. Web 3 (1), 3 .

Bar-Yossef, Z. , Rajagopalan, S. , 2002. Template detection via data mining and its

applications. In: Proceedings of International Conference on World Wide Web,
WWW, pp. 580–591 .

Baykan, E. , Henzinger, M. , Marian, L. , Weber, I. , 2011. A comprehensive study of
features and algorithms for URL-based topic classification. Trans. Web 5, 15:1–

15:29 .
aykan, E. , Henzinger, M.R. , Marian, L. , Weber, I. , 2009. Purely URL-based topic

classification. In: Proceedings of International Conference on World Wide Web,

WWW, pp. 1109–1110 .
eil, F., Ester, M., Xu, X., 2002. Frequent term-based text clustering. In: Proceedings

of International Conference on Knowledge Discovery and Data Mining, KDD,
pp. 436–442. doi: 10.1145/775047.775110 .

erger, A.L. , Pietra, S.D. , Pietra, V.J.D. , 1996. A maximum entropy approach to natural
language processing. Comput. Linguist. 22 (1), 39–71 .

Bhagat, S., Cormode, G., Rozenbaum, I., 2007. Applying link-based classification to

label blogs. In: Proceedings of International Conference on WebKDD/SNA-KDD,
pp. 97–117. doi: 10.1007/978- 3- 642- 00528- 2 _ 6 .

Blanco, L. , Crescenzi, V. , Merialdo, P. , 2008. Structure and semantics of Data-
IntensiveWeb pages: an experimental study on their relationships. J. UCS 14

(11), 1877–1892 .
lanco, L. , Dalvi, N. , Machanavajjhala, A. , 2011. Highly efficient algorithms for struc-

tural clustering of large websites. In: Proceedings of international conference on
World Wide Web, WWW. ACM, pp. 437–446 .

rin, S. , 1998. Extracting patterns and relations from the World Wide Web. In: Pro-

ceedings of International Conference on WebDB, pp. 172–183 .
e Campos, L.M., Fernández-Luna, J.M., Huete, J.F., Romero, A.E., 2008. Probabilistic

methods for link-based classification. In: Proceedings of International Confer-
ence on INEX, pp. 453–459. doi: 10.1007/978- 3- 642- 03761-0 _ 47 .

e Castro Reis, D., Golgher, P.B., da Silva, A.S., Laender, A.H.F., 2004. Automatic web
news extraction using tree edit distance. In: Proceedings of international con-

ference on World Wide Web, WWW, pp. 502–511. doi: 10.1145/988672.988740 .

Chakrabarti, S., van den Berg, M., Dom, B., 1999. Focused crawling: a new approach
to topic-specific web resource discovery. Comput. Netw. 31 (11–16), 1623–1640.

doi: 10.1016/S1389-1286(99)0 0 052-3 .
rescenzi, V. , Mecca, G. , Merialdo, P. , 2001. RoadRunner: towards automatic data

extraction from large web sites. In: Proceedings of International Conference on
VLDB, pp. 109–118 .

eza, M.M. , Deza, E. , 2012. Encyclopedia of Distances, 3rd ed. Springer .

umais, S., Chen, H., 20 0 0. Hierarchical classification of web content. In: Pro-
ceedings of ACM International Conference on SIGIR, pp. 256–263. doi: 10.1145/

345508.345593 .
ersini, E., Messina, E., Archetti, F., 2008. Enhancing web page classification through

image-block importance analysis. Inf. Process. Manag. 44 (4), 1431–1447. doi: 10.
1016/j.ipm.20 07.11.0 03 .

