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Using Brownian dynamics simulations, density functional theory, and analytical perturbation theory we

study the collapse of a patch of interfacially trapped, micrometer-sized colloidal particles, driven by long-

ranged capillary attraction. This attraction is formally analogous to two-dimensional (2D) screened

Newtonian gravity with the capillary length �̂ as the screening length. Whereas the limit �̂ ! 1
corresponds to the global collapse of a self-gravitating fluid, for finite �̂ we predict theoretically and

observe in simulations a ringlike density peak at the outer rim of a disclike patch, moving as an inbound

shock wave. Possible experimental realizations are discussed.
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The dynamics of matter under the influence of long-
ranged attractions is studied intensively in several branches
of physics [1], in particular, with respect to inherent insta-
bilities. Most prominently, the structure formation in the
universe is understood as the consequence of an instability
in self-gravitating matter, and cosmological theories in
conjunction with numerical simulations have been success-
fully applied to explain the dynamical formation of clus-
ters, galaxies, or dark matter halos on large scales [2].
More recently, other systems with gravitational-like attrac-
tions have been investigated, including seemingly unre-
lated phenomena like bacterial chemotaxis [3,4] or
capillary-driven clustering in colloids trapped at fluid in-
terfaces [5,6]. In these systems the interaction is effectively
cut off beyond a finite range, albeit much larger than the
mean interparticle separation.

In a self-gravitating fluid any homogeneous mass distri-
bution is unstable with respect to small fluctuations on
sufficiently large scales [7] (Jeans’s instability). In systems
with a cutoff gravitational-like attraction, this instability
only occurs below a critical temperature [4,5]. As the range
of the interaction is scaled [6] from infinity down to a
microscopic length like the size of the particles, the dy-
namical evolution of the instability crosses over from
gravitational collapse to spinodal decomposition. A stan-
dard theoretical approach to the gravitational collapse in
cosmology is the so-called cold collapse approximation
(see, e.g., Ref. [8]), within which any force other than
gravity (in particular the thermal pressure of the fluid) is
neglected altogether. The view on applications to other
physical situations raises the natural question of how the
phenomenology of this scenario is affected by a nonvan-
ishing thermal pressure and a large but finite range of
attractions and specifically how the crossover to the spino-
dal decomposition scenario occurs.

Colloidal particles with radii in the micrometer range,
which are trapped at a fluid interface, lend themselves to
study this issue. Their weight results in a force f on each
particle perpendicular to the interface which deforms it and
gives rise to long-ranged capillary interactions between the
particles. For large colloid center-to-center distances d, the
leading interaction term (dominating the collective col-
lapse dynamics) is a pair interaction with the potential

[9] VðdÞ ¼ ½f2=ð2��Þ�K0ðd=�̂Þ with the modified Bessel

function K0, the capillary length �̂ (�OðmmÞ), and the

interfacial tension �. For d < �̂ this reduces to 2D

Newtonian gravity, V0ðdÞ � ln d, whereas for d > �̂ it
decreases exponentially. This soft matter system is of

particular interest because the range �̂ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�=ðg��mÞ

p
is

tunable via the dependence of � on temperature T̂ and the
concentration of surfactants or through the mass density
difference ��m between the two fluid phases forming the
interface; g is Earth’s gravitational acceleration.
Main results.—We study the time evolution of the 2D

particle number density %̂ðr̂ ¼ fx; yg; t̂Þ of an initially cir-
cular patch of radius L with particles of radius R on the flat
interface with a homogenous density %̂0. The range is

measured by the dimensionless parameter � ¼ �̂=L and
we introduce the effective, dimensionless temperature

T ¼ �kBT̂

f2%̂0L
2
: (1)

For �̂ ! 1, T is the ratio of the thermal to the (mean-field)
attractive inner energy of the patch because each particle

interacts with N � %̂0L
2 other particles. For �̂ < L, the

number reduces to N � %̂0�̂
2 and this ratio approximately

equals ð1þ ��2ÞT. Figure 1 summarizes qualitatively the
dynamic phases we have found. If T is large enough (above
the black line), the capillary attraction cannot confine the
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particles to the circular patch, so that it becomes more and
more diluted as time progresses. If T is small (dashed line)
the patch collapses, but how this proceeds depends on �. In
the limit � ! 1 (gravitational collapse), the fastest grow-
ing modes span the patch and the evolution is dominated by
the collapse of the structure as a whole. In the opposite
limit � ! R (spinodal decomposition), the fastest growing
modes have a characteristic length scale well below L and
the evolution is dominated by the coarsening of these
domains. We have explored the transition region between
these limits using perturbation theory, Brownian dynamics
(BD) simulations, and dynamic density functional theory
(DDFT). Accordingly, the most prominent feature of this
transition is a density peak forming at the outer rim of the

