
University of Sevilla
Dpt. of Computer Science
and Artificial Intelligence

Modelling and simulation of real–life

phenomena in Membrane Computing

A thesis submitted for the degree of
Doctor in Philosophy
to obtain the PhD degree
School of Computer Engineering
University of Sevilla

Manuel Garćıa–Quismondo Fernández

Approval of the Thesis Supervisors

Mario de Jesús Pérez Jiménez Miguel Angel Mart́ınez del Amor

November 12, 2013

A mis padres y a mi abuela,

por ayudarme siempre y sacarme adelante.

Agradecimientos

Esta tesis es el culmen de seis años de trabajo. Un trabajo que, aunque
firmado por sólo una persona, en absoluto es individual, y sin cuya ayuda y
apoyo nunca hubiera podido realizar. Es por eso que quiero dedicar esta página
a expresar my gratitud a todos los que hicieron posible este trabajo.

Me gustaŕıa comenzar por mis padres, Juanjo y Margari, por su ayuda desde
mi nacimiento, aśı como a mi abuela Antonia, mi hermano Juan, mis t́ıos Yeye
y Pedro y mis primos Pedro e Irene, por acogerme como “hijo prestado” du-
rante incontables periodos de tiempo.

Aśı mismo, quiero expresar my agradecimiento a todos mis compañeros en el
Departamento de Ciencias de la Computación de la Universidad de Sevilla. Es-
pecialmente, mi agradecimiento va hacia Mario de Jesús Pérez por su acogida
bajo su tutela a a hora de completar mi tesis doctoral. Su generosidad y capaci-
dad de sacrificio por el prójimo ha sido siempre una fuente de inspiración para
mı́. Seguidamente, me gustaŕıa agradecer a Ignacio Pérez y a Daniel Dı́az por
haberme dado la oportunidad de incorporarme al mundo de la investigación. A
Fran Romero, por tutelarme durante mi primera etapa como investigador “re-
munerado”, a Agust́ın Riscos y a Ana Ruiz, por su inestimable ayuda en temas
docentes y burocráticos, a Miguel Angel Gutiérrez y a Fernando Sancho por
sus anécdotas, a Carmen Graciani por su experiencia durante mi etapa como
docente y a Alvaro Romero por su inestimable ayuda en temas de adminis-
tración de sistemas en general. Asimismo, no pod́ıa faltar mi codirector de tesis
Miguel Angel Mart́ınez por enseñarme todo lo que sé sobre paralelismo, ad-
ministración de servidores Linux, dispositivos GPU, lenguaje de programación
CUDA y cocina con arroz bomba. Y, cómo no, mi más sincero agradecimiento
a Luis Valencia y Luisfe Maćıas por compartir y animar tańısimas horas de
despacho. Por último, nada más que extender mi agradecimiento a todo el
Departamento de Ciencias de la Computación e Inteligencia Artificial.

También querŕıa agradecer este trabajo a mis compañeros de carrera, en espe-
cial a José Manuel Pérez, Juan Sebastián Tinoco, David Fernández y Carlos
Portero, por tantas horas de trabajos grupales compartidas. I would like also
to thank all people who fostered me during my research stays all over the world.
Specifically, I would like to thank Martyn Amos, Angel Goñi, Javi Esquivel,
Pete Harding, Matt Crossley and Andy Nisbet for taking me in and sharing
with me their experience during my stay at the Novel Computation Group in
Manchester Metropolitan University, in Manchester (U.K.). In addition, I

i

would like to convey my most sincere acknowledge to my companions at the
Image Processing and Intelligent Control Key Laboratory in Wuhan, Hubei
(China), especially to Linqiang Pan, Tao Song, Xueming Liu, Yansen Su,
Yuan Kong and Qing Wei, and to Gexiang Zhang for his homely reception in
Chengdu, Sichuan (China). Last but not least, I would like to extend my ac-
knowledgement to all who fostered me as another member in the Department of
Biology at Tufts University in Medford, Massachusetts (U.S.A.), with special
regards to Francie Chew, Michael Reed, Coco Gómez, Kelly Boisvert (who is
finishing off her poster beside me while I write this acknowledgement), Anne
Madden, Ed Rocha and Brian Holiday. Imi-as place asemenea sa da un mesaj
de mulţimire la Ana Pavel pentru totul ajutor şi sprijinu primit.

Finalmente, agradezco profundamente todo el apoyo económico ofrecido por la
beca de Formación de Profesorado Universitario (FPU) del Ministerio de Edu-
cación, la beca de Formación de Personal Investigador (FPI) del IV Plan Propio
de la Universidad de Sevilla, de la Junta de Andalućıa, y por los proyectos de
investigación nacionales I+D+i del Ministerio de Economı́a y Competitividad
TIN2006-13425, TIN2009-13192 y TIN2012-37434; todos ellos confinanciados
por los fondos FEDER de la Unión Europea.

ii

Contents

I Preliminaries 7

1 Natural Computing 9

1.1 Paradigms in Natural Computing 10

1.2 Membrane Computing . 13

1.3 Stochastic models and Probabilistic Models 26

2 Simulation of P Systems 31

2.1 Simulators in Membrane Computing 31

2.2 Standards in Membrane Computing 35

2.3 Parallel simulation of P systems 45

2.4 GPU Computing . 49

2.5 Hardware specifications . 56

II Contributions 57

3 Enzymatic Numerical P systems 59

3.1 Numerical P Systems . 60

3.2 Enzymatic Numerical P Systems 61

3.3 Simulation of Enzymatic Numerical P Systems 65

3.4 A GPU simulator for Enzymatic Numerical P systems 65

3.5 Performance analysis of the GPU simulator 74

4 Logic Network Dynamic P systems 85

4.1 Some antecedents of Gene Network models in Membrane Com-
puting . 85

4.2 Logic Networks . 87

4.3 Population Dynamics P systems 96

4.4 A PDP–based model of Logic Networks 100

iii

5 Probabilistic Guarded P Systems 107
5.1 Formal description of PGP systems 108
5.2 Simulation of PGP systems . 114
5.3 Parallel simulation of PGP systems 119
5.4 Software environment . 123

III Results 131

6 Case studies 133
6.1 Modelling logic networks with LNDP systems: Arabidopsis thaliana,

a case study . 133
6.2 A PGP model on the ecosystem of Pieris napi oleracea 137

7 Conclusions 151
7.1 Summary by chapter . 151
7.2 Thesis overview . 152
7.3 Future work . 156

Appendices 160

A Gene Network Data 163

B PGP Model Data 167

Bibliography 171

iv

List of Figures

1.1 A cellular automaton state, depicting the concept of neighbourhood 11

1.2 A Petri net example . 13

1.3 A classic Markov chain example . 13

2.1 Output screen and code sample of SNPS . 32

2.2 Snapshot of SimCM main screen . 34

2.3 A diagram on P-Lingua software architecture . 37

2.4 A MeCoSim–generated GUI application . 43

2.5 Infobiotics (left) and MetaPlab (right) screenshots 45

2.6 Overview of Petreska and Teuscher’s FPGA Membrane Computing simulator 47

2.7 General structure (left) and monitoring system (right) of a Membrane Computing simulator based on

microcontroller technology . 48

2.8 Input (left) and output (right) from Ciobanu and Guo’s cluster simulator 49

2.9 The CUDA programming model . 51

3.1 A numerical P system (left) and an enzymatic numerical P system (right) 63

3.2 An ENPS model for obstacle avoidance . 64

3.3 Production function expression (x1,2 + 7) + (x1,4 − 3) 67

3.4 Workflow of the simulators . 75

3.5 A sample of XML code to define ENPS systems 77

3.6 Dummy ENPS (left) and ENPS for function approximation (right) 80

3.7 Execution times and speed–up factors for dummy model 83

3.8 Execution times and speed–up factors for function approximation model 84

4.1 Behaviour of unary operations f
j
1 . 91

4.2 Behaviour of binary operations f
j
2 . 92

4.3 A graphical description of a PDP system . 99

5.1 An example of PGP system. Flags are highlighted in red and probabilities equal to 1 are omitted. . 110

5.2 Comparison of PGP systems and P systems with proteins 112

v

5.3 Thread distribution among blocks for the proposed GPU implementation of Algorithm 5.3.1. S, NΓ, q,

NB and NR denote the number of simulations and the alphabet size, degree, total number of blocks

and total number of rules in the system, respectively. Block size was set to 256 because it offered the

best performance results. 123
5.4 Main screen of MeCoGUI . 129
5.5 Workflow for P-Lingua simulator (upper branch) and PGPC++ and PGPCUDA (lower branch) for

MeCoGUI . 130

6.1 Input Data on MeCoSim interface . 135
6.2 Simulation Results from MeCoSim interface . 136
6.3 Values predicted by the simulator. Solid and dashed lines represent average population levels and

typical deviations (in individuals) among simulations, respectively. Red lines display values for phe-

notype Rr, green lines those of RR and blue lines those of rr. 147
6.4 Simulation times (left) and acceleration factors (right) for PGPCUDA and PGPC++ 149

A.1 Initial gene states in the Arabidosis thaliana gene network on the longday scenario taken as case study 164
A.2 Unary gene interactions present in the logic network associated to the behaviour of Arabidosis thaliana

taken as case study . 164
A.3 Binary gene interactions present in the logic network associated to the behaviour of Arabidosis thaliana

taken as case study (1/2) . 165
A.4 Binary gene interactions present in the logic network associated to the behaviour of Arabidosis thaliana

taken as case study (2/2) . 166
A.5 Final gene states in the Arabidosis thaliana gene network on the longday scenario taken as case study 166

B.1 Integer simulation parameters (left) and values for Ng and Propi,k for the simulated ecosystem . . 168
B.2 Values for Fy and Hatk,g (left) and pi, Efi, Hi and Detk,g (right) for the simulated ecosystem . . 168
B.3 Values for Py,in,i for the simulated ecosystem 169
B.4 Values for non–parametrized probabilities (left) and for Oy and My (right) for the simulated ecosystem169

vi

List of Tables

2.1 Hardware specifications of the laptop in which the simulations in this work have been carried out . . 56

4.1 Parameters for LNDP systems . 106

6.1 Parameters for Pieris napi oleracea model . 146

vii

viii

Motivation

Natural Computing is a terminology introduced to encompass three classes of
methods: (1) those that take inspiration from nature for the development of
novel problem-solving techniques; (2) those that are based on the use of com-
puters to synthesize natural phenomena; and (3) those that employ natural
materials (e.g., molecules) to compute [60]. Paradigms inside this discipline
are Artificial Neural Networks [121], Genetic Algorithms and Evolutionary
Computing [230], Swarm Intelligence [235], Artificial Immune Systems [158]
and DNA Computing [39], among others.

Membrane Computing is a bio-inspired branch of Natural Computing initi-
ated by Gheorghe Păun which abstracts computing models from the structure
and functioning of living cells and from the organization of cells in tissues or
other higher order structures [190]. This is done by defining theoretical devices
known as membrane systems or P systems. Although the foundational model
(also known as Transition P systems) defines a membrane structure consisting
on a hierarchical arrangement of membranes [188] in the form of a rooted tree,
a wide range of modelling frameworks inside Membrane Computing has been
introduced since its foundation. Among these models one can cite Spiking Neu-
ral P systems [163], Tissue–like P systems [162], Numerical P systems [193]
and Array-rewriting P systems [40]. The syntactical ingredients of most P sys-
tems consist on an alphabet of symbols, called objects, a membrane structure
composed of separate compartments or membranes, a (possibly empty) multi-
set associated with each membrane and a set of rewriting rules per membrane
which provide the evolution of the system throughout discrete time steps.

Time in P systems models is discrete and advances in finite steps [188]. In
addition, a global clock marking the time for the system (i.e., for all compart-
ments in the whole system) is assumed [194]. In this sense, the instantaneous
description at any instant of a P system is known as configuration. Given a
configuration C1, we say that we have a transition from C1 to configuration C2

by using the evolution rules of the system. A sequence of transitions between

1

2

configurations of a given P system is called a computation if it is maximal [188].

The majority of P system frameworks work in a non–deterministic and max-
imally parallel manner. The objects to evolve in a step and the rules by
which they evolve are chosen in a non–deterministic manner, but in such a
way that for each membrane we have a maximally parallel application of rules.
This means that we assign objects to rules, non–deterministically choosing the
rules and the objects assigned to each rule, but in such a way that after this
assignation no further rule can be applied to the remaining objects [151].

Membrane Computing frameworks have been mainly employed as alternative
approaches to tackle computationally hard problems, especially NP-complete
ones. P systems are capable of solving NP-complete problems on polynomial
time by trading time for space. That is, when Membrane Computing is used
as an alternative to traditional approaches to solve problems from this com-
plexity class, they make use of an exponential number of computing devices
created in a natural manner in polynomial time. One can find examples of this
approach in problems such as SAT [93], 3–Col [79] and Knapsack [174].

Another facet of P systems is their use as a modelling framework for real–life
phenomena. When studying these processes, it is usually useful to build com-
puting models. The degree of abstraction is a crucial aspect for the design of a
model capable of capturing the dynamics of a process. That is, models must be
kept as simple as possible, drawing away all unnecessary complexity and defin-
ing criteria to select which information is fed into it [86]. In this sense, P sys-
tems reveal themselves as formal abstractions of the phenomenon under study,
filtering out aspects of lesser importance and including those which prove to
be relevant throughout the iterative process of modelling, simulation and val-
idation in a modular manner, i.e., in such a way that changing, deleting or
including small pieces of knowledge in the system entails proportionally small
changes in the model [199]. The modelled phenomena themselves are rather
diverse, ranging from biochemistry [75, 199, 200] to image processing [226]
and including robotics [221], economics [193], software [79], automatic music
generation [72] and ecology [52].

Given a real–life process subjected to study and a model thereof, in order
to verify that the behaviour of the model corresponds to that of the system
it is usually necessary to simulate the system. Rather than simulating, one
alternative approach would consists on implementing the models. However,
when it comes to Membrane Computing currently it is not possible; P systems
have not been implemented either in vivo, in vitro nor in silico. Traditionally,
Membrane Computing simulators were completely ad–hoc applications for the

3

model at hand, simulator parameters were hard–coded and the code was not
reusable because it was intended to work for a specific P system [202, 54]. In
this sense, P–Lingua [71] pioneered the standardisation of P systems by imple-
menting an open, plugin–based software architecture meant for its extension by
third–party developers. P–Lingua is a software project which provides a spec-
ification language in which designers can define P systems, known as P-Lingua
as well. This language can be easily extended when required. In addition,
it also provides a set of Java [6] simulators, in such a way that users can se-
lect which simulator from those included suits better their needs. Moreover,
pLinguaCore is a software application inside the P–Lingua framework which
implements an extension mechanism in which new formats and simulators can
be included in the framework.

Originally, Membrane Computing simulators were exclusively implemented on
sequential architectures, such as standard personal computers, occasionally
by using declarative languages such as Prolog [54]. However, this is an in-
herent limitation, since such devices do not match well with the parallel na-
ture of P systems, so the quest for new technological approaches for simu-
lation in Membrane Computing comes to the fore. In this sense, it is natu-
ral to resort to parallel architectures such as FPGA boards [223, 135, 151],
computer clusters [46], microcontrollers [90, 89] and Graphic Processor Units
(GPUs) [38, 139, 30, 113].

The aim of this thesis is the study and development of Membrane Computing
modelling frameworks for real–life phenomena, as well as of simulators capable
of capturing their semantics. Simulators included as results of this thesis are
both sequential and parallel. Recent developments in Membrane Computing
have enabled its application to model biochemical phenomena [199, 41, 23],
and other areas such as ecosystems [52] or robotics [221] prove the versatil-
ity of this discipline as a tool to reproduce the behaviour of real–life systems.
Some of these phenomena display a parallel structure per se. For instance, in
collaborative robotics several robots with similar behaviour communicate with
each other to perform common tasks [94], or integrate several components
(sensors and actuators) to interact with the environment. Similarly, ecological
models in Membrane Computing display a parallel structure because they are
composed of a large number of elements (animals and plants) which interact
with each other and with the environment. In this sense, parallel simulators
prove their usefulness as software tools to simulate the dynamics of these mod-
els and, eventually, predict the future behaviour of the modelled systems.

This work starts with a GPU–based simulator for Enzymatic Numerical P

4

systems (ENPSs), a modelling framework in Membrane Computing designed
to reproduce the behaviour of robotic systems such that they are composed
of modular parts, each one with a specific function and able to interact with
each other and with the environment to achieve objectives. This work contin-
ues introducing a Membrane Computing model for Gene Regulatory Networks
known as Logic Network Dynamic P (LNDP) systems, which is a framework
composed of modular elements (genes and operations over them) which com-
municate with each other. The consequence of this communication is the
emergence of the dynamics of the network and its transition among states.
Next, a modelling framework for ecosystems known as Probabilistic Guarded P
(PGP) systems is proposed. This framework is complemented with two sim-
ulators, one sequential and the other GPU–based, to reproduce the dynamics
of the framework. Finally, two case studies are provided. The first one is a
case study on a Gene Regulatory Network associated with the behaviour of
Arabidopsis thaliana in LNDP systems, whereas the second is a model on the
ecosystem of butterfly Pieris napi oleracea in PGP systems, complemented
with a performance analysis of its parallel simulator using this model as a
benchmark.

5

Document structure

This document is structured in three parts, whose content is briefly outlined
below.

Part I: Preliminaries

Chapter I familiarizes the reader with the basics of Natural Comput-
ing, introducing some classical models in the discipline. Following,
it delves into the state of the art of Membrane Computing. Some
frameworks including the seminar transition model are discussed.
Finally, it contrasts stochastic and probabilistic approaching when
modelling real–life phenomena.

Chapter II discusses simulators in Membrane Computing and describes
the project P–Lingua and the software tool pLinguaCore, which
enable experts to describe and simulate P systems automatically.
Moreover, some Membrane Computing simulators implemented on
parallel platforms are described, with an special emphasis on those
developed for Graphic Processing Units (GPU).

Part II: Contributions

Chapter III discusses Enzymatic Numerical P Systems (ENPS), a de-
terministic model for robotics, introducing its antecedents and se-
quential simulators. In addition, a parallel, GPU–based simulator is
presented, including a performance analysis with some case studies
and a methodology for repeated simulation of ENPSs.

Chapter IV discusses a model on Logic Networks (LNs), which are a
specific type of Gene Regulatory Networks in which the combination
of the states of a set of genes can influence another one. In addition,
a model based on Population Dynamic P systems (PDP systems, for
short) is finally presented, describing its semantics and its elements
in detail.

Chapter V formalizes Probabilistic Guarded P Systems (PGP Systems,
for short), a new modelling framework for ecology. The character-
istic features of this approach are described, i.e., its spatial dis-
tribution and elements and its syntax and semantics. A parallel,

6

GPU–based simulator is described, as well as the integration of
PGP systems into the P–Lingua framework.

Part III: Results

Chapter VI presents some case studies on the models and simulators
described in part II, specifically, the modelling and simulation of
a Logic Network involved in the flowering process of Arabidopsis
thaliana by means of LNDP systems and the modelling and sim-
ulation of the ecosystem of White Cabbage Butterfly (Pieris napi
oleracea).

Chapter VII focuses on the results compiled in this document, re-
capitulating the achievements and conclusions of this thesis and
discussing some new lines of work resulting from it.

Part I

Preliminaries

7

Chapter 1

Natural Computing

In order to improve his quality of life, mankind has faced a variety of problems.
The study of these problems paved the way for the study systematic procedures
for their solution. The discovery of these procedural tasks was two–sided; on
the one hand, it allowed knowledge transmission among peers, on the other
hand, enabled mankind to build devices to carry out these tasks. Historical
devices to automatically solve problems include the abacus, whose first ap-
pearance on historical registers dates back to 500 B.C. In 1801, Jacquard’s
introduced his mechanical loom, a semi–mechanical contraption which en-
abled automatic looming of patterns into fabric by means of a sequence of
punch cards. Holes carved in these cards indicated the location of threads to
achieve the desired pattern. In the decade of 1800s, Babbage’s differential
engine was a device with a hand–turned crank which produced successive
terms in a mathematical series. His success pushed him forward towards the
construction of the analytical engine (1847–1849), a sketch on a general–
purpose computer, which was never built due to the fact that technology at
that time did not allow its implementation. Finally, 1890 Hollerith devised an
automatic machine to carry out censuses, though its was not significantly
faster than performing the process by hand [211].

The first electronic computers (Z1, ABC and Eniac) revolved mathematics and
computer science for good. The ensuing euphoria about the potential of com-
puters to carry out calculations was curbed by Churchhouse’s proof in 1983
about the physical limitations of processors based on electronic technology on
computing speed. This breakthrough states that there exist an upper bound
that calculations on electronic computers cannot overcome. Thus, indepen-
dently of how much electronic processors are accelerated, there exist relevant
instances of computationally hard problems which would take years (or even

9

Chapter 1. Natural Computing 10

centuries) to be solved. The only scenario in which these limitations could be
surmountable is if the class of problems solvable on polynomial time by deter-
ministic Turing machines is equal to class of problems solvable on polynomial
time by non–deterministic ones. In the scientific community, there is a widely
believed consensus about that this property (commonly known as the P 6=
NP conjecture [53]) is not verified.

This chapter is structured as follows. Section 1.1 overviews some of the
most widely used paradigms in Membrane Computing, including cellular au-
tomata [208], Petri nets [181, 182] and Markov chains [81]. Section 1.2 intro-
duces the reader into the discipline of Membrane Computing. Finally, Sec-
tion 1.3 compares two common approaches to handle randomness in the mod-
elling of real–life phenomena, the stochastic approach and the probabilistic
one.

1.1 Paradigms in Natural Computing

Since this question has been around for quite a lot of years, the quest for new
computing paradigms capable of surpassing the limitations of electronic de-
vices has come to the fore. In this context, Natural Computing emerges as
a way forward. This discipline studies the simulation and implementation of
dynamic processes taking place in nature and susceptible to be interpreted as
calculations. Natural Computing is a terminology introduced to encompass
three classes of methods: (1) those that take inspiration from nature for the
development of novel problem-solving techniques; (2) those that are based on
the use of computers to synthesize natural phenomena; and (3) those that em-
ploy natural materials (e.g., molecules) to compute [60]. Paradigms inside this
discipline include Artificial Neural Networks [121], Genetic Algorithms and
Evolutionary Computing [230], Swarm Intelligence [235], Artificial Immune
Systems [158] and DNA Computing [39], among others.

Thus, Natural Computing defines an array of computational frameworks in-
spired on processes found in nature. Some of these frameworks, commonly
applied as modelling tools in the field of ecology and population dynamics in
general (which will be of special interest later in this document), are:

Cellular Automata: The introduction of cellular automata is attributed to
Stanislaw Ulam and John von Neumann in the 1940s. A cellular automa-
ton defines a system out of objects that have varying states over time.
In short, a cellular automaton is a model of a system of ”cell” objects
with the following characteristics [208]:

1.1. Paradigms in Natural Computing 11

• The cells live on a grid. This grid may have any finite number of
dimensions.

• Each cell has a state, typically being the number of possible states
finite. The simplest example defines possibilities 1 and 0, sometimes
referred as on and off or alive and dead.

• Each cell has a neighbourhood, typically defined as a list of adjacent
cells.

Although there exists a plethora of semantics for cellular automata, usu-
ally the state of a cell in time t is computed as a function over its neigh-
bourhood, possibly including the cell itself. Figure 1.1 depicts an exam-
ple of cellular automaton. Wolfram [233] remarks that cellular automata
are not simply neat tricks, but are relevant to the study of biology, chem-
istry, physics, and all branches of science, thus revealing themselves as a
consolidated modelling paradigm.

Figure 1.1: A cellular automaton state, depicting the concept of neighbourhood

Petri Nets: Petri nets are a promising graphical and mathematical tool for
describing and studying information processing systems that are char-
acterized as being concurrent, asynchronous, distributed, parallel, non–
deterministic and/or stochastic [146]. Petri nets can be used as a visual–
communication aid similar to flow charts and block and UML diagrams.
Historically speaking, the concept of Petri net has its origins in Carl
Adam Petri’s dissertation in 1962 [181, 182]. A Petri net is composed
of a set of transitions. In addition, there exists a set of compart-
ments which contain a positive number of tokens. Transitions and

Chapter 1. Natural Computing 12

compartments are linked by means of weighted arcs. In this context,
a compartment is said to be an input of a transition if there exists an
arch for which the compartment is the source and the transition is the
target. Likewise, a compartment is said to be an output of a transi-
tion if there exists an arch for which the compartment is the target and
the transition is the source. Formally speaking, a Petri Net is a tuple
PN = (P, T, F,W,M0), where:

• P = {p1, p2, . . . , pm} is a finite set of compartments

• T = {t1, t2, . . . , tn} is a finite set of transitions. P and T are
disjoint sets (i.e. P ∩ T = ∅).
• F ⊆ (P × T) ∪ (T × P) is a set of arcs (flow relations)

• W : F → N+ is a weight function

• M0 : F → N+ ∪ {0} is an initial marking

The state or marking of a Petri net is changed according to the following
transition (firing) rule:

• A transition t ∈ T is said to be enabled if each input compartment
p of t is marked with at least W (p, t) tokens, where W (p, t) is the
weight of the arc from p to t.

• An enabled transition might or might not fire.

• A firing of an enabled transition t removes W (p, t) tokens from each
input compartment p of t, and adds W (t, p) tokens from each output
compartment p of t.

Figure 1.2 depicts a Petri net. An exhaustive survey on Petri nets can
be found in [146].

Markov Chains: Markov chains are not Natural Computing models, in the
sense that they are not directly inspired by nature. However, they are
included in this shortlist due to their salient relevance in ecology and
population dynamics. In contrast to the aforementioned cases, Markov
Chains [81] are probabilistic models in the sense that transitions between
states are dictated by a set of probabilities. A Markov chains is composed
of:

• A finite set of states S = {s0, s1, . . . , sn}, where s0 is known as the
initial state of the system.

1.2. Membrane Computing 13

Figure 1.2: A Petri net example

• A n×n transition matrix usually noted as P = Pi,j, 1 ≤ i, j ≤ n,
where Pi,j determines the probability for a chain to move from state
si to state sj, and they are known as transition probabilities.

Figure 1.3 depicts a Markov chain. The apparent simplicity of Markov
chains motivated its popularity as a modelling framework in different
environments. In this sense, there exist Markov chain models on areas
which range from ecology [240, 100, 82] to computer vision [234, 103, 225].

Figure 1.3: A classic Markov chain example

1.2 Membrane Computing

Membrane Computing is a quite active branch of Natural Computing, initi-
ated by Gh. Păun at the end of 1998 [188]. Membrane Computing studies the

Chapter 1. Natural Computing 14

properties and applications of theoretical computing devices known as P sys-
tems, which are in some sense an abstraction of the structure and functioning
of a living cell. Although there exists a large number of different definitions for
P systems, most of them share some common features: a membrane structure
composed of a number of regions or compartments, and an alphabet of sym-
bols that allow to represent the objects placed in compartments and are able
to evolve and/or travel through the membrane structure according to a set of
rewriting rules, emulating the way substances undergo biochemical reactions
in a cell. Many of the first P systems specifications that were investigated
proved to be universal or computationally complete (i.e. equivalent in power
to Turing Machines). Besides, the quest for efficiency has been another re-
search direction, yielding in many cases polynomial–time cellular solutions to
NP-complete problems, making a space–time trade–off and using the inherent
massive parallelism of P systems. Another different approach is to concentrate
on the evolution of the P systems itself, rather than focusing on the output of
the computation and the number of steps [171]. In this context, P systems have
been used to model biological phenomena within the framework of cellular sys-
tems and population biology presenting models of oscillatory systems [132, 68],
signal transduction pathways [45], gene regulation control [41, 75, 101], quorum
sensing [199], metapopulations [22], and real ecosystems [52, 33].

1.2.1 Preliminary concepts

Prior to delving any further into the concept of P systems, some preliminary
concepts which will be used throughout this document are introduced [203]:

• An alphabet Γ is a non–empty set whose elements are called symbols.

• A multiset over an alphabet Γ is an application from Γ to the set N of
natural numbers.

• M(Γ) denotes the set of all the multisets over Γ.

• Given u, u′ ∈ M(Γ), v = u ∩ u′ is defined as the multiset over Γ where
|v|x = min{|u|x, |v|x}, ∀x ∈ Γ.

• Given u, v ∈ M(Γ), we say that v is contained in u and denote it by
v ⊆ u, if and only if |u|x ≥ |v|x, ∀x ∈ Γ.

• Given u, u′ ∈ M(Γ), v = u + u′ is defined as the multiset over A where
v(x) = |u|x + |u′|x, ∀x ∈ Γ.

1.2. Membrane Computing 15

• Given u, u′ ∈M(Γ), u′ ⊆ u, v = u− u′ is defined as the multiset over Γ
where v(x) = |u|x−̇|u′|x, ∀x ∈ Γ.

• Given u ∈M(Γ), k ∈ N, v = k ·u is defined as the multiset over Γ where
|v|x = k · |u|x), ∀x ∈ Γ.

A membrane structure is a rooted tree in which the nodes are called mem-
branes, the root is called skin, and the leaves are called elementary membranes.
The degree of a membrane structure is the number of membranes it contains
(that is, the number of nodes of the tree).

Remark 1.1. The concept of membrane structure is not the same in all Mem-
brane Computing frameworks. In other cases, the membrane structure might
be composed of a set of membranes disposed in a graph–like fashion.

1.2.2 Transition P systems

Transition P systems are the foundational model originally introduced by Gh.
Păun in 1998 [188]. Due to its simplicity, it has been widely chosen as a
paradigm for its simulation.

Definition 1.1. A transition P system of degree m ≥ 1 without input is a
tuple Π = (Γ, µΠ,M1, . . . ,Mm, R1, ρ1, . . . , Rm, ρm) where:

• Γ is the working alphabet of the system.

• µΠ is a membrane structure of degree m. The membranes are labelled,
in a one–to–one manner, from 1 to m.

• Mi is a multiset over Γ associated with membrane i, 1 ≤ i ≤ m.

• Ri is a finite set of rewriting rules associated with membrane i, (1 ≤
i ≤ m). A rule is a pair (u, v), usually written as u → v, where u
is a multiset over Γ and v = v′ or v = v′δ, where v′ is a string over
Γ× ({here, out} ∪ {inj|j is a membrane in µΠ}).

• ρi is a strict partial order over the set of rules Ri.

An instantaneous description or configuration at any instant of a basic cell-
like P system Π = (Γ, µΠ,M1, . . . ,Mm, R1, . . . , Rm), consists of a membrane
structure and a family of multisets of objects over Π associated with each re-
gion of the structure. The initial configuration is (µ,M1, . . . ,Mm). The rules

Chapter 1. Natural Computing 16

are chosen in a non–deterministic way, and in each region all objects that can
evolve must do it. A configuration is a halting configuration if no rule of the
system is applicable to it. In each time unit we can transform a given configu-
ration in another configuration by applying the evolution rules to the objects
placed inside the regions of the configurations, in a non–deterministic, and
maximally parallel manner. In this way, we get transitions from one configu-
ration of the system to the next one.

A computation, C, of a P system is a (finite or infinite) sequence of configu-
rations, {Ci}i<r, where:

• C0 is an initial configuration of the system.

• Ci ⇒Π Ci+1, for every i < r

• Either r ∈ N, r ≥ 1 and Cr−1 is a halting configuration (C is then a
halting computation performing r− 1 steps), or r =∞ (C is then a not
halting configuration).

We say that Configuration C1 yields configuration C2 in one transition
step, denoted by C1 ⇒ C2, if we can pass from C1 to C2 by applying the rules
from R following the previous remarks.

The semantics of the model is explained in [203]. Prior to defining it, some
concepts from [190] are introduced. A rule r ∈ Ri, r = (u, v), 1 ≤ i ≤ m is
applicable in configuration Ct if and only if u is contained in Mi at instant t.
Likewise, A multiset of rules is applicable to the multiset of objects available in
the respective region if and only if there are enough objects to apply the rules a
number of times as indicated by their multiplicities. Finally, a multiset of rules
is maximal if and only if no further rule can be added to it (no multiplicity of
a rule can be increased) such that the obtained multiset is still applicable.

The application of an applicable rule r = (u, v) in Ri at instant t is done as
follows: first, the objects in u are removed from membrane i; then, for every
(a, out) ∈ v an object a is put into the multiset associated with i’s first non–
dissolved ancestor (or the environment if i is the skin membrane); for every
(a, here) ∈ v an object a is added to membrane i; for every (a, inj) ∈ v an
object ob is added to membrane j if and only if j is a child membrane of i;
otherwise, the rule cannot be applied. Finally, if δ ∈ v, then membrane i is
dissolved, that is, it is removed from the membrane structure. As a result, the
objects associated with this membranes are collected by the first non–dissolved
ancestor, and the rules are lost. An exception is the case of the skin membrane,
which cannot be dissolved.

1.2. Membrane Computing 17

Let us consider a P system defined according to a Membrane Computing frame-
work. The framework is said to be maximally parallel if, on every transition
step of the P system, each chosen multiset of rules is maximal. Similarly, a
configuration might have several following configurations because it is possi-
ble that there exists different maximal multisets of rules applicable to such a
configuration, so P systems are non–deterministic devices.

The objects to evolve in a step and the rules by which they evolve are chosen
in a non–deterministic manner, but in such a way that in each region we have
a maximally parallel application of rules. This means that we assign objects
to rules, non–deterministically choosing the rules and the objects consumed
by each rule, but in such a way that after this consumption no further rule
can be applied to the remaining objects.

1.2.3 Variants of P systems

As claimed above, Membrane Computing is not a monolithic discipline; rather,
it encompasses a variety of computational paradigms, mostly devised to tackle
computationally hard problems and/or model real–life phenomena. Apart from
the transition model, some of these paradigms are listed below, which have
been chosen either because they have been successfully simulated in parallel
architectures or because of they have been used as inspiration for some of the
models defined in the subsequent chapters. These models are P systems with
active membranes, Tissue–like P systems, Spiking Neural P systems and Kernel
P systems. Apart from the paradigms addressed in this chapter, others such
as Enzymatic Numerical P systems (ENPSs [221]) and Population Dynamics
P Systems (PDP Systems) [51]) will be later discussed in depth in Chapters 3
and 4, respectively.

1.2.3.1 P systems with active membranes

This model of P systems has been actively employed to solve computationally
hard problems in polynomial time [173, 176]. Two features implemented by
this model make it especially interesting for computational approaches trad-
ing time for space, as described by Păun in [189]. First, membranes can not
only be dissolved, but they can also be duplicated by division. An elementary
membrane can be divided by means of an interaction with an object from that
membrane. The skin is never divided nor dissolved. Secondly, each membrane
is supposed to have an “electrical polarization” or charge, one of the three
possible: positive (+), negative (-), or neutral (0).

Chapter 1. Natural Computing 18

If in a non–elementary membrane there are two immediately lower membranes
of opposite polarizations, one positive and one negative, then that membrane
can also divide in such a way that the two membranes of opposite charge are
separated; all membranes of neutral charge and all objects are duplicated and
a copy of each of them is introduced in each of the two new membranes. Gh.
Păun formalizes this model according to the following syntax:

Definition 1.2. A P system with active membranes of degree m ≥ 1 is a
construct: Π = (Γ, H, µ,M1, . . .Mm,R) where:

• Γ is an alphabet of objects

• H is a finite set of labels for membranes

• µ is a membrane structure, consisting of m membranes, labelled (not
necessarily in a one–to–one manner) with elements of H; all membranes
in µ have neutral polarization at the initial configuration.

• M1, . . .Mm are multisets over Γ

• R is a finite set of developmental rules of the following forms:

– [a → v]αh, for h ∈ H,α ∈ {0,+,−} , a ∈ Γ, v ∈ M(Γ) (object
evolution rules, associated with membranes and depending on the
label and the charge of the membranes but not directly involving the
membranes, in the sense that the membranes are neither taking part
in the application of these rules nor are they modified by them).

– a[]αh → [b]α
′

h , for h ∈ H,α, α′ ∈ {0,+,−} , a, b ∈ Γ (in communi-
cation rules; an object is introduced in the membrane, and possibly
modified during this process; also the polarization of the membrane
can be modified, but not its label);

– [a]αh → []α
′

h b, for h ∈ H,α, α′ ∈ {0,+,−} , a, b ∈ Γ (out commu-
nication rules; an object is sent out of the membrane, and possibly
modified during this process; also the polarization of the membrane
can be modified, but not its label);

– [a]αh → b, for h ∈ H, e ∈ {0,+,−} , a, b ∈ H (dissolving rules;
in reaction with an object, a membrane can be dissolved, while the
object specified in the rule can be modified);

1.2. Membrane Computing 19

– [a]αh → [b]α
′

h [c]α
′′

h , for h ∈ H,α, α′, α′′ ∈ {0,+,−} , a, b, c ∈ Γ (di-
vision rules for elementary membranes; in reaction with an object,
the membrane is divided into two membranes with the same label,
and possibly of different polarizations; the object specified in the rule
is replaced in the two new membranes possibly by new objects; the
remaining objects are duplicated and may evolve in the same step
by rules of the first type).

Gh. Păun [189] also defines a semantic for P systems with active mem-
branes according to the following principles:

• All rules are applied in parallel: in a step, evolution rules are applied to
all objects to which they can be applied, all other rules are applied to
all membranes to which they can be applied; an object can be used by
only one rule, non-deterministically chosen (there is no priority relation
among rules), but any object which can evolve by a rule of any form,
should evolve. Moreover, on each transition and each membrane only
one rule of type dissolution, division, send–in or send–out can be applied
only once.

• If a membrane is dissolved, then all the objects in its region are left free
in the first non–dissolved region immediately above it. Because all rules
are associated with membranes, the rules of a dissolved membrane are no
longer available at the next steps. The skin membrane is never dissolved.

• All objects and membranes not specified in a rule and which do not evolve
are passed unchanged to the next step. For instance, if a membrane with
the label h is divided by a division rule which involves an object a, then
all other objects in membrane h which do not evolve are introduced in
each of the two resulting membranes h. Similarly, the inner membrane
structure is reproduced in each of the two new membranes with the label
h, unchanged if no rule is applied to them. In particular, the contents
of these neutral membranes is reproduced unchanged in these copies,
providing that no rule is applied to their objects.

• If at the same time a membrane h is divided by a division rule and there
are objects in this membrane which evolve by means of evolution rules,
then in the new copies of the membrane the result of the evolution is
introduced; that is to say, first the evolution rules are used, changing
the objects, and then the division is produced, so that copies of the
evolved objects are introduced in the two new membranes with label h.

Chapter 1. Natural Computing 20

Of course, this process takes only one step. This principle defines some
sort of synchronization between rules applied at the same transition step.

• The rules associated with a membrane h are used for all copies of this
membrane, irrespective whether or not this membrane is an initial one
or it is obtained by division. This principle binds rules to labels rather
than to membranes.

• The skin membrane can never divide although, as any other membrane,
the skin membrane can be “electrically charged”.

1.2.3.2 Tissue–like P systems

Tissue–like P systems take inspiration from intercellular communication and
communication between neurons. Consequently, instead of considering a hier-
archical structure, membranes are placed at the nodes of a graph. Communi-
cation among cells is based on symport/antiport rules, which were introduced
to P systems in [187]. Symport rules move objects across a membrane together
in one direction, whereas antiport rules move objects across a membrane in
opposite directions [162]. Mart́ın–Vide et al. [134, 133] introduced the concept
of tissue–like P systems as follows:

Definition 1.3. A tissue P system of degree m ≥ 1, is a tuple Π = (Γ,M1, . . . ,
Mm, syn, iout), where

• Γ is a finite alphabet.

• syn ⊆ {1, 2, . . . ,m} × {1, 2, . . . ,m} (synapses among membranes).

• iout ∈ {1, 2, . . . ,m} indicates an output membrane, in which the result of
computations will be encoded.

• M1, . . . ,Mm are membranes of the form mi = (Qi, si,0, wi,0, Pi) , 1 ≤ i ≤
m, where:

– Qi is a finite set of states.

– si,0 ∈ Qi is the initial state.

– wi,0 ∈ E∗ is the initial multiset of impulses.

– Pi is a finite set of rules of the form sw → s′xygozout, where s, s′ ∈
Qi, w, x ∈ M(Γ), ygo ∈ M(E × {go}) and zout ∈ (E × {out}), being
zout = λ for all i ∈ {1, 2, . . . ,m} different from iout.

1.2. Membrane Computing 21

Consequently, the authors define a configuration in a tissue–like P system as
a tuple of the form (s1w1, . . . , smwm), with si ∈ Qi and wi ∈ E∗, (1 ≤ i ≤ m).
Similarly, they define (s1,0w1,0, . . . , sm,0wm,0) as the initial configuration of Π.

Păun et al. [164] proposed a variant for this model, introducing cell division
as a way of creating new membranes. They formalized such a model as follows:

Definition 1.4. A tissue–like P system with cell division of degree m ≥ 1 is
a tuple:

Π = (Γ,Σ,M1, . . . ,Mm, E , R, iin, iout) where:

• Γ is a finite alphabet and Σ ⊂ Γ

• M1, . . .Mm are multisets over Γ.

• E ∈ Γ is an alphabet representing the set of objects in the environment
in arbitrary copies of each.

• R is a finite set of rules of the following forms:

Communication rules: (i, v/v, j), where i, j ∈ {0, 1, . . . ,m} , i 6= j, u,
v ∈M(Γ). The set {1, 2, . . . , q} identifies the cells of the system, 0
is the environment; when applying a rule (i, v/v, j) objects in u are
sent from region i to region j and simultaneously the objects of the
multiset v are sent from region j to region i.

Division rules: [a]i → [b]i [c]i, where i ∈ {1, 2, . . . , q} , a, b, c ∈ Γ and
i 6= i0. When applying such a rule under the influence of object a,
the cell with label i is divided in two cells with the same label; in the
first copy the object a is replaced by b, in the second copy the object
a is replaced by c; all other objects are replicated and copies of them
are placed in the two new cells.

• iout = 0 denotes the environment and iin ∈ {1, . . . ,m} denotes the input
cell.

Comunication rules define a non–directed graph connecting the cells in the
system. In this model, rules are applied in a non–deterministic, maximally
parallel way. It is noteworthy that there are not explicit evolution rules; in-
stead, objects are interchanged with the environment i0, which has an arbitrary
number of objects and, consequently, can provide the objects specified by the
rule. In addition, if a cell is divided, then the division rule is the only one
which is applied for that cell in that step, its objects do not evolve by means
of communication rules.

Chapter 1. Natural Computing 22

1.2.3.3 Spiking neural P systems

Spiking neural P systems (SN P Systems, for short) is a type of P systems
introduced by M. Ionescu et al. [111] which takes inspiration from the neuro-
physiological behaviour of neurons sending electrical impulses (spikes) along
axons to other neurons [163]. SN P systems present some features which
sharpen its dissimilarities with other models of P systems. Some of these are
listed here. First, the alphabet is a singleton, that is, it only contains a type
of object (usually noted as a and named spike). In addition, in their left–hand
side, a regular expression is defined along with a multiset; for a rule to be
applied (fired), its left–hand side expression must match the content of the
membrane (neuron) in which it is applied. Besides, a rule can be applied after
a number of steps (delay) after the conditions for its application is complied.
Moreover, unlike Tissue–like P systems, in SN P systems links between neu-
rons are explicit in the structure, rather than encoded on the rules.