Fetterly, D., Manasse, M., Najork, M., Wiener, J.L., 2004. A large-scale study of the

evolution of web pages. Softw.: Pract. Exp. 34 (2), 213–237. doi: 10.1002/spe.577 .
Getoor, L. , Segal, E. , Taskar, B. , Koller, D. , 2001. Probabilistic models of text and link

structure for hypertext classification. In: Proceedings of IJCAI Workshop on Text
Learning: Beyond Supervision, pp. 321–374 .

ollapalli, S.D., Caragea, C., Mitra, P., Giles, C.L., 2015. Improving researcher home-
page classification with unlabeled data. ACM Trans. Web 9 (4), 17:1–17:32.

doi: 10.1145/2767135 .

rünwald, P. , 2005. Advances in Minimum Description Length: Theory and Applica-
tions. MIT Press .

ernández, I. , Rivero, C. , Ruiz, D. , Corchuelo, R. , 2011. A tool for link-based web
page classification. In: Advances in Artificial Intelligence, Volume 7023 of Lec-

ture Notes in Computer Science. Springer, Berlin/Heidelberg, pp. 443–452 .
Hernández, I., Rivero, C.R., Ruiz, D., Corchuelo, R., 2012. A statistical approach

to URL-based web page clustering. In: Proceedings of the 21st International

Conference Companion on World Wide Web. ACM, pp. 525–526. doi: 10.1145/
2187980.2188109 .

ernández, I., Rivero, C.R., Ruiz, D., Corchuelo, R., 2014. CALA: an unsupervised
URL-based web page classification system. Knowledge-Based Syst. 57, 168–180.

doi: 10.1016/j.knosys.2013.12.019 .
olmes, A. , Kellogg, M. , 2006. Automating functional tests using selenium. In: Pro-

ceedings of International Conference on AGILE, pp. 270–275 .
otho, A. , Maedche, A. , Staab, S. , 2002. Ontology-based text document clustering.

Künstliche Intell. 16 (4), 48–54 .

IETF, RFC 3986. https://www.ietf.org/rfc/rfc3986.txt (accessed 20.01.16).
Jain, A.K. , Dubes, R.C. , 1988. Algorithms for Clustering Data. Prentice-Hall .

Kan, M.-Y. , Thi, H.O.N. , 2005. Fast webpage classification using URL features. In: Pro-
ceedings of International Conference on Information and Knowledge Manage-

ment, CIKM, pp. 325–326 .

