
A Semiquantitative Approach to Study Semiqualitative
Systems

Juan Antonio Ortega, Rafael M. Gasca, Miguel Toro, and Jesús Torres

Departamento de Lenguajes y Sistemas Informáticos
University of Seville

Avda. Reina Mercedes s/n – 41012 – Sevilla (Spain)
{ortega,gasca,mtoro,jtorres}@lsi.us.es

Abstract. In this paper is proposed a semiquantitative methodology to study
models of dynamic systems with qualitative and quantitative knowledge. This
qualitative information may be composed by: operators, envelope functions,
qualitative labels and qualitative continuous functions. A formalism is also
described to incorporate this qualitative knowledge into these models. The
methodology allows us to study all the states (transient and stationary) of a
semiquantitative dynamic system. It also helps to obtain its behaviours patterns.
The methodology is applied to a logistic growth model with a delay.

1 Introduction

Models of  dynamic systems studied in science and engineering are normally 
composed of quantitative, qualitative, and semiquantitative knowledge. Different 
approximations have been  proposed when  the  qualitative knowledge is  taken into 
account: transformation of non-linear to piecewise linear relationships, Monte Carlo 
method, constraint logic programming, probability distributions, causal relations, 
fuzzy sets, and combination of  all levels of qualitative and  quantitative abstraction 
[5], [9].
We are interested in  the study of  dynamic systems with quantitative and qualitative 
knowledge. All this  knowledge should be taken into account when these models are 
studied. Different levels of numeric abstraction have been proposed in the literature: 
purely qualitative [6], semiquantitative [5] [8], numeric interval [14] and quantitative. 
The proposed methodology transforms a  semiquantitative model into a family of 
quantitative models. A semiquantitative model may be  composed of qualitative 
knowledge, arithmetic and relational operators, predefined functions (log,exp,sin,...), 
numbers and intervals.

A brief description of the  proposed methodology is as  follows: a semiquantitative 
model is transformed into a set  of quantitative models. The simulation of every 
quantitative model generates a trajectory in the phase space. A database is obtained 
with these quantitative behaviours or trajectories. Techniques of Knowledge 
Discovery in Databases (KDD) are applied by means of a language to carry out 
queries about the qualitative properties of this time-series database. This language is  
also intended to classify the different qualitative behaviours of our model. This



classification will help us to describe the semiquantitative behaviour of a system by
means of a set of hierarchical rules obtained by means of machine learning
algorithms.

The term KDD [1] is used to refer to the overall process of discovering useful
knowledge from data. The problem of knowledge extraction from databases involves
many steps, ranging from data manipulation and retrieval to fundamental
mathematical and statistical inference, search and reasoning. Although the problem of
extracting knowledge from data (or observations) is not new, automation in the
context of databases opens up many new unsolved problems.

KDD has evolved, and continues to evolve, from the confluence of research in
such fields as databases, machine learning, pattern recognition, artificial intelligence
and reasoning with uncertainty, knowledge acquisition for expert systems, data
visualization, software discovery, information retrieval, and high-performance
computing. KDD software systems incorporate theories, algorithms, and methods
from all of these fields.

The term data mining is used most by statisticians, database researchers and more
recently by the business community. Data mining is a particular step in the KDD
process. The additional steps in KDD process are data preparation, data selection, data
cleaning, incorporation of appropriate prior knowledge and proper interpretation of
the results of mining ensure the useful knowledge is derived from the data [11]. A
detailed descriptions of these steps may be found in [10].

The originality of our approach is that it combines in a proper way qualitative
reasoning with machine learning techniques. This approach is appropriate to study all
the states (transient and stationary) of a semiquantitative dynamic system. It also
appropriated  to obtain its behaviours patterns. However, some behaviours maybe not
found with this approach, mainly, those behaviours obtained with narrowed domains
of the parameters.

2 The Methodology

There has been a great deal of previous research studying the stationary state of a
system, however, it is also necessary to study transient states. For example, it is very
important in production industrial systems to improve their efficiency. Both states of a
semiquantitative dynamic system may be studied with the proposed methodology.
The methodology is shown in Figure 1.

Starting from a dynamic system with qualitative knowledge, a semiquantitative
model S is obtained. A family of quantitative models F is obtained from S by means of
the application of some transformation techniques which are bellow described.

Stochastic techniques are applied to choose a model M ∈ F. Every model M is
quantitatively simulated obtaining a trajectory, which is composed by the values of all
variables from its initial value until its final value, and the values of the parameters.
Therefore, it contains the values of these variables in the transient and stationary
states of the system.

A database of quantitative trajectories T is obtained with these quantitative
behaviours. A language is proposed to carry out queries about the qualitative
properties of the set of trajectories included in the database. A labelled database is
obtained with the classification of these trajectories in according to a criterion.