Like in many P system types, there exist several variants on SN P systems.
Here, as an example, a variant introduced by Pan and Pérez–Jiménez [163] is
discussed. In their model, known as SN P systems with division and budding,
new neurons can be produced by division, in whose case they are placed “in
parallel”, or by budding, in whose case they are placed “serially”. It is im-
portant to remark that neurons produced by division can have labels different
from each other and from the divided neuron, unlike in the previous models
studied.

Definition 1.5. A spiking neural P system with neuron division and budding
of (initial) degree m ≥ 1 is a construct of the form Π = (O,H, syn, n1, . . . , nm,
Ri, . . . , Rm, in, out) where:

• O = {a} is the singleton alphabet.

• H is a finite set of labels for neurons.

• syn ∈ H ×H is a synapse dictionary, with (i, i) ∈ syn, for each i ∈ H.

• ni ≥ 0 is the initial number of spikes contained in neuron i, i ∈ {1, . . . ,m}.

• R is a finite set of developmental rules, of one of the following forms:

extended firing rule (also called spiking rule) [E/ac→ ap; d]i, where
i ∈ H, E is a regular expression over a, and c ≥ 1, p ≥ 0, d ≥ 0,
with the restriction c ≥ p.

1.2. Membrane Computing 23

neuron division rule [E]i → []j || []k, where E is a regular expression
and i, j, k ∈ H

neuron budding rule [E]i → []i/[]j, where E is a regular expression
and i, j ∈ H

• in, out ∈ H indicate the input and the output neurons of Π, respectively.

For such a model, the authors describe the following syntax [163]:

• If a neuron σi contains k spikes and ak ∈ L(E), k ≥ c, then the rule
[E/ac → ap; d]i is enabled and can be applied. This means consuming
(removing) c spikes (thus only k − c spikes remain in neuron σi); the
neuron is fired, and it produces p spikes after d steps. If d = 0, then the
spikes are emitted immediately; if d = 1, then the spikes are emitted in
the next step, etc. If the rule is used in step t and d ≥ 1, then in steps
t, t + 1, t + 2, . . . , t + d − 1 the neuron is closed and cannot receive new
spikes until d steps later.

• If (1) a neuron σi contains s spikes and as ∈ L(E), and (2) there is no
neuron σg such that the synapse (g, i) or (i, g) exists in the system, for
some g ∈ {j, k}, then the division rule [E]i → []j || []k can be applied.
This means that after consuming all these s spikes the neuron σi is
divided into two neurons, σj and σk. The new neurons contain no spike
at the moment when they are created. They can have different labels,
but they inherit the synapses that the parent neuron already has (if there
is a synapse from neuron σg to neuron σi, then in the process of division
one synapse from neuron σg to newly created neuron σj and another one
from σg to σk are established; similarly, if there is a synapse from neuron
σi to neuron σh, then one synapse from σj to σh and another one from
σk to σh are established).

• If (1) a neuron σi contains s spikes, and as ∈ L(E), and (2) there is
no neuron σj such that the synapse (i, j) exists in the system, then the
budding rule [E]i → []i / []j is enabled and it can be applied. This
means that consuming all the s spikes a new neuron is created, σj. Both
neurons are empty after applying the rule. The neuron σi inherits the
synapses going to it before using the rule. The new neuron σj created
by budding by neuron σi inherits the synapses going out of σi before
budding; that is, if there is a synapse from neuron σi to some neuron σh
then a synapse from neuron σj to neuron σh is established. There is also
a synapse (i, j) between neurons σi and σj.

Chapter 1. Natural Computing 24

Pan and Pérez–Jiménez point out that the model, although non–determinis-
tic, is not maximal; only one rule per neuron can be applied (if possible) at
each step. In addition, when a spiking rule is used, the state of neuron σi
(open or closed) depends on the delay d. When a neuron division rule or neu-
ron budding rule is applied, at this step the associated neuron is closed, it
cannot receive spikes. In the next step, the neurons obtained by division or
budding will be open and can receive spikes.

1.2.3.4 Kernel P systems

Last but not least, recently a new model aimed for formal verification of P
systems has come into scene. This model, namely Kernel P Systems [77, 79,
112], defines P systems with a tissue–like membrane structure. The main
novelty associated with this model is the definition of guards, i.e., conditions
on the cardinality of objects which must be satisfied for a rule to be applied.

Definition 1.6. Given a finite alphabet Γ, a guard over Γ can be recursively
defined as follows:

• A guard is a tuple {a, op, n}, a ∈ Γ ∪ Γ̄, op ∈ {>,<,≤,≥, 6=,=} , n ≥ 0,
where Γ̄ is an alphabet such that there exists a bijective relation between
Γ and Γ̄ and Γ ∩ Γ̄ = ∅. Given such a relation, ā ∈ Γ̄ represents the
symbol related to a ∈ Γ

• Let g1, gn be two guards. Then, g1 ∨ g2 is a guard

• Let g1, gn be two guards. Then, g1 ∧ g2 is a guard

The semantics associated with guard g = {a, op, n}, a ∈ Γ ∪ Γ̄, op ∈
{>,<,≤,≥, 6=,=} , n ≥ 0 over a membrane i at step t ≥ 0 works as follows.
Let Mi,t be the multiset associated with membrane i at time t. Then, g is
complied if the number of objects of type a in multiset Mi,t is greater, lower,
etc. than n according to the binary relation specified by op and a ∈ Γ. If
a ∈ Γ, then g is complied if and only if g′ = {ā, op, n} is not complied, where
ā ∈ Γ̄ is the symbol related to a. If g is of the form g = g1 ∨ g2 ∨ . . . gs, s > 1,
then g is complied if any of the guards g1, g2, . . . , gs are complied. Similarly,
if g is of the form g = g1 ∧ g2 ∧ . . . gs, s > 1, then g is complied if all guards
g1, g2, . . . , gs are complied.

Kernel P Systems define a rather complex model; they encompass a wide array
of features from such a variety of P system models. Therefore, for the pur-
pose of simplicity, a formalization on a subset of Kernel P systems known as

1.2. Membrane Computing 25

simple Kernel P systems (skP systems), as appeared in [79], is provided as an
example.

Definition 1.7. An skP system of degree n ≥ 1 is a tuple

skΠ = (Γ, H, IO,C1, . . . , Cn, µ, i0), where:

• Γ is an alphabet of symbols.

• H is an alphabet of labels.

• IO is a finite alphabet such that IO ⊆ Γ.

• C1, . . . , Cn are compartments.

• µ = (V,E) is an undirected graph, where V ⊆ H is the set of vertices
and E is the set of edges.

• i0 ∈ L.

An skP system, skΠ = (A,L, IO,C1, . . . , Cn, µ, i0), can be viewed as a set
of n compartments, C1, . . . , Cn, interconnected by edges from an undirected
graph µ. IO is the alphabet of the environment objects. Each compartment is
identified by a label of H and has initially a multiset over Γ, and a finite set of
rules. The compartment receiving the result of a computation is denoted by i0;
in the sequel, this will always be the environment. An h–membrane division
rule [x]l → [y1]l1 , . . . , [yh]lh {g} associated with a compartment C = (l, w0, Rl)
is applicable at a given instant to the current multiset z if the guard g is
evaluated true with respect to z and the object x is in the multiset z. When
applying such a rule to x, the compartment labelled by l will be replaced by h
compartments labelled l1, . . . , lh and x is replaced by multiset yj in compart-
ment lj ; the content of l, but x, after using all the applicable rewriting and
communication rules is copied in each of these compartments; all the links of
l are inherited by each of the newly created compartments. A rewriting and
communication rule x→ (a1, t1), . . . , (ah, th) {g} associated with a set of rules,
Rl , of a compartment C = (l, w0, Rl), is applicable at a given moment to the
current multiset z if the guard g is evaluated true, x is contained in z and the
target tj ∈ L, 1 ≤ j ≤ h, must be either the label of the current compart-
ment, l, or the label of its existing neighbour ({l, tj} ∈ E). When applying
such a rule, objects aj are sent to the compartment labelled by tj, for each
j, 1 ≤ j ≤ h. If a target tj refers to a label that appears more than once, then
one of the involved compartments will be non–deterministically chosen. When
tj indicates the label of the environment, the corresponding object aj is sent

Chapter 1. Natural Computing 26

to the environment. In an skP system, the rules are applied in a maximally
parallel way with the usual restriction that at most one membrane division
rule can be applied per membrane in each step.

1.3 Stochastic models and Probabilistic Mo-

dels

In natural phenomena, noise is present all across the board. Absolute cer-
tainty is an oddity in biology, and noisy and random processes are the norm.
Therefore, when designing an biological experiment, it is simply impossible
to predict the result with absolute confidence, the furthest the experimenter
can go is to define a probability distribution to dictate how likely is to obtain
each possible outcome of the experiment. In this section, two complementary
approaches in capturing the inherent uncertainty of natural phenomena are
presented.

1.3.1 Stochastic approach

Nature is, at its core, random. As a matter of fact, the vast majority of bio-
logical models implement some sort of random walk processes [47]. However,
Bernoulli’s law of large numbers states that, when a random experiment is
repeated ad infinitum, the percentage difference between the expected and ac-
tual values goes to zero. As a consequence, the expected value is, by far, the
most likely result, overshadowing other possible outcomes [24]. In addition,
the well–known

√
n law introduced by Penrose [169] states that the influence

of a particular individual in a system grows inversely proportional to the value
of
√
n, where n is the number of individuals in a system. As a result, the

particularities of each individual are eclipsed when the value of
√
n is large

enough. Hence, deterministic models are of certain use to find the expectancy
in a experiment, which is mostly relevant when the number of repetitions or
the number of individuals in the experiment is considerably large.

However, when it comes to biochemical experiments with a small number of
molecules, deterministic experiments might shed some light only in the case
that the number of conducted experiments is large enough to overcome the
limitations imposed by the sample size. If it is not the situation, the need
for models which incorporate mechanisms to cope with randomness becomes
primordial. Judson [114] claims that the term stochastic method encloses all
methods which integrate, at some point, a certain degree of randomness. She

1.3. Stochastic models and Probabilistic Models 27

also differentiates two types of such algorithms: Monte Carlo methods, in
which probabilities and the effect of random events are coarsely (but quickly)
approximated, and Las Vegas methods, which take a more accurate picture of
the state of the ecosystem at the expense of computational power. In practice,
the boundary between these categories is rather blurred, so models are dis-
tributed over a continuum between these two edges rather than unequivocally
associated with one of such types.

In this sense, the so–called Gillespie Algorithm [80, 232] (a.k.a. Gillespie Di-
rect Method) is a stochastic method devised to simulate chemical phenomena
which explores the state space associated with a system of ordinary differential
equations (ODE) with as many equations as possible states exist in the system.
This algorithm generates random events based on the propensity of biochemical
reactions. Gillespie method makes the following assumptions [170]:

• The volume of the system under study is constant (V) and its tempera-
ture is stable.

• The molecules in the system can be classified in a finite, discrete series
of n ≥ 1 species, in such a way that the state of the system at time
t ≥ 0 can be described as a vector X(t) = (X1(t), . . . , Xn(t)), where
Xi(t) ≥ 0, 1 ≤ i ≤ n, represents the number of molecules of type i at
time t. This assumption shows similarities with the approach fostered by
so–called cohort models [205, 86] widely used in ecology. These systems
group individuals in a series of categories according to relevant properties
(age, sex, body weight, etc.), in a similar fashion as described in this
algorithm.

• The system is autonomous, that is, there exists no external input which
influences the state of the system at any instant.

• There exist a finite number M ≥ 1 of chemical reactions {r1, . . . , rm}
which transform each state X(t) into X(t+1). Each reaction rj, 1 ≤ j ≤
m, is composed of:

– A state change vector vj = (v1j, . . . , vnj), vij ∈ Z which describes
the effect of the application of reaction rj upon the molecules in the
system.

– A propensity function pj(X(t)) which indicates how likely is rj
to be applied on state X(t). In this sense, pj(X(t))dt defines the
probability of applying a reaction of type rj in interval [t, t+ dt).

Chapter 1. Natural Computing 28

pj(X(t)) is calculated out of cj known as stochastic constant. Con-
stant cj is, in turn, computed from kinetic constant kj, which is
usually deduced from experimental data.

– An integer hj ≥ 0 specifying the number of possible reactant
combinations upon the application of rj.

The algorithm works as follows. On each step t, a chemical reaction is
randomly chosen according to probabilities pj(X(t)), 1 ≤ j ≤ m. The chosen
reaction is applied in time lapse [t, t+ τm). τm is known as waiting time, and
represents the time it takes for the reaction chosen in step t to be applied. A
version of the algorithm specified in [170] is described in Algorithm 1.3.1:

Algorithm 1.3.1 Gillespie Direct Method
Input:
T ≥ 0: iterations of the algorithm.
m: medium where the reaction takes place.
X(0) = {X1(0), . . . , Xn(0)}: a vector representing the number of initial molecules of each
species.
v1, . . . , vm, where vj = {v1j , . . . , vnj} , (1 ≤ j ≤ m): j vectors describing the effect of the
application of the reactions.
p1, . . . , pm, where pj , (1 ≤ j ≤ m) is a function of Nn over [0, 1], that is, functions
describing the probability for each reaction to be applied.
k1 . . . , km: kinetic constants.
h1, . . . , hm: integer numbers greater or equal to 0 representing possible combinations of
reactants upon the application of each reaction.

1: for t = 0→ T do
2: at ←

∑q
j=1 pj , where pj = hj · kj , 1 ≤ j ≤ m, is the propensity function of rj

3: b0, b1 ← two normally–distributed random numbers in (0, 1)
4: τm ← 1

at
· ln(1

b1
)

5: Choose the only jt such as
∑jt−1

k=1 pj < r2 · at <
∑jt

k=1

6: X(t+ τm)← X(t) + vj0
7: t← t+ τm
8: end for

Gillespie Direct Method has been applied on a plethora of biochemical
systems [232], ranging from cellular growth [129, 130, 34] to apoptosis [41].

1.3.2 Probabilistic approach

Probabilistic approaches propose an alternative way of handling noise and
randomness when simulating real–life phenomena. Given a state in a system,

1.3. Stochastic models and Probabilistic Models 29

probabilistic conceptualisations define probability distributions which deter-
mine the likelihood of reaching a set of possible following states. Thus, evolv-
ing a state in a system is analogous to picking up a choice at random among
the set of following states. These probability distributions can be obtained
from experimental data or attuned through calibration methods [170].

Markov chains are a paradigmatic example of a probabilistic model [66]. They
define a set of states such as transitions among them are dictated by prob-
ability distributions. However, some approaches bridging Markov chains and
stochastic methods can be found in the literature [81]. Two probabilistic mod-
els in Membrane Computing will be later described in depth in this document.
Population Dynamics P systems (PDP systems) are a novel and effective com-
putational tool to model complex problems characterized by the ability to work
in parallel [51]. In addition, Probabilistic Guarded P systems (PGP systems),
a brand new model introduced in this thesis, will be formalized in Chapter 5.

Chapter 1. Natural Computing 30

Chapter 2

Simulation of P Systems

Given a real–life process subject to study and a model thereof, in order to
verify that the behaviour of the model corresponds to that of the system it
is usually mandatory to simulate the system. Rather than simulating, one
alternative approach would consists on implementing the models. However,
up to the present date, there has been no success in implementing P systems,
whether on electronic or on biological substrates, mostly due to the inherent
hurdles in exponential creation of computational devices. Therefore, in the
current stage, simulation remains as the only way out.

This chapter is a general survey on simulators in Membrane Computing, de-
scribing representative examples since the introduction of the discipline. This
chapter is structured as follows. First, a small introduction to origins in Mem-
brane Computing simulation is provided. Section 2.1 focuses on the state of
the art prior to the advent of P-Lingua and the change of paradigm it supposed
in Membrane Computing. Section 2.2.1 discusses P–Lingua, a framework for
the simulation of P systems. Section 2.3 lists some Membrane Computing sim-
ulators on parallel architectures. Finally, Section 2.4 narrows the field down
to GPU simulators in the discipline.

2.1 Simulators in Membrane Computing

When talking about software, a simulator is a program such as, given a sys-
tem and a simulator thereof, both return an equivalent output. It is essential
to point out that returning an equivalent output does not necessarily mean
that they both behave exactly in the same way. For instance, a P system
with active membranes [173] is capable of creating an exponential number of
computing devices in an efficient manner, whereas its simulator is restricted

31

Chapter 2. Simulation of P Systems 32

synapses([1-2,2-1,1-3,3-1,2-3,3-env]).

initial([1/0,1/0,2/0]).

rule(1-1,a \to a;0). \newline

rule(1-2,a \to a;1).\newline

rule(2-1,a \to a;0). \newline

rule(2-2,a \to a;1).\newline

rule(3-1,a \to a;0).\newline

rule(3-2,a\^2 \to \lambda).

Figure 2.1: Output screen and code sample of SNPS

to the hardware constrains of the platform in which it is run. That is, it is
unable to create such a number of computing devices because it can only ac-
cess a finite number of processors. To overcome this limitation, the simulator
might create virtual computing devices, but it would be constrained again by
physical limitations: 1) the finite memory of the system and 2) the fact that
the calculations carried out by these virtual devices are eventually run by the
aforementioned finite processors.

The first Membrane Computing simulator was developed by Maliţa [131] with
the intent to serve as a tool for educational and research assistance pur-
poses [196]. This simulator takes advantage of rule–based dynamics of P sys-
tems and chose a declarative programming language like Prolog to capture best
their semantics. In this simulator, the system to simulate was hard–coded in
the application; it did not provide any means to input the system to simulate
apart from modifying the code. Shortly, graphical representations became a
common feature in Membrane Computing simulators. For instance, another
primary simulator by Ciobanu and Paraschiv [44] already included a graphical
interface to show the evolution of the simulated P system throughout time.
Some authors developed software applications in which the input is given as
raw text, whereas the system evolution is graphically displayed. For instance,
Ramı́rez–Mart́ınez et al. [196] developed SNPS, a simulator for Spiking Neural
P systems in which the data is input on a simple, close–to–LATEX text format,
whilst the output is a sophisticated graphical user interface (GUI) in which
the evolution of the system can be seen as the simulator takes computation
steps. Figure 2.1 displays the main screen of SNPS.

In Membrane Computing, simulators have been usually employed for three
primary purposes, which are:

Educational purposes: These simulators address the question: How does

2.1. Simulators in Membrane Computing 33

a P system work? It is noteworthy that, despite being computational
models, P systems are different from silicon computers in many aspects.
Like computers, P systems are discrete systems, they are composed of
discrete entities (objects, membranes, rules, etc.) and time is discrete
and advances in finite steps [188]. However, unlike conventional com-
puters, P systems are non–deterministic devices. Of course, there exist
exceptions to the rule, such as deterministic Enzymatic Numerical P
Systems [221], as well as models which guide transition steps by using
stochastic functions [177] or probabilities associated to rules [51], but
in most cases the multiset of rules to apply on a given configuration is
not unique. Therefore, the functioning of P systems might be not in-
tuitive for the newcomer and, consequently, it is advisable to count on
simulation tools which initiates students into the discipline.

Modelling assistance: Taming the semantics of Membrane Computing frame-
works does not necessarily need to be straightforward for the designer.
In this sense, it is primordial to know what a P system does. As the
complex systems they are, they are capable of describing rather complex
and intricate behaviours out of simple rewriting rules. When devising a
P system, the designer has already in mind the desired functionality; it
is possible (and likely) that this functionality gets enriched and evolves
through time, but these are changes commonly due to decisions made
during the design process, defining an iterative cycle based on simulat-
ing and modifying the P system. All in all, a Membrane Computing
simulator must report the designer what is the state of a P system at
every reached configuration and which are the rules selected for its evo-
lution, so the designer knows how its P system behaves.

Core component of a larger application: P system users do not neces-
sarily need to know that they are using a P system. In fact, sometimes
they use applications as a black box, without guessing that the inference
engine they are using is in fact a P system simulator. In this sense, the
question to answer is What can you tell me about my problem? For in-
stance, let us suppose the case of a mathematician trying to know if a
problem is NP–complete. If this hypothesis is true, then it can be solved
by a non–deterministic machine in polynomial time. In this situation,
the mathematician formalizes its problems and obtains a results from the
application, being this result computed by a hidden P system simulator.
The same situation might take place when ecologists input parameters
in an application and obtain the most likely outcome according to these

Chapter 2. Simulation of P Systems 34

parameters. The ecologists want to know what is going to happen in
their ecosystem, but they do not necessarily need to know that it is a P
system which provides the answer.

Traditionally, Membrane Computing simulators were completely ad–hoc
applications for the model at hand, simulator parameters were hand–coded
and their code was not reusable, at it was intended to work for a specific
P system [202, 54, 175]. Although they did suit the specific needs in each
case, ad–hoc simulators lacked the needed standardisation. A preliminary at-
tempt for this standardisation is SimCM [148], a software tool consisting on
a simulation engine and a GUI to input the system to be simulated. The
tool intends to move Membrane Computing closer to biologists, as a modelling
framework for biochemical phenomena. It allows the modeller to create, save
and load P systems and edit them with graphical widgets. It also displays P
system computations graphically, highlighting branching configurations, and
includes a debug environment which reports the user bugs in the designed
system. Another interesting feature of SimCM is its sleek use of the well–
known Model–View–Controller (MVC) pattern. This pattern encourages the
design of software in three layers with as much independence as possible: layer
Model stores the data (possibly on a database), layer View, usually consisting
on a GUI, communicates the user with the application, and layer Controller
provides the business logic, in our case, the simulation of the system. The
application of this design principle permits the replacement of the simulation
engine by other which suits better future releases, thus simplifying mainte-
nance processes. Figure 2.2 displays SimCM main screen. Nevertheless, it

Figure 2.2: Snapshot of SimCM main screen

proved evident that defining P systems by graphical means lacked generality.

2.2. Standards in Membrane Computing 35

That is, one could develop a software tool for the simulation of P systems
which suits the needs of an specific area. However, when it is necessary to
extend this tool to new application areas, the extension proves tedious and
time–consuming, usually requiring total restructuration of the whole tool. As
a solution, Gutiérrez–Naranjo et al. [92] proposed a programming language for
Membrane Computing. Literally, they claim that “the idea of a cellular pro-
gramming language is possible”. Specifically, they proposed the development
of a library of subroutines composed of rewriting rules. In this context, when
a call to a subroutine is found, it should be replaced by its associated rules.
After replacing all function calls, the authors intended to obtain a P system
to solve a computationally hard problem simply by specifying parameters and
programming standard function calls.

2.2 Standards in Membrane Computing

As the number of frameworks in Membrane Computing grew bigger with the
passage of time, the need for standardization frameworks to avoid repeating the
same code each time a new P system needs to be simulated. In this sense, P–
Lingua is arguably the broadest framework in Membrane Computing, although
other there exist other standards as well for specific applications.

2.2.1 P–Lingua Framework

P–Lingua [71] pioneered the standardisation of P systems by implementing
an open, plugin–based software architecture meant for its extension by third–
party developers. P–Lingua is a software tool which provides a specification
language in which designers can define and describe P systems. This language
can be easily extended when required. In addition, it also provides a set of
Java [6] simulators, in such a way that users can select which simulator from
those included suits better their needs. Moreover, P–Lingua implements an
extension mechanism in which new formats and simulators can be enclosed in
the framework.

P–Lingua was originally developed as a simulator for P systems with active
membranes [63]. However, since its very beginning, further extension to cover
new types of P systems was already on the horizon. The initial version of P–
Lingua included many of the components present in today’s releases: an editor
to define the P system to simulate, a simulator and a console to display the
evolution of the P system throughout time (that is, the ongoing computation).

Chapter 2. Simulation of P Systems 36

In fact, the raw input and output of P–Lingua has not considerably changed
throughout the years, it just has been extended and generalized to take into
consideration new models.

P–Lingua takes the principle of maintaining as much independence as pos-
sible between the user interface and the business logic one step beyond. It
enables third–party developers to include their own formats and simulators for
P system specification without changing the code, simply by programmatically
implementing code snippets which define how an input should be parsed and
how to simulate a type of P systems. That is, not only is the input detached
from the simulator, is that even new inputs and simulators can be included
without any alteration in the API. Moreover, it is possible to define new P
system types in P–Lingua by combining pre–existing restrictions and creating
new ones. This versatility is what gives P–Lingua its assets (complete freedom
for external developers to define custom types of P systems) as a Membrane
Computing standard.

2.2.1.1 Software architecture

P–Lingua consists on a Java standalone software API (namely pLinguaCore)
which performs two operations: 1) simulate a P system and display the results
and 2) translate a P system between two (presumably different) formats. The
key feature of P–Lingua is that both formats and simulators are decoupled
the system; the API does not know which format is being parsed or which
simulation algorithm is being applied.

To customize a pLinguaCore release and incorporate new formats and simula-
tion algorithms, the developer simply needs to register these components in a
set of XML files. On a pLinguaCore simulation, the user specifies the location
of the input, the format in which this input is encoded and the simulation
algorithm to apply, as well as simulation parameters (number of steps, trace
caching, etc.). Then, the API reads through these files looking for the imple-
mentation both of the format parser and of the simulation algorithm. If it
proves unable to find any of these, pLinguaCore returns an error. Otherwise,
the API reads the file by delegating on the format parser. First, it identifies
the P system type defined in the input and checks if there exist a definition in
its XML files for this type. If it does not exists, pLinguaCore outputs a failure
message and halts. Otherwise, the API reads the input file. If this file contains
any errors or does not comply with the restrictions defined for its type, the
execution halts and error messages are output. This information is intended
to serve as a guide for debugging the P system. On the other hand, if the file

2.2. Standards in Membrane Computing 37

specification correctly describes a P system, then warning messages (if any)
are output and pLinguaCore simulates its P system according to the parame-
ters above. On the contrary, on a parsing execution, pLinguaCore follows the
steps listed above up to the point of simulation. Then, it checks for a format
writer according to the output identifier given as parameter. If the API cannot
find it, then an error message is output and the execution halts. Otherwise,
the pLinguaCore delegates on the format writer the P system output in the
specified file. Figure 2.3 summarizes this workflow. More detailed information
about pLinguaCore architecture and execution modes can be found in [71].

PLingua
File

XML
file

Binary
file

Another
format

Simulator

Compiler Simulator

Simulator

The input

Figure 2.3: A diagram on P-Lingua software architecture

2.2.1.2 P–Lingua Language

Among the input formats available in pLinguaCore releases, P–Lingua provides
a special programming language. In this language, P systems are specified on
a syntax close to experts’ syntax. In [196], a language to specify P systems
was proposed. However, it was specifically designed for SN P systems and
lacked generality to include new models. The main features of P–Lingua are
its modularity, i.e., possibility to describe P systems by means of interchange-
able rule modules and its similarities with the mathematical syntax used by
Membrane Computing experts. P–Lingua includes various interesting features
which ease the way in which P systems are specified: ability to group rules in
parametric modules, decoupling of rules, multisets and initial membrane struc-
tures, numeric parameters to be instantiated at any point in the input and,
above all, parametric rule patterns associated with iterators looping through

Chapter 2. Simulation of P Systems 38

numeric variables. At the time of parsing, these patterns are unwrapped and
sets of non–parametric rules are instantiated. Although P–Lingua grammar
has incorporated noticeable changes since its initial release, current versions
are backwards–compatible. In [71], P–Lingua language version 2 is specified,
whereas version 4 is available at [12]. Some of the features of this language are
the following:

• Comments are C–like (that is, delimited by /**/).

• The variant to simulate is selected with @variant<selected variant >.

• Modules are defined with the reserved word def. There exists a main
module (main) which is applied on each simulation and can call another
ones.

• Rules are syntactically described in a similar way to the notation used
by the experts.

• The initial membrane structure is defined with the reserved word @mu.
Likewise, the initial multiset of each membrane is defined with the re-
served word @ms.

Here, a small code snippet compliant with P–Lingua version 2 taken from [12]
is included as an example. This code describes a P system which solves the
SAT problem in polynomial time on a Membrane Computing framework with
active membranes [178].

1 /*

2 * SAT.pli:

3 * This P-Lingua program defines a family of recognizer P systems

4 * to solve the SAT problem.

5 */

6

7 /* Module that defines a family of recognizer P systems

8 to solve the SAT problem */

9 @model<membrane_division>

10 def Sat(m,n)

11 {

12 /* Initial configuration */

13 @mu = [[]’2]’1;

14

15 /* Initial multisets */

16 @ms(2) = d{1};

17

2.2. Standards in Membrane Computing 39

18 /* Set of rules */

19 [d{k}]’2 --> +[d{k}]-[d{k}] : 1 <= k <= n;

20

21 {

22 +[x{i,1} --> r{i,1}]’2;

23 -[nx{i,1} --> r{i,1}]’2;

24 -[x{i,1} --> #]’2;

25 +[nx{i,1} --> #]’2;

26 } : 1 <= i <= m;

27

28 {

29 +[x{i,j} --> x{i,j-1}]’2;

30 -[x{i,j} --> x{i,j-1}]’2;

31 +[nx{i,j} --> nx{i,j-1}]’2;

32 -[nx{i,j} --> nx{i,j-1}]’2;

33 } : 1<=i<=m, 2<=j<=n;

34

35 {

36 +[d{k}]’2 --> []d{k};

37 -[d{k}]’2 --> []d{k};

38 } : 1<=k<=n;

39

40 d{k}[]’2 --> [d{k+1}] : 1<=k<=n-1;

41 [r{i,k} --> r{i,k+1}]’2 : 1<=i<=m, 1<=k<=2*n-1;

42 [d{k} --> d{k+1}]’1 : n <= k<= 3*n-3;

43 [d{3*n-2} --> d{3*n-1},e]’1;

44 e[]’2 --> +[c{1}];

45 [d{3*n-1} --> d{3*n}]’1;

46 [d{k} --> d{k+1}]’1 : 3*n <= k <= 3*n+2*m+2;

47 +[r{1,2*n}]’2 --> -[]r{1,2*n};

48 -[r{i,2*n} --> r{i-1,2*n}]’2 : 1<= i <= m;

49 r{1,2*n}-[]’2 --> +[r{0,2*n}];

50 -[c{k} --> c{k+1}]’2 : 1<=k<=m;

51 +[c{m+1}]’2 --> +[]c{m+1};

52 [c{m+1} --> c{m+2},t]’1;

53 [t]’1 --> +[]t;

54 +[c{m+2}]’1 --> -[]Yes;

55 [d{3*n+2*m+3}]’1 --> +[]No;

56

57 } /* End of Sat module */

58

59 /* Main module */

60 def main()

61 {

62 /* Call to Sat module for m=4 and n=6 */

63

64 call Sat(4,6);

Chapter 2. Simulation of P Systems 40

65

66 /* Expansion of the input multiset */

67

68 @ms(2) += x{1,1}, nx{1,2}, nx{2,2}, x{2,3},

69 nx{2,4}, x{3,5}, nx{4,6};

70

71 /* To define another P system of the family, call the Sat

72 module with other parameters and expand the input

73 multiset with other values */

74

75 } /* End of main module */

Since its first version, P–Lingua language has been continuously extended
to include new types of P systems. At the time of writing the present docu-
ment, pLinguaCore (and, consequently, P–Lingua language) development his-
tory consists on the following versions:

1. Version 1.0 allows solely the definition and simulation of P systems with
active membranes [63], a type of P systems in which membranes have
associated electrical charges and create new membranes by division [174].
This first release of P–Lingua includes a GUI with a graphical canvas to
display the current configuration of the P system simulated. As only
active membrane P systems are allowed, this canvas is specifically to
display the structure of such systems.

2. Version 2.0 incorporates the aforesaid extension mechanism [71]. Hence-
forth, every new format parser and writer, P system type and simulation
algorithm are incorporated by drawing on this mechanism. The types
included in this release are:

• Transition P systems [179].

• Symport/antiport P systems [69].

• P systems with active membranes [189].

• P systems with active membranes and membrane creation rules [91].

• Stochastic P systems [210].

• Probabilistic P systems [141].

• Kernel P Systems [79].

These types are defined by programmatically combining restrictions. For
instance, type Active membranes does not allow membrane creation, that

2.2. Standards in Membrane Computing 41

is, explicit creation of a new membrane inside another, whereas Tran-
sition P systems does not allow membrane division, which consists on
dividing a membrane into two or more. This release also includes sim-
ulation algorithms for these types and two new formats: XML (both
parser and writer) and binary (only parser). P–Lingua language was ex-
tended to include the features defined by these P system types. For in-
stance, probabilities and constants associated to rules are characteristics
of stochastic and probabilistic P systems, whereas membrane creation
rules is a feature of P systems with active membranes and membrane
creation rules. In addition, a new sentence @model<system type > was
integrated, so as to stipulate the type of P system to parse among those
available.

3. Version 2.1 incorporates tissue–like P systems [191] into the set of avail-
able types, along with a simulator compliant with its semantics [140].
This extension entails introducing tissue–like membrane structures (a di-
rected graph) into P–Lingua language, along with tissue–like, swapping
rules. The syntax of these rules is [u]’label1 <--> [v]’label2, being u
and v multisets over the system’s alphabet. This syntax might be mis-
leading; any of such rules requires for its application that label1 contains
multiset u and membrane label2 contains multiset v. Then, rather than
consuming objects in u or v, these objects are swapped, in such a way
that, after the application of the rule, objects in u are now in membrane
label2 and objects in v are now in membrane label1.

4. Version 3.0 incorporates two new P system types and two simulators
thereof: Spiking Neural P systems (SN P systems) [108] and Probabilis-
tic Dynamic P Systems (PDP systems) [51]. Regarding SN P systems,
the ensuing extension of P–Lingua language proved to be quite a labo-
rious task. These systems present some specificities which break away
from the types introduced so far; like tissue–like P systems, their struc-
ture consists on a directed graph. However, unlike tissue–like P systems,
this graph is not defined by the rules but rather it is embedded in the
membrane structure. Moreover, its rules define regular expressions which
dictate when rules are fired, in contrast to types mentioned so far in which
the only requirement for firing a rule is that there are enough objects and
that the required polarization matches. In addition, in these systems the
input is not static; it is encoded on a sequence (train) of spikes which,
consequently, had to be included in P–Lingua syntax. On top of it, the
version of SN P systems incorporated defines membrane division and

Chapter 2. Simulation of P Systems 42

budding [163], features which define rules creating both new membranes
and links to previously existing ones.

On the other hand, PDP systems are an active research line as mod-
els for ecosystems. They are capable of capturing the randomness in-
herent in ecological processes to predict the evolution of species and
another ingredients according to pre–existing literature data. This re-
lease also includes the Direct Non–Deterministic Probabilistic algorithm
(DNDP) [141], which is inspired on the Direct Non–Deterministic (DND)
algorithm [151] and the Direct distribution based on Consistent Blocks
Algorithm (DCBA) [139, 138]. PDP systems are covered in detail in
Chapter 4.

5. Finally, version 4.0 incorporates Kernel P Systems [77], a framework for
numerical problems in Membrane Computing which has been specifically
designed for formal verification by applying model checking techniques
on P systems. Moreover, this version includes an implementation of the
Direct distribution based on Consistent Blocks Algorithm (DCBA) [138].

2.2.1.3 MeCoSim

pLinguaCore is a standalone API with a command–line interface. It provides
not GUI whatsoever. The idea is that, for each specific field of application, a
GUI is developed and connected to pLinguaCore. After some applications of
pLinguaCore (mainly in the field of ecology [52]), it became evident that most
GUIs share common features which are independent from the field. However,
although some software components could be reused, every time that pLingua-
Core was applied to a new field, the specificities of each case made necessary
the development of new a GUI from scratch. MeCoSim [172] addresses that
problem by generating GUIs out of configuration files. Essentially, MeCoSim
reads a spreadsheet with the settings of a specific application (input parameter
fields, output charts, statistical treatment of the data, etc) and instantiates a
new GUI tailored for the problem at hand. Application settings in MeCoSim
are a programming language on their own, as the variety of possible applica-
tions is quite diverse (ranging from formal verification of P systems [112, 79] to
simulation of gene network dynamics [75] and including ecosystems [7, 50, 49]).
In addition, MeCoSim enables a mechanism to incorporate plugins in the ap-
plication, so that developers can define their own functionality to interact with
the GUI.

MeCoSim GUIs define two views, each one addressing the needs of a specific

2.2. Standards in Membrane Computing 43

user profile: the end user and the designer user. Following the philosophy from
Section 2.1, the end user does not need to know anything about Membrane
Computing, and the program behaves as a black box for him. The goal of the
end user is to develop virtual experiments on the phenomenon under study,
thus allowing him to define the simulation parameters, simulate scenarios and
generate charts with meaningful statistical information. On the contrary, the
designer user does need to know about the P system used, being responsible
for designing, debugging and validating the family of P systems used by the
program. Thus, the role of the designer user is to validate the designed P
system by comparing its simulations with data available from the phenomena
under study. For this purpose, MeCoSim facilitates designer users the same
functionalities than those available for end users plus a few more related to the
design process of P systems: edition, compilation, simulation and selection of
number of steps per application cycle. An application automatically generated
by MeCoSim is shown on Figure 2.4. More information about MeCoSim and
downloadable releases are available on [7].

Figure 2.4: A MeCoSim–generated GUI application

2.2.2 Other standards in Membrane Computing

Apart from P–Lingua, there exist other standards for the specification and
simulation of P systems. Although, to the best of the author’s knowledge,
P–Lingua is the only standard which intends to address a broad spectrum of

Chapter 2. Simulation of P Systems 44

types of P systems, these other standards are software projects under active
development and do serve as modelling and simulation tools on specific areas.
Some of these standards are Infobiotics [23] and MetaPlab [35], whose main
screen can be seen on Figure 2.5.

2.2.2.1 Infobiotics

The Infobiotics Workbench [23] is an integrated software suite incorporating
model specification, simulation, parameter optimization and model checking
for Systems and Synthetic Biology. Infobiotics enables two simulation algo-
rithms: stochastic simulation or numerical integration, as well as visualization
in time and space. In Infobiotics, inputs can be specified in two complementary
model representation languages: mcss–SBML, an extension of the Systems Bi-
ology Markup Language [105], and a domain specific language, implementing
a type of P systems known as lattice population P systems [201]. mcss–SBML
can be visually edited on well–known editing tools such as CellDesigner [70].
Infobiotics implements two different algorithms for model simulation: ODE
solvers provided by GNU scientific library [84] and a set of multicompartmental
algorithms [201] based on widespread Gillespie Direct Method [80]. In addition
to simulation, Infobiotics enables two interesting features: model checking and
parameter and structural optimization. The former is achieved by delegating
on two model checking tools: PRISM [122] and MC2 [65], whereas the latter
implements several parameter optimization algorithms (i.e. differential evolu-
tion [212] and covariance adaptation) and a structural optimization method
based on evolutionary computing [32]. Infobiotics is available on [5].

2.2.2.2 MetaPlab

MetaPlab [35] is a virtual laboratory developed to assist biologists in under-
standing internal mechanisms of biological systems and to forecast their re-
sponse to external stimuli, environmental conditions alterations and structural
changes. Meta P Lab features a type of P systems known as Metabolic P sys-
tems (MP systems) [132]. These P systems proved to be effective in modelling
biological phenomena related to metabolism. MetaPlab implements a deter-
ministic simulation algorithm based on the mass partition principle, which
defines the transformation rate of object populations according to a suitable
generalization of biochemical laws. MetaPlab enables graphic visualization and
design of MP systems based on constructs named MP graphs. To store these
systems, MetaPlab defines a type of data structures known as MP stores. MP
system processing is achieved by MP plugins, combinable software modules

2.3. Parallel simulation of P systems 45

Model checking on Infobiotics An MP system simulation on
MetaPlab

Figure 2.5: Infobiotics (left) and MetaPlab (right) screenshots

which define the operations to perform on these systems. Finally, MP vistas
zooms relevant aspects on the system at hand, thus enabling feature analysis
on the designed models. MetaPlab can be downloaded from [8].

2.3 Parallel simulation of P systems

Originally, Membrane Computing simulators have been exclusively implemen-
ted on sequential architectures, such as standard personal computers, occasion-
ally by using declarative languages such as Prolog [54]. However, the inherent
performance limitations of such devices is that they do not match well with
the parallel nature of P systems, so the quest for new technological approaches
comes to the fore. Therefore, it is natural to resort to parallel architectures
such as FPGA boards [223, 135, 152, 151], computer clusters [46], microcon-
trollers [90, 89] and Graphic Processor Units (GPU) [38, 139, 30, 113]. Their
main features are next explained.

2.3.1 FPGA boards

A Field Programmable Gate Array (FPGA) circuit [204, 218, 224] is an array
of (a usually large number of) logic cells placed in a highly configurable infras-
tructure of connections. Each logic cell, also known as Control Logic Block
(CLB) can be programmed to realize a certain function [218]. The seminar
work on parallel simulation of P systems on FPGA boards is a Transition P

Chapter 2. Simulation of P Systems 46

system simulator attributed to Petreska and Teuscher [180]. In their work, they
deploy each membrane as a construct composed of an 8–bit register per object
in the alphabet, an 8–bit register to store the membrane label and one bit sta-
tus flag to indicate if the membrane is enabled (1) or disabled (0). Membranes
are connected by means of bidirectional buses. Here, instead of individually
connecting membranes to their children, each non–elementary membrane is
connected to one child, which is in turn connected to one of its siblings and
so on, in a linked list manner. All rules follow a common pattern, which is
u→ v(v1, ini), (v2, out), where:

• i corresponds to the label of any of the membrane children.

• u, v, v1, v2 are multisets over the system’s alphabet.

Upon the application of a rule, multiset u evolve into v, multiset v1 is sent to
membrane i and multiset v2 is sent to the membrane’s parent. Rules are ap-
plied according to a priority list in a strong sense, which indicates the order in
which rules must be applied. Hence, their implementation is non–deterministic
as long as this priority list is randomly generated on each simulation.

Rule registers in a membrane are connected to a circuit known as reactor.
In addition, each membrane integrates three arrays of 8–bit registers: Update-
Buffer, FromUpperBuffer and ToUpperBuffer, each one with as many positions
as objects are in the system’s alphabet. On every step, each applicable rule
issues an applicable signal. Let w be the multiset associated with the rule’s
membrane. A rule is applicable if cardinalities in u are lower or equal than
those in w and no rule with higher priority is applicable at the same step.
Then, for every rule which has issued signal applicable, the reaction circuit
subtracts cardinalities in u from w and adds objects in v to buffer Update-
Buffer, objects in v1 to buffer FromUpperBuffer in membrane i and objects
in v2 to buffer ToUpperBuffer. If the rule creates a membrane, then looks for
a disabled membrane and enables it, copying all information into the mem-
brane registers and setting its status flag to enabled. Later on, it sets its label
to that in the rule’s created membrane label. When all applicable rules are
applied, then each membrane adds objects in buffer ToUpperBuffer to buffer
UpdateBuffer of its parent membrane. Next, each membrane adds objects in
UpdateBuffer and FromUpperBuffer into w. Finally, if the rule dissolves the
membrane, its status flag is set to disabled and all its objects are sent to its
parent membrane multiset registers. This structure is represented on Figure
2.6.