http://academic.research.microsoft.com/Author/5201962/carlos-r-rivero
http://tinyurl.com/o2qxovm
http://dx.doi.org/10.13039/501100005668
http://dx.doi.org/10.5220/0005030500140021
http://www.alexa.com/topsites
http://refhub.elsevier.com/S0164-1212(16)00042-X/sbref0002
http://refhub.elsevier.com/S0164-1212(16)00042-X/sbref0002
http://refhub.elsevier.com/S0164-1212(16)00042-X/sbref0002
http://refhub.elsevier.com/S0164-1212(16)00042-X/sbref0002
http://refhub.elsevier.com/S0164-1212(16)00042-X/sbref0003
http://refhub.elsevier.com/S0164-1212(16)00042-X/sbref0003
http://refhub.elsevier.com/S0164-1212(16)00042-X/sbref0003
http://refhub.elsevier.com/S0164-1212(16)00042-X/sbref0004
http://refhub.elsevier.com/S0164-1212(16)00042-X/sbref0004
http://refhub.elsevier.com/S0164-1212(16)00042-X/sbref0004
http://refhub.elsevier.com/S0164-1212(16)00042-X/sbref0004
http://refhub.elsevier.com/S0164-1212(16)00042-X/sbref0004
http://refhub.elsevier.com/S0164-1212(16)00042-X/sbref0005
http://refhub.elsevier.com/S0164-1212(16)00042-X/sbref0005
http://refhub.elsevier.com/S0164-1212(16)00042-X/sbref0005
http://refhub.elsevier.com/S0164-1212(16)00042-X/sbref0005
http://refhub.elsevier.com/S0164-1212(16)00042-X/sbref0005
http://dx.doi.org/10.1145/775047.775110
http://refhub.elsevier.com/S0164-1212(16)00042-X/sbref0007
http://refhub.elsevier.com/S0164-1212(16)00042-X/sbref0007
http://refhub.elsevier.com/S0164-1212(16)00042-X/sbref0007
http://refhub.elsevier.com/S0164-1212(16)00042-X/sbref0007
http://dx.doi.org/10.1007/978-3-642-00528-2_6
http://refhub.elsevier.com/S0164-1212(16)00042-X/sbref0009
http://refhub.elsevier.com/S0164-1212(16)00042-X/sbref0009
http://refhub.elsevier.com/S0164-1212(16)00042-X/sbref0009
http://refhub.elsevier.com/S0164-1212(16)00042-X/sbref0009
http://refhub.elsevier.com/S0164-1212(16)00042-X/sbref0010
http://refhub.elsevier.com/S0164-1212(16)00042-X/sbref0010
http://refhub.elsevier.com/S0164-1212(16)00042-X/sbref0010
http://refhub.elsevier.com/S0164-1212(16)00042-X/sbref0010
http://refhub.elsevier.com/S0164-1212(16)00042-X/sbref0011
http://refhub.elsevier.com/S0164-1212(16)00042-X/sbref0011
http://dx.doi.org/10.1007/978-3-642-03761-0_47
http://dx.doi.org/10.1145/988672.988740
http://dx.doi.org/10.1016/S1389-1286(99)00052-3
http://refhub.elsevier.com/S0164-1212(16)00042-X/sbref0015
http://refhub.elsevier.com/S0164-1212(16)00042-X/sbref0015
http://refhub.elsevier.com/S0164-1212(16)00042-X/sbref0015
http://refhub.elsevier.com/S0164-1212(16)00042-X/sbref0015
http://refhub.elsevier.com/S0164-1212(16)00042-X/sbref0016
http://refhub.elsevier.com/S0164-1212(16)00042-X/sbref0016
http://refhub.elsevier.com/S0164-1212(16)00042-X/sbref0016
http://dx.doi.org/10.1145/345508.345593
http://dx.doi.org/10.1016/j.ipm.2007.11.003
http://dx.doi.org/10.1002/spe.577
http://refhub.elsevier.com/S0164-1212(16)00042-X/sbref0020
http://refhub.elsevier.com/S0164-1212(16)00042-X/sbref0020
http://refhub.elsevier.com/S0164-1212(16)00042-X/sbref0020
http://refhub.elsevier.com/S0164-1212(16)00042-X/sbref0020
http://refhub.elsevier.com/S0164-1212(16)00042-X/sbref0020
http://dx.doi.org/10.1145/2767135
http://refhub.elsevier.com/S0164-1212(16)00042-X/sbref0022
http://refhub.elsevier.com/S0164-1212(16)00042-X/sbref0022
http://refhub.elsevier.com/S0164-1212(16)00042-X/sbref0023
http://refhub.elsevier.com/S0164-1212(16)00042-X/sbref0023
http://refhub.elsevier.com/S0164-1212(16)00042-X/sbref0023
http://refhub.elsevier.com/S0164-1212(16)00042-X/sbref0023
http://refhub.elsevier.com/S0164-1212(16)00042-X/sbref0023
http://dx.doi.org/10.1145/2187980.2188109
http://dx.doi.org/10.1016/j.knosys.2013.12.019
http://refhub.elsevier.com/S0164-1212(16)00042-X/sbref0026
http://refhub.elsevier.com/S0164-1212(16)00042-X/sbref0026
http://refhub.elsevier.com/S0164-1212(16)00042-X/sbref0026
http://refhub.elsevier.com/S0164-1212(16)00042-X/sbref0027
http://refhub.elsevier.com/S0164-1212(16)00042-X/sbref0027
http://refhub.elsevier.com/S0164-1212(16)00042-X/sbref0027
http://refhub.elsevier.com/S0164-1212(16)00042-X/sbref0027
https://www.ietf.org/rfc/rfc3986.txt
http://refhub.elsevier.com/S0164-1212(16)00042-X/sbref0028
http://refhub.elsevier.com/S0164-1212(16)00042-X/sbref0028
http://refhub.elsevier.com/S0164-1212(16)00042-X/sbref0028
http://refhub.elsevier.com/S0164-1212(16)00042-X/sbref0029
http://refhub.elsevier.com/S0164-1212(16)00042-X/sbref0029
http://refhub.elsevier.com/S0164-1212(16)00042-X/sbref0029