Qualitative behaviour patterns of the system may be automatically obtained from
this database by applying machine learning based on genetic algorithms. These
algorithms are described in [2].

3 Semiquantitative Models

A semiquantitative model S is represented by

Φ(dx/dt,x,q,t),  x(t0) = x0,  Φ0(q,x0) (1)

being x ∈ ℜ n the set of state variables of the system, q the parameters, t the time,
dx/dt the variation of the state variables with the time, Φ constraints depending on
dx/dt,x,q,t and Φ0 the set of constraints with initial conditions.

If the methodology is applied, the equations of the dynamic system (1) are
transformed into a set of constraints among variables, parameters and intervals. In this
paper, we are interested in those systems that may be expressed as (2) when the
transformation rules are applied

dx/dt = f(x,p,t),  x(t0) = x0,  p ∈ Ip,  x0 ∈ I0
(2)

where p includes the parameters of the system and new parameters obtained by means
of the transformation rules, f is a function obtained by applying the transformation
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rules, and Ip,I0 are real intervals. The equation (2) is a family F of dynamic systems
depending on p and x0.

3.1 Qualitative Knowledge

Our attention is focused on those dynamic systems where there may be qualitative
knowledge in their parameters, initial conditions and/or vector field. They constitute
the semiquantitative differential equations of the system.

The representation of the qualitative knowledge is carried out by means of
operators, which have associated real intervals. This representation facilitates the
integration of qualitative and quantitative knowledge in a simple way, and the
incorporation of knowledge from the experts [4].

Qualitative knowledge may be composed of qualitative operators, qualitative
labels, envelope functions and qualitative continuous functions. This qualitative
knowledge and its transformation techniques are now detailed.

Qualitative Operators
These operators are used to represent qualitative parameters and initial conditions.
They may be unary U and binary B operators. Every qualitative operator op is defined
by means of an interval Iop, which is supplied by the experts.

Each qualitative magnitude of the system has its own unary operators. Let Ux be
the unary operators for a qualitative variable x, i.e. Ux={VNx, MNx, LNx,
AP0x,LPx,MPx,VPx }. They denote for x the qualitative labels very negative, moderately
negative, slightly negative, approximately zero, slightly positive, moderately positive,
very positive respectively.  Let r be a new generated variable and let Iu be an interval
defined in accordance with [13], then the transformation rule for a unary operator is as
follows

opu(e) ≡ {r ∈ Iu ,  e − r = 0} (3)

Let e1,e2 be two arithmetic expressions, and let opb be a binary operator. The
expression opb(e1,e2)  denotes a qualitative relationship between e1 and e2. Binary
qualitative operators are classified into:
ÿ Operators related to the difference ≥ ,=, ≤, being their transformation rules:

e1 = e2 ≡ { e1−e2=0 }

e1 ≤ e2 ≡ { e1−e2 − r=0,  r ∈ [− ∞,0] }

e1 ≥ e2 ≡ { e1−e2 − r=0,  r ∈ [0,+∞] }

(4)

ÿ Operators related to the quotient {«,−<,~,≈,»,Vo, Ne,...}. The following trans-
formation rule is applied:

opb(e1,e2) ≡ {e1−e2*r=0 ,  r ∈ Ib
(5)

where Ib is an interval defined according to [7].
In order to maintain the consistency of the model, it is necessary to add constraints

to guarantee the relation among the absolute and relative order of magnitude
operators. in the general case [12].



Envelope Functions
An envelope function y=g(x) represents the family of functions included between two
defined real functions, a upper one U:  ℜ ⇒ ℜ and a lower one L: ℜ ⇒ ℜ.

〈 L(x),U(x),I 〉,  ∀ x ∈ I: L(x) ≤ U(x) (6)

where I is the definition domain of g, and x is the independent. The transformation
rule applied to (6) is

g(x) = α L(x) + (1 − α) U(x) with α ∈ [0,1] (7)

where α is a new variable. If α=0 ⇒ g(x)=U(x) and if α=1 ⇒ g(x)=L(x) and any
other value of α in (0,1) stands for any included value between L(x) and U(x).

Qualitative Continuous Functions
A qualitative continuous function y=h(x) represents a set of constraints among the
values of y and x according to the properties of h. It is denoted by

y=h(x),  h ≡ {P1,s1,P2,,..,.sk−1,Pk} (8)

being Pi the points of the function. Every Pi is defined by means of (di,ei) where di is
the qualitative landmark associated to the variable x  and ei  to y. These points are
separated by the sign si of the derivative in the interval between two consecutive
points. A monotonous qualitative function is a particular case of these functions
where the sign is always the same s1=... =sk−1.