Another interesting work on the FPGA simulation of P systems is au-
thored by Nguyen et al. [152]. In their work, they present Reconfig–P, a

2.3. Parallel simulation of P systems 47

Membrane bus wiring

Structure of a membrane
circuitry

Figure 2.6: Overview of Petreska and Teuscher’s FPGA Membrane Computing simulator

Java application which generates a FPGA circuit description out of Handel–C
code. Handel–C [128] is an automated synthesis language based on ANSI–C
for defining reconfigurable hardware at a high level of abstraction. Reconfig–P
integrates P Builder, an application which takes into account the variety of
specificities of the input P system and generates a circuit description accord-
ingly. Reconfig P allows the designer to define plenty of fine–grained details
about the system to simulate, such as resource allocation approaches (object–
oriented and rule–oriented) [153] and conflict resolution strategies to resolve
object competition (time–oriented and space–oriented) [149, 150, 151, 153].
Reconfig–P supports membrane division and dissolution, by allocating cir-
cuitry for new membranes and freeing components from dissolved membranes.
In addition, Reconfig–P and P Builder are designed for extensibility, in such a
way that new P systems and features can be easily incorporated.

2.3.2 Microcontrollers

Other parallel platforms, such as microcontrollers, have been used to simulate
P systems. For instance, Gutiérrez et al. [90] made use of these relatively simple
microcomputers to simulate P systems. In their work, they proposed a network
of these devices. The computational workload is assigned to microcontroller
PIC16F88. These devices are low-frequency computers working at 20Mhz, 8
bits of bus width and 8 bits of word size. Their relatively low cost ($1.90)
makes them appropriate to assemble a massive network, in which each one of
them simulates a different membrane. Their main drawback is its scarcity of
memory, which implies that a different model of microcontroller needs to be

Chapter 2. Simulation of P Systems 48

General structure Monitoring and clock systems

Figure 2.7: General structure (left) and monitoring system (right) of a Membrane Computing simulator based on micro-
controller technology

used to store data. In their solution, they suggest devices of type 24LC1025 for
memory storage. Due to their Harvard architecture [209, 214], these devices
are appropriate to hold different kind of data: they contain a non–volatile
memory (128 Kbytes) and a volatile memory. In addition, they can work on
fast mode (at 400Khz) and on slow mode (at 100Khz). However, although their
embedded memory suffices to store local data, external modules are required
to store global variables. To implement a general clock which synchronizes the
whole system, the authors opt for connecting the microcontrollers to a Personal
Computer (PC) which sets the current execution time. The whole architecture
is interconnected by a I2C, which defines a synchronous, bidirectional protocol
which ensures that information concerning modification in the cardinality of
objects due to the application of rules is properly transmitted. Finally, they
estimate the whole cost of a system composed of 1000 membranes at about
$10000, a much more affordable solution than cluster–based platforms. Figure
2.7 displays the architecture of the simulator.

2.3.3 Computer clusters

Distributed simulation on computer clusters adds up to the parallel approaches
considered to simulate P systems. In their work, Ciobanu and Guo [46] present
a simulator for P systems on C++ which runs on a computer grid. Workload
distribution was achieve by using Message Passing Interface (MPI) [161]. MPI
is a popular middleware in which chunks of data are transmitted among dis-
tributed nodes in a cluster by means of function calls. These calls rely on
low–level communication structures such as sockets, semaphores, stubs and
message buffers. The authors focus on transition P systems, which do not
implement membrane division. The P system to simulate is specified on an

2.4. GPU Computing 49

input file, like in aforesaid approaches, an outputs another file which contains
the current configuration upon the halting of the simulator.

In their implementation, the authors allocate the simulation of each membrane
to a different node in the grid. In each node, each rule is assigned to a different
thread, in such a way that rules are applied concurrently. Issuance of objects is
achieved by relying on MPI messages among nodes. When a node detects that
there are no more applicable rules at a time step, it sends a message a central
node playing the role of the skin membrane. If, on a transition step, the skin
membrane receives such messages from all nodes in the grid, then it broad-
casts a halting signal to all nodes and the simulation halts. Rule priority is also
implemented on this simulator; prior to the application of a rule, its thread
checks that there are not applicable rules with higher priority. When object
competition among rules takes place, objects are assigned among competing
rules at random, therefore implementing non–determinism. The simulator’s
interaction consoles are displayed on Figure 2.8. For more information, please
refer to [46].

Moreover, there are also some works on the distributed simulation of P sys-
tems with Hadoop [64], a popular framework for Parallel Computing based on
the Map–Reduce pattern [227]. This framework applies in parallel an opera-
tion Map to each data and unifies the results of these operations by applying
operation Reduce.

Figure 2.8: Input (left) and output (right) from Ciobanu and Guo’s cluster simulator

2.4 GPU Computing

Along with FPGA boards, the parallel technology on which many simulators
have been developed is allegedly Graphic Processing Units (GPU). Originally,

Chapter 2. Simulation of P Systems 50

GPUs were devised as auxiliary computers to assist the main Central Process-
ing Unit (CPU) on carrying out graphical computations. This way, graphical
data was streamlined into the GPU memory by using Direct Memory Ad-
dress (DMA) [67] circuitry, thus unburdening the CPU from anything related
to graphical data. As new data chunks arrived at GPU memory, they were
dynamically allocated to idle graphic processors. This workflow configures a
Parallel Computing scheme: provided a certain degree of independence be-
tween chunk processing, computations carried out at different processors do
not (at least heavily) depend on each other (also known as Data Parallelism).

Originally, GPU processors were solely conceived to process graphic data.
What is more, GPU integrate auxiliary hardware to perform common graphi-
cal tasks, such as raytracing [195], antialiasing [144, 58] and pixel shading [56].
However, it became evident that the parallel architecture of GPUs could be
successfully applied for other parallel applications. In reference to general pur-
pose application of GPU technology, Mark Harris, engineer at NVIDIA Corp.,
coined the term General–Purpose GPU (GPGPU) Computing in 2002 [160].
Nevertheless, the lack of appropriate development frameworks to implement
general–purpose parallel algorithms on GPUs was a hindrance for this field
of application to flourish; general–purpose algorithms had to be translated to
graphical structures, i.e., numerical values had to be mapped to pixels and
colour levels so that GPUs could process them [160].

2.4.1 CUDA programming model

The appearance of GPGPU Computing software development kits (SDKs)
into scene did away with this requirement. In this sense, in 2007 NVIDIA an-
nounced CUDA (Compute Unified Device Architecture), a programming model
specifically for GPGPU Computing. CUDA defines an abstraction of a GPU
known as grid, which mirrors the memory hierarchy and processor distribution
in commercial graphic cards. This abstraction allows the developer to allocate
resources and tasks among processors and memory segments without depend-
ing on any specific device. Hence, from the developer’s perspective, what runs
his program is a parallel architecture of processors, in which information is
expressed in terms of standard data structures.

A NVIDIA GPU is composed of a set of cores or Streaming Processors (SPs),
reaching 512 in model NVIDIA Tesla M2090 [10]. SPs are arranged in Stream-
ing Multiprocessors (SMs). Each SP has access to a set of extremely low
latency registers and to a section of low latency shared memory along with the
other processors in the SM. All SPs, independently of their SM, have access

2.4. GPU Computing 51

to a common region of high latency global memory, which reaches 4 GB in
modern Tesla cards [10].

In CUDA programming model [119, 160, 154], threads are arranged in blocks.
CUDA implements synchronization directives at a level of blocks and at a level
of the device as a whole. Threads in the same block have access to a common,
low–latency shared memory hidden from other blocks. Threads in a block can
be easily synchronized with barrier–like directives. In addition, each processor
integrates a set of almost immediate access registers and a quick access local
memory. Moreover, all processor have access to a global, high–latency mem-
ory to store massive amounts of data. Finally, all threads have access to large,
read–only memory units known as Constant and Texture data. This model is
represented on Figure 2.9.

Figure 2.9: The CUDA programming model

On runtime, CUDA dynamically assigns bundles of threads or warps to
idle SMs. Each one of these threads executes the same code on different,
thread–dependent data. This Parallel Computing paradigm is known as Single
Instruction Multiple Data (SIMD). It is worth pointing out that the output
of the program should not depend on the order in which these warps are
computed. Otherwise, correct execution is not guaranteed [154]. Warps are
the smallest units of parallelism; if a warp is broken, then its whole execution

Chapter 2. Simulation of P Systems 52

is performed sequentially.

CUDA/C++ is a programming language based on C/C++ which implements
CUDA programming model. A CUDA/C++ program is divided into two main
parts: the host part and the device part. The host is the part of the code to be
run on the CPU, whilst the device is the part to be executed on the GPU [38].
The host part includes calls to functions belonging to the device part or kernels.
The device part can be composed by one or more kernels that are suitable for
execution on the GPU. A kernel executes a scalar sequential program on a
set of parallel threads. The programmer organizes these threads in two ways
showing the two levels of parallelism inside the kernel (threads and thread
blocks). This way, both parts of the program can cooperate in order to obtain
a global result [154].

2.4.2 OpenCL

Another major standard in GPGPU Computing is OpenCL, a programming
language supported by a consortium of enterprises which seeks out interop-
erability between parallel technologies, not only limiting to GPU devices but
to other platforms such as FPGA boards. Unlike CUDA, OpenCL is a free
standard independent from any particular company [216, 145, 11]. OpenCL is
also compatible with AMD devices, such as AMD Fusion cards or Accelerated
Processing Unit (APU) [1], which integrate GPU and CPU features so as to
achieve a higher performance than each one of its parts separately. OpenCL
is also compatible with Intel graphic cards and heterogeneous architectures
composed of a CPU and external computing peripherals, not only GPUs but
also FPGA boards and microcontroller networks. OpenCL defines a program-
ming model similar to CUDA, but with its own specificities. More information
about OpenCL can be found at [11].

2.4.3 GPGPU simulation in Membrane Computing

A variety of P system models have been simulated by applying GPGPU pa-
radigm. The parallel architecture of GPUs, along with its relatively easy pro-
gramming with GPGPU tools accounts for its suitability as a decent simulation
platform for P systems. This work has been initiated in [136] with all the sim-
ulators listed below with exception of the last one, which are available in [13].

2.4. GPU Computing 53

2.4.3.1 P systems with Active Membranes

The first Membrane Computing application on GPU technology was a simu-
lator for P systems with active membranes developed by Cecilia et al. [38]. In
their implementation, each step on a simulation consists on two stages: a se-
lection stage and an execution stage. On every step, the selection stage selects
which rules are to be applied according to membrane polarization and object
availability, whereas in the execution stage the selected rules are applied. The
simulation halts when the selection stage detects that no more rules can be
applied.

In P systems with active membranes, rules can be classified in five types:
evolution rules, send–in rules, send–out rules, division rules and dissolution
rules [174]. Consequently, a kernel computes the application of each type of
rules. The first kernel (that of evolution rules) also performs rule selection.

Moreover, a simulator specifically developed for a model of P systems with
Active Membranes solving the SAT problem is presented in [37, 36]. This
simulator is limited to P systems with two membrane levels: one for the skin
membrane and other for its inner membranes. That is, inner membranes must
be elementary membranes. These restrictions comply in the case of the SAT–
solver P system introduced in their case study. Only one computation is sim-
ulated, which is enough due to the fact that the simulated P systems in the
family are recognizer P systems solving a decision problem, and that family
is sound and complete, hence it is confluent, i.e., given any input for the sys-
tem, all computations return the same output. In their work, they reported
execution times up to 63 times faster than the sequential counterpart. The
experiments were undertaken on a Linux server with a NVIDIA Tesla C1060
graphic card at 1.3 Ghz with 240 processors installed.

2.4.3.2 Spiking Neural P systems

Spurred by the success obtained by Cecilia et al., Cabarle et al. [31, 29] de-
veloped a simulator of Spiking Neural P systems on the same technology. The
specificities of Spiking Neural P systems propose a demanding challenge; for a
rule to be applied, the spikes in the rule’s associated membrane must match a
regular expression. In addition, the neuron structure is explicit; links between
membranes are not encoded on the rules, but are a part of the structure itself.
Moreover, rules might define a time delay which states the number of step
cycles after the rule issues spikes to its neighbours [108].

Due to the inherent difficulty in simulating the model, the authors started by

Chapter 2. Simulation of P Systems 54

tackling the simulation of SN P systems without delays. The simulator is based
on a matrix representation of SN P systems [236], in which rule applications
are mapped into matrix operations. Taking advantage of the suitability of
GPUs for algebraic computing, these operations are accelerated on the GPU.
Their implementation sequentially matches the content of each neuron against
each rule’s expression. Then, it generates all spike trains conducing to all pos-
sible next configurations. All feasible transition steps are applied in parallel,
repeating this process until a halting condition is met or until there is only
one possible next configuration. Finally, the authors report a 2.31x speedup
for 16 neurons in their benchmark, on a Linux server with two NVIDIA Tesla
C1060 graphic card like the one mentioned above. Some ideas of this matrix
representation are also used to simulate SN P systems with energy [113]

2.4.3.3 Population Dynamic P Systems

Another model of P systems simulated on GPU platforms is Population Dy-
namics P (PDP) systems [51], which are a framework devised to model ecosys-
tems. Informally speaking, PDP systems are composed of a directed graph
whose nodes are called environments. Each one of these environments has an
inner, cell–like membrane structure each and a set of rules which communicate
membranes inside and among environments. In PDP systems, the membrane
structure and associated rules inside each environment are the same, solely
varying the initial multisets and the probabilities associated with the rules in
each environment. In addition, each rule has an associated probability function
which dictates, provided it is applicable at a given configuration, how likely it
is to be applied. PDP systems and associated concepts (such as rule blocks)
will be further addressed in this work.

In their work, Mart́ınez–del–Amor et al. [139] first developed a C++ simulator,
which was further improved with OpenMP [16]. OpenMP is a programming
library for Uniform Memory Access (UMA) parallel architectures, that is to
say, architectures in which memory is centralized in a single device rather than
distributed among nodes. This implementation was later adapted to CUDA,
so as to run it in NVIDIA graphic cards.

This simulator consists on a parallel implementation of DCBA algorithm [138].
In this implementation, selection phase is divided in three stages. In the first
stage, the simulator calculates a number of applications for each block in par-
allel by distributing objects in the rule’s membrane among objects consumed
by the block. As it will be reviewed later, this approach is a clear inspiration
for PGP parallel simulation algorithm. In the second stage, the algorithm cal-

2.4. GPU Computing 55

culates a random order in which objects are sequentially assigned to blocks,
accordingly consuming block objects in a maximal way. In the third stage,
the rules to be applied inside each block are chosen according to a randomly
generated multinomial distribution. Finally, the execution stage generates the
objects produced by the applied rules in parallel.

The authors achieve an acceleration up to 7x in comparison with its sequen-
tial counterpart and up to 3x compared to a 4–core CPU using OpenMP. This
result proves the power of GPGPU Computing on the field of Membrane Com-
puting simulation, and shows some limitations on the parallel simulation of P
systems since it is memory bandwidth–bounded. Like in the case described
above, the simulations were carried out on a Linux server with two NVIDIA
Tesla C1060 graphic cards.

2.4.3.4 Kernel P Systems

Recently, a simulator on simple Kernel P Systems has been developed by Ipate
et al. [112] The specificity of this model is that, in addition to being enough
objects available, for a rule to be applied a condition over a set of objects
must be satisfied. In their work, the authors test their simulator on a Kernel
P System model of the Subset Sum problem [62]. The simulator executes two
phases: the first stage checks which rules are applicable and selects rules to be
applied among those, consuming the objects indicated by the rules, whereas
the second produces the objects generated by the applied rules. However, the
authors fail to specify how they implement non–determinism in their simulator,
though they report an acceleration of 10x for 16 subsets. In this case, the
authors employed a personal computer with Windows 7 Professional and a
NVIDIA GeForce GT650M with 1 GB of dedicated RAM installed.

2.4.3.5 Tissue P Systems

Last but not least, Mart́ınez–del–Amor et al. [137, 61] developed a GPU-based
simulator for a specific solution to SAT with tissue P systems with cell divi-
sion. Their implementation consists on five separate stages, as follows. Their
simulator consists on 5 phases: generation, exchange, synchronization,
checking and output. These phases are tightly coupled to the problem at
hand and, due to their lack of generality, are not described here. The problem
addressed by the simulator consists on simulating a P system family which
solves the SAT problem (we refer to [191] for more details). They obtained an
acceleration factor up to 10x by running their simulations on the aforemen-
tioned Linux server with two NVIDIA C1060 graphic cards.

Chapter 2. Simulation of P Systems 56

Furthermore, this work served as the basis of a broader objective, in order to
study which P system features are managed better by the GPU than by the
CPU. This study was conducted by comparing the simulator for the model
solving the SAT problem with P systems with active membranes and this
tissue simulator. Results show that the simulator for the model with active
membranes runs faster on the GPU (63x vs 10x) due to the usage of charges
and non–cooperative rules.

2.5 Hardware specifications

All simulations reported in this work have been performed on a laptop with a
NVIDIA GTX 460M card and an Intel 7 as CPU processor (see Table 2.1).

Feature Value
CPU Processor Intel i7

CPU RAM Memory 8 GB DDR3
CPU Cache Memory 6 MB

CPU Clock Frequency 1.6 GHz
GPU Model NVIDIA GTX 460M

Number of GPU Cores 192
GPU Clock Frequency 1.35 GHz

GPU Memory 1.5GB DDR5, shared
GPU Memory Clock Frequency 1.25 GHz

Table 2.1: Hardware specifications of the laptop in which the simulations in this work have been carried out

Part II

Contributions

57

Chapter 3

Enzymatic Numerical P systems

Enzymatic Numerical P Systems (ENPSs, for short) are a type of P systems
which differs in some crucial aspects regarding those introduced so far in this
document. Like the models described up to the present point, ENPSs are
parallel systems. In addition, their membrane structure consists on a rooted
(cell–like) tree. However, the following features are specific of this kind of P
systems:

• Membranes do not have associated multisets. Instead, they contain a set
of numerical, real–valued variables which evolve due to the application
of programs in lieu of rewriting rules.

• The application of programs is deterministic. Each program might be
associated with a variable (known as enzyme) which acts as a switch for
the program.

ENPSs are based on Numerical P Systems (NPSs), a non–deterministic,
parallel model originally aimed to model the underlying uncertainty of eco-
nomical processes. To familiarize the reader with the concepts of ENPSs, first
NPSs are introduced. The parallel structure of ENPSs makes them appro-
priate for their simulation in parallel platforms, such as GPUs, in order to
simulate massive ENPS instances. In this sense, the contributions of this work
to ENPSs consist on a GPU–based simulator (namely ENPSCUDA) and a
C++ one (namely ENPSC++) for these systems, being developed the latter
to measure the performance gain obtained by the former in comparison to se-
quential ENPS simulators.

This chapter is structured as follows. Sections 3.1 and 3.2 describe Numer-
ical P Systems and Enzymatic Numerical P Systems, respectively. Section

59

Chapter 3. Enzymatic Numerical P systems 60

3.3 describes sequential algorithms and software for the simulation of ENPSs.
Section 3.4 describes a simulator for ENPSs for GPU platforms. Finally, Sec-
tion 3.5 analyses the performance of this simulator, characterizing acceleration
peaks.

3.1 Numerical P Systems

Numerical P Systems [193, 61] are a kind of P system introduced by Gheorghe
and Radu Păun in 2006 [193]. In these P systems, the traditional multisets of
objects associated with membranes are replaced by sets of numerical variables.
These variables evolve by means of programs associated with the membranes.
Although tissue–like NPSs are discussed in [221], in the original version of
NPSs the membrane structure is a tree–nested, cell–like hierarchy, so no new
membrane architecture is introduced in this model.

Formally speaking, a numerical P system of degree m ≥ 1 is a tuple

Π = (H,µ, (V ar1, P r1, V ar1(0)) . . . (V arm, P rm, V arm(0)))

where:

• H is an alphabet with m symbols used as labels of the m membranes
of the system. Elements in H are the labels of the membranes in Π.

• µ is a membrane structure, a rooted tree, with m membranes.

• V ari = {x1,i . . . xki,i} is the finite set of variables associated with com-
partment i, 1 ≤ i ≤ m.

• V ari(0) = (λ1,i . . . λki,i) are numerical values (real numbers) for the vari-
ables in V ari. These values are considered as initial values; at instant 0
of the system evolution we have xj,i = λj,i, 1 ≤ i ≤ m, 1 ≤ j ≤ ki.

• Pri = Pr1,i . . . P rqi,i is the set of programs from compartment i of µ, 1 ≤
i ≤ m. The l-th program Prl,i from compartment i is of the form Prl,i =
(Fl,i(x1,i, . . . , xki,i), cl,1|v1 + . . .+ cl,ni |vni) where Fl,i(x1,i, . . . , xki,i) is the
l-th production function from compartment i and cl,1|v1 +. . .+cl,ni |vni
describes the repartition protocol. Objects cl,j and vj, 1 ≤ j ≤ ni,
are, respectively, integer numbers and variables in compartment i, its
parent or any of the children of compartment i.

3.2. Enzymatic Numerical P Systems 61

The production function Fl,i(x1,i, . . . , xki,i) from compartment i is a a real
function having as variables those from this compartment. The expression
cl,1|v1 + . . . + cl,ni |vni describes the repartition protocol which has the follow-
ing meaning: let v1 . . . vni be the set of variables from compartment i, from
the parent membrane of i and for all compartments corresponding to chil-
dren of compartment i. The coefficients cl,1, . . . , cl,ni are natural numbers that
specify the proportion of the current production distributed to each variable
v1, . . . , vni .

More precisely, at any instant t ≥ 0, a program Prl,i on each set Pri, 1 ≤
i ≤ m, is non–deterministically chosen. Then, Fl,i(x1,i(t), . . . , xki,i(t)) and
Cl,i =

∑ni
j=1 cl,j are computed. The values of all variables on which Fl,i de-

pends are consumed and reset to 0. The value q =
Fl,i(x1,i(t),...,xki,i(t))

Cl,i
represents

the “unitary portion” to be distributed to variables v1, . . . , vni , according to
coefficients cl,i, . . . , cl,ni in order to obtain the values of these variables at time
t + 1. Specifically, variable vl,j will receive q · cl,j, 1 ≤ j ≤ ni, from compart-
ment i. If a variable receives such “contributions” from several neighbouring
compartments, then they are added in order to produce the value of the vari-
able at time t+ 1.

This model of computation was initially aimed to capture the nature and be-
haviour of economic processes [193]. There had been some previous works
on the modelling of economic processes by means of Membrane Computing
[192], proposing the application of NPSs them. In addition, a characteriza-
tion of NPSs in terms of computational completeness can be found in [193],
which proves that a rather restrictive type of NPSs is Turing complete, i.e.,
equivalent to a Turing machine in terms of computational power [155].

3.2 Enzymatic Numerical P Systems

As it is usual on Membrane Computing models, a new kind of P systems has
risen as an extension of NPSs. This model is known as Enzymatic Numerical
P Systems (ENPSs). Although this parallel model of computation has many
points in common with Numerical P Systems, there are some aspects which
differentiate both models. This way, in contrast to Numerical P Systems, En-
zymatic Numerical P Systems describe a deterministic model of computation.
Thus, instead of non–deterministically chosen, the programs to be applied are
controlled by specific variables known as enzyme–like variables.

An Enzymatic Numerical P System of degree m ≥ 1 is a tuple

Chapter 3. Enzymatic Numerical P systems 62

Π = (H,µ, (V ar1, P r1, V ar1(0)) . . . (V arm, P rm, V arm(0)))

where:

• H, µ and (V ar1, V ar1(0)) . . . (V arm, V arm(0)) have the same meaning
than in Numerical P Systems described in Section 3.1.

• Pri is the set of programs associated with membrane i. Each l-th pro-
gram in set Pri may have one of the following forms:

– Prl,i = (Fl,i(x1,i, . . . , xki,i), cl,1|v1 + . . .+ cl,ni |vni)
– Prl,i = (Fl,i(x1,i, . . . , xki,i), (el,i →), cl,1|v1 + . . .+ cl,ni |vni)

In both forms, all values which also appear in Section 3.1 have the same
meaning, with el,i being a variable in V ari. This variable is known as the
enzyme–like variable associated with Prl,i and its value cannot be con-
sumed by this program. Enzyme–like variables are exclusive ingredients
of ENPSs. That is, they do not appear in NPSs.

The main novelty introduced by ENPSs has to do with the use of enzyme–like
variables to control the execution flow of programs. This way, each program
may have an associated enzyme–like variable which controls its application. If
a program is to be applied at instant t, then this program is active at that
instant. On each computation step, all active programs in each membrane
are applied in parallel. Programs in ENPSs are applied the same way than in
NPSs. However, a program is active only in the following cases:

• The program does not have an associated enzyme.

• The program has an associated enzyme and the value of this enzyme is
greater than the minimum of the values of the variables consumed by
the program.

In [165], Pavel et al. make a point about the numerical nature of enzymes
in their model, claiming that it must be clear that the enzymatic mechanism
was inspired by biological processes, but ENPSs themselves do not aim at
modelling chemical reactions. So the proposed enzymatic mechanism will not
constrain the computational model by taking in consideration all the real bio-
logical facts. In this sense, variable values can be real numbers (also negative)
and production functions may be polynomials of any degree. A chemical re-
action could be modelled only by first degree polynomials, but in ENPSs it is

3.2. Enzymatic Numerical P Systems 63

An numerical P system An enzymatic numerical P system

Figure 3.1: A numerical P system (left) and an enzymatic numerical P system (right)

possible to define production function consisting on polynomials with degree
greater than 1. The enzymatic mechanism can be generalized by a boolean
expression associated with a production function. Based on the value of the
boolean expression, the production function would be active (selected) or in-
active.

Both NPSs and ENPSs have been successfully applied for modelling robot
controllers [28, 166, 168]. Pavel et al. [167] identified two advantages of u-
sing ENPS in comparison to traditional P systems with associated multisets
of objects:

• Variables can be assigned real numbers. Consequently, there is no need
for extra effort to simulate floating point operations.

• Membranes and variables inside are the same throughout all the compu-
tation; the memory required to store membranes and variables does not
grow. That is to say, it is not possible that new objects enter or exit any
membrane, nor that new membranes are created.

Moreover, Pavel et al. [166] also identified several advantages in using ENPS
models in comparison to NPS models, some of which are:

• Membrane representation is very efficient for designing robotic behaviours.
Consequently, a fewer number of programs than in NPSs is required to
attain the same behaviour.

• Enzyme variables, if existent, control the program flow and detect any
existing termination condition.

ENPS models have proved to be universal [221], with improved results in
[222] and [124]. Moreover, ENPS–based models for deterministic mobile robot

Chapter 3. Enzymatic Numerical P systems 64

Figure 3.2: An ENPS model for obstacle avoidance

controllers have been successfully used to model obstacle avoidance [166] and
odometric localization [168]. Both models were simulated with SNUPS [157,
27], a graphical, interactive Java simulator which reads an ENPS description
on XML format and outputs the result of the simulation, querying the user
for inputs when required. Here, the first case proposed by Pavel et al. [166]
is presented as an illustrative example. This model tackles the question of
obstacle avoidance in a closed circuit, a well–known problem in robotics. In
their example, the authors suppose a robot with 8 sensors and 2 motors, 1 per
side of the robot, although they claim that it can be easily adapted for any kind
of robot. To design an obstacle avoidance behaviour, the data received from the
proximity sensors is processed and stored in a variable. This data measures the
proximity from any nearby obstacle. The motor speed is modified according to
the value of this variable in order to avoid the detected obstacles. In this sense,
if an object is sensed more with the sensors on the right size, the speed of the
right motor should be greater than the speed of the left motor. Consequently,
the robot should avoid the collision by turning left. Figure 3.2 depicts the
ENPS designed to model this process. The Observe–Decide–Act (ODA) loop
modelled by the authors is at the core of classic control theory [168]. In
addition, the incremental tuning approach of the system variables bears a
strong resemblance with Proportional–Integral–Derivative (PID) controllers,
in which a set of variables is iteratively adjusted to reach stability in the
presence of external disturbances [126]. However, in contrasts to differential
PID controllers and due to the modular nature of P systems [41], small changes
in the desired behaviour entail proportionally small adjustments in the model.

3.3. Simulation of Enzymatic Numerical P Systems 65

3.3 Simulation of Enzymatic Numerical P Sys-

tems

As mentioned in Section 3.2, SNUPS [157] is a Java simulator for ENPSs.
The algorithm implemented by SNUPS to simulate the dynamics of ENPSs is
schemed in Algorithm 3.3.1. In contrast to other types of P systems, when it
comes to simulation the membrane structure in ENPSs is merely a scaffold.
That is to say, ENPS models describe a set of variables intercommunicated
with each other by means of programs. Membranes are of certain use to define
which pairs of variables are allowed to communicate. However, in the standard
notation for ENPS variable names have assigned sub–indexes which depend
on their membrane. Therefore, if this notation is employed, it is possible to
uniquely identify a variable by its name, without need to explicitly address its
membrane.

3.4 A GPU simulator for Enzymatic Numeri-

cal P systems

ENPSs present some features which differ from the types of P systems that
have been presented so far. These features have a strong influence on the
development of parallel simulators for ENPS models:

• ENPSs are deterministic models. Therefore, the repeated simulation
of the same ENPS would be of little use, as every simulation would
monotonously repeat the same configurations. This is not the case of
non–deterministic P systems, as each simulation would reflect a different
computation.

• Values associated with membranes are real numbers. Operations on real
numbers take more time to compute than on integer numbers. As a
matter of fact, the computational power of a computer is measured in
megaflops, i.e., millions of floating–point operations per second. More-
over, GPUs are optimized to work with floating point numbers.

• Production functions are general arithmetic expressions of unbounded
depth with binary operations. Therefore, the most natural approach to
compute them is to apply some type of divide–and–conquer algorithm.
That is to say, to compute a binary operation first compute its operands.
This characteristic will display its importance when the GPU simulator

Chapter 3. Enzymatic Numerical P systems 66

Algorithm 3.3.1 Algorithm for simulation of ENPS models
Input:

• T : an integer number t ≥ 1 indicating the iterations of the simulation.

• Π = (H,µ, (V ar1, P r1, V ar1(0)) . . . (V arm, P rm, V arm(0))): ENPS of degree m ≥ 1.

1: for t← 0 to T do
2: for i← 1 to m do
3: for j ← 1 to ki do
4: x′j,i ← xj,i(t)
5: end for
6: end for
7: for i← 1 to m do
8: for l← 1 to qi do
9: if Pri is of the form Prl,i = (Fl,i(x1,i, . . . , xki,i), (el,i →), cl,1|v1+. . .+cl,ni

|vni
)

then
10: apply programl,i ← el,i > min(x′j,i) such as Fl,i(x

′
1,i, . . . , xk′i,i) consumes

x′j,i
11: else
12: apply programl,i ← true
13: end if
14: if apply programl,i = true then
15: yl,i ← Fl,i(x

′
1,i, . . . , xk′i,i)

16: end if
17: end for
18: end for
19: for i← 1 to m do
20: for l← 1 to qi do
21: x′k ← 0, where Fl,i(x

′
1,i, . . . , x

′
ki,i

) consumes x′k
22: end for
23: end for
24: for i← 1 to m do
25: for l← 1 to qi do
26: for k ← 1 to ni do
27: if apply programl,i = true then
28: x′k ← x′k + yl,i · cl,k∑ni

g=1 cl,g
, where (cl,k|x′k) is a pair (constant, variable)

in the repartition protocol of program Prl,i ∧ cl,k 6= 0
29: end if
30: end for
31: end for
32: end for
33: for i← 1 to m do
34: for j ← 1 to ki do
35: xj,i(t+ 1)← x′j,i
36: end for
37: end for
38: end for

3.4. A GPU simulator for Enzymatic Numerical P systems 67

Figure 3.3: Production function expression (x1,2 + 7) + (x1,4 − 3)

is described. Figure 3.3 depicts an example of a production function
expression.

The aim of the simulator is to capture the semantics of ENPS models,
performing operations in parallel whenever possible. What follows is a hands–
on description of the simulator, regarding both the data structures used and
the execution of a simulation.

3.4.1 Data structures in the simulator

As it is the norm in GPU computing [38], the data representing the model to
simulate is stored by means of arrays, which are:

V (Variables): an array of real numbers of dimension n, where n ≥ 1 is the
total number of variables in the system. Each element Vi, 1 ≤ i ≤ n,
represents a variable in the system.

PNT (Production Node Types): an array of characters of dimension o,
where o ≥ 1 is the total number of constants, variables and operators
in all production functions in the system. Each element PNTj, 1 ≤
j ≤ o, can encode one of the following constant values: CONSTANT,
VARIABLE or any of those: +, -, *, / and ˆ.

PNV (Production Node Values): an array of real numbers of dimension
o. Each element PNVj, 1 ≤ j ≤ o, can encode one of the following,
depending on the value of PNVj:

• If PNTj = CONSTANT , then PNVj encodes a real constant.

Chapter 3. Enzymatic Numerical P systems 68

• If PNTj = V ARIABLE, then PNVj ≤ n represents a variable in
array variables.

Otherwise, PNVj has no particular meaning.

PNLO (Production Node Left Operands): an array of integer numbers
of dimension o. If PNTj is CONSTANT or VARIABLE, then PNLOj,
1 ≤ j ≤ o, has no meaning. Otherwise, PNLOj addresses the left
operand of the operation represented by index j.

PNRO (Production Node Right Operands): an array of integer num-
bers of dimension o. If PNTj is CONSTANT or VARIABLE, then
PNROj, 1 ≤ j ≤ o, has no meaning. Otherwise, PNROj addresses the
right operand of the operation represented by index j.

RPV (Repartition Protocol Variables): a matrix of integer numbers of
dimension s × q, where s ≥ 1 is the total number of programs in the
system and q ≥ 1 is maximum number of pairs (constant, variable) in
all repartition protocols in the system. Each element RPVl,k ≤ n, 1 ≤
l ≤ s, 1 ≤ k ≤ q, represents a variable in the system. If the repartition
protocol of Program l has fewer than q pairs, then RPVl,k = −1.

RPC (Repartition Protocol Constants): a matrix of integer numbers of
dimension s× q. Each element RPCl,k, 1 ≤ l ≤ s, 1 ≤ k ≤ q, represents
a repartition constant. Initially, each value in RPCl,k is an integer, but
it can store real numbers. If the repartition protocol of Program l has
fewer than q pairs, then RPCl,k = 0.

E (Enzymes): an array of integer numbers of dimension s. Each element
El, 1 ≤ l ≤ s, represents the enzyme from Program l. If Fl is of the
form (Fl(x1,u, . . . , xku,u), cl,1|v1 + . . .+cl,nu|vnu), where u is the membrane
associated with the production function from Program l, then el = −1.

In addition to the structures used to represent the system, other arrays are
used as well to store temporary data necessary for simulations. These are:

PFR (Production Function Results): an array of real numbers of dimen-
sion s which stores the results of the calculations of the computed pro-
duction functions.

AP (Applicable Program): an array of characters of dimension s which
stores the markers to set if programs are applied on the current step of
computation. These markers can be Active (true) or Inactive (false).

3.4. A GPU simulator for Enzymatic Numerical P systems 69

3.4.2 Execution of a simulation step

As described in the former subsections, the execution of a simulation step
consists of the checking and application of programs for a predefined number
of steps. This number of steps, as well as the model to simulate, are specified
as inputs to the simulator. In the case that the model simulated defines a
number of steps, then this number prevails over the one given as input. This
simulation algorithm is described in Algorithm 3.4.1.

In order to simulate ENPS models in parallel, the same algorithm is launched
on different threads. In CUDA programs, threads are arranged in blocks. In
these algorithms the number of threads to launch is explicitly indicated by the
programmer as a parameter, but not the number of blocks. The reason is that
different block sizes (i.e. number of threads per block) might yield different
performance results among different graphic cards, so the block size for each
algorithm call is omitted. Moreover, unlike blocks, the concept of thread is
ubiquitous in parallel computing, so by omitting threads the algorithm can be
directly implemented on different parallel platforms such as MPI clusters [161],
in which threads do not necessarily need to be bundled in blocks.

Algorithm 3.4.1 Algorithm for parallel simulation of ENPS models
Input:

• T : an integer number greater or equal to 1 indicating the iterations of the simulation.

• Data structures indicated in Subsection 3.4.1.

1: s← total number of programs in all membranes
2: q ← number of pairs (variable, constant) in all repartition protocols
3: Normalize repartition protocol constants on s× k threads (see Algorithm 3.4.2)
4: for t← 0 to T do
5: Check program applicability on s threads (see Algorithm 3.4.3)
6: Calculate production functions of applicable programs on s threads

(see Algorithm 3.4.5)
7: Set to 0 the variables consumed by applicable programs on s threads

(see Algorithm 3.4.7)
8: Distribute the results of production functions of applicable programs on q threads

(see Algorithm 3.4.8)
9: end for

3.4.2.1 Repartition protocol normalization

The first stage of the implemented algorithm is known as repartition protocol
normalization. This stage normalizes the repartition protocol constants of each

Chapter 3. Enzymatic Numerical P systems 70

repartition protocol, so later the results of production functions are easier to
distribute. Program checking launches s threads, where s is the total number
of programs of the simulated model. Each thread l, 1 ≤ l ≤ s, runs Algorithm
3.4.2.

Algorithm 3.4.2 Repartition protocol normalization
Input:

• RPC: data structure from subsection 3.4.1.

• l, k: two integer numbers 1 ≤ l ≤ s, 1 ≤ k ≤ q, being s ≥ 1 the total number of
programs in all membranes and i the membrane where the program of the repartition
protocol is applied. l and k identify the thread in which the algorithm is applied.

1: RPCl,k ← RPCl,k∑q
g=1 RPCl,g

3.4.2.2 Program checking

The second stage is known as program checking, and checks whose programs
are applicable by comparing the program’s enzyme–like variable (if existent)
with the minimum of all variables consumed by its production function. If the
program is not of enzymatic form, then it is applied in every step. Like the
repartition protocol normalization, the program checking launches s threads,
where s is the total number of programs of the simulated model. Each thread
l, 1 ≤ l ≤ s performs Algorithm 3.4.3.

Algorithm 3.4.3 Program checking
Input:

• V , PNT , PNV , PNLO, PNRO, e and AP : see Subsection 3.4.1.

• l: an integer number 1 ≤ l ≤ s, being s ≥ 1 the total number of programs in all
membranes. l identifies the thread in which the algorithm is applied.

1: if El = −1 then
2: AP ← true
3: else
4: mv ← returned value by call to Algorithm Calculate minimum value

(see Algorithm 3.4.4) with input parameters V , PNT , PNV , PNLO, PNRO
and l

5: evar ← el
6: eval← variableev
7: AP ← eval > mv
8: end if

3.4. A GPU simulator for Enzymatic Numerical P systems 71

Algorithm 3.4.4 Calculate minimum value
Input:

• V , PNT , PNV , PNLO and PNRO: see Subsection 3.4.1.

• l: an integer number 1 ≤ l ≤ s, being s ≥ 1 the total number of programs in all
membranes. l identifies the thread in which the algorithm is applied.

1: if PNTl = V ARIABLE then
2: vindex← PNVl
3: vval← Vvindex
4: return vval
5: else
6: if PNTl = CONSTANT then
7: return ∞
8: else
9: lnode← PNLOl

10: rnode← PNROl

11: min lhs← returned value by call to Algorithm Calculate minimum value with
input parameters V , PNT , PNV , PNLO, PNRO and lnode

12: min rhs← returned value by call to Algorithm Calculate minimum value with
input parameters V , PNT , PNV , PNLO, PNRO and rnode

return min(min lhs,min rhs)
13: end if
14: end if

Chapter 3. Enzymatic Numerical P systems 72

3.4.2.3 Production function computation

The third stage is known as production function computation, and computes
the production function of applicable programs by recursively traversing them
as a binary tree. Production function computation launches s threads as well,
where s is the total number of programs of the simulated model. Each thread
l, 1 ≤ l ≤ s, performs Algorithm 3.4.5.

Algorithm 3.4.5 Production function computation
Input:

• V , PNT , PNV , PNLO, PNRO, AP and PFR: see Subsection 3.4.1.

• l: an integer number 1 ≤ l ≤ s, , being s ≥ 1 the total number of programs in all
membranes the total number of programs in all membrane. l identifies the thread in
which the algorithm is applied.

1: if APl = true then
2: if PNTl = V ARIABLE then
3: vindex← pnvl
4: vval← variablesvindex
5: PFRl ← variable value . Set the production function result according to its

type
6: else
7: if PNTl = CONSTANT then
8: PFRl ← production node valuesl
9: else

10: lnode← PNLOl

11: rnode← PNROl

12: lhsr ← returned value from call to Algorithm Production function
computation with input parameters V , PNT , PNV , PNLO, PNRO, AP ,
PFR and lnode

13: rhsr ← returned value from call to Algorithm Production function
computation with input parameters V , PNT , PNV , PNLO, PNRO, AP ,
PFR and rnode

14: return returned value by call to Algorithm Apply operation
(see Algorithm 3.4.6) with input parameters lhsr, rhsr and PNTl

15: end if
16: end if
17: end if

3.4.2.4 Variable clearing

The fourth stage is known as variable clearing, and sets to 0 all variables con-
sumed by the production function of applicable programs. Like the production
function computation, the variable clearing traverses production functions of

3.4. A GPU simulator for Enzymatic Numerical P systems 73

Algorithm 3.4.6 Apply operation
Input:

• lhs and rhs: two real values.

• ot (operation type): one of the following: ’+’, ’-’, ’*’, ’/’, ’pow’.

1: if ot =’+’ then return lhs+ rhs
2: else if ot =’-’ then return lhs− rhs
3: else if ot =’*’ then return lhs · rhs
4: else if ot =’/’ then return lhs/rhs
5: else if ot =’pow’ then return lhsrhs

6: end if

applicable programs, clearing visited variables. Variable clearing launches s
threads as well, where s is the total number of programs of the simulated
model. Each thread l, 1 ≤ l ≤ s runs Algorithm 3.4.7.

Algorithm 3.4.7 Variable clearing
Input:

• V , PNT , PNV , PNLO, PNRO and AP : see Subsection 3.4.1.

• l: an integer number 1 ≤ l ≤ s, being s ≥ 1 the total number of programs in all
membranes. l identifies the thread in which the algorithm is applied.

• check : a logic value (true or false) which indicates if it is necessary to check program
applications.

1: if check = false ∨ apl = true then
2: if PNTl = V ARIABLE then
3: vindex← pnvl
4: Vvindex ← 0
5: else if PNTl 6= CONSTANT then
6: lnode← PNLOl

7: rnode← PNROl

8: Call to algorithm Clear variables with input parameters V , PNT , PNV , PNLO,
PNRO, AP , lnode and false

9: Call to algorithm Clear variables with input parameters V , PNT , PNV , PNLO,
PNRO, AP , rnode and false

10: end if
11: end if

3.4.2.5 Results distribution

The last stage of the implemented algorithm is known as results distribution,
and distributes the results of the production function of applicable programs.

Chapter 3. Enzymatic Numerical P systems 74

This is arguably the less computationally consuming stage, as it has no re-
cursive calls nor loops. Variable clearing launches s × q threads, where s is
the total number of programs of the simulated model and q is the maximum
number of pairs (variable, constant) in all repartition protocols in the system.
Each thread (l, k), 1 ≤ l ≤ s, 1 ≤ k ≤ q, runs Algorithm 3.4.8.