K

K

K

K

K

K

K

L

M

M

M

N

R

S

S

S

S

S

S

S

V

V

X

X

X

Z

Z

Z
enekayoro, P., Buckley, K., Thelwall, M., 2014. Automatic classification of aca-
demic web page types. Scientometrics 101 (2), 1015–1026. doi: 10.1007/

s11192- 014- 1292- 9 .
leinberg, J.M. , 1999. Authoritative sources in a hyperlinked environment. J. ACM 46

(5), 604–632 .
oehler, W., 1999. An analysis of web page and web site constancy and perma-

nence. J. Am. Soc. Inf. Sci. 50 (2), 162–180. doi: 10.1002/(SICI)1097-4571(1999)
50:2 〈 162::AID- ASI7 〉 3.0.CO;2- B .

oppula, H.S. , Leela, K.P. , Agarwal, A. , Chitrapura, K.P. , Garg, S. , Sasturkar, A. , 2010.

Learning URL patterns for webpage de-duplication. In: Proceedings of Interna-
tional Conference on WSDM. ACM, pp. 381–390 .

ovacevic, M. , Diligenti, M. , Gori, M. , Milutinovic, V.M. , 2002. Recognition of com-
mon areas in a web page using visual information: a possible application in

a page classification. In: Proceedings of IEEE International Conference on Data
Mining, pp. 250–257 .

ruchten, P. , 2003. The Rational Unified Process: An Introduction. Addison-Wesley

Professional .
won, O.-W., Lee, J.-H., 2003. Text categorization based on k -nearest neighbor ap-

proach for web site classification. Inf. Process. Manag. 39 (1), 25–44. doi: 10.
1016/S0306-4573(02)0 0 022-5 .

i, Y. , Zhong, N. , 2004. Web mining model and its applications for information gath-
ering. Knowledge-Based Syst. 17 (5–6), 207–217 .

adhavan, J. , Ko, D. , Kot, L. , Ganapathy, V. , Rasmussen, A . , Halevy, A .Y. , 2008.

Google’s deep web crawl. Proceedings of VLDB 1 (2), 1241–1252 .
allows, C.L. , Richter, D. , 1969. Inequalities of Chebyshev type involving conditional

expectations. Ann. Math. Stat. 40 (6), pp.1922–1932 .
arxer, R. , Holonowicz, P. , Purwins, H. , Hazan, A. , 2007. Dynamical hierarchical self-

organization of harmonic, motivic, and pitch categories. In: Proceedings of NIPS
Music, Brain and Cognition Workshop, Vancouver, Canada .

igam, K. , Mccallum, A.K. , Thrun, S. , Mitchell, T. , 1999. Text classification from la-

beled and unlabeled documents using EM. Mach. Learn. 39 (2–3), 103–134 .
aghavan, S. , Garcia-Molina, H. , 2001. Crawling the hidden web. In: Proceedings of

International Conference on World Wide Web, WWW .
elamat, A., Omatu, S., 2004. Web page feature selection and classification using

neural networks. Inf. Sci. 158, 69–88. doi: 10.1016/j.ins.20 03.03.0 03 .
elenium, 2012. Webdriver. http://www.seleniumhq.org/projects/webdriver/ (ac-

cessed 2.04.12).

hen, D., Chen, Z., Yang, Q., Zeng, H.-J., Zhang, B., Ma, W.-Y., Lu, Y., 2004. Web-page
classification through summarization. In: Proceedings of International Confer-

ence on SIGIR, pp. 242–249. doi: 10.1145/1008992.1009035 .
hih, L.K. , Karger, D.R. , 2004. Using URLs and table layout for web classification

tasks. In: Proceedings of International Conference on World Wide Web, WWW,
pp. 193–202 .

leiman, H.A., Corchuelo, R., 2013. Tex: an efficient and effective unsupervised web

information extractor. Knowledge-Based Syst. 39, 109–123. http://dx.doi.org/10.
1016/j.knosys.2012.10.009 .

lesinsky, B., 2012. Xpath checker. https://addons.mozilla.org/en-US/firefox/addon/
xpath-checker/ (accessed 1.03.12).

tewart, S. , Burns, D. , 2013. WebDriver. Working Draft. World Wide Web Consor-
tium .
idal, M.L.A. , da Silva, A.S. , de Moura, E.S. , Cavalcanti, J.M.B. , 2008. Structure-based
crawling in the Hidden Web. J. UCS 14 (11), 1857–1876 .

ieira, K., da Silva, A.S., Pinto, N., de Moura, E.S., Cavalcanti, J.M.B., Freire, J., 2006.
A fast and robust method for web page template detection and removal. In:

Proceedings of International Conference on Information and Knowledge Man-
agement, CIKM, pp. 258–267. doi: 10.1145/1183614.1183654 .

ie, W., Mammadov, M.A., Yearwood, J., 2007. Using links to aid web classification.
In: Proceedings of International Conference on ACIS-ICIS, pp. 981–986. doi: 10.