The transformation rules of a qualitative continuous function are applied in three
steps:
1. Normalization:

The definition of the function is completed and homogenised using these
continuity properties:
ÿ a function that changes, its sign between two consecutive landmarks passes

through a landmark whose value in the function is zero
ÿ a function whose derivative changes, its sign between two consecutive

landmarks passes through a landmark whose derivative is zero
The definition of any function (Equation 8) is always completed with: the extreme
points (−∞, +∞), the points that denote the cut points with the axes, and where the
sign of the derivative changes (a maximum or a minimum of h).

2. Extension:
The definition of these functions is enriched by means of an automatic process,
which incorporates new landmarks or qualitative labels. This extension is carried
out to diminish the uncertainty in the definition of the function.

The number of new landmarks included between each two consecutive original
landmarks may be always the same. With this consideration, we don’t loose the
statistical representativity of the selected quantitative samples obtained for this
function.

3. Transformation
A qualitative function h  is transformed into a set of quantitative functions H.
The algorithm ChooseH is applied to obtain H.



ChooseH (h)
for each monotonous region in h

segment={Pm,...,Pn}
choose a value for every Pi in the segment

verifying the constraints of h

This algorithm divides h into its segments. A segment is a sequence of consecutive
points {Pm,...,Pn} separated by means of those points whose landmark ei=0 or where
si≠ si+1. The segments divide the function into their monotonous regions where their
landmarks ei have the same sign.  The algorithm applies stochastic techniques to
choose every quantitative function of H. These techniques are similar to the Monte
Carlo method, however, the values obtained must satisfy the constraints of h. We use
a heuristic that applies a random uniform distribution to obtain the values for every
landmark of Pi.

4 Database Generation

A family F of quantitative models has been obtained when the transformation rules
described in section 3.1 have been applied to the semiquantitative model S. This
family depends on a set of  interval parameters p and functions H defined by means of
a set of quantitative points. Every particular model M of F is selected by means of
stochastic techniques, and it is quantitatively simulated. This simulation generates a
trajectory r that is stored into the database T.
   The following algorithms are applied to obtain T.

ChooseModel (F)
for each interval parameter or variable of F

choose a value in its interval for it
for each function h of F

H:=ChooseH(h)

Database generation T
T:={ }
for i=1 to N

M:=ChooseModel(F)
r:= QuantitativeSimulation(M)
T:=T ∪ r

being N the number of simulations to be carried out, and it is defined in accordance
with the section 7. Therefore, N is the number of trajectories of T.

5 Query/Classification Language

In this section, we propose a language to carry out queries to the trajectories database.
It is also possible to assign qualitative labels to the trajectories with this language.



5.1 Abstract Syntax

Let T be the set of all trajectories r stored in the database. A query Q is: a quantifier
operator ∀,∃,ℵ applied on T, or a basic query [r,P] that evaluates true when the
trajectory r verifies the property P.
   The property P may be formulated by means of the composition of other properties
using the Boolean operators ∧,∨, ¬.

Table 1. Abstract Syntax of the Language

    Q : ∀  r ∈ T • [r,P] P:  Pb Pb: Pd

| ∃ r ∈ T • [r,P] | P ∧ P | f(L(F))
| ℵ r ∈ T • [r,P] | P∨  P  | ∀ t:F • F
| [r,p] | ¬ P | ∃ t:F • F

        Pd: EQ F: Fb Fb: eb

| CL | F & F | e ∈ I
| F | F | u(e)
| ! F    | b(e,e)

A basic property Pb may be: a predefined property Pd, a Boolean function f applied to
a list L of points or intervals that verifies the formula F, or a quantifier ∀,∃ applied to
the values of a particular trajectory for a time t. This time may be: an instant of time, a
unary time operator (i.e. a range of time), a predefined time landmark, or the list of
times where the formula F is verified.

A defined property Pd is the one whose formulation is automatic. They are queries
commonly used in dynamic systems. There are two predefined: EQ is verified when
the trajectory ends up in a stable equilibrium; and CL when it ends up in a cycle limit.

A formula F may be composed of other formulas combined by means of Boolean
operators  &,|,!.

A basic formula Fb may be: a Boolean expression eb, or if a numeric expression e
belongs to an interval, or a unary u or binary b qualitative operator.

5.2 Semantics

The semantics of every instruction of this language is translated into a query on the
database. The techniques applied to carry out this transformation come from the
development of compilers of language programming. A query [r,P] is true when
trajectory r verifies the property P. Semantics of a query with a quantifier depends on
its related quantifier. If it is∀, a Boolean value true is returned when all the
trajectories r ∈ T verify P. If it is ∃ then true is returned when there is at least one
trajectory r ∈ T that verifies the property P. If the quantifier is ℵ then returns the
number of trajectories of T that verifies P.