Algorithm 3.4.8 Results distribution
Input:

• V , RPV , RPC, PFR and AP : see Subsection 3.4.1.

• l, k: two integer numbers 1 ≤ l ≤ s, 1 ≤ k ≤ ni, being s ≥ 1 the total number of
programs in all membranes and i the membrane where the program of the repartition
protocol is applied. l and k identify the thread in which the protocol is applied.

1: if APl = true then
2: vindex← RPVl,k
3: Vvindex ← RPCl,k · PFRl

4: end if

3.5 Performance analysis of the GPU simula-

tor

What follows is a performance analysis of the GPU simulator for ENPS models
described in this chapter. In addition, set–up operations and considerations
about the simulations and simulators used for a fair comparison are discussed.
Finally, acceleration factors and elapsed times are displayed, so as to give a
graphical overview on the acceleration gained in each case.

3.5.1 Parallel simulator workflow

In order to ease the parallel simulation of ENPS models, the simulator takes
an input file describing an ENPS in XML format. The XML format used is the
one accepted by SNUPS [157], a previously existent sequential simulator for
ENPSs. This way, the reusability of the models is improved, as the same file
can be used with independence to the selected simulator, be it SNUPS and on
the GPU–based one introduced, without any change in the XML file format.

In order to simulate an ENPS, one needs to encode it on the same XML format
as it is required on SNUPS. Once this P system is encoded, the resulting file can
be parsed by the GPU simulator. After the parsing process, the simulation is

3.5. Performance analysis of the GPU simulator 75

Figure 3.4: Workflow of the simulators

performed. Eventually, the information is displayed on the command prompt.
Figure 3.4 represents this process.

3.5.2 Analysis settings

In [73], some problems about an extensive analysis of the simulator are dis-
cussed. One of them has to do with the fact that the existing ENPS models
have too few programs for parallel simulations to pay off. The reason is that
the settings operations computed at the beginning of parallel simulations take
a long time, in comparison to the whole sequential computation runtime. In
order to overcome this difficulty, some ENPS reference models were replicated
several times, thus obtaining models with an on–demand number of programs.
The process of replicating an ENPS model Π consists on creating new ENPS
models with the same structure, variables and programs than Π, but with ini-
tial variable values and repartition constants taking random values. Finally,
all replicated models are enclosed in a new membrane with no variables nor
programs. Algorithm 3.5.1 explains this process. Henceforth, these reference
models (one per case study) will be addressed as seeds, so the more times
the seed models are replicated, the more programs will compose the resulting
models. When the number of replications given as input is large enough, the
GPU simulation does pay off in terms of execution time.

This replication process has been performed by using Java [6]. For the pur-
poses of parsing the seed model and writing the resulting models, an extension
of P–Lingua [71] has been developed. Specifically, a new input and a new out-
put format has been included into the P–Lingua framework. The input format
delegates the parsing process to SNUPS [157]. The output format generates
an XML description of the model. A sample of this XML code is depicted on
Figure 3.5. This description is encoded on the common format accepted by all
ENPS simulators (Java, C++ and CUDA/C++). This extension proves the
versatility of P–Lingua as a useful, assisting tool for a wide variety of Mem-
brane Computing–related tasks; in this case, for analysing the performance of

Chapter 3. Enzymatic Numerical P systems 76

Algorithm 3.5.1 Algorithm for model replication of ENPS models
Input:

• N : an integer N > 1 representing the number of copies to perform.

• Π = (H,µ, (V ar1, P r1, V ar1(0)) . . . (V arm, P rm, V arm(0))): an ENPS (seed) of de-
gree m ≥ 0 to replicate.

1: Φ← ∅
2: for o = 1 to N do
3: Πo = (Ho, µo, (V ar,o, P r1,o, V ar1,o(0)) . . . (V arm,o, P rm,o, V arm,o(0))),, where:

• ∀o (1 ≤ o ≤ N), Ho = {{1, o} . . . {m, o}}
• ∀i, o (1 ≤ i ≤ m, 1 ≤ o ≤ N), V ari,o = {x1,i,o . . . xki,i,o}
• ∀i, o (1 ≤ i ≤ m, 1 ≤ o ≤ N), Ei,o ⊆ V ari,o is the set of all enzyme–like variables

associated with programs in Pri,o.

• ∀i, o (1 ≤ i ≤ m, 1 ≤ o ≤ N), P ri,o = Pr1,i,o . . . P rqi,i,o, where:

– Prl,i,o = (Fl,i,o(x1,i,o, . . . , xki,i,o)→ cl,1,o|vo,1 + . . .+ cl,ni,o|vo,ni
) if Prl,i is in

non–enzymatic form.

– Prl,i,o = (Fl,i,o(x1,i,o, . . . , xki,i,o)(el,i,o →)
cl,1,o|vo,1 + . . .+ cl,ni,o|vo,ni) if Prl,i is in enzymatic form.

• ∀i, o 1 ≤ i ≤ m, 1 ≤ o ≤ N,V ari,o(0) = {λ1,i,o . . . λki,i,o}
4: Φ← Φ ∪ {Πo}
5: for o = 1 to N do
6: for i = 1 to m do
7: for j = 1 to ki do
8: λj,i,o ← a random value rand ∈ {1, . . . , 10}
9: end for

10: for l = 1 to qi do
11: for j = 1 to ni do
12: cl,j,o ← a random value rand ∈ {1, . . . , 10}
13: end for
14: for each ckl,i,h,o ∈ Fl,i,o do
15: ckl,i,h,o ← a random value rand ∈ {1, . . . , 10}
16: end for
17: end for
18: end for
19: end for
20: end for
21: return Π′ = (H ′, µ′, (V ar1,1, E1,1, P r1,1, V ar1,1(0)) . . . (V arm,N , Em,NPrm,N , V arm,N (0)),

(V arskin, Eskin, P rskin, V ar(0)skin)), where:

• H ′ = ∪No=1Ho ∪ {skin}
• µ′ = [µ1, . . . , µN]skin

• V arskin = ∅
• Eskin = ∅
• Prskin = ∅
• V ar(0)skin = ∅

3.5. Performance analysis of the GPU simulator 77

Figure 3.5: A sample of XML code to define ENPS systems

a GPU simulator.

3.5.3 Performance analysis

All parallel parts of the algorithm are executed with a degree of parallelism at
least equal to the number of programs in the simulated model. The degree of
parallelism can be even greater when the repartition protocol stage is applied.
Hence, a theoretical acceleration of at least the number of programs in the
model could be reached, if compared to the runtime of sequential simulators.
What follows is an overview of some of the performance analysis conducted to
assess the acceleration obtained by the GPU simulator.

Chapter 3. Enzymatic Numerical P systems 78

As a contribution of this work, two new simulators for ENPS models have
been developed on CUDA/C++ and C++, respectively. These simulators will
be referred as ENPSCUDA and ENPSC++. Simulation times were compared
from ENPSCUDA, ENPSC++ and SNUPS [157]. The purpose in using a
C++ simulator is to measure the performance gain against a simulator de-
veloped in a low–level programming language. Then, the resulting execution
times were compared with the ones obtained by ENPSCUDA, in order to get
an approximate speed-up.

On the other hand, SNUPS is an ENPS simulator developed in Java language.
Java programs are executed over a middleware between the actual device and
the software, known as Java Virtual Machine (JVM) [6]. JVM ensures that
Java programs can be executed on any device in which JVM is installed, thus
guaranteeing complete compatibility among different hardware architectures.
However, this virtual machine approach comes at a cost. Firstly, the program-
mer loses control of the way in which the memory is managed. For instance,
memory objects cannot be freed directly. Instead, an execution thread named
garbage collector checks which objects are not referenced anymore in the pro-
gram and frees the allocated memory. Secondly, the translations from JVM
instructions to assembly instructions are performed in runtime. Thus, an over-
head in the execution time is produced as a result of these translations. All
in all, the programmer cannot control directly the execution flow of Java pro-
grams. Therefore, in cases where efficiency is required, Java is not, in most
cases, in the same league as low–level languages such as C++.

3.5.3.1 A C++ sequential simulator

In order to carry out an analysis of the performance and runtimes obtained
from ENPSCUDA, ENPSC++ has been developed. The aim of this simulator
is to compare simulation times obtained from a sequential, low–level simulator
to those from the GPU simulator. Nevertheless, it can also be used for the
efficient simulation of Enzymatic Numerical P Systems in those architectures
in which no NVIDIA card is available. Besides, this simulator takes as input
a file which describes an ENPS in the same format that the ENPSCUDA and
SNUPS. Therefore, the same files can be used for all three simulators, hence
sparing time on translations between formats.

For a fair comparison between execution times, no memory allocation is per-
formed after the setup stage. This feature is compulsory on ENPSCUDA,
because all computation steps are implemented by means of kernel calls and
all memory in the GPU can only be allocated from the host code [10]. The

3.5. Performance analysis of the GPU simulator 79

importance of this feature rises from the fact that memory allocation in C++
is a time–consuming instruction. Therefore, if there were a significant num-
ber of memory allocations on each computational step the performance of the
C++ sequential simulator would be severely hindered. This would result on
an even larger speed–up factor due to a bad design of the sequential simulator,
instead of a good design of its GPU counterpart.

3.5.3.2 Dummy model

The first seed model is a dummy one with no particular purpose apart from this
performance analysis. This model is an ENPS which consist of 2 membranes:
Π1 = (H,µ, (V ar1, E1, P r1,1, V ar1(0)), (V ar2, E2, P r1,2, V ar2(0))), where:

• H = {1, 2}

• µ = [[]2]1

• V ar1 = {x1,1, x2,1, x3,1}

• E1 = {x3,1}

• Pr1,1 = {3 · x1,1(x3,1 →)2|x1,1 + 1|x2,1}

• V ar1(0) = {1, 2, 3}

• V ar2 = {x1,2}

• E2 = ∅

• Pr1,2 = {2 · x1,2 → 2|x1,2}

• V ar2(0) = {1}

3.5.3.3 Function approximation

On a second case study, the seed model performs a function approximation.
Mathematical functions like trigonometric functions, exponential functions,
etc. are often used in control algorithms in robotics. Therefore, in the following
example an ENPS model which computes ex is presented. The proposed GPU
simulator also allows the computation of rational production functions as well
as polynomials, which is an important advantage for the modelling process of
complex membrane systems. In order to approximate ex, the following power
series is used:

Chapter 3. Enzymatic Numerical P systems 80

ex ≈
∑
n≥0

xn

n!
(3.1)

The partial sum of this power series is the next sequence:

sn =
n∑
k≥0

xk

k!
(3.2)

Sequence sn can be written in a recurrent form, as follows:

sn = sn−1 + an (3.3)

where an is:

an =
xn

n!
(3.4)

Sequence an can also be written in a recurrent form, by computing an
an−1

as
follows:

an =
x

n
· an−1 (3.5)

Formula 3.5 can be implemented as a rational production function, as shown
in Figure 3.6 (rule Pr1,2 right).

A Dummy ENPS
An ENPS which approximates ex

Figure 3.6: Dummy ENPS (left) and ENPS for function approximation (right)

As it is shown in Figure 3.6, two membranes were used in order to approxi-
mate the exponential function ex. The skin membrane (membrane 1) contains

3.5. Performance analysis of the GPU simulator 81

a non enzyme–like variable res which represents the result of the computation
and an enzyme–like variable, EH, which is a stop enzyme. Stop enzymes are
used in order to test the halting condition of the computation. Therefore, the
number of computational steps is different for different arguments of the func-
tion. The computation finishes when the value of the term added to the sum
is lower than a given value, err.

The child membrane (membrane 2) is responsible for the approximation. It
contains the following variables:

• a stores the next term of the an sequence and has an initial value equal
to 1.

• n is a counter variable and has the initial value equal to 1.

• x represents the argument of the function ex.

• E is an enzyme–like variable which controls the program flow. It allows
the execution of the valid production functions and it is consumed when
the computation finishes; the initial value of the enzyme is given as input
max; max must be a value grater than the maximum possible value of
x.

• Er is an enzyme–like variable used in the halting condition.

Er receives an input value, err = 10−10; when the term of the series is lower
than err, the computation stops.

Membrane 2 has five rules responsible for the following tasks:

• Pr1,2 computes the next term in the series; if the value of E is greater
than a, x or n, the rule is active.

• Pr2,2 produces the incrementation of n.

• Pr3,2 accumulates the terms in variable res, which will be the final result.

• Pr4,2 copies the value of x, which was consumed and must be stored.

• Pr5,2 causes the computation to halt when a < Er .

The value of a is decreasing because the sequence an is convergent and de-
creases as n grows. When Pr5,2 is activated, the stop enzyme EH receives a
positive value and E is consumed, so the other production functions become
inactive. A condition outside the membrane system tests if the stop enzyme,

Chapter 3. Enzymatic Numerical P systems 82

EH, is greater than 0 and if that happens, the simulation halts.

It is important to highlight that the model obtained from replicating this ex-
ponential approximation model might not approximate ex. Nevertheless, the
purpose of this work is the development of a GPU simulator for ENPS mod-
els, not the modelling of numerical functions within that framework, and the
replication process has been provided merely to obtain ENPS models with a
sufficiently large number of membranes.

3.5.4 Acceleration analysis

The graphic card used is a domestic, commercial one. Thus, it is not designed
for intensive, parallel computations. In contrast, Tesla models contain more
RAM memory and a larger number of processors, as they are specifically engi-
neered for intensive High Performance Computing [10]. For instance, NVIDIA
Tesla C1060 graphic cards contain 240 streaming multiprocessors and 4 GB
RAM memory [10]. Thus, the speed–up factors obtained on one of these cards
is expected to be larger than in the ones obtained in this study.

The models have been simulated on an NVIDIA GeForce GTX 460M card
whose technical characteristics are described in Chapter 6, Section 2.5. This
model supports the new Fermi technology. Fermi cards allow programmers
to make use of new features impossible (or at least very hard) for previous
models. Some examples of these features are the computation of recursive
functions and atomic operations with float–type numbers [10]. The impact of
these features on the simulator code is rather important. Thus, by employ-
ing these features, the development process is eased and the simulator code
is much clearer. For instance, in order to calculate production functions in
programs, recursion comes as a straightforward approach. That is because
these general mathematical expressions can be easily represented as tree–like
structures, which are usually traversed by using recursive algorithms. Another
important brand–new feature on Fermi technology is the use of atomic oper-
ations on floating–point numbers. In order to add up the contributions from
repartition protocols, these instructions have been used, as the values of con-
tributed variables can be modified by different CUDA threads. However, the
use of these features comes at a cost. Specifically, ENPSCUDA can only be
run on Fermi NVIDIA cards, as previous models do not support these features.
An improvement on the code in order to add compatibility for previous graphic
cards is thus left as a future work.

For each seed, a total of 36 models have been simulated. The number of pro-
grams range from 1 to 120000. Each model has been run for 100 steps with

3.5. Performance analysis of the GPU simulator 83

a block size of 256 threads per block for each kernel, as it was the one which
gave the best results on the device of choice. Figure 3.7 displays the execution
times and acceleration factors obtained when simulating the dummy and func-
tion approximation models. The reason to ignore SNUPS in some charts is to
display cleaner statistics on the execution times and speed–up factors obtained
from the most efficient studied simulators.

By examining the dummy model charts, one can observe that there is a
large difference between the execution times from SNUPS and ENPSC++
ENPSCUDA. Thus, a maximum speed–up factor of about 90x is reached on
the comparison between ENPSCUDA and SNUPS, taking place in the interval
between 4000 and 8000 programs per model. However, the maximum speed–
up factor obtained between ENPSCUDA and ENPSC++ is only 6.5x. The
maximum speed–up factor on the simulation of the ex model is about 49x on
the SNUPS vs ENPSCUDA comparison and about 10x on the ENPSC++ vs
ENPSCUDA comparison.

(1): SNUPS, ENPSC++ and ENPSCUDA (2): ENPSC++ and ENPSCUDA

(3): SNUPS, ENPSC++ and ENPSCUDA (4): ENPSC++ and ENPSCUDA

Figure 3.7: Execution times and speed–up factors for dummy model

Chapter 3. Enzymatic Numerical P systems 84

(5): SNUPS, ENPSC++ and ENPSCUDA (6): ENPSC++ and ENPSCUDA

(7): SNUPS, ENPSC++ and ENPSCUDA (8): ENPSC++ and ENPSCUDA

Figure 3.8: Execution times and speed–up factors for function approximation model

Chapter 4

Logic Network Dynamic P
systems

Since its inception, Membrane Computing has been an useful modelling frame-
work for biochemical phenomena. As a natural evolution of this research field,
genetic networks have also been modelled by means of P systems. In this chap-
ter, a Membrane Computing model for a specific type of gene networks known
as Logic Networks, is discussed. This model is designed within the framework
of Population Dynamics P (PDP) systems, which has been successfully applied
on the modelling of ecosystems and is also introduced in this chapter. The aim
of this model is to reproduce the dynamics of Logic Networks by emulating
the behaviour of the improved Logic Analysis of Phylogenetic Profiles (LAPP)
method, which is an algorithm specifically designed to capture the dynamics
of these networks.

This chapter is structured as follows. Section 4.1 overviews some Membrane
Computing models on gene regulatory networks. Section 4.2 formalizes the
concept of logic networks. Section 4.3 is devoted to present Population Dy-
namics P systems and their application as a modelling framework for Logic
Networks. Finally, Section 4.4 describes a Membrane Computing model based
on the improved LAPP method for the simulation of Logic Network dynamics.

4.1 Some antecedents of Gene Network mod-

els in Membrane Computing

Since its introduction by Gheorghe Păun [190], Membrane Computing has been
applied as a modelling framework for biological phenomena at a microscopical

85

Chapter 4. Logic Network Dynamic P systems 86

level. One of its main features is its capability to model different compartments
by means of membranes interconnected by a hierarchical structure. The idea
is that reactions may differ according to the compartment in which they occur.
Some traditional approaches such as Ordinary Differential Equations (ODEs)
already enabled this feature. For instance, Kawai [116] proposed a multidi-
mensional stochastic ODE system. This system describes the evolution of the
concentration of chemical drugs inside biological tissues such as liver, guts and
muscles. This concentration varies because of the decay of the drug molecules,
as well as the inflow of the drug substance among the tissues. In this system,
Kawai models each one of the different tissues as compartments. The con-
centration of the modelled drug inside each compartment is represented by a
variable, which is modified on the stochastic evolution of the ODE system.

Although ODEs are a well–known framework for biomolecular systems, they
require some assumptions on the system to be modelled. Specifically, they
require the differential in the concentration of substances within each com-
partment to be constant. In addition, their accuracy fails when the number of
molecules taken into account is too small or the reactions are not fast. This is
due to their continuous nature, that is, the number of molecules in the system
is approximated to a real number. This approximation works well when the
number of molecules is large (a sufficiently large number of molecules is to be
at least thousands of them), but it does not appropriately reflect reality on
scenarios which consider only a few molecules. A different approach from the
field of Membrane Computing can help sort out these constraints. In contrast
to ODEs, P systems do not need to make these assumptions. That is, they
faithfully reproduce scenarios with few molecules and non-constant concentra-
tion differentials. There also exists another advantage of P systems over ODEs
known as modularity of the system. A system is considered to be modular if a
small change in the behaviour of the modelled system, usually entails a rela-
tively small change in the model, whilst a slight modification in the behaviour
of ODEs usually requires a complete restructuration [41, 199]. Cheruku et al.
demonstrated this property by simulating FAS–induced apoptosis by using P
systems [41].

The Gillespie algorithm is a well–known Monte Carlo algorithm for the stochas-
tic simulation of molecular interactions taking place inside a compartment, a
well–mixed and fixed volume. This algorithm takes into account that all re-
actions do not occur at the same time. That is, there is not a global clock to
synchronize the reactions of every substance. In contrast, substances react in a
stochastic manner. Specifically, reaction probabilities are calculated as a func-
tion over their concentrations. This well–tested algorithm is the core engine

4.2. Logic Networks 87

of Infobiotics [23], a software tool for systems biology within the framework
of Membrane Computing. This software simulates biochemical processes by
mapping them into P systems. Simulations are carried out by implementing
a multicompartimental version of the Gillespie algorithm. These biochemical
systems range from simple reaction systems to more complicated and struc-
tured ones, such as Gene Regulatory Networks (GRNs).

Informally speaking, GRNs are directed graphs in which vertices and edges
represent genes and interactions, respectively. The dynamics of these net-
works are heavily influenced by the fluctuations in the concentrations of the
biochemical substances interacting with the genes, such as proteins. These
fluctuations have been especially studied within the field of Membrane Com-
puting, in order to understand the evolution of GRNs. For instance, Hinze et
al. [102] proposed a P system model for GRNs. In this model, the timing
of biochemical reactions is modelled by Hill kinetics, which formulate the in-
tensity of gene interactions by means of continuous, sigmoid-shaped threshold
functions. These functions quantify the production rate of gene products. By
including Hill kinetics into the field of Membrane Computing, they obtain a
new framework known as Hill P systems. Hill P systems combine the discrete
nature of P system rules and the continuous dynamics of Hill kinetics functions
to regulate the application of these rules.

The idea of mixing discrete Membrane Computing rules and continuous func-
tions to regulate their application is relatively common. For instance, Profir
et al. [184] proposed another Membrane Computing model of GRNs. Their
model uses the properties of P systems to reflect the discrete aspects of gene
regulation, such as the interaction between DNA and other biomolecules, while
describing the internal state of each cell in a continuous form. The model does
not describe rules for direct interaction between genes, but between DNA and
another biomolecules. This way, gene interaction is described in two steps:
an interaction between the first gene and a biomolecule, and an interaction
between that biomolecule and the second gene. Gene interactions are synchro-
nized by using Linear Temporal Logic constructs, giving place to P transduc-
ers [45].

4.2 Logic Networks

In this section, the concept of Logic Network is discussed. Informally speaking,
a Logic Network is a directed graph in which nodes are influenced by other
nodes either directly or by boolean operations over them. In this section, a

Chapter 4. Logic Network Dynamic P systems 88

formalization of Logic Networks, its dynamics and a method for constructing
logic networks out of raw data are presented, so as to introduce the model which
will be later conceptualised under the paradigm of Membrane Computing.

4.2.1 Formalization of Logic Networks

In this chapter, Gene Regulatory Networks are considered as boolean networks
in which, at any instant, genes can be either active or inactive. What follows is
a formal definition of a Logic Network (LN), including its syntax and semantics.

4.2.1.1 Syntax of Logic Networks

An alphabet is a non–empty set. Given a finite alphabet Γ, we denote Γ̄ =
{x̄ : x ∈ Γ} and ¯̄x = x, x ∈ Γ ∪ Γ̄, where Γ ∩ Γ̄ = ∅.
Definition 4.1. A gene g over a finite alphabet Γ is an element in Γ. The
behaviour of g is a mapping ϕg from N into {0, 1}. The state of g at any
instant t ∈ N is ϕg(t). If ϕg(t) = 1 (respectively, ϕg(t) = 0) it is said that
gene g is active (respectively, inactive) at instant t.

Given a finite alphabet Γ and a gene g over Γ the application ϕḡ is defined
as follows: ϕḡ = 1 − ϕg, that is, for each t ∈ N, ϕḡ(t) = 1 − ϕg(t). It is
important to highlight that if g is a gene over Γ, then ḡ is not a gene over Γ.

For each alphabet Γ the mapping lΓ from Γ∪ Γ̄ into {0, 1} is defined as follows:
lΓ(x) = 1, if x ∈ Γ, and lΓ(x) = 0, otherwise. That is to say, lΓ(x) = 1 means
that x is a gene over Γ.

Definition 4.2. A Logic Network of size n ≥ 1 over an alphabet Γ such that
|Γ| ≥ n, is a tuple (Γ, f1, f2) where:

1. |Γ| = n (Γ is the set of genes of the network).

2. f1 = (f j1 , . . . , f
α1
1) such that for each j, 1 ≤ j ≤ α1, f

j
1 = (gj,11 , gj,21 , ωj1, op

j
1),

where:

• gj,11 , gj,21 ∈ Γ.

• ωj1 is a real number in [0, 1] which represents the certainty of unary
interaction f j1 (see [229], noting that ωj1 is equivalent to U(B|A),
with B = gj,21 and A = gj,11).

• opj1 is a mapping from N into {−1, 0, 1} which can be of one of the
following types: spj, sij, wpj, wij. These functions are defined as
follows: for each t ∈ N:

4.2. Logic Networks 89

– spj(t) = ϕgj,11
(t)− ϕḡj,11 (t) (strong promotion)

– sij(t) = −spj1(t) (strong inhibition)

– wpj(t) = ϕgj,11
(t) (weak promotion)

– wij(t) = −wpj1(t) (weak inhibition)

These operations provide the contribution from f j1 to gene gj,21 in
conjunction with ωj1 in order to know its state at instant t+ 1.

3. f2 = (f j2 , . . . , f
α2
2) such that for each j, 1 ≤ j ≤ α2, f

j
2 = (gj,12 , gj,22 , gj,32 , ωj2,

opj2), where:

• gj,12 , gj,22 , gj,32 ∈ Γ ∪ Γ̄.

• ωj2 is a real number in [0, 1] which represents the certainty of binary
interaction f j2 (see [229], noting that ωj2 is equivalent to U(C|f(A,B)),
with C = gj,32 , A = gj,12 , B = gj,22 and f = f j2).

• opj2 is a mapping from N into {−1, 1} which can be of one of the
following types: andj, orj, xorj. These functions are defined as fol-
lows: for each t ∈ N,

andj(t) = [ϕgj,1
2

(t) · ϕgj,2
2

(t)− ϕgj,1
2

(t) · ϕgj,2
2

(t)] · (2 · lΣ(gj,32)− 1)

orj(t) = [ϕgj,1
2

(t) + ϕgj,2
2

(t)− ϕgj,1
2

(t) · ϕgj,2
2

(t)−

ϕgj,1
2

(t) + ϕgj,2
2

(t)− ϕgj,1
2

(t) · ϕgj,2
2

(t)] · (2 · lΣ(gj,32)− 1)

xorj(t) = [(1− ϕgj,1
2

(t)) · ϕgj,2
2

(t) + (1− ϕgj,2
2

(t)) · ϕgj,1
2

(t)

−(1− ϕgj,1
2

(t)) · ϕgj,2
2

(t) + (1− ϕgj,2
2

(t)) · ϕgj,1
2

(t)] · (2 · lΣ(gj,32)− 1)

where b̄ denotes 1− b, for each b ∈ {0, 1}.

These operations provide the contribution from f j2 to gene gj,32 in conjunc-
tion with ωj2 in order to know its state at instant t + 1. The development of
these formulae is described as follows. Let us start with the andj2(t) operation
over genes Gj,1

2 (t) and Gj,2
2 (t). The idea is that it behaves like a logic and

gate, in which both the inputs and the output can be negated. The contri-
bution to gene gj,32 is positive if Gj,1

2 (t) = 1 ∧ Gj,2
2 (t) = 1 and l(Gj,3

2) = 1, or
Gj,1

2 (t) = 0∨Gj,2
2 (t) = 0 and l(Gj,3

2) = 0, and is negative otherwise. If Gj,1
2 (t) =

1 ∧ Gj,2
2 (t) = 1, then Gj,1

2 (t) · Gj,2
2 (t) = 1 and Gj,1

2 (t) ·Gj,2
2 (t) = 0. Likewise, if

Gj,1
2 (t) = 0 ∨Gj,2

2 (t) = 0, then Gj,1
2 (t) ·Gj,2

2 (t) = 0 and Gj,1
2 (t) ·Gj,2

2 (t) = 1.

Chapter 4. Logic Network Dynamic P systems 90

Therefore, let us suppose that Gj,1
2 (t) = 1 ∧Gj,2

2 (t) = 1. Then:

[Gj,1
2 (t) ·Gj,2

2 (t)−Gj,1
2 (t) ·Gj,2

2 (t)] = 1

[Gj,1
2 (t) ·Gj,2

2 (t)−Gj,1
2 (t) ·Gj,2

2 (t)] =

−1 · [Gj,1
2 (t) ·Gj,2

2 (t)−Gj,1
2 (t) ·Gj,2

2 (t)] = −1

If l(Gj,3
2) = 1, then

[Gj,1
2 (t) ·Gj,2

2 (t)−Gj,1
2 (t) ·Gj,2

2 (t)] · l(Gj,3
2) = 1

1− l(Gj,3
2) = 0

Therefore,

[Gj,1
2 (t) ·Gj,2

2 (t)−Gj,1
2 (t) ·Gj,2

2 (t)] · l(Gj,3
2)

−[Gj,1
2 (t) ·Gj,2

2 (t)−Gj,1
2 (t) ·Gj,2

2 (t)] · (1− l(Gj,3
2)) = 1

However, if l(Gj,3
2) = 0, then

[Gj,1
2 (t) ·Gj,2

2 (t)−Gj,1
2 (t) ·Gj,2

2 (t)] · l(Gj,3
2)

−[Gj,1
2 (t) ·Gj,2

2 (t)−Gj,1
2 (t) ·Gj,2

2 (t)] · (1− l(Gj,3
2)) =

−[Gj,1
2 (t) ·Gj,2

2 (t)−Gj,1
2 (t) ·Gj,2

2 (t)] · (1− l(Gj,3
2)) = −1

Likewise, if Gj,1
2 (t) = 0 ∨Gj,2

2 (t) = 0 and l(Gj,3
2) = 1 then

[Gj,1
2 (t) ·Gj,2

2 (t)−Gj,1
2 (t) ·Gj,2

2 (t)] · l(Gj,3
2)

−[Gj,1
2 (t) ·Gj,2

2 (t)−Gj,1
2 (t) ·Gj,2

2 (t)] · (1− l(Gj,3
2)) = −1

(1 for l(Gj,3
2) = 0). By simplification, we obtain the following expression:

andj2(t) = [Gj,1
2 (t) ·Gj,2

2 (t)−Gj,1
2 (t) ·Gj,2

2 (t)] · l(Gj,3
2)

−[Gj,1
2 (t) ·Gj,2

2 (t)−Gj,1
2 (t) ·Gj,2

2 (t)] · (1− l(Gj,3
2))

= [Gj,1
2 (t) ·Gj,2

2 (t)−Gj,1
2 (t) ·Gj,2

2 (t)] · (2 · l(Gj,3
2)− 1)

The same reasoning is applied to deduce the formulae for operations orj2(t)
and xorj2(t):

4.2. Logic Networks 91

orj2(t) = [Gj,1
2 (t) +Gj,2

2 (t)−Gj,1
2 (t) ·Gj,2

2 (t)−

Gj,1
2 (t) +Gj,2

2 (t)−Gj,1
2 (t) ·Gj,2

2 (t)] · l(Gj,3
2)

−[Gj,1
2 (t) +Gj,2

2 (t)−Gj,1
2 (t) ·Gj,2

2 (t)−

Gj,1
2 (t) +Gj,2

2 (t)−Gj,1
2 (t) ·Gj,2

2 (t)] · (1− l(Gj,3
2))

= [Gj,1
2 (t) +Gj,2

2 (t)−Gj,1
2 (t) ·Gj,2

2 (t)−

Gj,1
2 (t) +Gj,2

2 (t)−Gj,1
2 (t) ·Gj,2

2 (t)] · (2 · l(Gj,3
2)− 1)

xorj2(t) = [(1−Gj,1
2 (t)) ·Gj,2

2 (t) + (1−Gj,2
2 (t)) ·Gj,1

2 (t)−

(1−Gj,1
2 (t)) ·Gj,2

2 (t) + (1−Gj,2
2 (t)) ·Gj,1

2 (t)] · l(Gj,3
2)

−[(1−Gj,1
2 (t)) ·Gj,2

2 (t) + (1−Gj,2
2 (t)) ·Gj,1

2 (t)

−(1−Gj,1
2 (t)) ·Gj,2

2 (t) + (1−Gj,2
2 (t)) ·Gj,1

2 (t)] · (1− l(Gj,3
2))

= [(1−Gj,1
2 (t)) ·Gj,2

2 (t) + (1−Gj,2
2 (t)) ·Gj,1

2 (t)

−(1−Gj,1
2 (t)) ·Gj,2

2 (t) + (1−Gj,2
2 (t)) ·Gj,1

2 (t)] · (2 · l(Gj,3
2)− 1)

Next, operations f j1 and f j2 are informally described in Figures 4.1 and 4.2,
respectively. Let us point out that, in graphic representations of operations
f j1 , only genes in Γ appear. Likewise, the membership of g ∈ Γ (respectively,
g ∈ Γ̄) is translated into the arrow–type operation → (respectively, a). If
gj,32 ∈ Γ̄, | is denoted upon Gene gj,32 .

spj and wpj

ϕgj,11
(t) spj(t) wpj(t)

1 1 1
0 −1 0

sij and wij

ϕgj,11
(t) sij(t) wij(t)

1 −1 −1
0 1 0

Figure 4.1: Behaviour of unary operations f
j
1

Chapter 4. Logic Network Dynamic P systems 92

andj

ϕ
gj,12

(t) ϕ
gj,22

(t) andj(t)

1 1 1

1 0 −1

0 1 1

0 0 1

In this example gj,12 ∈ Σ and gj,22 , gj,32 ∈ Σ̄

orj

ϕ
gj,12

(t) ϕ
gj,22

(t) orj(t)

1 1 −1

1 0 1

0 1 1

0 0 1

In this example gj,12 , gj,22 ∈ Σ̄ and gj,32 ∈ Σ

xorj

ϕ
gj,12

(t) ϕ
gj,22

(t) xorj(t)

1 1 1

1 0 −1

0 1 −1

0 0 1

In this example gj,12 , gj,22 ∈ Σ and gj,32 ∈ Σ̄

Figure 4.2: Behaviour of binary operations f
j
2

4.2.1.2 Semantics of logic networks

Next, a semantics for Logic Networks is introduced. Let Π = (Γ, f1, f2) be a
Logic Network of size n ≥ 1 over an alphabet Γ = {g1, . . . , gn} with n nodes
(genes) according to Definition 4.2. A configuration of the Logic Network Π at
instant t is a tuple (ϕg1(t), . . . , ϕgn(t)) which describes the state of every gene
gi at that instant.

In order to define a transition step from t to t + 1 in a Logic Network Π,

4.2. Logic Networks 93

the value ϕgi(t+ 1), 1 ≤ i ≤ n, is computed from the configuration of Π at any
instant t. For such a purpose, some concepts and notations are discussed.

• Let f j1 = (gj,11 , gj,21 , ωj1, op
j
1) be a unary operation by which node gj,11 acts

on node gj,21 . In this case, gj,11 and gj,21 are genes. The action of gj,11 on
gj,21 at instant t, denoted by action(gj,21 |g

j,1
1)(t), is defined as follows:

action(gj,21 |g
j,1
1)(t) = opj1(t) · ωj1

• Let f j2 = (gj,12 , gj,22 , gj,32 , ωj2, op
j
2) be a binary operation by which nodes

gj,12 and gj,22 act on node gj,32 . It is noteworthy that, in the case of binary
operations, gj,k2 , 1 ≤ k ≤ 3, is whether a gene or, otherwise, ḡj,k2 is a gene.
In order to compute the contribution to the state of the gene associated
with an instant t + 1, the action of gj,12 and gj,22 on gj,32 at instant t, is
denoted by action(gj,32 |g

j,1
2 , gj,22)(t), as follows:

action(gj,32 |g
j,1
2 , gj,22)(t) = opj2(t) · ωj2

• Based on the aforesaid definitions, the total effect of the action on gene
i is defined as follows:

Action(gi, t) = Action1(gi, t) + Action2(gi, t), being

Action1(gi, t) =
∑

1 ≤ j ≤ α1

g
j,2
1 = gi

action(gj,21 |g
j,1
1)(t)

Action2(gi, t) =
∑

1 ≤ j ≤ α2

g
j,3
2 = gi

action(gj,32 |g
j,1
2 , gj,22)(t)

Then, gi(t+ 1) is defined as follows:

ϕgi(t+ 1) =

{
1, if ϕgi(t) + Action1(gi, t) + Action2(gi, t) ≥ 0.5,
0, otherwise

This manner, given a configuration Ct = {ϕg1(t), . . . , ϕgn(t)} at any instant
t we can compute the configuration Ct+1 = {ϕg1(t+ 1), . . . , ϕgn(t+ 1)} at in-
stant t+ 1, taking one transition step.

Considering this concept of Logic Network and its associated dynamics, a
model within the framework of Membrane Computing to reproduce the be-
haviour of these networks is presented in Section 4.4, providing a formalization
and defining its semantics.

Chapter 4. Logic Network Dynamic P systems 94

4.2.2 Construction of Logic Networks

In this subsection, a method for constructing logic networks out of raw data
known as Logic Analysis of Phylogenetic Profiles (LAPP, for short) is pre-
sented. LAPP [25] is an approach to identify logic interactions among a set of
elements (e.g., genes, proteins) in uncertain scenarios. This approach is based
on the expression profiles of these elements. Given m0 samples, the expression
profiles of element A are (v1, v2, . . . , vm0), where vi, 1 ≤ i ≤ m0 is the ex-
pression value of element A in the ith sample. Unary interactions involve two
elements (three for binary). In order to illustrate this concept, two types of
unary interactions are considered (strong promotion and strong inhibition), as
well as a total of ten types of binary interactions based on AND–like, OR–like
and XOR–like logic gates combining negated inputs and outputs.

The existence likelihood of unary interactions f i1, 1 ≤ i ≤ 2 from A to B
can be computed as described in Formula 4.1.

U(B|f i1(A)) =
H(f i1(A)) +H(B)−H ′(f i1(A), B)

H(B)
, (4.1)

where:

• f i1(A) = (f i1(v1), . . . , f i1(vm0)) is the result of the expression profile of A,
i.e. (v1, v2, . . . , vm0) under the reaction of f i1.

• H(B) = −
∑

t∈{0,1} pt log(pt) is the entropy of the expression profile

of B, i.e. (v′1, v
′
2, . . . , v

′
m0

), where pt is the number of element t in
(v′1, v

′
2, . . . , v

′
m0

).

• H ′(f i1(A), B) = −
∑

(t1,t2)∈Λ p(t1,t2) log(p(t1,t2)) is the joint entropy of f i1(A)

and the expression profile of B, where Λ = {(0, 0), (0, 1), (1, 0), (1, 1)},
p(t1,t2) is the number of element (t1, t2) in ((f i1(v1), v′1), . . . , (f i1(vm0), v′m0

)).

In addition, we consider U(B|A) = max{U(B|f 1
1 (A)), U(B|f 2

1 (A))} as the
1–order U from A into B.

Similarly, the existence likelihood of binary interactions f j2 (j ∈ {1, 2, . . . , 10})
from A and B to C can be computed as described in Formula 4.2.

U(C|f j2 (A,B)) =
H(f j2 (A,B)) +H(C)−H ′(f j2 (A,B), C)

H(C)
, (4.2)

where:

4.2. Logic Networks 95

• f j2 (A,B) = (f j2 (v1, v
′
1), . . . , f j2 (vm0 , v

′
1m0)) is the result of the expression

profile of A and B, i.e. (v1, v2, . . . , vm0) and (v′1, v
′
2, . . . , v

′
m0

) under the

reaction of f j2 .

• H(C) = −
∑

t∈{0,1} pt log(pt) is the entropy of the expression profile

of C, i.e. (v′′1 , v
′′
2 , . . . , v

′′
m0

), where pt is the number of element t in
(v′′1 , v

′′
2 , . . . , v

′′
m0

).

• H ′(f j2 (A,B), C) = −
∑

(t1,t2)∈Λ p(t1,t2) log(p(t1,t2)) is the joint entropy of

f j2 (A,B) and the expression profile of C, where Λ = {(0, 0), (0, 1), (1, 0),

(1, 1)}, p(t1,t2) is the number of element (t1, t2) in ((f j2 (v1, v
′
1), v′′1), . . . ,

(f j2 (vm0 , v
′
m0

), v′′m0
)).

Similarly to the case of U(A|B),

U(C|A,B) = max{U(C|f 1
2 (A,B)), . . . , U(C|f 10

2 (A,B))}

is called the 2-order U from A and B into C. u1 and u2 are set to the threshold
values of unary and binary interactions, respectively. Then, those which satisfy
existing conditions are obtained. Unary interactions only exist between two
genes with greater difference of 1-order Us in two opposite directions. The
direction of U(B|A) is from A to B. The 1-order U with the opposite direction
to that of U(B|A) is U(A|B), and its direction is from B to A. The relative
difference of U(B|A) and U(A|B) is defined as

Differ(U(B|A), U(A|B)) =
|U(A|B)− U(B|A)|

1
2
(U(A|B)− U(B|A))

Let the relationship between U(B|A) and U(A|B) be U(B|A) ≥ U(A|B) and
the threshold of relative difference be δ0. If Differ(U(B|A), U(A|B)) > δ0,
then the relationship from A to B may exist. If U(B|A) > u1, then the unary
interaction from A to B is f i1. The existing conditions of unary interactions
are listed as follows:

U(B|A) = U(B|f i1(A))

U(B|A) > U(A|B)

δ =
|U(A|B)− U(B|A)|

1
2
(U(A|B)− U(B|A))

> δ0

U(B|A) > u1

It is noteworthy that binary interactions from A and B to C are considered
only if unary interactions from A to C and from B to C do not exist. The
existing conditions of binary interactions are listed as follows:

Chapter 4. Logic Network Dynamic P systems 96

U(C|A,B) = U(C|f j2 (A,B))
U(C|A,B) > U(C|A)
U(C|A,B) > U(C|B)
U(C|A) < u1

U(C|B) < u1

u2 > u1

1 ≤ i ≤ 2

Taking into account these concepts, a logic network can be established as
follows:

• For each U(B|f i1(A)), 1 ≤ i ≤ 2, nodes A, B and f i1(i) and edges
A→ f i1(i) and f i1(i)→ B, are included in the logic network.

• For each U(F |f j2 (D,E)), 1 ≤ j ≤ 10, nodes D, E, F and f j2 (j) and
edges D → f j2 (j), E → f j2 (j) and F → f j2 (j) are included in the logic
network. In this chapter, threshold values for unary and binary interac-
tions are set to 0.25 and 0.7, respectively.

4.3 Population Dynamics P systems

In this section, Population Dynamics P systems (PDP systems) are introduced.
PDP systems are a kind of P systems used in this chapter as a modelling
framework for LNs. PDP systems can be regarded as P systems with tissue–like
structure in which each node is an environment, where each of them contains
the same cell–like membrane structure [52, 51]. In short, a PDP system is
composed of (1) a set of connected environments describing a directed graph,
(2) a cell–like structure denoting the internal membrane hierarchy associated
with each environment, (3) a working alphabet of objects whose elements re-
present species of the modelled system and (4) a set of rules which describe
how objects evolve and move inside and among environments [51].

4.3.1 Population Dynamics P systems – Formal frame-
work

Definition 4.3. A Population Dynamics P system of degree (q,m) with q,m ≥ 1,
taking T time units, T ≥ 1, is a tuple

4.3. Population Dynamics P systems 97

(G,Γ,Σ, T,RE , µ,R, {fr,j : r ∈ R, 1 ≤ j ≤ m}, {Mij : 1 ≤ i ≤ q, 1 ≤ j ≤ m})
where:

• G = (V, S) is a directed graph. Let V = {e1, . . . , em} whose elements are
called environments;

• Γ ∪ Σ is the working alphabet;

• T is a natural number that represents the simulation time of the system;

• RE is a finite set of communication rules among environments of the
form

(x)ej
p(x,j,j1,...,jh)−−−→ (y1)ej1 . . . (yh)ejh

where x, y1, . . . , yh ∈ Γ, (ej, ejl) ∈ S (l = 1, . . . , h) and p(x,j,j1,...,jh)(t) ∈
[0, 1], for each t = 1, . . . , T . If p(x,j,j1,...,jh)(t) = 1, for each t, then we
omit the probabilistic function. These rules verify the following:

? For each environment ej and for each object x, the sum of func-
tions associated with the rules from RE whose left-hand side is (x)ej
coincides with the constant function equal to 1.