1109/ICIS.2007.191 .

u, R., Wunsch, D.C., 2005. Survey of clustering algorithms. IEEE Trans. Neural Netw.
16 (3), 645–678. doi: 10.1109/TNN.2005.845141 .

u, S. , Yoon, H.-J. , Tourassi, G. , 2014. A user-oriented web crawler for selectively
acquiring online content in e-health research. Bioinformatics 30 (1), 104–114 .

hang, J. , Qin, J. , Yan, Q. , 2006. The role of URLs in objectionable web content cat-
egorization. In: Proceedings of International Conference on Web Intelligence,

pp. 277–283 .

hu, M., Hu, W., Wu, O., Li, X., Zhang, X., 2008. User oriented link function classifi-
cation. In: Proceedings of International Conference on World Wide Web, WWW,

pp. 1191–1192. doi: 10.1145/1367497.1367721 .
hu, S., Yu, K., Chi, Y., Gong, Y., 2007. Combining content and link for classifica-

tion using matrix factorization. In: Proceedings of International Conference on
Research and Development in Information Retrieval, pp. 4 87–4 94. doi: 10.1145/

1277741.1277825 .

http://dx.doi.org/10.1007/s11192-014-1292-9
http://refhub.elsevier.com/S0164-1212(16)00042-X/sbref0031
http://refhub.elsevier.com/S0164-1212(16)00042-X/sbref0031
http://dx.doi.org/10.1002/(SICI)1097-4571(1999)50:2$<$162::AID-ASI7>3.0.CO;2-B
http://refhub.elsevier.com/S0164-1212(16)00042-X/sbref0033
http://refhub.elsevier.com/S0164-1212(16)00042-X/sbref0033
http://refhub.elsevier.com/S0164-1212(16)00042-X/sbref0033
http://refhub.elsevier.com/S0164-1212(16)00042-X/sbref0033
http://refhub.elsevier.com/S0164-1212(16)00042-X/sbref0033
http://refhub.elsevier.com/S0164-1212(16)00042-X/sbref0033
http://refhub.elsevier.com/S0164-1212(16)00042-X/sbref0033
http://refhub.elsevier.com/S0164-1212(16)00042-X/sbref0034
http://refhub.elsevier.com/S0164-1212(16)00042-X/sbref0034
http://refhub.elsevier.com/S0164-1212(16)00042-X/sbref0034
http://refhub.elsevier.com/S0164-1212(16)00042-X/sbref0034
http://refhub.elsevier.com/S0164-1212(16)00042-X/sbref0034
http://refhub.elsevier.com/S0164-1212(16)00042-X/sbref0035
http://refhub.elsevier.com/S0164-1212(16)00042-X/sbref0035
http://dx.doi.org/10.1016/S0306-4573(02)00022-5
http://refhub.elsevier.com/S0164-1212(16)00042-X/sbref0037
http://refhub.elsevier.com/S0164-1212(16)00042-X/sbref0037
http://refhub.elsevier.com/S0164-1212(16)00042-X/sbref0037
http://refhub.elsevier.com/S0164-1212(16)00042-X/sbref0038
http://refhub.elsevier.com/S0164-1212(16)00042-X/sbref0038
http://refhub.elsevier.com/S0164-1212(16)00042-X/sbref0038
http://refhub.elsevier.com/S0164-1212(16)00042-X/sbref0038
http://refhub.elsevier.com/S0164-1212(16)00042-X/sbref0038
http://refhub.elsevier.com/S0164-1212(16)00042-X/sbref0038
http://refhub.elsevier.com/S0164-1212(16)00042-X/sbref0038
http://refhub.elsevier.com/S0164-1212(16)00042-X/sbref0039
http://refhub.elsevier.com/S0164-1212(16)00042-X/sbref0039