   Let ∀ t: F1 • F2 be a basic property which is true if during the time that F1 is
satisfied, all the values of r verify F2. For ∃ quantifier is true when at least a value of r
that satisfies F1, also satisfied F2. In order to evaluate a formula F, it is necessary to
substitute its variables for their values. These values are obtained from T.

5.3 Classification

A classification rule is formulated as a set of basic queries with labels, and possibly
other expressions

[r,PA] ⇒ A,en1,...  [r,Pb] ⇒ B,en2,...  ... (9)

A trajectory r is classified with a label η if it verifies the property Pη.
Let [r,PA] ⇒ A,eA1 be a classification rule. A trajectory r ∈ T is classified with the

label A if it verifies property PA. The result of evaluating eA1 for this trajectory is also
stored into the database.

6 A Logistic Growth Model with a Delay

It is very common to find growth processes where an initial phase of exponential
growth is followed by another phase of asymptotic approach to a saturation value.
The following generic names are given: logistic, sigmoid, and s-shaped processes.
This growth appears in those systems where the exponential expansion is truncated by
the limitation of the resources required for this growth. They abound in the evolution
of bacteria, in mineral extraction, in world population growth, in epidemics, in
rumours, in economic development, the learning curves, etc.

In the bibliography, these models have been profusely studied. There is a bimodal
behaviour pattern attractor: A stands for normal growth, and O for decay  (Figure 5.b).

Differential equations of the model S are

Φ ≡
dx/dt=x(n r-m), y=delayτ(x), r>0,r=h(y),

h ≡ {(-∞,-∞),+,(d0,0),+, (0,1),+, (d1,e0), -,(1,0), - (+∞,-∞)}
(10)

being n the increasing factor, m the decreasing factor, and h a qualitative function
with a maximum point at (x1,y0).  The initial conditions are

Φ0 ≡ { x0 ∈ [LPx,MPx], LPx(m),LPx(n), τ ∈ MPτ,VPτ} (11)

where LP,MP,VP are qualitative unary operators for x,τ variables.
   We would like to know:

1. if an equilibrium is always reached
2. if there is an equilibrium whose value is not zero
3. if all the trajectories with value zero at the equilibrium are reached without

oscillations.
4. To classify the database according to the behaviours of the system.

We apply our approach to this model. Firstly, the transformation rules are applied,



dx/dt=x(n r-m), y=delayτ(x), x>0, r=H(y),

H, x0 ∈ [0,3],  m,n ∈ [0,1], τ ∈ [0.5,10]
(12)

where H has been obtained by applying Choose H to h, and the intervals are defined
in accordance with the experts’ knowledge. The algorithm Database generation T
returns the trajectories database.

The proposed queries are formulated as follows:
1. r ∈ T • [r,EQ]

2. r ∈ T • [r, EQ ∧ ∃ t: t ≈ tf • !AP0x(x)]

3. ∀ r ∈ T • [r, EQ ∧ ∃ t: t ≈ tf •  AP0x(x) ∧    length(dx/dt=0)=0 ]
4. being AP0x a unary operator of x. The list of points where dx/dt=0 is the list

with the maximum and minimum points. If length is 0 then there are not
oscillations.
We classify the database by means of the labels:

[r,EQ ∧ length(dx/dt=0)>0 ∧ ∃ t : t ≈ tf • !AP0x(x)] ⇒ recovered,

[r,EQ ∧ length(dx/dt=0)>0 ∧ ∃ t : t ≈ tf • AP0x(x)] ⇒ retarded,

[r,EQ ∧ ∃ t : t ≈ tf • AP0x(x)] ⇒ extinction,

They correspond to the three possible behaviour patterns of the system (Fig. 6). They
are in accordance with the obtained behaviours when a mathematical reasoning is
carried out [3].

7 Conclusions and Further Work

In this paper, a methodology is presented in order to automate the analysis of dynamic
systems with qualitative and quantitative knowledge. This methodology is based on a
transformation process, application of stochastic techniques, quantitative simulation,
generation of trajectories database and definition of a query/classification language.
There is enough bibliography that studies stationary states of dynamic systems.
However, the study of transient states is also necessary. These studies are possible
with the proposed language.

The simulation is carried out by means of stochastic techniques. The results are
stored in a quantitative database. It may be classified by means of the proposed
language. Once the database is classified, genetic algorithms may be applied to obtain
conclusions about the dynamic system.

In the future, we are going to enrich the query/classification language with:
operators for comparing trajectories among them, temporal logic among several times
of a trajectory, more type of equations, etc.

Φ
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