• µ is a membrane structure (i.e. a rooted tree) consisting of q membranes,
with the membranes injectively labelled by 1, . . . , q. The skin membrane
is labelled by 1. We also associate electrical charges from the set EC =
{0,+,−} with membranes.

• R is a finite set of evolution rules of the form r : u[v]αi → u′[v′]α
′
i where

u, v, u′, v′ ∈M(Γ), i ∈ {1, . . . , q}, and α, α ∈ EC.

• For each r ∈ R and for each j, 1 ≤ j ≤ m, fr,j is a computable function
whose domain is {1, . . . , T} and its range is [0, 1], verifying the following:

? For each u, v ∈ M(Γ), i ∈ {1, . . . , q} and α, α′ ∈ EC, if r1, . . . , rz
are the rules from R whose left-hand side is (i, α, u, v) and the right-
hand side have polarization α′, then

∑z
j=1 frj(t) = 1, for each t, 1 ≤

t ≤ T .

? If (x)ej is the left-hand side of a rule r ∈ RE , then none of the rules
of R has a left-hand side of the form (1, α, u, v), for any u, v ∈M(Γ)
and α ∈ EC, having x ∈ u.

• For each j (1 ≤ j ≤ m), M1j, . . . ,Mqj ∈M(Γ), initially placed in the q
regions of µ within environment ej.

Chapter 4. Logic Network Dynamic P systems 98

A system as described in Definition 4.3 can be viewed as a set of m envi-
ronments e1, . . . , em linked between them by the arcs in the directed graph G.
Each environment ej contains a P system, Πj = (Γ, µ,R,M1j, . . .Mqj), of de-
gree q, such that M1j, . . . ,Mqj are the initial multisets for this environment,
and every rule r ∈ R has a computable function fr,j (specific for environment
j) associated with it. Figure 4.3 graphically describes a PDP system.

The tuple of multisets of objects present at any moment in the m environ-
ments and at each of the regions of each Πj, together with the polarizations of
the membranes in each P system, constitutes a configuration of the system at
that moment. At the initial configuration of the system, all environments are
assumed to be empty and all membranes have a neutral polarization.

A global clock is considered, marking the time for the whole system, that
is, all membranes and the application of all rules (both from RE and R) are
synchronized in all environments.

The PDP system can pass from one configuration to another by using the
rules from R = RE ∪

⋃m
j=1RΠj as follows: at each transition step, the rules

to be applied are selected according to the probabilities assigned to them, and
all applicable rules are simultaneously applied in a maximal way.

When a communication rule between environments (x)ej
p(x,j,j1,...,jh)−−−→ (y1)ej1x . . . (yh)ejh

is applied, object x passes from ej to ej1 , . . . , ejh possibly modified into objects
y1, . . . , yh, respectively. At any moment t, 1 ≤ t ≤ T , for each object x in en-
vironment ej, if there exist communication rules whose left-hand side is (x)ej ,
then one of these rules will be applied. If more than one communication rule
can be applied to an object, the system selects one randomly, according to
their probability which is given by p(x,j,j1,...,jh)(t).

For each j (1 ≤ j ≤ m) there is just one further restriction, concerning the
consistency of charges: in order to apply several rules of RΠj simultaneously
to the same membrane, all the rules must have the same electrical charge on
their right–hand side.

4.3.1.1 Some definitions on the model

In order to clarify the dynamics of PDP systems, some definitions are intro-
duced here. These definitions will be used throughout this document, but are
intrinsically related with the concept of PDP system.

Definition 4.4. For each ej ∈ V and x ∈ Γ, Bej ,x denotes the block of
communication rules having (x)ej as left–hand side.

4.3. Population Dynamics P systems 99

Figure 4.3: A graphical description of a PDP system

Definition 4.5. For each u, v ∈ M(Γ), 1 ≤ i ≤ q and α, α′ ∈ EC, Bi,α,α′,u,v

denotes the block of evolution rules having u[v]αi as left-hand side, and having
α′ in the right–hand side.

It is important to recall that, according to the semantics of the model, the
sum of probabilities of all the rules belonging to the same block is always equal
to 1, in particular, rules with probability equal to 1 form individual blocks. In
addition, rules with overlapping (but different) left–hand sides are classified
into different blocks.

Definition 4.6. A PDP system is said to feature object competition if there
exists at least a pair of overlapping left-hand sides u[v]αi , u

′[v′]αi , where u, v, u′, v′ ∈
M(Γ), u 6= u′ ∨ v 6= v′, and u ∩ u′ 6= ∅ ∨ v ∩ v′ 6= ∅, 1 ≤ i ≤ q, α ∈ EC.

Remark 4.1. It is worth noting that all rules r ∈ Bi,α,α′,u,v can be consistently
applied, in the sense that each membrane i with charge α goes to the same
charge α′ by any rule of Bi,α,α′,u,v.

Definition 4.7. Two blocks Bi1,α1,α′1,u1,v1
and Bi2,α2,α′2,u2,v2

are mutually con-
sistent with each other, if and only if (i1 = i2 ∧ α1 = α2)⇒ (α′1 = α′2).

Definition 4.8. A set of blocks B = {B1, B2, . . . , Bs} is self consistent (or
mutually consistent) if and only if B is a pairwise mutually consistent family.

Chapter 4. Logic Network Dynamic P systems 100

Remark 4.2. In such a context, a set of blocks B has a relationship from
H × EC into EC, associated with it, as follows: ((i, α), α′) belongs to the
relationship if and only if there exist two strings u, v ∈ Γ∗ such that Bi,α,α′,u,v ∈
B. Then, a set of blocks is mutually consistent if and only if the associated
relationship is functional.

4.4 A PDP–based model of Logic Networks

This section provides a formal description of the PDP model proposed in this
work. It also provides the necessary guidelines to interpret the results of the
evolution of modelled gene networks properly. This way, experts can infer
the state of the modelled gene network after the predefined cycles have been
simulated.

4.4.1 Logic Network Dynamic P Systems

In this subsection, Logic Network Dynamic P systems (LNDP systems) are
presented. These P systems aim to model Logic Networks by capturing the
behaviour of the improved LAPP method [229]. An LNDP system is described
within an expansion of PDP systems [220, 75].

Definition 4.9. A LNDP system ΠLN of degree (q,m) with q,m ≥ 1, taking
T time units, T ≥ 1, is a tuple

ΠLN = (G,Γ,Σ, T,RE , µ,R, {fr,j : r ∈ R, 1 ≤ j ≤ m},
{Mij : 1 ≤ i ≤ q, 1 ≤ j ≤ m}, {Mj : 1 ≤ j ≤ m})

where:

• (G, Γ, Σ, T , RE , µ, R, {fr,j : r ∈ R, 1 ≤ j ≤ m}, {Mij : 1 ≤ i ≤ q,
1 ≤ j ≤ m}) is a PDP system.

• Σ = ∅

• {fr,j = 1 : r ∈ R, 1 ≤ j ≤ m}.

• For each j ; 1 ≤ j ≤ m,, Mj is a multiset over Γ, describing the objects
initially placed in the environment ej.

In LNDP systems we will omit the alphabet Σ. The improved LAPP
method is a deterministic algorithm, so probabilities associated with commu-
nication rules are not necessary. Thus, they are not used in LNDP systems.

4.4. A PDP–based model of Logic Networks 101

In addition, LNDP systems do not feature object competition. That is, the
multisets in the left–hand sides of any two rules associated with any mem-
brane in a system are disjoint and each rule of the cell–like structure in each
environment is associated with a probability function that is always equal to
1.

4.4.2 The model

Here the model for the family of Logic Network Dynamic P systems is pre-
sented. This model covers any possible P system in this family, so the multi-
sets, rules, etc. depend on the P system which represent each specific instance
of a Logic Network. The definition of the general model requires the use of
parameters in its constructs, which are described in Table 4.1.

Let LN = (Γ, f1, f2) be a Logic Network. Let ng, nu, nb be the number of
genes, unary and binary interactions of LN , respectively. Let n = ng+nu+nb.
This model consists on an LNDP system of degree (1, n),

ΠLN ′ = (G,Γ, T,RE , µ,R, {Mij : 0 ≤ i ≤ q − 1, 1 ≤ j ≤ m}, {Mj : 1 ≤ j ≤ m})

where:

• G is a directed graph containing a node (environment) for each gene,
unary or binary interaction.

• In alphabet Γ, gene states, interaction types, contribution weights and
targets are represented as outlined below.

Γ = {ai, bi, ci : 0 ≤ i ≤ 1} ∪ {go, d0} ∪ {unopj , binopj : 1 ≤ j ≤ 4} ∪
{auxDesti,gj,1,k : 0 ≤ i ≤ 1, 1 ≤ j ≤ ng, 1 ≤ k ≤ nb+ nu} ∪
{desti,gj,1,tk,1+ng : 0 ≤ i ≤ 1, 1 ≤ j ≤ ng, 1 ≤ k ≤ nb} ∪
{desti,gj,1,untk−nb,1+ng+nb : 0 ≤ i ≤ 1, 1 ≤ j ≤ ng, nb+ 1 ≤ k ≤ nb+ nu} ∪
{etk,4∗i+(1−i)∗(1−tk,4),tk,1+ng : 0 ≤ i ≤ 1, 1 ≤ k ≤ nb} ∪
{etk,6∗i+(1−i)∗(1−tk,6),tk,1+ng : 0 ≤ i ≤ 1, 1 ≤ k ≤ nb} ∪
{euntk−nb,4∗i+(1−i)∗(1−untk−nb,4),untk−nb,1+ng+nb :
0 ≤ i ≤ 1, nb+ 1 ≤ k ≤ nb+ nu} ∪
{eFtk,8∗i+(1−i)∗(1−tk,8),tk,1+ng : 0 ≤ i ≤ 1, 1 ≤ k ≤ nb} ∪
{eFi,(untk,1+ng+nb) : 0 ≤ i ≤ 1, 1 ≤ k ≤ nu} ∪
{clockj : 0 ≤ j ≤ cc+ 3}

– Object go triggers a new cycle in the evolution of the gene states.
Objects clocki synchronize critical steps in the cycle, such as the
sum of the different contributions to each gene.

– Objects ai, (i ∈ {0, 1}) represent gene states: (a0: inactive; a1:
active). Objects bi represent weights of (self–influence) interactions.

Chapter 4. Logic Network Dynamic P systems 102

– Objects unopj, 1 ≤ j ≤ 4 participate in unary interactions, rep-
resenting strong promotion, strong inhibition, weak promotion and
weak inhibition, respectively. Objects binopj, 1 ≤ j ≤ 3 participate
in the binary, representing or, and and xor.

– Objects desti,j,k, auxDesti,j,k, ei,k, ci and eFi,k are auxiliary objects
involved in interactions.

• The environment alphabet is Σ = Γ \ {d0}.

• Each evolution step between cycles in real networks involves 15 compu-
tational steps, so T = 15 · Cycles, where Cycles is the total number of
cycles to simulate.

• µ = []1 is the membrane structure.

• The initial multisets are:

– Mgk,1 = { a1
gk,3 , a0

1−gk,3,go, 1 ≤ k ≤ ng}. That is, each gene en-
vironment (labelled by gk,1), contains its gene state (a1:active or
a0:inactive), depending on input gk,3 ∈ {0, 1} and go, which trig-
gers a new cycle.

– Mng+ti,1 = { binopti,2 , 1 ≤ i ≤ nb}. That is, each binary interac-
tion environment (labelled by ng+ ti,1), contains an object binopti,2
representing the interaction (or, and, xor).

– Mng+nb+unti,1 = { unopunti,2 , 1 ≤ i ≤ nu}. That is, each unary
interaction environment (labelled by ng + nb + unti,1, contains an
object unopunti,2 representing the interaction (strong or weak pro-
motion or inhibition).

• The rules of R and RE to apply are shown below. They are put together
to follow the sequential order of execution. Environment rules start with
re and skeleton rules start with rs.

– Cycle start, and contribution of each gene over its state:

go ai[]1 → cibi
max∗ib0

thresholdclock0[]1, 0 ≤ i ≤ 1

– For each source gene environment:

∗ Auxiliary objects auxDest for all possible interactions from the
source gene are created:

(ci)gj,1 → (auxDesti,gj,1,1)gj,1 , . . . , (auxDesti,gj,1,nb+nu)gj,1

{
0 ≤ i ≤ 1
1 ≤ j ≤ ng

4.4. A PDP–based model of Logic Networks 103

∗ Destination objects are created for each possible binary in-
teraction, including information about the target environment
tk,1 + ng:

(auxDesti,gj,1,k)gj,1 → (desti,gj,1,tk,1+ng)gj,1

 0 ≤ i ≤ 1
1 ≤ j ≤ ng
1 ≤ k ≤ nb

∗ The same is done for each possible unary interaction, where
untk − nb, 1 + ng + nb represents the target environment:

(auxDesti,gj,1,k)gj,1 → (desti,gj,1,untk−nb,1+ng+nb)gj,1

{
0 ≤ i ≤ 1
1 ≤ j ≤ ng
nb+ 1 ≤ k ≤ nb+ nu

– For each actual interaction, in gene environments, objects ei,k (value
i and target k) are created for the contribution of each source gene
involved in a different interaction, from their source values tk,4 and
tk,6 (binary interactions) and untk−nb,4 (unary interactions):

(desti,tk,3,tk,1+ng)tk,3
→ (etk,4∗i+(1−i)∗(1−tk,4),tk,1+ng)tk,3

{
0 ≤ i ≤ 1
1 ≤ k ≤ nb

(desti,tk,5,tk,1+ng)tk,5
→ (etk,6∗i+(1−i)∗(1−tk,6),tk,1+ng)tk,5

{
0 ≤ i ≤ 1
1 ≤ k ≤ nb

(desti,untk−nb,3,untk−nb,1+ng+nb)untk−nb,3
→

(euntk−nb,4∗i+(1−i)∗(1−untk−nb,4),untk−nb,1+ng+nb)untk−nb,3

{
0 ≤ i ≤ 1
nb+ 1 ≤ k ≤ nb+ nu

– Sending the values to interaction environments:

(ei,tk,1+ng)tk,3
→ (ai)tk,1+ng

{
0 ≤ i ≤ 1
1 ≤ k ≤ nb

(ei,tk,1+ng)tk,5
→ (ai)tk,1+ng

{
0 ≤ i ≤ 1
1 ≤ k ≤ nb

(ei,untk−nb,1+ng+nb)untk−nb,3
→

(ai)untk−nb,1+ng+nb

{
0 ≤ i ≤ 1
1 ≤ k ≤ nb

– Computing the result of interactions (1/2).

∗ or interactions:
binop1 a0

2[]1 → binop1 c0[]1
binop1 a1

2[]1 → binop1 c1[]1
binop1 a1 a0[]1 → binop1 c1[]1

∗ and interactions:
binop2 a1

2[]1 → binop2 c1[]1
binop2 a0

2[]1 → binop2 c0[]1
binop2 a1 a0[]1 → binop2 c0[]1

∗ xor interactions:

Chapter 4. Logic Network Dynamic P systems 104

binop3 a1
2[]1 → binop3 c0[]1

binop3 a0
2[]1 → binop3 c0[]1

binop3 a1 a0[]1 → binop3 c1[]1

∗ interactions of types strong promotion, strong inhibition,
weak promotion and weak inhibition, respectively:
unop1 ai[]1 → unop1 ci[]1 : 0 ≤ i ≤ 1
unop2 ai[]1 → unop2 ci−1[]1 : 0 ≤ i ≤ 1
unop3 ai[]1 → unop3 ci

i[]1 : 0 ≤ i ≤ 1
unop4 ai[]1 → unop4 c1−i

i[]1 : 0 ≤ i ≤ 1

– Evaluating the result of the interactions (2/2).

For each interaction, objects of type eF are generated and sent to
the target gene environment, depending on the previous result ci
and the contribution type (+ or -).

(ci)tk,1+ng →

(eFtk,8∗i+(1−i)∗(1−tk,8),tk,1+ng)tk,7

{
0 ≤ i ≤ 1
1 ≤ k ≤ nb

(ci)untk,1+ng+nb →

(eFi,(untk,1+ng+nb))untk,5

{
0 ≤ i ≤ 1
1 ≤ k ≤ nu

– The contribution of each interaction is calculated out of objects eF .
These rules generate objects bi whose multiplicity depends on the
interaction weight.

eFi,(tk,1+ng)[]1 → bi
tk,9 []1

{
0 ≤ i ≤ 1
1 ≤ k ≤ nb

eFi,(untk,1+ng+nb)[]1 → bi
untk,6 []1

{
0 ≤ i ≤ 1
1 ≤ k ≤ nu

– Once each gene has received contributions from all its interactions,
the global influence over the gene is calculated. The next rule re-
moves each pair of objects (b1,b0), cancelling out their contributions.

b1 b0[]1 → []1

– clock objects control the cycle flow, ensuring that all contributions
caused by the interactions and auto-influences have reached their
target genes.

clocki−1[]1 → clocki[]1 : 1 ≤ i ≤ cc+ 3

– If objects b0 are present, then the gene state will be inactive. object
d0 is created inside the membrane 1, and in a subsequent step will
imply a new polarization change. Otherwise, any objects b1 are
removed, turning the state of the gene into active. The remaining

4.4. A PDP–based model of Logic Networks 105

objects (not used destination objects, for example) are removed
from the configuration.
b0[]−1 → [d0]−1
b1[]−1 → []−1

desti,j,tk,1+ng[]−1 → []−1

 0 ≤ i ≤ 1
1 ≤ j ≤ ng
1 ≤ k ≤ nb

desti,j,untk−nb,1+ng+nb[]−1 → []−1

 0 ≤ i ≤ 1
1 ≤ j ≤ ng
nb+ 1 ≤ k ≤ nb+ nu

[d0]−1 → []+1

– Once the last step of the cycle is reached, the state of the gene is
set to active (1) or inactive (0) depending of the polarization of the
membrane labelled by 1. Although electrical charges are not a part
of gene regulation, its use is required to set the state of the skin
membrane of each environment, ensuring that all remaining objects
d0 are removed. In addition, the corresponding go objects are gen-
erated, the clock is removed and the polarization of the membrane
is reset to 0.

clockcc+3[]+1 → go a0[]01
clockcc+3[]−1 → go a1[]01

4.4.3 LN state interpretation

After the P system has taken a predefined number of computation steps, the
output information, encoded in the multiplicity of objects a1 and a0, is anal-
ysed. Environments with an object a1 represent active genes (a0 represent
inactive genes). Due to the nature of the system, gene environments (that is,
environments representing genes) cannot contain objects a1 and a0 simultane-
ously. If no object a1 or a0 is present within the environment gene, then the
state of its represented gene cannot be evaluated yet. That is, it will take some
additional computation steps for the system to reach an evaluable state.

In Chapter 6, Section 6.1, a case study on the evolution of a gene network
extracted from real–life data is presented as an example of application of this
framework.

Chapter 4. Logic Network Dynamic P systems 106

Parameter Description

General parameters for the system

ng Number of genes in the network
nb Number of binary interactions
nu Number of unary interactions
threshold Maximum strength for an interaction
cc Clock control

Gene configuration parameters

gi,1 Gene number (id)
gi,3 Initial state of the gene

Binary interactions parameters

ti,1 Binary interaction number (id)
ti,2 Interaction type (or: 1, and: 2, xor: 3)
ti,3 1st source gene number (id)
ti,4 1st source gene contribution (positive: 1, negative: 0)
ti,5 2nd source gene number (id)
ti,6 2nd source gene contribution (positive: 1, negative: 0)
ti,7 Destination gene number (id)
ti,8 Influence over destination gene (positive: 1, negative: 0)
ti,9 Strength of the destination

Unary interactions parameters

unti,1 Unary interaction number (id)
unti,2 Interaction type (strong promotion: 1, inhibition: 2; weak ones: 3, 4)
unti,3 Source gene number (id)
unti,4 Source gene contribution (positive, negative)
unti,5 Destination gene number (id)
unti,6 Influence over destination gene (positive, negative)

Table 4.1: Parameters for LNDP systems

Chapter 5

Probabilistic Guarded P
Systems

Probabilistic Guarded P systems (PGP systems, for short) are a brand new
model for the simulation of real–life phenomena, specifically for ecological
processes. PGP systems are a computational probabilistic framework which
takes inspiration from different Membrane Computing paradigms, mainly from
Tissue–Like P systems [133, 162], PDP systems [51] and Kernel P systems [77,
79, 112, 78]. This framework aims for simplicity, considering these aspects:

Model designers: In PGP systems, model designers do not need to worry
about context consistency. That is to say, they do not need to take
into account that all rules simultaneously applied in a cell define the
same polarization in the right–hand side. This is because the framework
centralizes all context changes in (at most) a single rule per cycle, rather
than distributing them across all rules. Therefore, there exist two types
of rules: context–changing rules and non context–changing rules. Due to
the nature of the model, only one of such rules can be applied at the same
time on each cell, so context inconsistency is not possible. Moreover, the
fact that the context is explicitly expressed in each cell and that cells do
not contain internal cell structures simplifies transitions between contexts
without loss of computational and modelling power.

Simulator developers: The fact that the framework implicitly takes care of
context consistency simplifies the development of simulators for these
models, as it is a non–functional requirement which does not need to be
supported by simulators. In addition, the lack of internal structure in
cells simplifies the simulation of object transmission; the model can be

107

Chapter 5. Probabilistic Guarded P Systems 108

regarded as a set of memory regions with no hierarchical arrangement,
thus enabling direct region fetching.

Probabilistic Guarded P Systems can be regarded as an evolution of Popu-
lation Dynamic P systems. In this context, PGP systems propose a modelling
framework for ecology in which inconsistency (that is to say, undefined con-
text of membranes) is handled by the framework itself, instead of delegating
to simulation algorithms. In addition, by replacing alien concepts to biology
(such as electrical polarizations and internal compartment hierarchies) by state
variables known as flags and defined by designers models are more natural to
experts, thus simplifying communication between expert and designer.

This chapter is structured as follows. Section 5.1 provides a formalization for
PGP systems. Section 5.2 defines sequential algorithms for the simulation of
PGP systems without object competition. Section 5.2 proposes a parallel al-
gorithm to simulate PGP systems without object competition, proposing some
ideas to deal with this feature. Finally, Section 5.4 presents a Graphical User
Interface (GUI) for the analysis and simulation of PGP systems.

5.1 Formal description of PGP systems

What follows is a formalization of PGP systems, followed by a description and
some remarks over its semantics.

5.1.1 Formalization of PGP systems

Definition 5.1. A Probabilistic Guarded P system (PGP system, for short)
of degree q ≥ 1 is a tuple Π = (Γ,Φ,R,GR, pR, (f1,M1), . . . , (fq,Mq)) where:

• Γ and Φ are finite alphabets such that Γ ∩ Φ = ∅. Elements in Γ are
called objects and elements in Φ are called flags.

• R is a finite set of rules of the following types:

– {f} [u]i → [v]j with u, v ∈M(Γ) , f ∈ Φ and 1 ≤ i, j ≤ q. If i = j,

then {f} [u]i
p→ [v]j can be denoted as {f} [u

p→ v]i.

– {f} [u, f]i → [v, g]i with u, v ∈ M(Γ), f, g ∈ Φ and 1 ≤ i, j ≤ q.
Such a rule can be also denoted as {f} [u, f → v, g]i. Moreover, for
each f ∈ Φ, u ∈ M(Γ), 1 ≤ i ≤ q, there exists only one rule of type
{f} [u, f]i → [v, g]i.

5.1. Formal description of PGP systems 109

• GR is the directed graph associated with R as follows: V = {1, . . . , q}
and (i, j) ∈ E if and only if there exists a rule of the type {f} [u]i → [v]j,
or i = j and there exists a rule of the type {f} [u, f]i → [v, g]i.

• pR is a map from R into [0, 1] such that:

– If r ≡ {f} [u, f]i → [u, g]i, then pR(r) = 1.

– For each f ∈ Φ, u ∈ M(Γ), 1 ≤ i ≤ q, if r1, . . . , rt are rules of the
type {f} [u]i → [v]j, then

∑t
k=1 pR(rk) = 1.

• For each i (1 ≤ i ≤ q), we have fi ∈ Φ and Mi ∈M(Γ).

Remark 5.1. A Probabilistic Guarded P system can be viewed as a set of q
cells labelled by 1, . . . , q such that: (a) M1, . . . ,Mq are finite multisets over Γ
representing the objects initially placed in the q cells of the system; (b) f1, . . . , fq
are flags that initially mark the q cells; (c) GR is a directed graph whose
arcs specify connections among cells; (d) R is the set of rules that allow the
evolution of the system and each rule r ∈ R is associated with a real number
pR(r) in [0, 1] meaning the probability of that rule to be applied in the case that
it is applicable.

Remark 5.2. In PGP systems, two types of symbols are used: objects (ele-
ments in Γ) and flags (elements in Φ). It can be considered that objects are
in cells and flags are on (the borderline of) cells.

5.1.2 Semantics of PGP systems

Definition 5.2. A configuration at any instant t ≥ 0 of a PGP system Π
is a tuple Ct = (x1, u1, . . . , xq, uq) where, for each i, 1 ≤ i ≤ q, xi ∈ Φ and
ui ∈ M(Γ). That is to say, a configuration of Π at any instant t ≥ 0 is
described by all multisets of objects over Γ associated with all the cells present
in the system and the flags marking these cells. (f1,M1, . . . , fq,Mq) is said
to be the initial configuration of Π. At any instant, each cell has one and only
one flag, in a similar manner to polarizations in cell–like P systems.

Definition 5.3. A rule r of the type {f} [u]i → [v]j is applicable to a con-
figuration Ct = (x1, u1, . . . xq, uq) if and only if xi = f and u ⊆ ui, for all
1 ≤ i ≤ q.

When applying r to Ct, objects in u are removed from cell i and objects in v
are produced in cell j. Flag f is not changed; it plays the role of a catalyst
assisting the evolution of objects in u.

Chapter 5. Probabilistic Guarded P Systems 110

�

�
	a4 b4, e 0

�

�
	a3 c2, d 1

�

�
	b2, f 2

• R0:

{e}[a2]0
0.2→ [c2]1 {e}[a, e]0 → [c, f]0 {f}[b3, f]0 → [e]0

{e}[a2]0
0.7→ [b]0

• R1:

{f}[a2]1
0.4→ [b]1 {d}[c]1

0.2→ [c]2 {f}[c2]1 → [b]0

{f}[a2]1
0.6→ [c2]2 {d}[c]1

0.7→ [a2]0

• R2:
{f}[b2, f]2 → [a2, d]2 {d}[a]2

0.5→ [b2]0

{d}[a]2
0.5→ [c]1

Figure 5.1: An example of PGP system. Flags are highlighted in red and probabilities equal to 1 are omitted.

Definition 5.4. A rule r of the type {f} [u, f]i → [v, g]i is applicable to a
configuration Ct = (x1, u1, . . . xq, uq) if and only if xi = f and u ⊆ ui, for all
1 ≤ i ≤ q.

When applying r to Ct, in cell i objects in u are replaced by those in v and f is
replaced by g. In this case, Flag f is consumed, so r can be applied only once
in instant t in cell i.

Remark 5.3. After applying a rule r of the type {f} [u, f]i → [v, g]i, other
rules r′ of the type {f} [u]i → [v]j can still be applied (the flag remains in vigor).
However, f has been consumed, so no more rules of the type {f} [u, f]i → [v, g]i
can be applied.

Definition 5.5. A configuration is a halting configuration if no rule is appli-
cable to it.

Definition 5.6. We say that configuration C1 yields configuration C2 in a
transition step if we can pass from C1 to C2 by applying rules from R in a
non–deterministic, maximally parallel manner, according to their associated
probabilities denoted by map pR. That is to say, a maximal multiset of rules
from R is applied, no further rule can be added.

Definition 5.7. A computation of a PGP system Π is a sequence of configu-
rations such that: (a) the first term of the sequence is the initial configuration
of Π, (b) each remaining term in the sequence is obtained from the previous

5.1. Formal description of PGP systems 111

one by applying the rules of the system following Definition 5.6, (c) if the se-
quence is finite (called halting computation) then the last term of the system
is a halting configuration.

5.1.3 Comparison between PGP systems and other frame-
works in Membrane Computing

Probabilistic Guarded P systems (PGP systems) display similarities with other
frameworks in Membrane Computing. As a sample, in P systems with proteins
on membranes are a type of cell-like systems in which membranes might have
attached a set of proteins which regulate the application of rules, whilst in
PGP systems each cell has only one flag. Therefore, some rules are applicable
if and only if the corresponding protein is present. More information about
this kind of P systems can be found in [185, 186].

When comparing PGP systems and Population Dynamics P systems [51], it is
important to remark the semantic similarity between flags and polarizations,
as they both define at some point the context of each compartment. Never-
theless, as described at the beginning of this chapter, upon the application
of a rule r ≡ {f} [u, f]i → [v, g]i flag f is consumed, thus ensuring that r
can be applied at most once to any configuration. This property keeps PGP
transitions from yielding inconsistent flags; at any instant, only one rule at
most can change the flag in each membrane, so scenarios in which inconsistent
flags produced by multiple rules are impossible. Moreover, in PDP systems
the number of polarizations is limited to three (+, - and 0), whereas in their
PGP counterpart depends on the system itself. Finally, each compartment in
PDP systems contains a hierarchical structure of membranes, which is absent
in PGP systems. Figure ?? summarizes this comparison.

Chapter 5. Probabilistic Guarded P Systems 112

PGP systems
P systems
with proteins PDP systems

Structure
Tissue–like (given

by a directed

graph)

Cell–like (given by

a rooted tree)

Tissue–like (given

by a directed

graph of environ-

ments containing

a rooted tree

each)

Rule

Each left–hand

side contains one

flag and a multiset

of objects

Each left–hand

side contains one

protein and one

object

Each left–hand

side contains one

polarization and a

multiset of objects

Affected compartments

The application of

a rule might af-

fect, at most, two

cells in the system

The application of

a rule affects one

and only one cell

in the system

The application of

a rule might af-

fect, at most, two

cells in the system

Number of applications

Each rule of type

r ≡ {f} [u, f]i →
[v, g]i can be ap-

plied, at most,

only once to any

configuration

Every rule is pos-

sible to be applied

multiple times to

any configuration

Every rule is pos-

sible to be applied

multiple times to

any configuration

Number of flags

For each configu-

ration, there ex-

ists only one flag

per cell

For each config-

uration, there

might exist mul-

tiple proteins per

cell

For each configu-

ration, there ex-

ists only one po-

larization per cell

Figure 5.2: Comparison of PGP systems and P systems with proteins

5.1. Formal description of PGP systems 113

5.1.4 Some definitions on the model

As it is the case in Logic Network Dynamic P systems, in PGP systems some
definitions are introduced prior to describing simulation algorithms. These
concepts are analogous to those described in Chapter 4, but obviously adapted
to the syntax of PGP systems.

Remark 5.4. For the sake of simplicity, henceforth the following notation will
be used. For every cell i , 1 ≤ i ≤ q, and t , 0 ≤ t ≤ T, the flag and multiset
of cell i in step t are denoted as xi,t ∈ Φ and Mi,t ∈ M(Γ), respectively.
Similarly, |u|y, where u ∈ M(Γ), y ∈ Γ denote the number of objects y in
multiset u.

Definition 5.8. For each r ∈ RE such as r is of the form r = {f} [u]i → [v]j,
i and j denote the left hand–side label and right–hand side label respectively.
Similarly, if r is of the form r = {f} [u, f]i → [v, g]i, i denotes both the left
hand–side and the right–hand side label.

Definition 5.9. For each u ∈ M(Γ), f ∈ Φ and 1 ≤ i ≤ q, Bi,f,u ={
ri,j,1, . . . , ri,j,hi,j

}
denotes the block of communication rules having {f} [u]i

as left–hand side. Similarly, Bi,f,u,f = {ri,k,1} denotes the block of context–
changing rules having {f} [u, f]i as left–hand side.

Remark 5.5. For each i, 1 ≤ i ≤ q, we consider a total order in the set of
all blocks associated with cell i : {Bi,1, . . . , Bi,oi}, where oi denotes the number
of different blocks composed of rules associated with cell i. In addition, we
consider a total order in Bi,j =

{
ri,j,1, . . . , ri,j,hi,j

}
, where hi,j(1 ≤ i ≤ q, 1 ≤

j ≤ oi) denotes the number of rules in block Bi,j.

It is important to recall that, as it is the case in PDP systems, the sum
of probabilities of all the rules belonging to the same block is always equal
to 1 – in particular, rules with probability equal to 1 form individual blocks.
Consequently, blocks of context–changing rules are composed solely of a rule.
In addition, rules with overlapping (but different) left–hand sides are classified
into different blocks.

Definition 5.10. A PGP system is said to feature object competition if there
exists at least a pair of overlapping left–hand sides (possibly of different type)
{f} [u]i, {f} [v]i or {f} [u, f]i, {f} [v, f]i, where u, v ∈ M(Γ), u 6= v and u ∩
v 6= ∅, 1 ≤ i ≤ q, f ∈ Φ.

Chapter 5. Probabilistic Guarded P Systems 114

Remark 5.6. It is worth noting that all rules in the model can be consistently
applied. This is because there can only exists one flag f ∈ Θ at every membrane
at the same time, and, consequently, at most one context–changing rule r ≡
{f} [u, f]i → [v, g]i can consume f and replace it (where possibly f = g).

Definition 5.11. Given a block Bi,f,u or Bi,f,u,f , where u ∈M(Γ), f ∈ Φ,
1 ≤ i ≤ q and a configuration Ct = {x1,M1, . . . , xq,Mq} , 0 ≤ t ≤ T ,
the maximum number of applications of such a block in Ct is the maximum
applications of any of its rule in Ct.

5.2 Simulation of PGP systems

When simulating PGP systems, there exist two cases, according to the model:
if there exists object competition or not. In this work, only algorithms for
the second case are introduced, but some ideas are given to handle object
competition.

5.2.1 Temporary data structures

In addition to the elements of PGP systems, some data structures are used as
temporary buffers in simulators, which are:

AB (Applicable Blocks): an array of characters of dimension q × NBM ,
where NBM is the maximum number of blocks for all membranes. On
every instant t, each element APi,j, 1 ≤ i ≤ q, 1 ≤ j ≤ NBM , stores
true if xi = f and false if fi 6= f , where Bi,j = Bi,f,u ∨Bi,f,u,f .

NBA (Number of Block Applications): an array of integer numbers of
dimension q ×NBM in which each element NBAi,j, 1 ≤ i ≤ q, 1 ≤ j ≤
NBM , stores the number of applications of block Bi,j.

NRA (Number of Rule Applications): an array of integer numbers of di-
mension q ×NBM ×NRM , where NRM is the maximum number of rules
for all blocks in all membranes. Each element NRAi,j,k, 1 ≤ i ≤ q, 1 ≤
j ≤ NBM , 1 ≤ k ≤ NR, stores the number of applications of rule ri,j,k,
identified by its cell, block and local identifier inside its block.

5.2.2 Simulation algorithm

The algorithm for simulation of PGP systems receives three parameters: the
P system Π to simulate, the number of steps T and an integer number Riter

5.2. Simulation of PGP systems 115

which indicates for how many cycles block applications are assigned among
their rules. That is, the algorithm distributes the applications of each block
among its rules for Riter cycles, and after that, block applications are maxi-
mally assigned among rules in a single cycle. Algorithm 5.2.4 performs this
function. When simulating PGP systems without object competition, it is not
necessary to randomly assign objects among blocks; as they do not compete
for objects, then the number of times that each block is applied is always equal
to its maximum number of applications. As it is the case of DCBA for PDP
systems [138], the simulation algorithm heavily relies on the concept of block,
being rule applications secondary. However, DCBA handles object competi-
tion among blocks, penalizing more those blocks which require a larger number
of copies of the same object, which is inspired in the amount of energy required
to join individuals from the same species, whereas object competition is not
supported on the proposed algorithm. Algorithm 5.2.1 describes a simulation
algorithm for PGP systems without object competition.

Algorithm 5.2.1 Algorithm for simulation of PGP systems
Input:

• T : an integer number T ≥ 1 representing the iterations of the simulation.

• RIter an integer number RIter ≥ 1 representing non–maximal rule iterations (i.e.,
iterations in which the applications selected for each rule do not necessarily need to
be maximal).

• Π = (Γ,Φ,R,GR, pR, (f1,M1), . . . , (fq,Mq)): a PGP system of degree q ≥ 1.

1: for t← 1 to T do
2: Check block flags (see Algorithm 5.2.2)
3: Distribute objects among blocks (see Algorithm 5.2.3)
4: Distribute applications among rules (see Algorithm 5.2.4)
5: Generate objects (see Algorithm 5.2.5)
6: end for

On each simulation step t, 1 ≤ t ≤ T and membrane i, 1 ≤ i ≤ q, the fol-
lowing stages are applied: Flag checking, Object distribution, Rule application
distribution and Object generation.

5.2.2.1 Flag checking

The first stage consists on checking which rules are guarded by flags which
comply with fi ∈ Φ. If this is true, then a marker ABi,j for block j in membrane
i is set to true, setting it to false otherwise. This marker is checked later in

Chapter 5. Probabilistic Guarded P Systems 116

Algorithm 5.2.3 to check block applicability. Algorithm 5.2.2 describes this
procedure.

Algorithm 5.2.2 Flag checking

for i← 1 to q do
for j ← 1 to oi do

if Bi,j = Bi,f,u∨Bi,j = Bi,f,u,f then . If the rule is guarded by flag f
if xi,t−1 = f then

ABi,j ← true
else

ABi,j ← false
end if

end if
NBAi,j ← 0
for k ← 1 to hi,j do . Initially, all rule applications are 0

NRAi,j,k ← 0
end for

end for
end for

5.2.2.2 Object distribution

In this stage, objects are distributed among blocks. As the system to simulate
does not feature object competition, the number of applications of each block
is its maximum. Then, objects are consumed accordingly. Algorithm 5.2.3
describes this procedure.

5.2. Simulation of PGP systems 117

Algorithm 5.2.3 Object distribution

for i← 1 to q do
for j ← 1 to oi do

if ABi,j = true then

NBAi,j ← min(
Mi,t−1(y)

|u|y) ∀y ∈ Γ, where

Bi,j = Bi,f,u ∨Bi,j = Bi,f,u,f and |u|y > 0 . The number
of block applications is the minimum of all quotients between available
and consumed objects

Mi,t =Mi,t−1 −NBAi,j · u
else

NBAi,j ← 0
end if
if NBAi,j > 0 ∨Bi,j = Bi,f,u,f then

xi,t ← f . Update the membrane flag
end if

end for
end for

5.2.2.3 Rule application distribution

Next, objects are distributed among rules according to a binomial distribution
with rule probabilities and maximum number of block applications as para-
meters. This algorithm is composed of two stages maximal and non–maximal
repartition. In the maximal repartition stage, a rule in the block is randomly
selected according to a uniform distribution, so each rule has the same proba-
bility to be chosen. Then, its number of applications is calculated according
to an ad–hoc procedure based on a binomially distributed variable B(n, p),
where n is the remaining number of block applications to be assigned among
its rules and p is the corresponding rule probability. This process is repeated a
number Riter of iterations for each block Bi,j, 1 ≤ i ≤ q, 1 ≤ j ≤ oi. Algorithm
5.2.4 describes this procedure. If, after this process, there are still applications
to assign among rules, a rule per applicable block is chosen at random and
as many applications as possible are assigned to it in the maximal repartition
stage. An alternative approach would be to implement a multinomial distri-
bution of applications for the rules inside each block, such as the way that
it is implemented on the DCBA algorithm [138]. A method to implement a
multinomial distribution would be the conditional distribution method, which
emulates a multinomial distribution based on a sequence of binomial distri-

Chapter 5. Probabilistic Guarded P Systems 118

butions [59]. This would require to normalize rule probabilities for each rule
application distribution iteration. This approach has also been tested on the
simulation algorithm, but was discarded because it tended to distribute too
few applications in the non–maximal repartition stage, thus leaving too many
applications for the rule selected in the maximal repartition one.

Algorithm 5.2.4 Rule application distribution

for i← 1 to q do
for j ← 1 to oi do

for k ← 1 to hi,j do
NRAi,j,k ← 0

end for
end for

end for
for l← 1 to RIter do

for i← 1 to q do
for j ← 1 to oi do

k ← a uniform random integer number in {1, . . . , hi,j} . Select a
random rule ri,j,k in Block Bi,j

lnrap← B(NBAi,j, pR(ri,j,k)) . B is the binomial distribution
NRAi,j,k ← NRAi,j,k + lnrap . Update rule applications
NBAi,j ← NBAi,j − lnrap

end for
end for

end for
for i← 1 to q do

for j ← 1 to oi do
k ← a uniform random integer number in {1, . . . , hi,j}
NRAi,j,k ← NRAi,j,k +NBAi,j
NBAi,j ← 0

end for
end for

5.2.2.4 Object generation

Lastly, rules are applied as indicated in their right–hand side. Each rule ge-
nerates objects according to its previously assigned number of applications.
Algorithm 5.2.5 describes this procedure.

5.3. Parallel simulation of PGP systems 119

Algorithm 5.2.5 Object generation

for i← 1 to q do
for j ← 1 to oi do

for k ← 1 to hi,j do
Mi,t ←Mi,t +NRAi,j,k · v, where RHS(ri,j,k) = [v]j∨

RHS(ri,j,k) = [v, f]i
end for

end for
end for

5.2.3 Simulation algorithm with object competition

The algorithm proposed in this chapter works only for models without object
competition. This is because the models studied in the case studied did not
have object competition, so this feature was not required. However, it might be
interesting to develop new algorithms supporting it. They would be identical to
their counterpart without object competition, solely differing in the protocol
by which objects are distributed among blocks. As an example, it would
be possible to adapt the way in which objects are distributed in the DCBA
algorithm [139].

5.3 Parallel simulation of PGP systems

In this section, a parallel algorithm for simulation of PGP systems is described.
This algorithm has been implemented on CUDA/C++, so as to take advan-
tage of the parallel architecture of GPU cards. PGP systems are probabilistic
models, therefore, repeated simulation of the same system helps understand its
dynamics with better accuracy than single simulation, as outliers are filtered
out and statistical metrics over output values, such as mean and typical devi-
ation, are progressively approximated due to the law of large numbers, which
states that, when a random experiment is repeated ad infinitum, the percent-
age difference between the expected and actual values tends to zero [96].

5.3.1 Simulator data structures

The arrays employed to simulate PGP systems on parallel architectures are:

C (Cardinalities): an array of integer numbers of dimension q × NΓ × T ,
where q ≥ 1 is the degree of the system, NΓ is the size of Γ and T ≥ 0

Chapter 5. Probabilistic Guarded P Systems 120

is the number of steps simulated. Each element Ci,j,t, 1 ≤ i ≤ q, 1 ≤
j ≤ NΓ, 1 ≤ t ≤ T , represents the number of objects of type j in cell i
in configuration t.