http://refhub.elsevier.com/S0164-1212(16)00042-X/sbref0039
http://refhub.elsevier.com/S0164-1212(16)00042-X/sbref0040
http://refhub.elsevier.com/S0164-1212(16)00042-X/sbref0040
http://refhub.elsevier.com/S0164-1212(16)00042-X/sbref0040
http://refhub.elsevier.com/S0164-1212(16)00042-X/sbref0040
http://refhub.elsevier.com/S0164-1212(16)00042-X/sbref0040
http://refhub.elsevier.com/S0164-1212(16)00042-X/sbref0041
http://refhub.elsevier.com/S0164-1212(16)00042-X/sbref0041
http://refhub.elsevier.com/S0164-1212(16)00042-X/sbref0041
http://refhub.elsevier.com/S0164-1212(16)00042-X/sbref0041
http://refhub.elsevier.com/S0164-1212(16)00042-X/sbref0041
http://refhub.elsevier.com/S0164-1212(16)00042-X/sbref0042
http://refhub.elsevier.com/S0164-1212(16)00042-X/sbref0042
http://refhub.elsevier.com/S0164-1212(16)00042-X/sbref0042
http://dx.doi.org/10.1016/j.ins.2003.03.003
http://www.seleniumhq.org/projects/webdriver/
http://dx.doi.org/10.1145/1008992.1009035
http://refhub.elsevier.com/S0164-1212(16)00042-X/sbref0045
http://refhub.elsevier.com/S0164-1212(16)00042-X/sbref0045
http://refhub.elsevier.com/S0164-1212(16)00042-X/sbref0045
http://dx.doi.org/10.1016/j.knosys.2012.10.009
https://addons.mozilla.org/en-US/firefox/addon/xpath-checker/
http://refhub.elsevier.com/S0164-1212(16)00042-X/sbref0047
http://refhub.elsevier.com/S0164-1212(16)00042-X/sbref0047
http://refhub.elsevier.com/S0164-1212(16)00042-X/sbref0047
http://refhub.elsevier.com/S0164-1212(16)00042-X/sbref0048
http://refhub.elsevier.com/S0164-1212(16)00042-X/sbref0048
http://refhub.elsevier.com/S0164-1212(16)00042-X/sbref0048
http://refhub.elsevier.com/S0164-1212(16)00042-X/sbref0048
http://refhub.elsevier.com/S0164-1212(16)00042-X/sbref0048
http://dx.doi.org/10.1145/1183614.1183654
http://dx.doi.org/10.1109/ICIS.2007.191
http://dx.doi.org/10.1109/TNN.2005.845141
http://refhub.elsevier.com/S0164-1212(16)00042-X/sbref0052
http://refhub.elsevier.com/S0164-1212(16)00042-X/sbref0052
http://refhub.elsevier.com/S0164-1212(16)00042-X/sbref0052
http://refhub.elsevier.com/S0164-1212(16)00042-X/sbref0052
http://refhub.elsevier.com/S0164-1212(16)00042-X/sbref0053
http://refhub.elsevier.com/S0164-1212(16)00042-X/sbref0053
http://refhub.elsevier.com/S0164-1212(16)00042-X/sbref0053
http://refhub.elsevier.com/S0164-1212(16)00042-X/sbref0053
http://dx.doi.org/10.1145/1367497.1367721
http://dx.doi.org/10.1145/1277741.1277825

	CALA: ClAssifying Links Automatically based on their URL
	1 Introduction
	2 Related work
	2.1 Content-based tools
	2.2 Link-based tools
	2.3 URL-based tools
	2.4 Discussion

	3 Preliminaries
	3.1 Research methodology
	3.2 Conceptual model

	4 CALA
	4.1 Lightweight crawler
	4.2 Building URL patterns

	5 Evaluation
	5.1 Effectiveness and efficiency evaluation
	5.2 Limitations

	6 Conclusions
	 Acknowledgements
	 References