F (Flags): an array of integer numbers of dimension q × t. Each element
Fi,t, (1 ≤ i ≤ q, 1 ≤ t ≤ T), represents the flag in cell i in configuration
t.

BC (Block Cardinalities): an array of integer numbers of dimension NB ×
NΓ. Each element BCk,j, 1 ≤ k ≤ NB, 1 ≤ j ≤ NΓ, represents the
number of objects of type j consumed by block k.

BL (Block Labels): an array of integer numbers of dimension NB. Each
element BLk, 1 ≤ k ≤ NB, represents the label of block k.

BF (Block Flags): an array of integer numbers of dimension NB, where
NB ≥ 1 is the total number of blocks in the system. Each element
BFk, 1 ≤ k ≤ NB, represents the flag of block k.

BT (Block Type): an array of characters of dimension NB. Each element
BTk, 1 ≤ k ≤ NB, can have value true or false. If BTk = true, then
BTk is of the form Bi,f,u,f . Otherwise, BTk is of the form Bi,f,u.

BS (Block Size): an array of integer numbers of dimension NB. Each ele-
ment BTk, 1 ≤ k ≤ NB, represents the number of rules in Bk.

BR (Block Rules): an array of integer numbers of dimension NB × MB,
where MB = max{BSk : 1 ≤ k ≤ NB}. Each element BTk,l, 1 ≤ k ≤
NB, 1 ≤ l ≤MB, identifies a rule rk,l in block Bk.

RL (Rule right–hand side Label): an array of integer numbers of dimen-
sion NR, where NR ≥ 1 is the total number of rules in the system. Each
element RLl, 1 ≤ l ≤ NR, represents the right–hand side label of rule rl.

RC (Rule right–hand side Cardinalities): an array of integer numbers of
dimension NR × NΓ. Each element RCl,j, 1 ≤ l ≤ NR, 1 ≤ l ≤ NΓ,
represents the number of objects of type j consumed by rule rl.

RPROB (Rule Probability): an array of real numbers of dimension NR.
Each element RPROBl, 1 ≤ l ≤ NR, represents the probability of rule
rl.

5.3. Parallel simulation of PGP systems 121

NCB (Non–Consuming Blocks): an array of characters of dimension NB

in which NCBk = true, 1 ≤ k ≤ NB, if B[∅,f]i , f ∈ Φ, 1 ≤ i ≤ q, and
NCBk = false otherwise.

In addition to the structures used to represent the system, other arrays are
used as well to store temporary data necessary for simulations. These are:

AB (Applicable Blocks): an array of characters of dimension NB in which
each element APk, 1 ≤ k ≤ NB, stores true if fi = f and false if fi 6= f ,
where Bk = Bi,f,u ∨Bi,f,u,f .

NBA (Number of Block Applications): an array of integer numbers of
dimension NB in which each element NBAk, 1 ≤ k ≤ NB, stores the
number of applications of block Bk.

NRA (Number of Rule Applications): an array of integer numbers of di-
mension NR in which each element NRAl, 1 ≤ l ≤ NR, stores the
number of applications of rule rl.

5.3.2 Simulation algorithm

Algorithm 5.3.1 describes how threads are distributed to take advantage of
parallel architectures when simulating PGP systems without object competi-
tion. The meaning of each stage is the same as in its sequential counterpart
Algorithm 5.2.1.

Algorithm 5.3.1 has been defined so it can be implemented on any parallel
platform. In particular, an implementation on CUDA (namely PGPCUDA)
has been provided as a result of this thesis. In this implementation, each
parallel call in Algorithm 5.3.1 is implemented as a kernel. As it is explained
in Chapter 2, in CUDA threads are distributed in thread blocks. The way in
which threads are arranged in blocks in each kernel is sometimes chosen because
of convenience to identify data or, in the case of a base block dimension of 256,
it was the one which gave best performance results. Table 5.3 explains this
thread distribution.

Chapter 5. Probabilistic Guarded P Systems 122

Algorithm 5.3.1 Parallel algorithm
Input:

• T : an integer number T ≥ 1 representing the iterations of the simulation.

• BIter: an integer number BIter ≥ 1 representing non–maximal block iterations.

• RIter: an integer number RIter ≥ 1 representing non–maximal rule iterations.

• Data structures from Subsection 5.3.1.

1: for t← 1 to T do
2: Check block flags on NB threads (see Algorithm 5.3.2)
3: Clear rule applications on NR threads (see Algorithm 5.3.3)
4: Calculate block applications on NB ×NΓ threads (see Algorithm 5.3.4)
5: Clear non–processed block applications on NB threads (see Algorithm 5.3.5)
6: Consume block objects on q ×NΓ threads (see Algorithm 5.3.6)
7: for n← 1 to RIter do
8: Distribute applications among rules on NB threads (see Algorithm 5.3.7)
9: end for

10: Distribute applications among rules maximally on NB threads (see Algorithm 5.3.9)
11: Generate objects on NR ×NΓ threads (see Algorithm 5.3.10)
12: end for

5.4. Software environment 123

Algorithm number Block structure

5.3.2 256× S ×NB

5.3.3 256× S ×NR

5.3.4 256× S ×NΓ ×NB

5.3.5 256× S ×NB

5.3.6 256× S ×NB × q
5.3.7 256× S ×NB

5.3.9 256× S ×NB

5.3.10 256× S ×NΓ ×NR

Figure 5.3: Thread distribution among blocks for the proposed GPU implementation of Algorithm 5.3.1. S, NΓ, q, NB
and NR denote the number of simulations and the alphabet size, degree, total number of blocks and total number of rules
in the system, respectively. Block size was set to 256 because it offered the best performance results.

Algorithm 5.3.2 Parallel flag checking
Input:

• F, BL, BF, AB, and NBA: see Subsections 5.2.1 and 5.3.1.

• l: an integer number, 1 ≤ l ≤ NB, identifying the thread in which the
algorithm is applied

if FBLl,t−1 = BFl then
ABl ← true

else
ABl ← false

end if
NBAl ←∞

5.4 Software environment

A simulator for PGP systems without object competition has been incorpo-
rated on P–Lingua. In addition, as it is the case in ENPSs discussed in Chap-
ter 3, a C++ simulator for PGP systems (namely PGPC++) has also been
implemented, so as to measure the performance gain of PGPCUDA by using a
low–level programming language. The libraries used for random number gene-
ration during simulations are COLT [3] in the P–Lingua simulator, standard
std::rand [15] and CURAND [10] for PGPC++ and PGPCUDA, respectively.
In the case of PGPCUDA, CURAND is used as an auxiliary library to generate

Chapter 5. Probabilistic Guarded P Systems 124

Algorithm 5.3.3 Parallel rule applications clearing
Input:

• NRA: Data structures from Subsection 5.2.1.

• l: an integer number, 1 ≤ l ≤ NR, identifying the thread in which the
algorithm is applied.

NRAl ← 0

Algorithm 5.3.4 Calculate block applications
Input:

• C, BC, BL, AB, NBA and NCB: see Subsections 5.2.1 and 5.3.1

• l, j: two integer numbers, 1 ≤ l ≤ NB, 1 ≤ j ≤ NΓ, identifying the
thread in which the algorithm is applied.

if ABl = true then
if NCBl = true then . If Block l is of the form Bi,f,∅,f

NBAl ← 1
else

if BCl,j > 0 then

lmaxnbap←
CBLl,j ,t−1

BCl,j

if NBAl > lmaxbnap then
NBAl ← lmaxnbap

end if
end if

end if
end if

5.4. Software environment 125

Algorithm 5.3.5 Clear non–processed block applications without object-
competition
Input:

• NBA: see Subsection 5.2.1.

• l: an integer number, 1 ≤ l ≤ NB, identifying the thread in which the
algorithm is applied.

if NBAl =∞ then
NBAl ← 0

end if

Algorithm 5.3.6 Consume block objects
Input:

• C, BC, BL and NBA: see Subsections 5.2.1 and 5.3.1.

• l, j: two integer number, 1 ≤ l ≤ NB, 1 ≤ j ≤ NΓ, identifying the thread
in which the algorithm is applied.

if NBAl > 0 ∨BCl,j > 0 then
CBLl,j,t ← CBLl,j,t−1 −NBAl ·BCl,j

end if

Algorithm 5.3.7 Distribute applications among rules
Input:

• BS, BR, PPROB, NRA, NBA, SQ and SQB: see Subsections 5.2.1
and 5.3.1.

• l: an integer number, 1 ≤ l ≤ NB, identifying the thread in which the
algorithm is applied.

if NBAl > 0 then
j ← a uniform random integer number in {1, . . . , BSl}
lrrand← B(NBAl, PPROBBRj), where B is the binomial distribution
NRABRj ← NRABRj + lrrand (see Algorithm 5.3.8)
NBAl ← NBAl − lrrand

end if

Chapter 5. Probabilistic Guarded P Systems 126

Algorithm 5.3.8 Calculate binomial distribution
Input:

• j: an integer number j > 0 expressing the times to repeat the experiment.

• p: a real number p ∈ [0, 1] expressing the probability of success for the
experiment.

s← 0
for i← 1 to j do

k ← a uniform random real number in [0, 1]
if k ≤ p then

s← s+ 1
end if

end forreturn s

Algorithm 5.3.9 Distribute applications among rules maximally
Input:

• BS, BR, NRA and NBA: see Subsections 5.2.1 and 5.3.1

• l: an integer number, 1 ≤ l ≤ NB, identifying the thread in which the
algorithm is applied

if NBAl > 0 then
j ← a uniform random integer number in {1, . . . , BSl} . Choose a

random rule in Block Bl

NRABRj ← NRABRj +NBAl
NBAj ← 0

end if

Algorithm 5.3.10 Generate objects
Input:

• C, RC, RL and NRA: see Subsections 5.2.1 and 5.3.1

• l, j: two integer number, 1 ≤ j ≤ NΓ, 1 ≤ l ≤ NR, identifying the thread
in which the algorithm is applied

if NRAl > 0 then
CRLl,j,t ← CRLl,j,t +RCRLl,j ·NRAl

end if

5.4. Software environment 127

random numbers in Algorithm 5.3.8, while in PGPC++ the facilities provided
by std::rand are directly used. These libraries provide a wide range of func-
tionality to generate and handle random numbers, and are publicly available
under open source licenses.

5.4.1 P–Lingua extension

In order to define PGP systems, P–Lingua has been extended to support PGP
rules. Specifically, given f, g ∈ Φ, u, v ∈M(Γ), 1 ≤ i, j ≤ q, p = pR(r), rules
are represented as follows:

{f} [u]i
p→ [v]j, ≡ @guard f ?[u]’i --> [v]’j :: p ;

{f} [u, f]i → [v, g]i ≡ @guard f ?[u,f]’i --> [v,g]’i :: 1.0;

In both cases, if p = 1.0, then :: p can be omitted. If i = j, then

{f} [u]i
p→ [v]j can be written as @guard f ?[u --> v]’i :: p ;. Like-

wise, {f} [u, f]i → [v, g]i can always be written as @guard f ?[u,f -->

v,g]’i ;. Moreover, some additional constructs have been included to ease
parametrization of P systems. The idea is to enable completely parametric de-
signs, so as experiments can be tuned by simply adjusting parameters, leaving
modifications of P–Lingua files for cases in which changes in semantics are in
order.

&{multiset }:{iterators } In this sentence, multiset is an ordinary multi-
set, whose indexes might depend on the iterators defined in iterators.
iterators is a standard list of iterators in P–Lingua separated by com-
mas. The types of objects generated in the multiset part might depend
on the values of the variables defined in iterators.

It is worth noting that this sentence has some limitations. For instance,
variables defined in these iterators cannot be used again in the same P–
Lingua specification. In addition, those variables used in multiset which
are defined in iterators can only be used as such, that is, they cannot
be used as subindexes or arithmetical expressions. The reasons for these
constraints correspond to technical implementation details which will not
be discussed here.

@mu(label)*=cell structure ; In this sentence, label is a cell label defined
at some point in the P–Lingua specification. cell structure is a standard
P–Lingua, tissue–like membrane structure, such as the ones which can
be defined after the @mu sentence. This sentence adds the skin of mem-
brane structure as a child cell of label. As cells in tissue–like structures

Chapter 5. Probabilistic Guarded P Systems 128

have no parent, label = 0 for all tissue–like models. In cell–like models,
the behaviour is the same, with the exception that cell structure is a
cell–like structure, label can be any label in the system and the symbol
*= is replaced by +=.

@property(label)=set ; This sentence allows designers to define specific
properties for objects. set is a set of symbols, which can be extended by
external, standard iterators or internal ones as defined at the first point
of this list. In the case of PGP systems, @property(flag)=set defines
flags f ∈ Φ.

In addition, two new formats have been integrated into P-Lingua. These
formats (XML–based and binary) encode P systems representing labels and
objects as numbers instead of strings, so they are easily parsed and simulated
by third–part simulators such as PGPC++ and PGPCUDA. For the sake of
implementation simplicity, these simulators output their results by identifying
objects and flags as numbers instead as character strings, but the software GUI
described in Subsection 5.4.2 enables automatic translation of these results into
others in which labels and objects are represented as strings, as usual.

5.4.2 A graphical environment for PGP systems

A new GUI named MeCoGUI has been developed for the simulation of PGP
systems. MeCoSim [172] could have been used instead. However, in the en-
vironment in which the simulators were developed there exist some pros and
cons on this approach versus and ad–hoc simulator.

MeCoSim is an integrated development environment (IDE). That is to say, it
provides all functionality required for the simulation and computational analy-
sis of P systems. To define the desired input and output screens, it is necessary
to configure a spreadsheet by using an ad–hoc programming language. Howe-
ver, it would entail teaching this language to prospective users, which are
proficient in R programming language [14, 76] instead. In this sense, a more
natural approach for them is to develop a GUI in which users can define input
parameters and results analysis on R.

To do so, the developed GUI takes as input a P system file on P–Lingua format
and a CSV file encoding its parameters, and outputs a CSV file which contains
simulation results. This way, users can define inputs and analyse outputs on
the programming language of their choice. CSV is a widespread, simple and
free format with plenty of libraries for different languages. This flexibility
comes at the cost concerning that the developed GUI is not an IDE, as input

5.4. Software environment 129

parameters and simulation analysis cannot be directly input and viewed on the
GUI. Rather, it is necessary to develop applications to generate and process
these CSV files which depend on the domain of use. In some simulators (such
as PGPC++ and PGPCUDA), the output CSV files represent labels and ob-
jects as integers, but this application includes a button to translate output
files from PGPC++ and PGPCUDA into string–representative file formats.
Figure 5.4 displays the main screen of this application.

Figure 5.4: Main screen of MeCoGUI

MeCoGUI can also translate P systems into machine–readable formats,
such as those read by PGPC++ and PGPCUDA. Finally, it is important to
remark that these applications play the role of domain–specific spreadsheets
on MeCoSim, so MeCoGUI can simulate any type of P system supported
by P–Lingua. This is because only external applications for input data and
simulation processing depend on the domain, not MeCoGUI itself, which is
general for any type of P system. Figure Figure 5.5 graphically describes the
workflow for P–Lingua and for PGPC++ and PGPCUDA.

Chapter 5. Probabilistic Guarded P Systems 130

Figure 5.5: Workflow for P-Lingua simulator (upper branch) and PGPC++ and PGPCUDA (lower branch) for MeCoGUI

Part III

Results

131

Chapter 6

Case studies

This chapter discusses two case studies on the application of the models pre-
viously described. The phenomena studied are:

• An application of LNDP systems on genomic data about the flowering
process of Arabidopsis thaliana. In this application, we will instantiate
a model of LNDP systems for a specific gene regulatory network from
Arabidopsis thaliana. The results will be contrasted with those from the
improved Logic Analysis of Phylogenetic Profiles method. This will be
introduced in Section 6.1.

• An application of PGP systems on experimental data about conservation
trends of the white cabbage butterfly (Pieris napi oleracea). In this
application, the parameters are directly given by experts in the species,
who have validated the model as well. This will be introduced in Section
6.2.

6.1 Modelling logic networks with LNDP sys-

tems: Arabidopsis thaliana, a case study

The first case study models the behaviour of a Logic Network on the flowering
process of Arabidopsis thaliana, indicating the parameters and outputting data
obtained from the simulation of such a model. It is important to recall that
the aim of LNDP systems is to reproduce the behaviour of the improved LAPP
method [229], rather than be validated on field data.

133

Chapter 6. Case studies 134

6.1.1 A Logic Network on Arabidopsis thaliana flowe-
ring processes

Arabidopsis is a long–day botanic genre whose genetic and protein interaction
networks are widely studied due to its genetic resemblance with rice and its
implications on transgenic crops [207, 120]. Zhang and Zuo stated that these
conditions can promote reproductive growth and induce early flowering [237].
However, short–day conditions can promote vegetative growth and induce late
flowering or even no–flowering. To understand the intrinsic mechanisms of
Arabidopsis flowering in different lighting conditions, the relationships of re-
lated genes need to be compared.

In the past ten years, much work has been reported in the field about A.
thaliana flowering. Imaizumi et al. found that FKF1 is a blue light receptor
which regulates flowering [110]. Later, they also showed that FKF1 together
with Flavin–Binding and Kelch Repeat degrade Cycling Dof Factor1 (CDF1)
to eventually control CO [109]. In the same year, Abe et al. found that Flo-
wering Locus T (FT) together with FD activate Apetala1 (AP1) to initiate
floral development and promote floral transition at the shoot apex [18]. Pre-
vious work deals only with one or few genes related to flowering. However,
the networks considered in this work focus on the relationships among a large
number of genes systematically. Bowers et al. proposed the Logic Analysis
of Phylogenetic Profiles (LAPP) [25]. This method helps researchers to know
biological functions of some genes or proteins on the basis of phylogenetic pro-
files, and has been developed both on theory and application [26, 238, 228]. For
example, Wang et al. developed the improved LAPP method, and reversely
constructed a logic network of sixteen genes in shoot for Arabidopsis under
salt stimuli [228].

6.1.2 A case study on Arabidopsis thaliana

This model is experimentally verified on a logic network which regulates flo-
wering processes associated with Arabidopsis thaliana on a long–day scenario.
This relatively large network integrates gene interaction samples from
NCBI/EBI database [9]. This logic network has been constructed according
to the procedure described by Bowers et al. [25]. The total number of genes
in the network is 29, whereas the total number of interactions is 99 (23 unary
and 76 binary). Therefore, only a few different types of all possible interac-
tions collected in Subsection 4.2.1 are present in this network. Only unary
strong promotion and inhibition binary AND–like and OR–like interactions

6.1. Modelling logic networks with LNDP systems: Arabidopsis thaliana, a case

study 135

are present. The vast majority of these interactions are AND–like with both
inputs and result in non–negated form (that is, G′j = Gj, G

′
k = Gk and

G′l = Gl).
Gene network data is provided in Appendix A. Specifically, gene initial states

are reflected in Figure A.1 from this appendix. Unary and binary interactions
are reflected in Figure A.2 and in Figures A.3, and A.4, respectively.

Number of interactions Initial gene states

Unary interactions Binary interactions

Figure 6.1: Input Data on MeCoSim interface

To verify the behaviour of the model on this scenario, the improved LAPP
method (as presented in Wang et al. [229]) has been run for 30 steps on this
data. Similarly, the LNDP model has been simulated for 30 cycles. Each cycle
in an LNDP system consists on 15 computation steps, so the total number

Chapter 6. Case studies 136

Final gene states

Figure 6.2: Simulation Results from MeCoSim interface

of steps simulated in the model is 30 × 15 = 450. LNDP model simulations
were carried out by using MeCoSim [172], thus easing parameter input and
outcome analysis. Figures 6.1 and 6.2 display the MeCoSim input tables used
and simulation results obtained in this case study. Due to the table structure
featured by MeCoSim to define parameters, the network data was easily fed
into the application, as well as straightforwardly copied and pasted into com-
mercial spreadsheets. The results match the ones obtained from the execution
of the improved LAPP method on the same input data, verifying that, on this
gene network and scenario, the P system model behaviour is analogous to that
from the improved LAPP method.

6.2. A PGP model on the ecosystem of Pieris napi oleracea 137

6.2 A PGP model on the ecosystem of Pieris

napi oleracea

This section introduces a computational model based on PGP systems on the
behaviour and conservation trends of Pieris napi oleracea (P. n. oleracea, for
short). This species, commonly known as mustard white butterfly, is native
from eastern North America. The aim of the model is to predict population
growth trends and evolutionary responses of two genotypes and three geno-
types of this species, with the application of updating its conservation status
in accordance with the model simulation results.

6.2.1 Ecology of the species

As described by Keeler and Chew [118], P. n. oleracea is generally bivoltine
(i.e., has two generations per year), and the first adults emerging in early
May [159]. Females laying period extends from 3 to 15 days after emergence,
and oviposit on native crucifers such as toothwort Cardamine diphylla [42], but
also on bolting plants of the invasive species garlic mustard (Alliaria petiolata).
Eggs hatch in 5–7 days and larvae develop through five instars on the food plant
selected by the mother, although they are highly likely to survive to adulthood
upon reaching the 3rd instar and can migrate among plants when its carrying
capacity reaches critical levels [118], upon food source depletion or when they
encounter offspring from different females [57]. P. n. oleracea are subjected
to parasitism from parasitoid wasp Cotesia glomerata L., whose population
is low during April and May due to over–winter mortality [21], but abundant
during the second P. n. oleracea generation [21, 20]. Pupae develop into adults
within 7 days or enter pupal diapause (an hibernation–like state), and emerge
as adults the following spring. Diapause is highly labile and phenotypically
variable [231]. The second generation hatches in July and develops similarly to
the first, but most pupae from the second generation enter diapause. A partial
third generation is sometimes seen in September, when there are sufficient host
plants and favourable environmental conditions [42, 159].

6.2.2 Case study

Since 1880’s, this species was thought to be seriously endangered, mainly due
to top–down [147] (introduction of Cotesia glomerata L., a parasitoid wasp)
and bottom–up [95] (invasion of A. petiolata) processes. Informally speaking,
bottom–up refers to effects caused by processes or factors working at trophic

Chapter 6. Case studies 138

levels below that of the focal species; whereas top–down refers to factors or
processes working at trophic levels above the focal species’ one [183, 106, 107].
The nature of both perturbations in the ecosystem is different; C. glomerata
was intentionally introduced in 1880 to control the spread of the white cabbage
butterfly (Pieris rapae) [19], an exotic invasive species which entered the US in
the 1860’s via Canada, whereas the introduction of A. petiolata in 1868 from
Europe to Washington D.C. and in mid 1900s to Massachusetts is thought to
be merely accidental [156].

The effects of both species on population levels of P. n. oleracea are also
dissimilar. C. glomerata individuals attacks larvae of P. n. oleracea by ovipo-
siting into their bodies. Upon hatching, C. glomerata larvae eat their way out
through the infected P. n. oleracea larva before transforming into adult individ-
uals. The image of Ridley Scott’s Alien [206] bursting out of the infected host
serves as an illustrative example of this process. On the contrary, the effect of
A. petiolata on the species is more complex. On the one hand, the area invaded
by A. petiolata overlaps C. diphylla’s, thus ravaging the natural habitat and
food source of P. n. oleracea [42]. On the other hand, A. petiolata lures P. n.
oleracea adults into laying eggs on it, due to some shared components of the
glucosinolate profile of C. diphylla [104, 197]. However, upon hatching, larvae
do not thrive due to deterrent agents isovitexin−6′−−β−−glucopyranoside
and alliarinoside [98, 198].

The resulting evolutionary pressure on P. n. oleracea might give place to two
complementary strategies: a possible scenario is that P. n. oleracea adults tend
to avoid ovipositing on A. petiolata, whilst in a different path larvae develop
tolerance to deterrents and/or possible toxins [117]. Keeler and Chew [117]
surprisingly found a positive correlation between oviposition preference for A.
petiolata and larval offspring that were able to develop on this novel host plant.

The proposed model intends to shed light on evolutionary trends of P. n. ol-
eracea and their strategies to cope with environmental disturbances in their
habitat. Data has been obtained first–hand by experts in the species, as well
as from stochastic models based on difference equations [118].

6.2.3 PGP systems as Individual Based Models

Ecological modelling is a mature discipline which studies how to reflect the
properties of an ecosystem into a formal model capable of being simulated
(or implemented, when possible) by computers. Traditional approaches in the
discipline include differential equations, especially well–studied Ordinary Dif-
ferential Equation (ODEs) models known as Lotka-Volterra systems [123]. To

6.2. A PGP model on the ecosystem of Pieris napi oleracea 139

account for the inherent randomness of ecosystems, new models in which events
are ruled by probabilities were introduced, which are known as stochastic mo-
dels [114]. One of such approaches are Individual Based Models or IBMs [115].
These kind of models directly reflect the behaviour and interactions of indivi-
duals in a system, rather than higher level abstractions in which subtle though
important details are omitted.

Although some prototypical models where introduced in the 1950’s decade [125],
the first IBM models date back to mid–1970’s [142] and some authors such as
Grimm recognize Kaiser et al. as pioneers on IBM modelling, as they in-
troduced novel formalisms which break away from classical approaches [115].
From then on, this fine–grained approach has been embraced by ecologists
and applied to a eclectic assortment of ecosystems. Grimm [86] argues that
the fascination of ecologists with IBMs stems from the fact that they allow
them to forget about high–level, abstract representations of reality and cram
up all knowledge they have from the system under study in the model. As
an example, he describes models of small mammals by Halle and Halle [97]
in which local, asynchronous interactions between individuals prove to be key
aspects on the species survival which tend to be overlooked by classical ap-
proaches. Nevertheless, he warns that, even though at first sight IBMs might
appear intuitive and natural, the expert modeller must learn which aspects
lay aside from the model and which ones consider. As a matter of fact, he
distinguishes between pragmatic models (those which provide a level of detail
hard to achieve with classical frameworks) and paradigmatic models (those
which share inherent characteristics, such as discreteness, closer to biological
reality than classical approaches). Finally, he concludes that IBM modellers
must be aware of keeping general perspective on the model, and maintaining
in the iteratively designed model evolution patterns which can be validated by
contrasting historical data.

Usually, IBMs provide solutions where classical models are no longer valid.
Judson [114] and Grimm et al. [87] argue that, in contrast to other scientific
disciplines (say nuclear physics or mathematics), biology lacks well–known na-
tural laws, and in IBMs rules of thumb and intuition trained by long years of
study fill the gap. Judson also acknowledges the role of stochastic methods in
capturing ecological indeterminism, especially when rare events are paramount
to understand the system’s dynamics [114]. However, this proximity to th e-
cologists’ manner of understanding the system under study comes at a cost;
 Lomnicki [127] remarks that IBMs introduce computational limitations not
present in classical approaches: IBMs handle a considerably larger number of
input parameters than their traditional counterparts, which takes its toll as a

Chapter 6. Case studies 140

greater computing power required. On the other hand, he acknowledges that
fine–grained, metapopulation–related spatial patterns such as local extinction
and emigration are easier to capture, and mentions the case of an IBM on
flour beetles capable of reflecting a chaotic, ecologically–significant behaviour
at a level almost impossible to attain with classical, analytical models without
resorting to confuse and intricate equations [55].

PGP systems can be considered as a particular case in Individual Based Mod-
els. This classification is important because it makes them susceptible for de-
sign and analysis procedures explained by Grimm [86], consequently regarding
PGP systems to be subjected to a well–known, consolidated methodology.

6.2.4 A PGP–based model on the ecosystem of Pieris
napi oleracea

Here the model for the dynamics of Pieris napi oleacea is presented. This
model captures the behaviour of the species in several stages, from egg to
butterfly. Only female individuals are considered. In the model, two plants
(Cardamine dihylla and Alliaria petiolata) are considered. These plants are
numbered as 1 and 2, respectively. Moreover, each butterfly is of one of the
following genotypes: heterozygous (type 1 or Rr), homozygous dominant (type
2 or RR) and homozygous recessive (type 3 or rr). Larvae undergo five instars
prior to adulthood; however, mortality in instar 4 is negligible, i.e., larvae en-
tering the 4th instart almost always enter the 5th, so it can be omitted [117].
Therefore, in the model only 4 instars are considered, being instar 5 represented
as if it was instar 4. Mortality of larvae varies throughout the years [43], so
the current year needs to be taken into account in the model. Although Pieris
napi oleracea populations are usually bivoltine, due to ecological availability
of a second non-native Brassicaceae, the cuckoo flower (Cardamine pratensis),
some individuals comprise a third generation per year [117]. Therefore, 3 gen-
erations per year are considered in the proposed model.

The dynamics of the model are composed of four stages which are repeated
cyclically. Stage 1 models butterfly emergence from pupae and potential im-
migration or emigration from the local population. Stage 2 models parasitism.
Stage 3 models larval migration between host plants (due to depletion of an
individual plant). Finally, Stage 4 models larva migration and transformation
into pupa, as well as pupa diapause. This model consists of a PGP system of
degree plants + 1, where plants denote the number of types of plant in the
system. Thus, the system is composed of one environment for each type of

6.2. A PGP model on the ecosystem of Pieris napi oleracea 141

plant plus an auxiliary environment for butterfly redistribution. Some of the
parameters are taken from [118] and [117], whereas others have been directly
provided by experts. Migrating butterflies parameters (Fy) have been adjusted
experimentally for the model, so as to emulate carrying capacity and clumping
factor constraints. Finally, the parameters synchronizing the model (nm, nls
and nc) have been adjusted so that the modelled ecosystem phenomena count
with enough simulation cycles to take place. All parameters used on the model
are described in Table ??. The model consists on a PGP system defined as
follows:

Π = (Γ,Φ,R,GR, pR, (f1,M1), . . . , (fq,Mq))

where:

• GR is a directed graph containing a node for each plant, plus one for
butterfly distribution. The current model only considers Cardamime
diphylla and Alliaria petiolata, so the degree of the system is 3.

• In the working alphabet Γ, P. n. oleracea individuals are represented
as outlined below. The meaning of nge, nin, ng, cl, nls and ny is
explained in Table ??.

Γ = {butg, butlg, butlai,g, eggg, pupag, pupadi, 1 ≤ g ≤ nge}∪
{larvain,i,g, 1 ≤ in ≤ nin, 1 ≤ g ≤ nge, 1 ≤ i ≤ ng}∪
{clj , 1 ≤ j ≤ cl} ∪ {cyk, 1 ≤ k ≤ ny} ∪ {dist, rst}

– Objects butg, butlg, butlai,g, eggg and pupag, 1 ≤ g ≤ nge, 1 ≤ i ≤
ng, represent butterflies, eggs and pupae of Phenotype g respec-
tively. Objects butlg and butlai,g represent ovipositing females and
those which have already oviposited, respectively, and Objects pupadg
represent pupae which have entered diapause.

– Objects larvain,i,g : 1 ≤ in ≤ nin, 1 ≤ g ≤ nge, 1 ≤ i ≤ ng,
represent larvae in instar in, phenotype g and generation i.

– Objects clj, 1 ≤ j ≤ nls, mark the time necessary for each develop-
ment stage to be completed. It is noteworthy that the development
of exemplars from larva to pupa takes considerably more time than
the other stages; so this stage is carried out by more transition steps
than the others.

– Objects cyk, 1 ≤ k ≤ ny, are objects indicating the current year
simulated.

– Object dist triggers the redistribution of butterflies among plants.
This distribution pattern varies among generations.

Chapter 6. Case studies 142

– Object rst restarts the clock for Stage 2.

• Alphabet Φ is composed of flags representing the current stage as out-
lined below.

Γ = {geni,j , 1 ≤ i ≤ ng + 1, 1 ≤ j ≤ ns+ 1, j 6= 2}∪
{geni,2,k, 1 ≤ i ≤ ng + 1, 1 ≤ k ≤ years}∪
{disti, issi, waiti, 1 ≤ i ≤ ng}

– Flags geni,j, 1 ≤ i ≤ ng + 1, 1 ≤ j ≤ ns + 1, j /∈ {2, 3}, represent
the current generation and stage in the model, eggs and pupae of
phenotype g, respectively. Objects geni,2,y and geni,3,y, 1 ≤ i ≤
ng + 1, 1 ≤ y ≤ ny, are represented separately, as Stages 2 and 3
depend on the current year of simulation.

– Flags disti, issi and waiti, 1 ≤ i ≤ ng, denote the time in which
butterflies are redistributed from cell 1 to the rest of the cells. Sim-
ilarly, objects issi, 1 ≤ i ≤ ng, indicate the time for butterflies to
migrate to cells j, 1 < j ≤ q, for redistribution. Finally, Objects
waiti, 1 ≤ i ≤ ng, indicate cells j, 1 < j ≤ q, to issue a signal dist
to cell 1 so that it prepares for butterfly redistribution.

• Steps per stage have been adjusted so each one has a reasonable time to
be simulated. Therefore, Stages 2 and 3 are given 3 steps each, whereas
stage 1 takes considerably longer and therefore is given 10 steps. Includ-
ing offset steps for transition between stages, the simulation of each year
takes 70 steps.

• GR = []1, []2, . . . , []np+1 is the cell structure.

• The initial multisets are:

– M1 = {butNgg }, 1 ≤ g ≤ nge, that is, cell 1 contains an initial
number of butterflies.

– Mk = {cl1, cy1}, 2 ≤ k ≤ np+1, that is, the rest of the cells contain
the initial year and clock cycle.

• The initial flags are:

– f1 = dist1

– fk = gen1,1, 2 ≤ k ≤ np+ 1

6.2. A PGP model on the ecosystem of Pieris napi oleracea 143

• The rules of R to apply are the following. First, those directly related
with processes regarding P. n. oleracea life–cycle are described, followed
by those which perform synchronization aspects. For the sake of simplic-
ity, those probabilities which are equal to 1 are omitted:

{disti} [butg]1
Propi,k−1→ [butg]k

 1 ≤ i ≤ ng
1 ≤ g ≤ nge
2 ≤ k ≤ np+ 1

– First, butterflies are distributed among plants.

{disti}[distnp, disti→disti+1]1, 1 ≤ i ≤ ng

– Then, the distribution flag is updated.

{geni,1} [but3
R→ but1]k

{geni,1} [but3
1−R→ but3]k

{
1 ≤ i ≤ ng
2 ≤ k ≤ np+ 1

– Some homozygous butterflies with phenotype rr might spontaneously
become heterozygous with probability R.

{geni,2} [larvain,i,g
(1−ω)→ [larvain,i,g]k

{geni,2} [larvain,i,g]k
ω·Se
np→ [larvain+1,i,g]j

{geni,2} [larvain,i,g
ω·(1−Se)→]k

1 ≤ in ≤ nin
1 ≤ i ≤ ng
1 ≤ g ≤ nge
2 ≤ k, j ≤ np+ 1
k 6= j

– Larvae migrate among systems with probability ω. Some might die
with probability Se.

{geni,2,y} [butg
(1−Fy)·D→ butlg]k

{geni,2,y} [butg
1−(1−Fy)·D→]k

1 ≤ i ≤ ng
1 ≤ g ≤ nge
2 ≤ k ≤ np+ 1
1 ≤ y ≤ ny

– Butterflies might leave the system with probability Fy. Also, but-
terflies might lay eggs with probability D.

Chapter 6. Case studies 144

{geni,2,y} [butl1
(1−F1)·D→ butlai,1, egg

Efi
2

1 , egg
Efi·pi

2
2 , egg

Efi·(1−pi)

2
3]k

{geni,2,y} [but2
(1−F2)·D→ butlai,2, egg

Efi·(1−pi)
1 , eggEfi·pi

2]k

{geni,2,y} [but3
(1−F3)·D→ butlai,3, egg

Efi·pi

1 , egg
Efi·(1−pi)
3]k

1 ≤ i ≤ ng
1 ≤ g ≤ nge
2 ≤ k ≤ np+ 1
1 ≤ y ≤ ny

– Butterflies oviposit and die according to their phenotype. For each
one which has oviposit, a marking object butla is left.

{gen1,2,y} [eggg
H1→ larva1,1,g]k

{gen1,2,y} [eggg
1−H1→]k

{geni,2,y} [eggg
H2·Hatk−1,g→ larva1,2,g]k

{geni,2,y} [eggg
1−H2·Hatk−1,g→]k

2 ≤ i ≤ ng
1 ≤ g ≤ nge
2 ≤ k ≤ np+ 1
1 ≤ y ≤ ny

– Eggs hatch with a probability according to their generation.

{geni,3,y} [larvain,i,g
Py,in,i·Detk−1,g→ larvain+1,i,g]k

{geni,3,y} [larvain,i,g
1−Py,in,i·Detk−1,g→]k

1 ≤ in ≤ npin− 1
2 ≤ i ≤ ng
1 ≤ g ≤ nge
2 ≤ k ≤ np+ 1
1 ≤ y ≤ years

– Larvae are subjected to parasitism in the second stage. Those which
survive reach the next instar.

{geni,4} [larvanin,i,g
U→ pupag]k

{geni,4} [larvanin,i,g
1−U→]k

1 ≤ in ≤ nin− 1
2 ≤ i ≤ ng
1 ≤ g ≤ nge
2 ≤ k ≤ np+ 1

– Larvae which have survived to reach instar nin develop into pupae
with probability U . Those which have not die instead.

{geni,4}[pupag
(1−Oi)·Mi→ butg]k

{geni,4}[pupag
(1−Oi)→]k

{geni,4}[pupag
Oi→ pupadg]k

 2 ≤ i ≤ ng
1 ≤ g ≤ nge
2 ≤ k ≤ np+ 1

– Pupae emerge as butterflies, die or enter diapause.

6.2. A PGP model on the ecosystem of Pieris napi oleracea 145

{genng+1,1}[butg→]k
{genng+1,1}[eggg→]k
{genng+1,1}[pupag→]k
{genng+1,1}[butg→]k
{genng+1,1}[butlg→]k
{genng+1,1}[butlai,g→]k

 1 ≤ g ≤ nge
2 ≤ k ≤ np+ 1
1 ≤ i ≤ ng

– Only diapausing pupae can survive overwinter. Therefore, butter-
flies, pupae (not overwintering) and eggs die.

{genng+1,1}[pupadg
Sw→ butg]k

{genng+1,1}[pupadg
1−Sw→]k

{
1 ≤ g ≤ nge
2 ≤ k ≤ np+ 1

– Pupae which overwinter become butterflies with probability Sw.

{issi} [butg]k→[butg]1

 1 ≤ i ≤ ng
1 ≤ g ≤ nge
2 ≤ k ≤ np+ 1

– On each generation transition, butterflies are redistributed.

{issi}[issi→dist, waiti]k
{waiti}[dist]k→[dist]1
{waiti}[clc→clc+1]k
{waiti}[clnc, waiti→cl1, geni+1,1]k
{geni,j}[clc→clc+1]k
{geni,1}[cll→cll+1]k
{geni,2,y}[clh→clh+1]k
{geni,3,y}[clc→clc+1]k
{geni,j}[clnc, geni,j→cl1, geni,j+1]k
{geni,1}[clnm, geni,1→geni,2]k
{geni,2}[clnls, geni,1→geni,3]k
{geni,3}[cyy, geni,2→cl1, rst, geni,3,y]k
{geni,2,y}[rst→cl1]k
{geni,3,y}[rst→cl1]k
{genip,2,y}[clnc, genip,2,y→cl1, genip,4]k
{genng,3,y}[cyy, clnc→cyy, cl1, genng,3]k
{genip,2,y}[clnls, genip,2,y→cl1, genip,2]k
{genng,3,y}[cyy, clnls→cyy+1, cl1, genng,3]k
{genng+1,1}[genng+1,1→gen1,1]k

1 ≤ l < nm
1 ≤ c < nc
1 ≤ h < nls
3 < j ≤ ns
1 ≤ ip < ng
1 ≤ y < ny
1 ≤ i ≤ ng
2 ≤ k ≤ np+ 1

– Additionally, some rules deal with synchronization. These rules
synchronize butterfly redistribution and update the current clock,
generation and year.

Chapter 6. Case studies 146

Parameter Description

General parameters

ng Number of generations considered
np Number of plants considered
nge Number of genotypes considered
nin Number of instars considered
npin Number of instars subjected to parasitism
ny Number of years simulated
ns Number of stages
nm Number of cycles for Stage 1
nls Number of cycles for Stage 2
nc Number of cycles for Stages 3 and 4

Initial state

Ng Initial butterflies of phenotype g

Butterfly behaviour parameters

Propi,k Proportion of butterflies in plant k in generation i
R Proportion homozygous butterflies becoming heterozygous
Fy Proportion of migrating butterflies in year y
D Proportion of ovipositing butterflies
pi Proportion of recessive homozygous butterflies in generation i
Efi Number of eggs of genotype i per female
ω Proportion of larvae migrating
Hi Hatching success for generation i
Hatk,g Hatching success in plant k and genotype g
Se Proportion of larvae dying during migration
Py,in,i Larvae mortality due to parasitism in year y, instar in and

generation i
Detk,g Larvae adaptation of genotype g to plant k, instar in and generation i
U Probability for larvae of becoming pupae upon reaching the last

instar
Oi Proportion of pupae entering diapause in generation i
Mi Proportion of pupae which emerge successfully in generation i
Sw Proportion of pupae surviving overwinter

Table 6.1: Parameters for Pieris napi oleracea model

6.2.5 Results obtained

The model was simulated using PGPC++ 50 times for 10 years. As it can be
seen in Figure 6.4, the standard deviation stabilized, which was the criteria
used for experts to decide that no more simulations were necessary. The results
were analysed with a script coded in R language, measuring the average and

6.2. A PGP model on the ecosystem of Pieris napi oleracea 147

standard deviation for the number of butterflies which lay eggs each year.

Figure 6.3: Values predicted by the simulator. Solid and dashed lines represent average population levels and typical
deviations (in individuals) among simulations, respectively. Red lines display values for phenotype Rr, green lines those of
RR and blue lines those of rr.

Figure 6.4 displays some qualitative desirable properties for the system at
hand, which were used by the experts who provided the parameters to posi-
tively validate the model. For instance, butterflies of phenotype Rr are con-
sidered to perform substantially better than their RR and rr counterparts. In
addition, butterflies of phenotype RR perform better than those of rr. There-
fore, although the initial number of individuals of phenotype rr is rather large
in comparison with those of genotypes Rr and RR, these butterflies quickly
grow out of rr exemplars, which are worse suited to adapt to A. petiolata
plants [43]. The large difference between population levels between genotypes
RR and Rr can be explained because homozygous butterflies can mutate to
become heterozygous, but the reversal process is rare enough to be discarded
from the model [117]. Moreover, C. glomerata species is in turn parasited by
another parasitoid wasp (C. rubecula), which competitively excludes C glom-
erata and thus lightens the predatory pressure from C. oleracea individuals
and explains its overall population growth over time [99]. Finally, population
levels are smoothed as they approach 100000 individuals, which is a key figure
in which carrying capacity effects take place [118], i.e., the ecosystem cannot

Chapter 6. Case studies 148

support any more individuals due to scarcity of resources and, consequently,
fetters their proliferation.

6.2.6 Performance Analysis

A performance analysis has been conducted with the studied model to mea-
sure the acceleration gained by PGPCUDA in comparison with both PGPC++
and P–Lingua. In all scenarios, the model was simulated for 10 years varying
the number of simulations per instance. Although 50 simulations is a figure
big enough to obtain knowledge about the system, the idea in this analysis is
to assess the performance gain of the simulator as the number of simulations
grows. In fact, the P. n. oleracea model was merely chosen as a real–case
scenario, with no intent of being an archetypal benchmark for PGPCUDA.
The charts clearly display that, contrarily to what it would be expected,

PGPC++ outperforms PGPCUDA from the very beginning. PGPCUDA sim-
ulation runtime is quickly saturated, and no runs beyond 150 simulations could
be executed due to errors on the target machine (simulation reports were not
properly written on disc). n this sense, in Chapter 7, Section 7.3 some guide-
lines to improve the performance of PGPCUDA are outlined as future work.
Regarding P–Lingua, Simulation times in Java are absent beyond 20 simu-
lations; MeCoGUI crashed on runs above this number, probably due to the
resource requirements offset imposed by the Java Virtual Machine (JVM) [6].
Specifically, the application was unresponsive and, eventually, turned black
and stropped working. The P–Lingua simulator is an adequate tool to simu-
late PGP systems for a small number of simulations, with the idea to test the
evolution of the P system designed. However, this simulator proved to be an
unsuitable alternative to massively simulate PGP systems, so their simulation
times are omitted from the charts. Figure 6.5 displays the simulation times and
acceleration factors obtained without considering memory transference code.
It can be seen that both simulation time lines grow in parallel; both display
a straight line with only a small peak for 100 simulations, which can be at-
tributed to noise. The acceleration remains modest in all simulations, but it
also can be seen that it increases throughout time. A performance analysis by
using NVIDIA Nsight Profiler [10] revealed only a 3% occupation on the target
device, so resource exhaustion does not seem to be the problem. However, it
is worth recalling that the device of choice was not a proper High Performance
Computing server (at the time of the experiment there was no computer of
such characteristics compatible with the tools used for development). There-

6.2. A PGP model on the ecosystem of Pieris napi oleracea 149

Figure 6.4: Simulation times (left) and acceleration factors (right) for PGPCUDA and PGPC++

Chapter 6. Case studies 150

fore, an adaptation of the current code for Linux systems, such as the High
Performance Computing server at the Research Group on Natural Computing,
running on Linux with three NVIDIA Tesla C1060 and one NVIDIA GT 550i
cards [10], would enable a more exhaustive performance analysis.

Chapter 7

Conclusions

This chapter summarizes the work presented in this document, recapitulating
the achievements which compose this thesis. Firstly, we provide a summary
of the whole document, chapter by chapter, highlighting the main contribu-
tions and withdrawing general conclusions from the main results. Finally, we
propose some future research lines based on this work.

7.1 Summary by chapter

Membrane Computing is a novel discipline which studies the properties of P
systems, which are theoretical devices inspired by the structure and functioning
of the living cell [190]. Shortly after its introduction, Membrane Computing
has been used as a modelling framework for biochemical phenomena, with a
plethora of literature examples [41, 199, 45, 102]. Recently, the usage of Mem-
brane Computing as a modelling framework has been extended to the field of
ecology [51, 52, 48], thus suggesting its applicability as an approach to model
other real–life processes out of biochemistry.

Some of these phenomena have a massively parallel structure. Consequently,
it would be appropriate for the modelling framework of choice to be parallel as
well. What is more, the systems simulating the models should be also parallel,
because the computational power required to simulate models with a large pa-
rallel structure would make sequential approaches highly inefficient. Because
Membrane Computing provides a parallel modelling framework, it is suitable
to model real–life phenomena, which sometimes are large enough to exceed
the boundaries of what can be sequentially simulated efficiently with the cur-
rent technology. This gives place to a need for parallel software applications
simulating Membrane Computing models for real–life phenomena. Different

151

Chapter 7. Conclusions 152

computer architectures have been used for the parallel simulation of P systems,
but Graphic Processing Units (GPUs) have allegedly among the largest shares
of simulated frameworks. There exist simulators based on GPU technology
both for P systems solving NP–complete problems [38, 37, 31, 29, 112, 61] and
for the simulation of ecological models in Population Dynamics with Mem-
brane Computing [138, 139]. Their promising results reveals GPU technology
as a more than suitable platform for the simulation of Membrane Computing
models at a large scale.

The main objective of this thesis is the development of Membrane Computing
models and simulators for real–life phenomena. Specifically, three phenomena
are addressed: Gene Regulatory Networks, Ecosystems and (to a lesser ex-
tent) Bio–Inspired Robotics. This variety of applications proves the versatility
of Membrane Computing as a modelling framework. Sequential and parallel
simulators have also been developed to handle models in these frameworks. To
do so, the P–Lingua language [71] has been extended, adding new features and,
in the case of ecosystems, new models from scratch. The sequential simulators
have been developed on C++ and Java, being the latter incorporated into
the P–Lingua API. The parallel simulators have been implemented by using
CUDA [10], a programming language for Parallel Computing on GPUs which
has already been successfully applied to simulate P Systems [38, 37, 29, 31, 61].

7.2 Thesis overview

What follows is an overview of this thesis, summarizing each chapter and
highlighting its major achievements, so as to give the reader a general idea
about the results obtained from the thesis.

7.2.1 Summary

This thesis is divided in three parts. The first one introduces Natural Compu-
ting in general and Membrane Computing in particular, describing some of the
models in the field and some simulators currently implemented for them. The
second part focuses on the achievements obtained from this thesis, describing
different variants of P systems suitable for computational modelling and the
phenomenon under study in each case. Finally, the third part discusses some
case studies on the models and simulators presented in part II.

Chapter 1 discusses the field of Natural Computing, with an emphasis on Mem-
brane Computing and some of the main variants proposed in the field. The

7.2. Thesis overview 153

chapter ends with two complementary approaches for computational modelling
in this discipline which aims to capture the inherent randomness inherent to
natural phenomena in several ways: stochastic and probabilistic approaches.

Chapter 2 describes some of the simulators for Membrane Computing mo-
dels already developed. This chapter is divided in four parts. The first part
overviews some of the approaches developed prior to the introduction of P–
Lingua. The second part describes the P–Lingua framework, and explains how
it revolutionized the state of the art concerning the modelling and simulation of
P systems, including some other complementary software frameworks in this
line. The third part is a general overview of different parallel architectures
which have been used to simulate P systems throughout the years. Finally,
the fourth part focuses on the results obtained on the simulation of P systems
by means of GPU technology.

Chapter 3 introduces a GPU–based simulator for Enzymatic Numerical P Sys-
tems (ENPSs), a variant of P systems in which continuous numerical variables
are interconnected with each other by means of programs and switch on and
off the application of these programs. These variables are associated with
membranes which, in turn, are arranged in a cell–like structure. ENPSs are
simulated by SNUPS [157], a software tool for the simulation of Numerical P
systems. This application simulates these P systems encoded on XML files.
The proposed GPU simulator (namely ENPSCUDA) is compatible with this
format, and achieved an acceleration of about 6.5x for a dummy model with
15000 membranes and about 10x for a model approximating the exponential
function (ex) with 100000 membranes, both in comparison with a C/C++
counterpart (ENPSC++) developed to measure the acceleration obtained by
ENPSCUDA.

Chapter 4 presents a model for Gene Regulatory Networks (GRN) within the
framework of Population Dynamics P (PDP) systems, a modelling framework
originally designed to model processes in ecology. This model, namely Logic
Network Dynamic P (LNDP) systems, simulates the dynamics of a type of
GRNs known as Logic Networks (LNs) in which several gene states can in-
fluence a third one. A formalization of both LNs and LNDP systems is pro-
vided in that chapter. The model is able to reproduce the behaviour of the
improved Logic Analysis of Phylogenetic Profiles method (improved LAPP
method) [229, 228], an algorithm for the simulation of the dynamics of GRNs
which considers the possibility of several genes simultaneously influencing a
third one. The improved LAPP method outputs the most likely state (i.e.,
the statistical expectancy) of the gene network after a number of discrete time

Chapter 7. Conclusions 154

steps. As the improved LAPP method is honed over time, the proposed model
can be adapted as well, thus becoming iteratively more accurate in tandem
with the aforementioned algorithm. Finally, an extension of the P–Lingua lan-
guage for the generalization of PDP systems is described, so that any LNDP
system can be parametrically instantiated without modifying the P–Lingua
file.

Chapter 5 introduces Probabilistic Guarded P (PGP) Systems, a brand new
modelling framework in Membrane Computing for ecological phenomena. The
model is formalized and two simulation algorithms (one for sequential and an-
other for parallel architectures) are introduced. These algorithms are restricted
for models which do not feature object competition, but some ideas for their
extension so that they are able to handle models with object competition are
provided as well. Like in Chapter 4, an extension of the P–Lingua language
is provided to enable PGP systems in P–Lingua, as well as a Graphical User
Interface (GUI) to simulate P systems.

Finally, Chapter 6 describes some case studies for the models and simulators
introduced in Chapters 4 and 5. In the first case study, a logic network as-
sociated with the flowering process of Arabidopsis thaliana is presented. The
model succeeds in capturing the behaviour of the Improved LAPP method,
thus having a predictive power equivalent to such an algorithm. In the second
case study, a model of the ecosystem of Pieris napi oleracea, a butterfly na-
tive to Northeastern U.S.A., is presented. This model is inspired by another
one described in [118], which consists on a set of discrete stochastic equations.
The parameters for the Membrane Computing model are either found in [118]
and [117] or directly provided by experts in the ecosystem. The experimental
validation of the model enabled the analysis of scenarios of special interest
for the experts, concluding that the dynamics of the system reflects a steady
growth in the overall number of butterflies and an especially sharp increase in
the population of heterozygous butterflies with both dominant and recessive
alleles for adaptation to Alliara petiolata, an invasive species of plant which
is overcoming native crucifer Cardamine diphylla. Moreover, a performance
analysis of the GPU–based simulator for PGP systems described in Chapter 5
showed that the parallel simulator did not manage to outperform its sequential
counterpart. Therefore, a further performance analysis is left as future work.

7.2.2 Major achievements

What follows is a listing of the most relevant contributions from this thesis,
which summarizes the achievements obtained from this work.

7.2. Thesis overview 155

• A GPU–based simulator for Enzymatic Numerical P Systems [73]. A
performance analysis of this simulator reveals an acceleration factor of
up to 10x for a model with 100000 membranes which approximates the
function ex, in comparison with a C++ counterpart [74]. This simu-
lator is already available in [13], and has given place to the following
publications:

– M. Garćıa–Quismondo, L.F. Maćıas–Ramos, M.J. Pérez–Jiménez.
Implementing enzymatic numerical P systems for AI applications
by means of graphic processing units. In J. Kelemen, J. Romportl
and E. Zackova (eds.) Beyond Artificial Intelligence. Contempla-
tions, Expectations, Applications, Springer, Berlin–Heidelberg, Se-
ries: Topics in Intelligent Engineering and Informatics, Volume 4,
2013, chapter XIV, pp. 137–159.

– M. Garćıa–Quismondo, A.B. Pavel, M.J. Pérez-Jiménez. Simulat-
ing large-scale ENPS models by means of GPU. In M.A. Mart́ınez
del Amor, Gh. Paun, I. Pérez Hurtado, F.J. Romero (eds.) Pro-
ceedings of the Tenth Brainstorming Week on Membrane Comput-
ing, Volume I, Seville, Spain, January 30–February 3, 2012, Report
RGNC 01/2012, Fénix Editora, 2012, pp. 137–152.

• A Membrane Computing model for Gene Regulatory Networks which
considers the possibility of several genes influencing a third one [220, 75].
This family of P systems reproduces the behaviour of the improved Logic
Analysis of Phylogenetic Profiles method, and has been validated via a
case study on the dynamics of a Gene Regulatory Network associated
with the flowering process of Arabidopsis thaliana [219]. This model is
already available in [12], and has given place to the following publications:

– L. Valencia–Cabrera, M. Garćıa–Quismondo, Y. Su, M.J. Pérez–
Jiménez, L. Pan, H. Yu. Modeling logic gene networks by means of
probabilistic dynamic P systems. International Journal of Uncon-
ventional Computing, 9, 5–6 (2013), pp. 445–464.

– L. Valencia–Cabrera, M. Garćıa-Quismondo, M.J. Pérez–Jiménez,
Y. Su, H. Yu, L. Pan. Analising gene networks with PDP systems.
Arabidopsis thailiana, a case study. In L. Valencia–Cabrera, M.
Garćıa–Quismondo, L.F. Maćıas-Ramos, M.A. Mart́ınez del Amor,
Gh. Păun, A. Riscos–Núñez (eds.) Proceedings of the Eleventh
Brainstorming Week on Membrane Computing, Seville, Spain, Febru-

Chapter 7. Conclusions 156

ary 4–8, 2013, Report RGNC 01/2013, Fénix Editora, 2013, pp.
257–272.

• A Membrane Computing framework for ecological phenomena. This
model, known as Probabilistic Guarded P Systems, is inspired by Po-
pulation Dynamics P systems and aims to simplify the design and si-
mulation of models, as well as a sequential and a parallel (GPU–based)
simulator for these models. In addition, a model inside this framework
on the ecosystem of Pieris napi oleracea, a butterfly native to north–
eastern U.S.A., is provided. The model has been experimentally vali-
dated by contrasting its results with those obtained by experts in the
field. The parallel simulator did not manage to outperform a sequential,
C++ counterpart, so further performance improvements are left as future
work. Both the model and the simulator are yet to be published, but the
latter will be readily available in the P–Lingua [12] and PMCGPU [13]
websites.

7.3 Future work

This section proposes some future work so as to continue the achievements
obtained from this thesis. Due to the eclectic nature of this work, these research
lines are listed regarding the addressed topic.

Enzymatic Numerical P Systems (ENPSs): The simulator discussed in
Chapter 3 would be suitable for large scale models which can be applied
within the field of robotics. The massively parallel environment provided
by the GPUs is suitable for Enzymatic Numerical P Systems simulations.
However, it would be interesting to explore the possibility of scaling–up
the currently existing robot behaviours modelled with ENPSs and simu-
late them by means of GPU clusters. These systems might be applied to
model the behaviour of massive robot swarms in which robots need to
coordinate one another [94], for instance to come up with a planning de-
pending on the environment and revise their plan when necessary [239]
and complex sensor networks. Massive, coordinated robot swarms are
getting closer to reality by the hour [215], and these models might help
predict their behaviour under unexpected circumstances.

ENPSs can be used to model different behaviours, such as follow the
leader, obstacle avoidance and wall following [167]. Therefore, the para-
llel simulator might be used to reproduce several concurrent robot be-

7.3. Future work 157

haviours. That is, simulating situations in which robots need to achieve
more than one objective at the same time, which is the case of multi–
objective robotics, i.e., robots which need to accomplish different (and
possibly antagonistic) objectives at the same time [239, 217, 88]. The
resulting code can be integrated on FGPA cards which can be embed-
ded on real robots, enabling real–time multi–objective behaviour. In this
concern, OpenCL [11] enables compilation not only to GPU cards, but
also to other parallel devices such as FPGAs and ARM mobile proces-
sors [2]. Moreover, it is important to remark that, although ENPSs are
deterministic models, they allow the definition of input variables whose
values are set by the environment, rather than by programs. This envi-
ronment usually displays a non–deterministic behaviour [213, 17], thus
introducing a random element in the system and, consequently, providing
an application for the simulator to repeatedly simulate the same model.

Logic Networks: Chapter 4 describes a Membrane Computing framework
for the modelling and simulation of Gene Regulatory Network dynam-
ics. As an additional complementary work, the model can be applied to
other large logic networks apart from Arabidopsis thaliana. In this sense,
a case study on gene regulatory networks from bacterium Escherichia coli
would be interesting because it is a species extensively used in synthetic
biology [85, 83, 143]. Another further enhancement for the framework
would be the application of more well–grounded simulation methods than
the improved Logic Analysis of Genetic Profiles algorithm, such as the
Gillespie algorithm [80] or some extension.

Another proposed line of work consists on a further enhancement by ap-
plying random mutations to the genes comprising the network. That is to
say, we take into account dynamics in which gene states are not determi-
nistically dictated by network interactions, but also subjected to random
modifications. This upgrade could shed light into non–deterministic cell
differentiation processes, so as to compare these new dynamics with the
ones displayed by the deterministic model proposed here. Finally, the
explicit incorporation of proteins regulating gene interaction such as tran-
scription factors would be a step forward towards realistic simulations of
gene network dynamics in Membrane Computing.

Probabilistic Guarded P Systems: In Chapter 5, a framework for the mo-
delling and simulation of ecosystems in Membrane Computing is pro-
posed, as well as a sequential and a parallel simulation algorithm for
models in this framework. The model succeeds in reflecting the behaviour

Chapter 7. Conclusions 158

of the ecosystem studied in a case study concerning the behaviour of
species Pieris napi oleracea. In this sense, an extension of the model ex-
plicitly integrating parasitoid Cotesia glomerata and overparasitoid (i.e.
parasitoid parasiting parasitoids) Cotesia rubecula would continue yield-
ing information about trends in the ecosystem [118, 117, 43]. Moreover,
more case studies in the framework of Probabilistic Guarded P systems
constitute a conspicuous line or work.

The software environment can be also subject of improvement. For in-
stance, the software tool MeCoGUI can be integrated into MeCoSim [172].
This would entail a small restructuration on the manner in which the pa-
rameters are parsed and the results are displayed, because the parameters
would be given by an external CSV file rather than directly input in the
application. Likewise, MeCoSim would need not only to display the re-
sults of simulations in a graphical environment, but to output simulation
files to be analysed by external tools.

Concerning the simulation of PGP systems, an extension of the currently
implemented simulators capable of handling models with object compe-
tition would be a way forward. Although some ideas are given in that
chapter about how a simulator would distribute objects among compet-
ing blocks, it is left to be implemented both in sequential and in parallel
architectures. Moreover, the performance displayed by the GPU simula-
tor requires an exhaustive profiling analysis, possibly by using NVIDIA
Nsight Profiler [10], so as to identify bottlenecks and other hindrances
and garner useful information towards a performance improvement of
the simulator. Although the computational power of the C++ sequen-
tial simulator developed was enough for the model presented in the case
study, the parallel simulator would be a useful tool for the cases in which
the model structure is too large to be efficiently simulated in sequential
architectures.

Some performance improvements can be implemented on PGPCUDA,
such as an optimization of memory accesses, possibly by reducing the
number of arrays used and taking advantage of faster memories such
as shared memory. Furthermore, an adaptation of the current code for
Linux systems, such as the High Performance Computing server at the
Research Group on Natural Computing [4], running on Linux with three
NVIDIA Tesla C1060 and one NVIDIA GT 550i cards [10], would enable
a more exhaustive performance analysis.

After such an analysis, the resulting information would allow to identify

7.3. Future work 159

and overcome bottlenecks due to inefficient memory accesses. Moreover,
it would be possible to improve the way in which random numbers are
generated for binomial distribution, possibly using large steps to increase
the times that a rule is selected on each rule selection iteration, and to
develop more efficient manners to emulate multinomial distribution va-
lues. In addition, this analysis would pave the way for model–oriented
optimizations, conjointly studying the models and the simulators to take
advantage of specific features of the existing models. Finally, one of
these lines of future work entail an adaptation of the simulator for more
advanced architectures such as the novel Kepler cards [10] and GPU
clusters, so as to accelerate simulations for massive models yet to come.

Chapter 7. Conclusions 160

Appendices

161

Appendix A

Gene Network Data

163

Appendix A. Gene Network Data 164

Gene number Initial state

1 0

2 0

3 1

4 0

5 0

6 1

7 0

8 1

9 1

10 1

11 0

12 0

13 0

14 1

15 1

Gene number Initial state

16 0

17 1

18 1

19 1

20 0

21 0

22 1

23 1

24 0

25 1

26 0

27 1

28 1

29 1

Figure A.1: Initial gene states in the Arabidosis thaliana gene network on the longday scenario taken as case study

ID Logic Weight

1 g1 → g7 0.402

2 g2 → ¬g6 0.409

3 g2 → g7 0.878

4 g6 → g16 0.353

5 g6 → g21 0.353

6 g7 → g11 0.965

7 g7 → g16 0.802

8 g7 → g21 0.802

9 g10 → ¬g13 0.1000

10 g10 → g18 0.456

11 g10 → g27 0.544

12 g10 → g28 0.309

ID Logic Weight

13 g11 → ¬g26 0.273

14 g12 → g16 0.282

15 g12 → g21 0.282

16 g16 → ¬g29 0.713

17 g17 → g24 0.425

18 g17 → g26 0.389

19 g19 → g29 0.551

20 g20 → ¬g22 0.303

21 g21 → ¬g29 0.713

22 g22 → g26 0.439

23 g28 → g29 0.292

Figure A.2: Unary gene interactions present in the logic network associated to the behaviour of Arabidosis thaliana taken
as case study

165

ID Logic Weight

1 g11 ∧ g27 → g7 0.708

2 g11 ∧ g28 → g7 1

3 g11 ∧ g29 → g7 0.814

4 g16 ∧ g27 → g7 0.708

5 g16 ∧ g28 → g7 1

6 g16 ∧ g29 → g7 0.814

7 g21 ∧ g27 → g7 0.708

8 g21 ∧ g28 → g7 1

9 g21 ∧ g29 → g7 0.814

10 g1 ∨ ¬g13 → g10 1

11 g6 ∧ g13 → ¬g10 1

12 g7 ∨ ¬g13 → g10 1

13 g9 ∧ g13 → ¬g10 0.829

14 g11 ∨ ¬g13 → g10 1

15 g12 ∨ ¬g13 → g10 0.829

16 ¬g13 ∨ g16 → g10 1

17 ¬g13 ∨ g18 → g10 0.728

18 g13 ∧ g19 → ¬g10 0.829

19 ¬g13 ∨ g21 → g10 1

20 ¬g13 ∨ g27 → g10 1

21 g27 ∨ ¬g28 → g10 0.728

22 g10 ∧ g16 → g11 0.741

23 g10 ∧ g21 → g11 0.741

24 g14 ∧ g16 → g11 0.741

25 g14 ∧ g21 → g11 0.741

26 g15 ∧ g16 → g11 0.741

27 g15 ∧ g21 → g11 0.741

28 g16 ∧ g17 → g11 0.741

29 g16 ∧ ¬g20 → g11 0.741

30 g16 ∧ g21 → g11 0.741

ID Logic Weight

31 g16 ∧ g22 → g11 0.741

32 g16 ∧ g23 → g11 0.741

33 g16 ∧ ¬g24 → g11 0.741

34 g16 ∧ g25 → g11 0.741

35 g16 ∧ ¬g26 → g11 0.741

36 g16 ∨ g29 → g11 0.741

37 g17 ∧ g21 → g11 0.741

38 ¬g20 ∧ g21 → g11 0.741

39 g21 ∧ g22 → g11 0.741

40 g21 ∧ g23 → g11 0.741

41 g21 ∧ ¬g24 → g11 0.741

42 g21 ∧ g25 → g11 0.741

43 g21 ∧ ¬g26 → g11 0.741

44 g21 ∨ ¬g29 → g11 0.741

45 g8 ∧ g21 → g16 0.801

46 g10 ∧ g21 → g16 1

47 g11 ∨ g21 → g16 1

48 g11 ∨ ¬g29 → g16 1

49 g14 ∧ ¬g19 → g16 0.801

50 g14 ∧ g21 → g16 1

51 g15 ∧ g21 → g16 1

52 g17 ∧ g21 → g16 1

53 ¬g19 ∧ g21 → g16 0.801

54 ¬g20 ∧ g21 → g16 1

55 g21 ∧ g22 → g16 1

56 g21 ∧ g23 → g16 1

57 g21 ∧ ¬g24 → g16 1

58 g21 ∧ g25 → g16 1

59 g21 ∧ ¬g26 → g16 1

60 g21 ∨ ¬g29 → g16 1

Figure A.3: Binary gene interactions present in the logic network associated to the behaviour of Arabidosis thaliana taken
as case study (1/2)

Appendix A. Gene Network Data 166

ID Logic Weight

61 g8 ∧ g16 → g21 0.801

62 g10 ∧ g16 → g21 1

63 g11 ∨ g16 → g21 1

64 g11 ∨ ¬g29 → g21 1

65 g14 ∧ g16 → g21 1

66 g14 ∧ ¬g19 → g21 0.801

67 g15 ∧ g16 → g21 1

68 g16 ∧ g17 → g21 1

69 g16 ∧ ¬g19 → g21 0.801

70 g16 ∧ ¬g20 → g21 1

71 g16 ∧ g22 → g21 1

72 g16 ∧ g23 → g21 1

73 g16 ∧ ¬g24 → g21 1

74 g16 ∧ g25 → g21 1

75 g16 ∧ ¬g26 → g21 1

76 g16 ∨ ¬g29 → g21 1

Figure A.4: Binary gene interactions present in the logic network associated to the behaviour of Arabidosis thaliana taken
as case study (2/2)

Gene number Initial state

1 0

2 0

3 1

4 0

5 0

6 1

7 0

8 1

9 1

10 1

11 0

12 0

13 0

14 1

15 1

Gene number Initial state

16 0

17 1

18 1

19 1

20 0

21 0

22 1

23 1

24 0

25 1

26 1

27 1

28 1

29 1

Figure A.5: Final gene states in the Arabidosis thaliana gene network on the longday scenario taken as case study

Appendix B

PGP Model Data

167

Appendix B. PGP Model Data 168

Parameter Value

ng 3

np 2

nge 3

nin 4

npin 2

ny 10

ns 4

nm 2

nls 10

nc 3

g Ng

1 100

2 150

3 2970

Propi,k
i\k 1 2

1 0.5 0.5

2 0.5 0.5

3 0.5 0.5

Figure B.1: Integer simulation parameters (left) and values for Ng and Propi,k for the simulated ecosystem

y Fy
1 5/10

2 8/10

3 7/10

4 8/10

5 8/10

6 8.5/10

7 8.5/10

8 8.5/10

9 8.75/10

10 8.85/10

Hatk,g
k\g 1 2 3

1 0.9 0.6 0.2

2 0.8 0.6 0.2

i pi
1 0.3

2 0.3

3 0.3

i Efi
1 114

2 114

3 114

i Hi

1 0.73

2 0.53

3 0.73

Detk,g
k\g 1 2 3

1 1 1 1

2 1 1 1.5

Figure B.2: Values for Fy and Hatk,g (left) and pi, Efi, Hi and Detk,g (right) for the simulated ecosystem

169

Py,in,1 Py,in,2 Py,in,3
y\in 1 2 3 1 2 3 1 2 3

1 0.539 0.539 0.539 0.340 0.340 0.340 0.340 0.340 0.340

2 0.534 0.534 0.534 0.335 0.335 0.335 0.335 0.335 0.335

3 0.528 0.528 0.528 0.329 0.329 0.329 0.329 0.329 0.329

4 0.521 0.521 0.521 0.322 0.322 0.322 0.322 0.322 0.322

5 0.514 0.514 0.514 0.315 0.315 0.315 0.315 0.315 0.315

6 0.506 0.506 0.506 0.307 0.307 0.307 0.307 0.307 0.307

7 0.497 0.497 0.497 0.298 0.298 0.298 0.298 0.298 0.298

8 0.487 0.487 0.487 0.288 0.288 0.288 0.288 0.288 0.288

9 0.475 0.475 0.475 0.276 0.276 0.276 0.276 0.276 0.276

10 0.462 0.462 0.462 0.262 0.262 0.262 0.262 0.262 0.262

Figure B.3: Values for Py,in,i for the simulated ecosystem

Parameter Value

R 0.01

D 0.8

ω 0.3

Se 0.3

U 0.83

Sw 0.169

y Oy
1 0.56

2 0.56

3 0.56

i Mi

1 0.41

2 0.41

3 0.41

Figure B.4: Values for non–parametrized probabilities (left) and for Oy and My (right) for the simulated ecosystem

Appendix B. PGP Model Data 170

Bibliography

[1] AMD home page. http://www.amd.com/unleash/. Official website.

[2] ARM processor architecture. http://www.arm.com/products/

processors/instruction-set-architectures/index.php. Official
website.

[3] Colt library. http://acs.lbl.gov/software/colt/index.html. Offi-
cial website.

[4] GPU server at the research group on natural computing (RGNC). http:
//www.gcn.us.es/gpucomputing. HPC GPU server at the RGNC.

[5] Infobiotics web page. http://www.infobiotics.org/.

[6] Java web page. http://www.java.com. Official website.

[7] MeCoSim web page. http://www.p-lingua.org/mecosim.

[8] MetaPlab web page. http://mplab.sci.univr.it/.

[9] National Center for Biotechnology Information. http://www.ncbi.nlm.
nih.gov/.

[10] NVIDIA CUDA home page. http://www.nvidia.es/cuda.

[11] OpenCL standard webpage. http://www.khronos.org/opencl. Official
website.

[12] P–Lingua webpage. https://www.p-lingua.org.

[13] PMCGPU web page. http://sourceforge.net/projects/pmcgpu/. A
website including some software tools for the simulation of P systems on
GPU architectures.

171

http://www.amd.com/unleash/
http://www.arm.com/products/processors/instruction-set-architectures/index.php
http://www.arm.com/products/processors/instruction-set-architectures/index.php
http://acs.lbl.gov/software/colt/index.html
http://www.gcn.us.es/gpucomputing
http://www.gcn.us.es/gpucomputing
http://www.infobiotics.org/
http://www.java.com
http://www.p-lingua.org/mecosim
http://mplab.sci.univr.it/
http://www.ncbi.nlm.nih.gov/
http://www.ncbi.nlm.nih.gov/
http://www.nvidia.es/cuda
http://www.khronos.org/opencl
https://www.p-lingua.org
http://sourceforge.net/projects/pmcgpu/

BIBLIOGRAPHY 172

[14] R project. http://www.r-project.org/. Official website.

[15] Rand function in C++/C Standard General Utilities Library (cstdlib).
http://www.cplusplus.com/reference/cstdlib/rand/.

[16] The OpenMP API specification for parallel programming. http://www.
openmp.org. Official website.

[17] M. R. Abdessemed and A. Bilami. Evolutionary research of optimal
strategies for exclusive positioned clustering in simulated environment
of collective robotics. Robotics and Autonomous Systems, 58(10):1130 –
1137, 2010.

[18] M. Abe, Y. Kobayashi, S. Yamamoto, Y. Daimon, A. Yamaguchi,
Y. Ikeda, H. Ichinoki, M. Notaguchi, K. Goto, and T. Araki. Fd, a
bzip protein mediating signals from the floral pathway integrator ft at
the shoot apex. Science, 309(5737):1052–1056, 2005.

[19] B. Bartlett, C. Clausen, and U. S. A. R. Service. Introduced parasites
and predators of arthropod pests and weeds: a world review. Agriculture
handbook. Agricultural Research Service, U.S. Dept. of Agriculture : for
sale by the Supt. of Docs., U.S. Govt. Print. Off., 1978.

[20] J. Benson, R. V. Driesche, A. Pasquale, and J. Elkinton. Introduced
braconid parasitoids and range reduction of a native butterfly in new
england. Biological Control, 28(2):197 – 213, 2003.

[21] J. Benson, A. Pasquale, R. V. Driesche, and J. Elkinton. Assessment of
risk posed by introduced braconid wasps to pieris virginiensis, a native
woodland butterfly in new england. Biological Control, 26(1):83 – 93,
2003.

[22] D. Besozzi, P. Cazzaniga, D. Pescini, and G. Mauri. Seasonal variance
in P system models for metapopulations. Progress in Natural Science,
17(4):392–400, 2007.

[23] J. Blakes, J. Twycross, F. J. Romero-Campero, and N. Krasnogor. The
infobiotics workbench: an integrated in silico modelling platform for
systems and synthetic biology. Bioinformatics, 2011.

[24] E. Bolthausen and M. V. Wathrich. Bernoulli’s law of large numbers.
ASTIN Bulletin, 43:73–79, 2013.

http://www.r-project.org/
http://www.cplusplus.com/reference/cstdlib/rand/
http://www.openmp.org
http://www.openmp.org

BIBLIOGRAPHY 173

[25] P. M. Bowers, S. J. Cokus, T. O. Yeates, and D. Eisenberg. Use of
logic relationships to decipher protein network organization. Science,
5705(306):2246–2249, 2004.

[26] P. M. Bowers, B. D. O’Connor, S. J. Cokus, E. Sprinzak, T. O. Yeates,
and D. Eisenberg. Utilizing logical relationships in genomic data to
decipher cellular processes. the FEBS journal, 272(1):5110–5118, 2005.

[27] C. Buiu, O. Arsene, C. Cipu, and M. Patrascu. A software tool for
modeling and simulation of numerical P systems. Biosystems, 103(3):442
– 447, 2011.

[28] C. Buiu, C. Vasile, and O. Arsene. Development of membrane controllers
for mobile robots. Information Sciences, 187(0):33 – 51, 2012.

[29] F. Cabarle, H. Adorna, M. A. Mart́ınez-del Amor, and M. Pérez-Jiménez.
Spiking neural P system simulations on a high performance GPU plat-
form. In Y. Xiang, A. Cuzzocrea, M. Hobbs, and W. Zhou, editors, Algo-
rithms and Architectures for Parallel Processing, volume 7017 of Lecture
Notes in Computer Science, pages 99–108. Springer Berlin Heidelberg,
2011.

[30] F. Cabarle, H. Adorna, M. A. Mart́ınez-del Amor, and M. J. Pérez-
Jiménez. Improving GPU simulations of spiking neural P systems. Ro-
manian Journal of Information Science and Technology, 15:5–20, 2012.

[31] F. G. Cabarle, H. N. Adorna, M. A. Mart́ınez-del-Amor, and M. J. Pérez-
Jiménez. Improving GPU simulations of spiking neural P systems. Ro-
manian Journal of Information Science and Technology, 15:5–20, 2012.

[32] H. Cao, F. Romero-Campero, S. Heeb, M. CAmara, and N. Krasnogor.
Evolving cell models for systems and synthetic biology. Systems and
Synthetic Biology, 4(1):55–84, 2010.

[33] M. Cardona, M. Colomer, M. Pérez-Jiménez, D. Sanuy, and A. Mar-
galida. Modeling ecosystems using P systems: The bearded vulture, a
case study. In D. Corne, P. Frisco, G. Păun, G. Rozenberg, and A. Sa-
lomaa, editors, Membrane Computing, volume 5391 of Lecture Notes in
Computer Science, pages 137–156. Springer Berlin Heidelberg, 2009.

[34] T. Carletti and A. Filisetti. The stochastic evolution of a protocell: The
gillespie algorithm in a dynamically varying volume. Computational and
Mathematical Methods in Medicine, pages 1–13, 2012.

BIBLIOGRAPHY 174

[35] A. Castellini and V. Manca. Metaplab: A computational framework for
metabolic P systems. In D. W. Corne, P. Frisco, G. Păun, G. Rozenberg,
and A. Salomaa, editors, Membrane Computing, volume 5391 of Lecture
Notes in Computer Science, pages 157–168. Springer Berlin Heidelberg,
2009.

[36] J. M. Cecilia, J. M. Garćıa, G. D. Guerrero, M. A. Mart́ınez-del Amor,
I. Pérez-Hurtado, and M. J. Pérez-Jiménez. Simulating a P system based
efficient solution to SAT by using GPUs. The Journal of Logic and
Algebraic Programming, 79(6):317 – 325, 2010. Membrane computing
and programming.

[37] J. M. Cecilia, J. M. Garćıa, G. D. Guerrero, M. A. Mart́ınez-del Amor,
M. J. Pérez-Jiménez, and M. Ujaldón. The GPU on the simulation of
cellular computing models. Soft Computing, 16(2):231–246, 2012.

[38] J. M. Cecilia, J. M. Garćıa, G. D. Guerrero, M. A. Mart́ınez-del Amor,
I. Pérez-Hurtado, and M. J. Pérez-Jiménez. Simulation of P systems with
active membranes on CUDA. Briefings in Bioinformatics, 11(3):313–322,
2010.

[39] V. M. Cervantes-Salido, O. Jaime, C. A. Brizuela, and I. M. Mart́ınez-
Pérez. Improving the design of sequences for {DNA} computing: A
multiobjective evolutionary approach. Applied Soft Computing, (0):–,
2013.

[40] R. Ceterchi, M. Mutyam, G. Păun, and K. G. Subramanian. Array-
rewriting p systems. Natural Computing, 2(3):229–249, 2003.

[41] S. Cheruku, A. Păun, F. J. Romero-Campero, M. J. Pérez-Jiménez, and
O. H. Ibarra. Simulating FAS-induced apoptosis by using P systems.
Progress in Natural Science, 17:424–431, 2007.

[42] F. S. Chew. Coexistence and local extinction in two pierid butterflies.
The American Naturalist, 118(5):655–672, 1981.

[43] F. S. Chew and S. P. Courtney. Plant apparency and evolutionary escape
from insect herbivory. The American Naturalist, 138(3):pp. 729–750,
1991.

[44] G. Ciobanu and D. Paraschiv. P system software simulator. Fundamenta
Informaticae, 49(1):61–66, 2002.

BIBLIOGRAPHY 175

[45] G. Ciobanu, G. Păun, and G. Stefănescu. P transducers. New Generation
Computing, 24(1):1–28, 2006.

[46] G. Ciobanu and G. Wenyuan. P systems running on a cluster of comput-
ers. In C. Mart́ın-Vide, G. Mauri, G. Păun, G. Rozenberg, and A. Sa-
lomaa, editors, Membrane Computing, volume 2933 of Lecture Notes in
Computer Science, pages 123–139. Springer Berlin Heidelberg, 2004.

[47] E. A. Codling, M. J. Plank, and S. Benhamou. Random walk models in
biology. Journal of The Royal Society Interface, 5(25):813–834, 2008.

[48] M. Colomer, I. Pérez-Hurtado, M. Pérez-Jiménez, and A. Riscos-Núñez.
Comparing simulation algorithms for multienvironment probabilistic
P systems over a standard virtual ecosystem. Natural Computing,
11(3):369–379, 2012.

[49] M. A. Colomer, C. Fondevilla, and L. Valencia-Cabrera. A new P system
to model the subalpine and alpine plant communities. In Ninth Brain-
storming Week on Membrane Computing, pages 91–112, Seville, Spain,
2011. Fenix Editora.

[50] M. A. Colomer, S. Lav́ın, I. Marco, A. Margalida, I. Pérez-Hurtado, M. J.
Pérez-Jiménez, D. Sanuy, E. Serrano, and L. Valencia-Cabrera. Modeling
population growth of pyrenean chamois (rupicapra p. pyrenaica) by using
P systems. Lecture Notes in Computer Science, 6501:144–159, 2011.

[51] M. A. Colomer, A. Margalida, and M. J. Pérez-Jiménez. Population Dy-
namics P system (PDP) models: A standardized protocol for describing
and applying novel bio-inspired computing tools. PLoS ONE, 8(4):1–13,
2013.

[52] M. A. Colomer, A. Margalida, D. Sanuy, and M. J. Pérez-Jiménez. A
bio-inspired computing model as a new tool for modeling ecosystems:
The avian scavengers as a case study. Ecological Modelling, 222(1):33 –
47, 2011.

[53] S. A. Cook. The complexity of theorem-proving procedures. In Pro-
ceedings of the third annual ACM symposium on Theory of computing,
STOC ’71, pages 151–158, New York, NY, USA, 1971. ACM.

[54] A. Cordón-Franco, M. Gutiérrez-Naranjo, M. Pérez-Jiménez, and
F. Sancho-Caparrini. A prolog simulator for deterministic P systems with
active membranes. New Generation Computing, 22(4):349–363, 2004.

BIBLIOGRAPHY 176

[55] R. F. Costantino, R. A. Desharnais, J. M. Cushing, and B. Dennis.
Chaotic dynamics in an insect population. Science, 275(5298):389–391,
1997.

[56] F. Courteille, A. Crouzil, J.-D. Durou, and P. Gurdjos. 3d-spline recon-
struction using shape from shading: Spline from shading. Image and
Vision Computing, 26(4):466 – 479, 2008.

[57] S. P. Courtney and S. Courtney. The ’edge-effect’ in butterfly oviposi-
tion: causality in anthocharis cardamines and related species. Ecological
entomology, 7(2):131–137, 1982.

[58] M. A. Covington. Antialiasing on the IBM PS2 VGA by treating color
bits as subpixels. Journal of Microcomputer Applications, 12(3):253 –
257, 1989.

[59] C. S. Davis. The computer generation of multinomial random variates.
Computational Statistics and Data Analysis, 16(2):205–217, 1993.

[60] L. N. de Castro. Fundamentals of natural computing: an overview.
Physics of Life Reviews, 4:1–36, 2007.

[61] M. A. M. del Amor, J. Pérez-Carrasco, and M. J. Pérez-Jiménez. Simu-
lating a family of tissue P systems solving SAT on the GPU. In Eleventh
Brainstorming Week on Membrane Computing (11BWMC), pages 201–
220. Fenix Editora, 2013.

[62] D. Dı́az-Pernil, M. Gutiérrez-Naranjo, M. Pérez-Jiménez, and A. Riscos-
Núñez. A logarithmic bound for solving subset sum with P systems. In
G. Eleftherakis, P. Kefalas, G. Păun, G. Rozenberg, and A. Salomaa, ed-
itors, Membrane Computing, volume 4860 of Lecture Notes in Computer
Science, pages 257–270. Springer Berlin Heidelberg, 2007.

[63] D. Dı́az-Pernil, I. Pérez-Hurtado, M. Pérez-Jiménez, and A. Riscos-
Núñez. A P-Lingua programming environment for Membrane Comput-
ing. In D. Corne, P. Frisco, G. Păun, G. Rozenberg, and A. Salomaa,
editors, Membrane Computing, volume 5391 of Lecture Notes in Com-
puter Science, pages 187–203. Springer Berlin Heidelberg, 2009.

[64] L. Diez Dolinski, R. Núñez Hervás, M. Cruz Echeand́ıa, and A. Ortega.
Distributed simulation of P systems by means of Map-Reduce: First
steps with hadoop and P-Lingua. In J. Cabestany, I. Rojas, and G. Joya,

BIBLIOGRAPHY 177

editors, Advances in Computational Intelligence, volume 6691 of Lecture
Notes in Computer Science, pages 457–464. Springer Berlin Heidelberg,
2011.

[65] R. Donaldson and D. Gilbert. A model checking approach to the pa-
rameter estimation of biochemical pathways. In Proceedings of the 6th
International Conference on Computational Methods in Systems Biology,
CMSB ’08, pages 269–287, Berlin, Heidelberg, 2008. Springer-Verlag.

[66] S. R. Eddy. What is a hidden markov model? Nature, 22(10):1315 –
1316, 2004.

[67] A. El-Kateeb. Hardware switch for DMA transfer to augment CPU
efficiency. Microprocessors and Microsystems, 7(3):117 – 120, 1983.

[68] F. Fontana, L. Bianco, and V. Manca. P systems and the modeling of bio-
chemical oscillations. In R. Freund, G. Păun, G. Rozenberg, and A. Sa-
lomaa, editors, Membrane Computing, volume 3850 of Lecture Notes in
Computer Science, pages 199–208. Springer Berlin Heidelberg, 2006.

[69] P. Frisco. P systems with symport-antiport. Scholarpedia, 6(10):11704,
2011.

[70] A. Funahashi, M. Morohashi, H. Kitano, and N. Tanimura. CellDesigner:
a process diagram editor for gene-regulatory and biochemical networks.
Biosilico, 1(5):159–162, 2003.

[71] M. Garćıa-Quismondo, R. Gutiérrez-Escudero, M. A. Mart́ınez-del
Amor, E. F. Orejuela-Pinedo, and I. Pérez-Hurtado. P-Lingua 2.0: A
software framework for cell-like P systems. International Journal of
Computers Communications and Control, 4(3):234–243, 2010.

[72] M. Garćıa-Quismondo, M. A. Gutiérrez-Naranjo, and D. Ramı́rez-
Mart́ınez. How does a P system sound? In Eighth Brainstorming Week
on Membrane Computing, pages 123–132. Fenix Editora, 2010.

[73] M. Garćıa-Quismondo, L. F. Macias-Ramos, and M. J. Pérez-Jiménez.
volume 4 of Topics in Intelligent Engineering and Informatics, chapter
Implementing Enzymatic Numerical P Systems for AI Applications by
Means of Graphic Processing Units, pages 137–159. Springer Berlin
Heidelberg, 2013.

BIBLIOGRAPHY 178

[74] M. Garćıa-Quismondo, A. B. Pavel, and M. J. Pérez-Jiménez. Simulating
large-scale ENPS models by means of GPU. In Proceedings of the Tenth
Brainstorming Week on Membrane Computing, volume I, pages 137–152.
Fénix editora, 2012.

[75] M. Garćıa-Quismondo, L. Valencia-Cabrera, Y. Su, M. J. Pérez-Jiménez,
L. Pan, and H. Yu. Modeling logic gene networks by means of Probabilis-
tic Dynamic P systems. In L. Pan, G. Paun, and T. Song, editors, Asian
Conference on Membrane Computing, pages 30–60, Wuhan, China, 2012.

[76] M. Gardener. Beginning R: The Statistical Programming Language.
Wrox, 2012.

[77] M. Gheorghe, F. Ipate, and C. Dragomir. A kernel P system. In Pro-
ceedings of the Tenth Brainstorming Week on Membrane Computing,
volume I, pages 153–170. Fenix editora, 2012.

[78] M. Gheorghe, F. Ipate, C. Dragomir, L. Mierla, L. Valencia-Cabrera,
M. Garćıa-Quismondo, and M. J. Pérez-Jiménez. Kernel P systems -
version I. Eleventh Brainstorming Week on Membrane Computing, pages
97–124, 2013.

[79] M. Gheorghe, F. Ipate, R. Lefticaru, M. J. Pérez-Jiménez, A. Turcanu,
L. Valencia Cabrera, M. Garćıa-Quismondo, and L. Mierla. 3-col prob-
lem modelling using simple kernel P systems. International Journal of
Computer Mathematics, 90(4):816–830, 2013.

[80] D. T. Gillespie. Stochastic simulation of chemical kinetics. Annual Re-
view of Physical Chemistry, 58(1):35–55, 2007.

[81] W. R. Gills. Markov Chain Monte Carlo in Practice (Chapman & Hal-
l/CRC Interdisciplinary Statistics). Chapman and Hall/CRC, 1 edition,
1995.

[82] O. Gimenez, S. Bonner, R. King, R. Parker, S. Brooks, L. Jamieson,
V. Grosbois, B. Morgan, and L. Thomas. Winbugs for population ecol-
ogists: Bayesian modeling using markov chain monte carlo methods. In
D. L. Thomson, E. Cooch, and M. Conroy, editors, Modeling Demo-
graphic Processes In Marked Populations, volume 3 of Environmental
and Ecological Statistics, pages 883–915. Springer US, 2009.

BIBLIOGRAPHY 179

[83] J. R. Gittins, D. A. Phoenix, and J. M. Pratt. Multiple mechanisms
of membrane anchoring of escherichia coli penicillin-binding proteins.
FEMS Microbiology Reviews, 13(1):1 – 12, 1994.

[84] B. Gough. GNU Scientific Library Reference Manual. Network Theory
Ltd., 2009.

[85] H. M. Grewal, W. Gaastra, A.-M. Svennerholm, J. Röli, and H. Som-
merfelt. Induction of colonization factor antigen i (cfa/i) and coli surface
antigen 4 (cs4) of enterotoxigenic escherichia coli: relevance for vaccine
production. Vaccine, 11(2):221–226, 1993.

[86] V. Grimm. Ten years of individual-based modelling in ecology: what
have we learned and what could we learn in the future? Ecological
Modelling, 115(203):129–148, 1999.

[87] V. Grimm, T. Wyszomirski, D. Aikman, and J. Uchmaski. Individual-
based modelling and ecological theory: synthesis of a workshop. Ecolog-
ical Modelling, 115(2-3):275–282, 1999.

[88] H. Guo, Y. Meng, and Y. Jin. A cellular mechanism for multi-robot
construction via evolutionary multi-objective optimization of a gene reg-
ulatory network. Biosystems, 98(3):193 – 203, 2009. Evolving Gene
Regulatory Networks.

[89] A. Gutiérrez, L. Fernández, F. Arroyo, and S. Alonso. Suitability of
using microcontrollers in implementing new P-system communications
architectures. Artificial Life and Robotics, 13(1):102–106, 2008.

[90] A. Gutiérrez, L. Fernandez, F. Arroyo, and V. Mart́ınez. Design of a
hardware architecture based on microcontrollers for the implementation
of membrane systems. In Symbolic and Numeric Algorithms for Scientific
Computing, 2006. SYNASC ’06. Eighth International Symposium on,
pages 350–353, 2006.

[91] M. Gutiérrez-Naranjo, M. Pérez-Jiménez, and F. Romero-Campero. A
linear solution for qsat with membrane creation. In R. Freund, G. Păun,
G. Rozenberg, and A. Salomaa, editors, Membrane Computing, volume
3850 of Lecture Notes in Computer Science, pages 241–252. Springer
Berlin Heidelberg, 2006.

BIBLIOGRAPHY 180

[92] M. A. Gutiérrez-Naranjo, M. J. Pérez-Jiménez, and A. Riscos-Núñez.
Towards a programming language in cellular computing. Electronic Notes
in Theoretical Computer Science, 123(0):93–110, 2005.

[93] M. A. Gutiérrez-Naranjo, M. J. Pérez-Jiménez, and F. J. Romero-
Campero. A uniform solution to SAT using membrane creation. The-
oretical Computer Science, 371(1-2):54 – 61, 2007. ¡ce:title¿Computing
and the Natural Sciences¡/ce:title¿.

[94] R. Haghighi and C. Cheah. Multi-group coordination control for robot
swarms. Automatica, 48(10):2526–2534, 2012.

[95] N. G. Hairston, F. E. Smith, and L. B. Slobodkin. Community Struc-
ture, Population Control, and Competition. The American Naturalist,
94(879):421–425, 1960.

[96] A. Hald. James Bernoulli’s law of large numbers for the binomial dis-
tribution and its generalization. In A History of Parametric Statistical
Inference from Bernoulli to Fisher, 1713–1935, Sources and Studies in
the History of Mathematics and Physical Sciences, pages 11–15. Springer
New York, 2007.

[97] S. Halle and B. Halle. Modelling activity synchronisation in free-ranging
microtine rodents. Ecological Modelling, 115(2-3):165–176, 1999.

[98] M. Haribal, Z. Yang, A. B. Attygalle, J. A. A. Renwick, and J. Meinwald.
A cyanoallyl glucoside from alliaria petiolata, as a feeding deterrent for
larvae of pieris napi oleracea. Journal of Natural Products, 64(4):440–
443, 2001.

[99] M. V. Herlihy. Interactions between Pieris oleracea and Pieris rapae (lep-
idoptera: peridae) butterflies, and the biological control agents Cotesia
glomerata and Cotesia rubecula (hymenoptera: braconidae). PhD thesis,
University of Massachusetts, 2013.

[100] M. F. Hill, J. D. Witman, and H. Caswell. Spatio-temporal variation in
markov chain models of subtidal community succession. Ecology Letters,
5(5):665–675, 2002.

[101] T. Hinze, S. Hayat, T. Lenser, N. Matsumaru, and P. Dittrich. Hill
kinetics meets P systems: a case study on gene regulatory networks
as computing agents in silico and in vivo. In Proceedings of the 8th

BIBLIOGRAPHY 181

international conference on Membrane computing, WMC’07, pages 320–
335, Berlin, Heidelberg, 2007. Springer-Verlag.

[102] T. Hinze, S. Hayat, T. Lenser, N. Matsumaru, and P. Dittrich. Hill
kinetics meets P systems: A case study on gene regulatory networks
as computing agents in silico and in vivo. In Workshop on Membrane
Computing, pages 320–335, 2007.

[103] D. House, M. Walker, Z. Wu, J. Wong, and M. Betke. Tracking of cell
populations to understand their spatio-temporal behavior in response to
physical stimuli. In Computer Vision and Pattern Recognition Work-
shops, 2009. CVPR Workshops 2009. IEEE Computer Society Confer-
ence on, pages 186–193, 2009.

[104] X. Huang, J. Renwick, and F. Chew. Oviposition stimulants and deter-
rents control acceptance of alliaria petiolata bypieris rapae andp. napi
oleracea. CHEMOECOLOGY, 5-6(2):79–87, 1994.

[105] M. Hucka, A. Finney, H. M. Sauro, H. Bolouri, J. C. Doyle, H. Ki-
tano, , the rest of the SBML Forum:, A. P. Arkin, B. J. Bornstein,
D. Bray, A. Cornish-Bowden, A. A. Cuellar, S. Dronov, E. D. Gilles,
M. Ginkel, V. Gor, I. I. Goryanin, W. J. Hedley, T. C. Hodgman, J.-
H. Hofmeyr, P. J. Hunter, N. S. Juty, J. L. Kasberger, A. Kremling,
U. Kummer, N. Le Novire, L. M. Loew, D. Lucio, P. Mendes, E. Minch,
E. D. Mjolsness, Y. Nakayama, M. R. Nelson, P. F. Nielsen, T. Saku-
rada, J. C. Schaff, B. E. Shapiro, T. S. Shimizu, H. D. Spence, J. Stelling,
K. Takahashi, M. Tomita, J. Wagner, and J. Wang. The systems biology
markup language (SBML): a medium for representation and exchange of
biochemical network models. Bioinformatics, 19(4):524–531, 2003.

[106] M. D. Hunter and P. W. Price. Playing Chutes and Ladders Hetero-
geneity and the Relative Roles of Bottom-Up and Top-Down Forces in
Natural Communities. Ecology (Tempe), 73(3), 1992.

[107] M. D. Hunter, G. C. Varley, and G. R. Gradwell. Estimating the relative
roles of top-down and bottom-up forces on insect hervibore populations:
a classic study revisited. Proceedings of the National Academy of Sci-
ences, 94(17):9176–9181, 1997.

[108] O. H. Ibarra, M. J. Pérez-Jiménez, and T. Yokomori. On spiking neural
P systems. Natural Computing, 9(2):475–491, 2010.

BIBLIOGRAPHY 182

[109] T. Imaizumi, T. F. Schultz, F. G. Harmon, L. A. Ho, and S. A. Kay.
Fkf1 f-box protein mediates cyclic degradation of a repressor of constans
in arabidopsis. Science, 309(5732):293–297, 2005.

[110] T. Imaizumi, H. G. Tran, T. E. Swartz, W. R. Briggs, and S. A. Kay.
FKF1 is essential for photoperiodic-specific light signaling in Arabidop-
sis. Nature, 426:301–309, 2003.

[111] M. Ionescu, G. Păun, and T. Yokomori. Spiking neural P systems. Fun-
damenta Informaticae, 71(2,3):279–308, 2006.

[112] F. Ipate, R. Lefticaru, L. Mierla, L. , Valencia-Cabrera, H. Han,
G. Zhang, C. Dragomir, M. J. Pérez-Jiménez, and M. Gheorghe. Ker-
nel P systems: Applications and implementations. In Z. Yin, L. Pan,
and X. Fang, editors, Proceedings of The Eighth International Confer-
ence on Bio-Inspired Computing: Theories and Applications (BIC-TA),
2013, volume 212 of Advances in Intelligent Systems and Computing,
pages 1081–1089. Springer Berlin Heidelberg, 2013.

[113] R. A. Juayong, F. Cabarle, H. Adorna, and M. A. M. del Amor. On the
simulations of evolution-communication P systems with energy without
antiport rules for GPUs. In Tenth Brainstorming Week on Membrane
Computing, volume I, pages 267–290, Seville, Spain, 2012. Fenix Editora.

[114] O. P. Judson. The rise of the individual-based model in ecology. Trends
in Ecology and Evolution, 9(1):9–14, 1994.

[115] H. Kaiser. Quantitative description and simulation of stochastic be-
haviour in dragonflies (aeschna cyanea, odonata). Acta Biotheoretica,
25(2-3):163–210, 1976.

[116] R. Kawai. Nonnegative compartment dynamical system modelling
with stochastic differential equations. Applied Mathematical Modelling,
36(12):6291–6300, 2012.

[117] M. S. Keeler and F. S. Chew. Escaping an evolutionary trap: preference
and performance of a native insect on an exotic invasive host. Oecologia,
156(3):559–568, 2008.

[118] M. S. C. Keeler, B. Goodale, and J. M. B. C. Reed. Modelling the
impacts of two exotic invasive species on a native butterfly: top-down
vs. bottom-up effects. Journal of Animal Ecology, 75(3):777–788, 2006.

BIBLIOGRAPHY 183

[119] D. B. Kirk and W.-m. W. Hwu. Programming Massively Parallel Pro-
cessors: A Hands-on Approach. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 1st edition, 2010.

[120] T. Koyama, T. Ono, M. Shimizu, T. Jinbo, R. Mizuno, K. Tomita,
N. Mitsukawa, T. Kawazu, T. Kimura, K. Ohmiya, and K. Sakka. Pro-
moter of arabidopsis thaliana phosphate transporter gene drives root-
specific expression of transgene in rice. Journal of Bioscience and Bio-
engineering, 99(1):38 – 42, 2005.

[121] R. Kuo, P. Wu, and C. Wang. An intelligent sales forecasting system
through integration of artificial neural networks and fuzzy neural net-
works with fuzzy weight elimination. Neural Networks, 15(7):909 – 925,
2002.

[122] M. Kwiatkowska, G. Norman, and D. Parker. Symbolic Systems Biology,
chapter Probabilistic Model Checking for Systems Biology, pages 31–59.
Jones and Bartlett, 2010.

[123] J. A. Langa, A. Rodŕıguez, and A. Suárez. On the long time behav-
ior of non-autonomous lotka–volterra models with diffusion via the sub-
supertrajectory method. Journal of Differential Equations, 249(2):414 –
445, 2010.

[124] A. Leporati, A. E. Porreca, C. Zandron, and G. Mauri. Improving the
universality results of enzymatic numerical P systems. In Eleventh Brain-
storming Week on Membrane Computing, pages 177–200. Fenix Editora,
2013.

[125] P. H. Leslie, D. Chitty, and H. Chitty. The estimation of population pa-
rameters from data obtained by means of the capture-recapture method:
Ii. an example of the practical applications of the method. Biometrika,
40(1-2):137–169, 1953.

[126] W. S. Levine. The Control Handbook. CRC Press, New York, NY, USA,
1996.

[127] A. Lomnicki. Individual-based models and the individual-based approach
to population ecology. Ecological Modelling, 115(2-3):191 – 198, 1999.

[128] C. Ltd. Handel-C Language Reference Manual. 2005.

BIBLIOGRAPHY 184

[129] T. Lu, D. Volfson, L. Tsimring, and J. Hasty. Cellular growth and
division in the Gillespie algorithm. Systems Biology, 1(1):121+, 2004.

[130] R. Luo, L. Ye, C. Tao, and K. Wang. Simulation of E. coli gene regulation
including overlapping cell cycles, growth, division, time delays and noise.
PLoS ONE, 8(4):e62380, 2013.

[131] M. Maliţa. Membrane computing in prolog. In G. P. Cristian S. Calude,
Michael J. Dinneen, editor, Pre-proceedings of the Workshop on Multiset
Processing, volume I, pages 159–175. 2000.

[132] V. Manca, L. Bianco, and F. Fontana. Evolution and oscillation in P
systems: Applications to biological phenomena. In G. Mauri, G. Păun,
M. Pérez-Jiménez, G. Rozenberg, and A. Salomaa, editors, Membrane
Computing, volume 3365 of Lecture Notes in Computer Science, pages
63–84. Springer Berlin Heidelberg, 2005.

[133] C. Mart́ın-Vide, G. Paun, J. Pazos, and A. Rodŕıguez-Patón. Tissue P
systems. Theoretical Computer Science, 296(2):295–326, 2003.

[134] C. Mart́ın-Vide, J. Pazos, G. Păun, and R.-P. A. A new class of symbolic
abstract neural nets: Tissue P systems. In O. Ibarra and L. Zhang,
editors, Computing and Combinatorics, volume 2387 of Lecture Notes in
Computer Science, pages 290–299. Springer Berlin Heidelberg, 2002.

[135] V. Mart́ınez, A. Gutiérrez, and L. Mingo. Circuit fpga for active rules
selection in a transition P system region. In M. Kippen, N. Kasabov, and
G. Coghill, editors, Advances in Neuro-Information Processing, volume
5507 of Lecture Notes in Computer Science, pages 893–900. Springer
Berlin Heidelberg, 2009.

[136] M. A. Mart́ınez-del Amor. Accelerating Membrane Systems Simulators
using High Performance Computing with GPU. PhD thesis, Department
of Computer Science and Artificial Intelligence. University of Sevilla,
2013.

[137] M. A. Mart́ınez-del Amor, J. Pérez-Carrasco, and M. J. Pérez-Jiménez.
Characterizing the parallel simulation of P systems on the GPU. Inter-
national Journal of Unconventional Computing, 9(5-6):405–424, 2013.

[138] M. A. Mart́ınez-del Amor, I. Pérez-Hurtado, M. Garćıa-Quismondo, L. F.
Macias-Ramos, L. Valencia-Cabrera, A. Romero-Jiménez, C. Graciani,

BIBLIOGRAPHY 185

A. Riscos-Núñez, M. A. Colomer, and M. J. Pérez-Jiménez. DCBA: Sim-
ulating Population Dynamics P systems with proportional object distri-
bution. In E. Csuhaj-Varje, M. Gheorghe, G. Rozenberg, A. Salomaa,
and G. Vaszil, editors, Membrane Computing, volume 7762 of Lecture
Notes in Computer Science, pages 257–276. Springer Berlin Heidelberg,
2013.

[139] M. A. Mart́ınez-del-Amor, I. Pérez-Hurtado, A. Gastalver-Rubio, A. C.
Elster, and M. J. Pérez-Jiménez. Population Dynamics P Systems on
CUDA. In D. Gilbert and M. Heiner, editors, Computational Methods
in Systems Biology, Lecture Notes in Computer Science, pages 247–266.
Springer Berlin Heidelberg, 2012.

[140] M. A. Mart́ınez-del Amor, I. Pérez-Hurtado, M. J. Pérez-Jiménez, and
A. Riscos-Núñez. A P-Lingua based simulator for tissue P systems. The
Journal of Logic and Algebraic Programming, 79(6):374 – 382, 2010.

[141] M. A. Mart́ınez-del Amor, I. Pérez-Hurtado, M. J. Pérez-Jiménez,
A. Riscos-Núñez, and F. Sancho-Caparrini. A simulation algorithm for
multienvironment probabilistic P systems - a formal verification. Inter-
national Journal of Foundations of Computer Science, 22(01):107–118,
2011.

[142] R. May. Stability and complexity in model ecosystems. Number 6 in
Monographs in population biology. Princeton Univ. Press, Princeton,
NJ, 2. ed. edition, 1974.

[143] O. Mol and B. Oudega. Molecular and structural aspects of fimbriae
biosynthesis and assembly in escherichia coli. FEMS Microbiology Re-
views, 19(1):25–52, 1996.

[144] R. Molla-Vayá and R. Vive-Hernando. Fixed-point digital differen-
tial analyser with antialiasing (FDDAA). Computers and Graphics,
26(2):329 – 339, 2002.

[145] A. Munshi, B. R. Gaster, T. G. Mattson, J. Fung, and D. Ginsburg.
OpenCL programming guide. Addison-Wesley, 1st edition, 2011.

[146] T. Murata. Petri nets: Properties, analysis and applications. Proceedings
of the IEEE, 77(4):541–580, 1989.

[147] W. W. Murdoch. Community Structure, Population Control, and Com-
petition. The American Naturalist, 100(912):219–226, 1966.

BIBLIOGRAPHY 186

[148] I. A. Nepomuceno-Chamorro. A java simulator for membrane computing.
Journal of Unconventional Computation, 10(5):620–629, 2004.

[149] V. Nguyen, D. Kearney, and G. Gioiosa. Balancing performance, flex-
ibility, and scalability in a parallel computing platform for membrane
computing applications. In Proceedings of the 8th Workshop on Mem-
brane computing, WMC’07, pages 385–413, Berlin, Heidelberg, 2007.
Springer-Verlag.

[150] V. Nguyen, D. Kearney, and G. Gioiosa. An implementation of Mem-
brane Computing using reconfigurable hardware. Computing and infor-
matics, 27(3):551–569, 2008.

[151] V. Nguyen, D. Kearney, and G. Gioiosa. An algorithm for non-
deterministic object distribution in P systems and its implementation
in hardware. In D. Corne, P. Frisco, G. Păun, G. Rozenberg, and A. Sa-
lomaa, editors, Membrane Computing, volume 5391 of Lecture Notes in
Computer Science, pages 325–354. Springer Berlin Heidelberg, 2009.

[152] V. Nguyen, D. Kearney, and G. Gioiosa. An extensible, maintainable
and elegant approach to hardware source code generation in reconfig-p.
Journal of Logic and Algebraic Programming, 79(6):383–396, 2010.

[153] V. Nguyen, D. Kearney, and G. Gioiosa. A region-oriented hardware
implementation for Membrane Computing applications. In G. Păun,
M. Pérez-Jiménez, A. Riscos-Núñez, G. Rozenberg, and A. Salomaa, ed-
itors, Membrane Computing, volume 5957 of Lecture Notes in Computer
Science, pages 385–409. Springer Berlin Heidelberg, 2010.

[154] J. Nickolls, I. Buck, M. Garland, and K. Skadron. Scalable parallel
programming with CUDA. Queue, 6(2):40–53, 2008.

[155] P. Nordin, W. Banzhaf, F. Informatik, F. Informatik, L. F. Systemanal-
yse, and L. F. Systemanalyse. Evolving turing-complete programs for a
register machine with self-modifying code. In Genetic algorithms: pro-
ceedings of the sixth international conference (ICGA95, pages 318–325.
Morgan Kaufmann, 1995.

[156] V. Nuzzo. Invasion pattern of herb garlic mustard (alliaria petiolata) in
high quality forests. Biological Invasions, 1(2-3):169–179, 1999.

BIBLIOGRAPHY 187

[157] C. B. Octavian Arsene and N. Popescu. SNUPS - a simulator for numer-
ical membrane computing. International Journal of Innovative Comput-
ing, Information and Control, 7(6):3509–3522, 2011.

[158] S. Omkar, R. Khandelwal, S. Yathindra, G. N. Naik, and S. Gopalakrish-
nan. Artificial immune system for multi-objective design optimization of
composite structures. Engineering Applications of Artificial Intelligence,
21(8):1416 – 1429, 2008.

[159] P. Opler and G. Krizek. Butterflies east of the Great Plains: an illustrated
natural history. Johns Hopkins University Press, 1984.

[160] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone, and J. C.
Phillips. GPU Computing. Proceedings of the IEEE, 96(5):879–899,
2008.

[161] P. S. Pacheco. Parallel programming with MPI. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 1996.

[162] L. Pan and M. J. Pérez-Jiménez. Computational complexity of tissue-like
p systems. Journal of Complexity, 26(3):296 – 315, 2010.

[163] L. Pan, G. Păun, and M. J. Pérez-Jiménez. Spiking neural P systems
with neuron division and budding. Science China Information Sciences,
54(8):1596–1607, 2011.

[164] G. Paun, M. J. Pérez-Jiménez, and A. R.-N. nez. Tissue P systems with
cell division. International Journal of Computers Communications and
Control, 3:295–303, 2008.

[165] A. Pavel, O. Arsene, and C. Buiu. Enzymatic numerical P systems -
a new class of membrane computing systems. In Bio-Inspired Comput-
ing: Theories and Applications (BIC-TA), 2010 IEEE Fifth Interna-
tional Conference on, pages 1331–1336, 2010.

[166] A. B. Pavel and C. Buiu. Using enzymatic numerical P systems for
modeling mobile robot controllers. Natural Computing, 11(3):387–393,
2012.

[167] A. B. Pavel, C. Vasile, and I. Dumitrache. Membrane computing in
robotics. In J. Kelemen, J. Romportl, and E. Zackova, editors, Beyond
Artificial Intelligence, volume 4 of Topics in Intelligent Engineering and
Informatics, pages 125–135. Springer Berlin Heidelberg, 2013.

BIBLIOGRAPHY 188

[168] A. B. Pavel, C. I. Vasile, and I. Dumitrache. Robot localization imple-
mented with enzymatic numerical P systems. In T. Prescott, N. Lep-
ora, A. Mura, and P. Verschure, editors, Biomimetic and Biohybrid Sys-
tems, volume 7375 of Lecture Notes in Computer Science, pages 204–215.
Springer Berlin Heidelberg, 2012.

[169] L. S. Penrose. The Elementary Statistics of Majority Voting. Journal of
the Royal Statistical Society, 109(1):53–57, 1946.

[170] I. Pérez-Hurtado. Desarrollo y aplicaciones de un entorno de programa-
cien para Computacien Celular: P-Lingua. PhD thesis, Department of
Computer Science and Artificial Intelligence. University of Sevilla, 2010.

[171] I. Pérez-Hurtado, M. Pérez-Jiménez, A. Riscos-Núñez, and F. J. Romero-
Campero. Membrane computing (tutorial). In C. Calude, J. Kari, I. Pe-
tre, and G. Rozenberg, editors, Unconventional Computation, volume
6714 of Lecture Notes in Computer Science, pages 38–39. Springer Berlin
Heidelberg, 2011.

[172] I. Pérez-Hurtado, L. Valencia-Cabrera, M. J. Pérez-Jiménez, M. A.
Colomer, and A. Riscos-Núñez. MeCoSim: A general purpose software
tool for simulating biological phenomena by means of P systems. In
K. Li, Z. Tang, R. Li, A. K. Nagar, and R. Thamburaj, editors, IEEE
Fifth International Conference on Bio-inpired Computing: Theories and
Applications (BIC-TA 2010), volume I, pages 637–643, Changsha, China,
2010. IEEE, Inc.

[173] M. Pérez-Jiménez and A. Riscos-Núñez. Solving the subset-sum prob-
lem by P systems with active membranes. New Generation Computing,
23(4):339–356, 2005.

[174] M. Pérez-Jiménez and A. Riscos-Nuũez. A linear-time solution to the
knapsack problem using P systems with active membranes. In C. Mart́ın-
Vide, G. Mauri, G. Păun, G. Rozenberg, and A. Salomaa, editors, Mem-
brane Computing, volume 2933 of Lecture Notes in Computer Science,
pages 250–268. Springer Berlin Heidelberg, 2004.

[175] M. Pérez-Jiménez and F. Romero-Campero. A CLIPS simulator for
recognizer P systems with active membranes. In 2nd Brainstorming
Week on Membrane Computing, pages 387–413, Seville, Spain, 2004.
Fenix Editora.

BIBLIOGRAPHY 189

[176] M. J. Pérez-Jiménez and F. J. Romero-Campero. Solving the bin packing
problem by recognizer P systems with active membranes. In Proceedings
of the Second Brainstorming Week on Membrane Computing, 2004.

[177] M. J. Pérez-Jiménez and F. J. Romero-Campero. P systems, a new
computational modelling tool for systems biology. In C. Priami and
G. Plotkin, editors, Transactions on Computational Systems Biology
VI, volume 4220 of Lecture Notes in Computer Science, pages 176–197.
Springer Berlin Heidelberg, 2006.

[178] M. J. Pérez-Jiménez, A. Romero-Jiménez, and F. Sancho-Caparrini. A
polynomial complexity class in P systems using membrane division. Jour-
nal of Automata, Languages and Combinatorics, 11:423–434, 2006.

[179] M. J. Pérez-Jiménez and F. Sancho-Caparrini. A formalization of tran-
sition P systems. Fundam. Inf., 49(1):261–272, 2002.

[180] B. Petreska and C. Teuscher. A reconfigurable hardware membrane sys-
tem. In C. Mart́ın-Vide, G. Mauri, G. Păun, G. Rozenberg, and A. Sa-
lomaa, editors, Membrane Computing, volume 2933 of Lecture Notes in
Computer Science, pages 269–285. Springer Berlin Heidelberg, 2004.

[181] C. A. Petri. Kommunikation mit Automaten. PhD thesis, Universitat
Hamburg, 1962.

[182] C. A. Petri. Fundamentals of a Theory of Asynchronous Information
Flow. In Proceedings of IFIP Congress, pages 386–390. North Holland
Publishing Company, 1963.

[183] M. E. Power. Top-Down and Bottom-Up Forces in Food Webs: Do
Plants Have Primacy. Ecology, 73(3):733+, 1992.

[184] A. Profir, E. Gutuleac, and E. Boian. Simulation of continuous-time P
systems using descriptive rewriting timed Petri nets. In SYNASC, pages
458–461, 2005.

[185] A. Păun and B. Popa. P systems with proteins on membranes. Funda-
menta Informaticae, 72(4):467–483, 2006.

[186] A. Păun and B. Popa. P systems with proteins on membranes and
membrane division. In Proceedings of the 10th international conference
on Developments in Language Theory, DLT’06, pages 292–303, Berlin,
Heidelberg, 2006. Springer-Verlag.

BIBLIOGRAPHY 190

[187] A. Păun and G. Păun. The power of communication: P systems with
symport/antiport. New Generation Computing, 20(3):295–305, 2002.

[188] G. Păun. Computing with membranes. Journal of Computer and System
Sciences, 61(1):108 – 143, 2000.

[189] G. Păun. Computing with membranes: Attacking NP-complete prob-
lems. In I. Antoniou, C. Calude, and M. Dinneen, editors, Unconven-
tional Models of Computation, UMC’2K, Discrete Mathematics and The-
oretical Computer Science, pages 94–115. Springer London, 2001.

[190] G. Păun. Membrane Computing: An Introduction. Springer-Verlag New
York, Inc., Secaucus, NJ, USA, 2002.

[191] G. Păun, M. J. Pérez-Jiménez, and A. Riscos-Núñez. Tissue P systems
with cell division. International Journal of Computers Communications
and Control, 3(3):295–303, 2008.

[192] G. Păun and R. Păun. Membrane computing as a framework for model-
ing economic processes. In Symbolic and Numeric Algorithms for Scien-
tific Computing, 2005. SYNASC 2005. Seventh International Symposium
on, pages 8 pp.–, 2005.

[193] G. Păun and R. Păun. Membrane Computing and economics: Numerical
P systems. Fundam. Inf., 73(1,2):213–227, 2006.

[194] Z. Qi, J. You, and H. Mao. P systems and petri nets. In C. Martin-vide,
G. Mauri, G. Păun, G. Rozenberg, and A. Salomaa, editors, Membrane
Computing, volume 2933 of Lecture Notes in Computer Science, pages
286–303. Springer Berlin Heidelberg, 2004.

[195] K. Qureshi and P. Manuel. Adaptive pre-task assignment scheduling
strategy for heterogeneous distributed raytracing system. Computers
and Electrical Engineering, 33(1):70 – 78, 2007.

[196] D. Ramı́rez-Mart́ınez and M. A. Gutiérrez-Naranjo. A software tool for
dealing with spiking neural P systems. In M. A. Gutiérrez-Naranjo,
editor, Fifth Brainstorming Week on Membrane Computing, pages 299–
313. Fenix Editora, 2007.

[197] J. A. Renwick. The chemical world of crucivores: Lures, treats and traps,
2002.

BIBLIOGRAPHY 191

[198] J. A. Renwick, W. Zhang, M. Haribal, and A. B. Attygalle. Dual chem-
ical barriers protect a plant against different larval stages of an insect.
Journal of Chemical Ecology, 27(8):1575–1583, 2001.

[199] F. J. Romero-Campero and M. J. Pérez-Jiménez. A model of the quorum
sensing system in vibrio fischeri using P systems. Artificial Life, 14(1):95–
109, 2008.

[200] F. J. Romero-Campero and M. J. Pérez-Jiménez. Modelling gene expres-
sion control using P systems: The Lac operon, a case study. Biosystems,
91(3):438 – 457, 2008. P-Systems Applications to Systems Biology.

[201] F. J. Romero-Campero, J. Twycross, M. Cámara, M. Bennett, M. Gheo-
rghe, and N. Krasnogor. Modular assembly of cell systems biology using
P systems. International Journal of Foundations of Computer Science,
20(03):427–442, 2009.

[202] A. Romero-Jiménez, M. Gutiérrez-Naranjo, and M. Pérez-Jiménez.
Graphical modeling of higher plants using P systems. In H. Hoogeboom,
G. Păun, G. Rozenberg, and A. Salomaa, editors, Membrane Comput-
ing, volume 4361 of Lecture Notes in Computer Science, pages 496–506.
Springer Berlin Heidelberg, 2006.

[203] A. Romero-Jiménez and M. J. Pérez-Jiménez. Computing partial recur-
sive functions by transition P systems. In C. Mart́ın-Vide, G. Mauri,
G. Păun, G. Rozenberg, and A. Salomaa, editors, Membrane Comput-
ing, volume 2933 of Lecture Notes in Computer Science, pages 320–340.
Springer Berlin Heidelberg, 2004.

[204] E. Sanchez. Bio-Inspired Computing Machines: Toward Novel Compu-
tational Machines, chapter An Introduction to Digital Systems, pages
13–48. Presses Polytechniques et Universitaires Romandes, Lausanne,
Switzerland, 1998.

[205] M. Scheffer, J. M. Baveco, D. L. Deangelis, E. H. R. R. Lammens, and
B. Shuter. Stunted Growth and Stepwise Die-Off in Animal Cohorts.
American Naturalist, 145(3):376–388, 1995.

[206] R. Scott. Alien, the 8th passenger.

[207] C. Shao, X. Ma, X. Xu, and Y. Meng. Identification of the highly accu-
mulated microrna*s in arabidopsis (arabidopsis thaliana) and rice (oryza
sativa). Gene, 515(1):123 – 127, 2013.

BIBLIOGRAPHY 192

[208] D. Shiffman. The Nature of Code: Simulating Natural Systems with
Processing. Theoklesia, Llc, 1st edition, 2012.

[209] G. P. Silva and J. S. Aude. Evaluation of a sparc architecture with
Harvard bus and branch target cache. Microprocessing and Micropro-
gramming, 34(1–5):157 – 160, 1992.

[210] A. Spicher, O. Michel, M. Cieslak, J.-L. Giavitto, and P. Prusinkiewicz.
Stochastic P systems and the simulation of biochemical processes with
dynamic compartments. Biosystems, 91(3):458 – 472, 2008. P-Systems
Applications to Systems Biology.

[211] V. A. Spraun. Computer Science Made Simple: Learn how hardware
and software work– and how to make them work for you! Broadway, 1st
edition, 2005.

[212] R. Storn and K. Price. Differential evolution – a simple and efficient
heuristic for global optimization over continuous spaces. J. of Global
Optimization, 11(4):341–359, 1997.

[213] L. Su and M. Tan. A virtual centrifugal force based navigation algorithm
for explorative robotic tasks in unknown environments. Robotics and
Autonomous Systems, 51(4):261 – 274, 2005.

[214] 68030 features Harvard architecture. Microprocessors and Microsystems,
10(10):567, 1986.

[215] Y. Takemura, M. Sato, and K. Ishii. Toward realization of swarm intel-
ligence mobile robots. International Congress Series, 1291(0):273 – 276,
2006. Brain-Inspired IT II: Decision and Behavioral Choice Organized
by Natural and Artificial Brains. Invited and selected papers of the 2nd
International Conference on Brain-inspired Information Technology.

[216] H. Takizawa, K. Koyama, K. Sato, K. Komatsu, and H. Kobayashi.
Checl: Transparent checkpointing and process migration of opencl ap-
plications. In Parallel Distributed Processing Symposium (IPDPS), 2011
IEEE International, pages 864–876, 2011.

[217] A. T. Tolmidis and L. Petrou. Multi-objective optimization for dynamic
task allocation in a multi-robot system. Engineering Applications of
Artificial Intelligence, 26(5–6):1458 – 1468, 2013.

BIBLIOGRAPHY 193

[218] S. M. Trimberger. Field-Programmable Gate Array Technology. Springer-
Verlag New York, Inc., Boston, MA, USA, 1994.

[219] L. Valencia-Cabrera, M. Garćıa-Quismondo, M. J. Pérez-Jiménez, Y. Su,
H. Yu, and L. Pan. Analysing gene networks with pdp systems. arabidop-
sis thaliana, a case study. Eleventh Brainstorming Week on Membrane
Computing (11BWMC), pages 257–272, 2013.

[220] L. Valencia-Cabrera, M. Garćıa-Quismondo, M. J. Pérez-Jiménez, Y. Su,
H. Yu, and L. Pan. Modeling logic gene networks by means of proba-
bilistic dynamic p systems. International Journal of Unconventional
Computing, 9(5-6):445–464, 2013.

[221] C. Vasile, A. Pavel, I. Dumitrache, and G. Păun. On the power of
enzymatic numerical P systems. Acta Informatica, 49(6):395–412, 2012.

[222] C. I. Vasile, A. B. Pavel, and I. Dumitrache. Improving the universality
results of enzymatic numerical P systems. In Tenth Brainstorming Week
on Membrane Computing, pages 207–214. Fenix Editora, 2012.

[223] S. Verlan and J. Quiros. Fast hardware implementations of P systems.
In Proceedings of the 13th international conference on Membrane Com-
puting, CMC’12, pages 404–423. Springer-Verlag, 2013.

[224] J. Villasenor and B. Hutchings. The flexibility of configurable computing.
Signal Processing Magazine, IEEE, 15(5):67–84, 1998.

[225] J. Wang, V. Athitsos, S. Sclaroff, and M. Betke. Detecting objects of
variable shape structure with hidden state shape models. Pattern Anal-
ysis and Machine Intelligence, IEEE Transactions on, 30(3):477–492,
2008.

[226] J. Wang, P. Shi, H. Peng, M. Pérez-Jiménez, and T. Wang. Weighted
fuzzy spiking neural p systems. Fuzzy Systems, IEEE Transactions on,
21(2):209–220, 2013.

[227] L. Wang, J. Tao, R. Ranjan, H. Marten, A. Streit, J. Chen, and D. Chen.
G-Hadoop: MapReduce across distributed data centers for data-intensive
computing. Future Generation Computer Systems, 29(3):739 – 750, 2013.
Special Section: Recent Developments in High Performance Computing
and Security.

BIBLIOGRAPHY 194

[228] S. Wang, Y. Chen, Q. Wang, E. Li, Y. Su, and D. Meng. Analysis for
stimuli to shoot genes of Arabidopsis thaliana based on logical relation-
ships. Optimization and Systems Biology, 11:435–447, 2006.

[229] S. Wang, Y. Chen, Q. Wang, E. Li, Y. Su, and D. Meng. Analysis for
gene networks based on logic relationships. Journal of Systems Science
and Complexity, 23:999–1011, 2010.

[230] D. Whitley, T. Starkweather, and C. Bogart. Genetic algorithms and
neural networks: optimizing connections and connectivity. Parallel Com-
puting, 14(3):347 – 361, 1990.

[231] C. Wiklund, P.-O. Wickman, and S. Nylin. A sex difference in the
propensity to enter direct/diapause development: A result of selection
for protandry. Evolution, 46(2):519–528, 1982.

[232] D. J. Wilkinson. Stochastic modelling for quantitative description of
heterogeneous biological systems. Nature Reviews Genetics, 10(2):122–
133, 2009.

[233] S. Wolfram. A New Kind of Science. Turnaround, 1st edition, 2002.

[234] Z. Wu, M. Betke, J. Wang, V. Athitsos, and S. Sclaroff. Tracking with
dynamic hidden-state shape models. In D. Forsyth, P. Torr, and A. Zis-
serman, editors, Computer Vision at ECCV 2008, volume 5302 of Lecture
Notes in Computer Science, pages 643–656. Springer Berlin Heidelberg,
2008.

[235] X.-S. Yang and M. Karamanoglu. Swarm intelligence and bio-inspired
computation: An overview. In X.-S. Yang, Z. Cui, R. Xiao, A. H.
Gandomi, and M. Karamanoglu, editors, Swarm Intelligence and Bio-
inspired Computation, pages 3 – 23. Elsevier, Oxford, 2013.

[236] X. Zeng, H. Adorna, M. Mart́ınez-del Amor, L. Pan, and M. Pérez-
Jiménez. Matrix representation of spiking neural p systems. In M. Ghe-
orghe, T. Hinze, G. Păun, G. Rozenberg, and A. Salomaa, editors, Mem-
brane Computing, volume 6501 of Lecture Notes in Computer Science,
pages 377–391. Springer Berlin Heidelberg, 2011.

[237] S.-Z. Zhang and Z. Jian-Rhu. Advance in the flowering time control of
arabidopsis. Progress in Biochemistry and Biophysics, 33:301–309, 2006.

BIBLIOGRAPHY 195

[238] X. Zhang, S. Kim, T. Wang, and C. Baral. Joint learning of logic re-
lationships for studying protein function using phylogenetic profiles and
the rosetta stone method. Trans. Sig. Proc., 54(6):2427–2435, 2006.

[239] Y. Zhang, D. wei Gong, and J. hua Zhang. Robot path planning in un-
certain environment using multi-objective particle swarm optimization.
Neurocomputing, 103(0):172 – 185, 2013.

[240] J. Zobitz, A. Desai, D. Moore, and M. Chadwick. A primer for data
assimilation with ecological models using Markov Chain Monte Carlo
(MCMC). Oecologia, 167(3):599–611, 2011.

	I Preliminaries
	Natural Computing
	Paradigms in Natural Computing
	Membrane Computing
	Stochastic models and Probabilistic Models

	Simulation of P Systems
	Simulators in Membrane Computing
	Standards in Membrane Computing
	Parallel simulation of P systems
	GPU Computing
	Hardware specifications

	II Contributions
	Enzymatic Numerical P systems
	Numerical P Systems
	Enzymatic Numerical P Systems
	Simulation of Enzymatic Numerical P Systems
	A GPU simulator for Enzymatic Numerical P systems
	Performance analysis of the GPU simulator

	Logic Network Dynamic P systems
	Some antecedents of Gene Network models in Membrane Computing
	Logic Networks
	Population Dynamics P systems
	A PDP–based model of Logic Networks

	Probabilistic Guarded P Systems
	Formal description of PGP systems
	Simulation of PGP systems
	Parallel simulation of PGP systems
	Software environment

	III Results
	Case studies
	Modelling logic networks with LNDP systems: Arabidopsis thaliana, a case study
	A PGP model on the ecosystem of Pieris napi oleracea

	Conclusions
	Summary by chapter
	Thesis overview
	Future work

	Appendices
	Gene Network Data
	PGP Model Data
	Bibliography