collapsing circular patch which exhibits properties of a
shock wave. The latter is defined by the crossing of the
characteristic curves of a differential equation. For Eq. (2)
below, in the presence of radial symmetry, these character-
istics are the trajectories of rings of particles. Rings with
initially larger radii travel faster than those with smaller
radii and, upon crossing, form a density singularity as
T ! 0 [Fig. 2(a)]. This feature becomes more pronounced
with � becoming smaller, because the time for building up
the shock wave diminishes relative to the collapse time of
the whole patch (Fig. 3). On the other hand, for smaller �
additional small clusters form in the interior of the patch
and the shock wave amplitude is reduced [Fig. 2(b)].
Theory.—We consider a 2D fluid within a mean-field

approximation appropriate for the long-ranged, capillary
interactions and take into account nonzero temperature and
short-ranged interactions through a pressure equation of

state p̂ð%̂; T̂Þ [5], containing the effects of short-ranged
interactions such as hard or soft cores and subleading terms
in the capillary forces. The particle dynamics is assumed to
be in the overdamped regime with � as the associated
interfacial mobility of the particles and hydrodynamic
interactions are neglected. The relevant time scale of col-
lapse is Jeans’s time T ¼ �=ð�f2%̂0Þ. We note that the
time it takes a particle to diffuse a distance L by Brownian

motion alone is �L2=ð�kBT̂Þ ¼ T =T. Dimensionless

variables are introduced as % ¼ %̂=%̂0, p ¼ p̂=ðkBT̂%̂0Þ,
r ¼ r̂=L, and t ¼ t̂=T together with Eq. (1). Mass conser-
vation reads [5]

@%

@t
¼ �r � ð%rU½%� � TrpÞ; (2)

with the dimensionless potential of capillary interac-
tion U½%ðrÞ� ¼ ½1=ð2�Þ�R dr0%ðr0ÞK0ðjr� r0j=�Þ. For

idealized point particles the pressure is pid ¼ %; we
have also considered a fluid of hard discs of radius R,
described by [10] phdð%Þ ¼ %ð%c þ %Þ=ð%c � %Þ, where
%c ¼ ð2 ffiffiffi

3
p

%̂0R
2Þ�1 is the dimensionless density of close

FIG. 2 (color). Evolution of the radial density profile for T ¼ 3:1� 10�4 (for further parameters, see the main text). Panel (a):
� ¼ 0:25, comparison between 2D DDFT (colored lines), and BD (symbols). Panel (b): � ¼ 0:075, only BD (DDFT results omitted
for clarity). Unlike as in (a), small transient peaks distinct from the one at the outer rim are observed due to clustering near the center of
the collapsing disc.

FIG. 1 (color). Proposed sketch of dynamical regimes for a
circular patch of radius L with particles of radius R as a function
of the range � ¼ �̂=L of the interaction and a rescaled effective
temperature Tð1þ ��2Þ [see Eq. (1) and below]. The rescaling
factor for T leads to a horizontal border separating the collapse
and dilution regimes. Neglecting a possible temperature depen-
dence of �̂, isotherms are parallel to the dashed black line. The
transition region is bounded approximately by the line for which
linear stability theory for an infinite homogeneous distribution
[5,6] predicts that the fastest growing density mode has a wave
number 2�=L.
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packing. Equation (2) can be viewed as a simple DDFT for
this system [5] which, given the long range of the attrac-
tions, is expected to hold at least for scales much larger
than R and to describe correctly the collective aspects of
the dynamics. Deviations are likely to occur for smaller
scales and are mainly attributable to the local density
approximation, i.e., the crude form of the term / rp for
the short-ranged interactions. Here, improvement could be
achieved using more sophisticated expressions from DFT.

The cold collapse (CC) scenario [formally T ¼ 0 in
Eq. (2)] is best studied using Lagrangian coordinates: the
characteristic curves of Eq. (2) are the radial trajectories of
infinitesimally thin rings of particles, assuming that the
initial radial symmetry is preserved by the mean-field
evolution. If the initial radius is r0, the trajectory is de-
scribed by a time dependent mapping r ¼ rLaðr0; tÞ. The
Jacobian of this mapping provides the density field in
Lagrangian coordinates:

1

%Laðr0; tÞ ¼ rLa
r0

@rLa
@r0

; ðr0 � 1Þ: (3)

The mapping is well defined and invertible as long as two
rings do not cross. If two rings cross, the Jacobian vanishes
and the density field exhibits a singularity. For � ! 1, the

CC approximation yields [5,11] rLa ¼ r0
ffiffiffiffiffiffiffiffiffiffiffi
1� t

p
(t � 1)

and %Laðr0; tÞ ¼ 1=ð1� tÞ. Thus, the initial homogeneity
inside the patch is preserved and a singularity arises at
t ¼ 1 (i.e., at Jeans’s time), when all the rings reach the
center simultaneously. For finite � we have applied pertur-
bation theory in terms of 1=� leading to [6]

�
rLa
r0

�
2 ¼ 1� tþ 2� 4�Euler � r20 � lnð4�2Þ

ð4�Þ2 tð2� tÞ

� 2 lnð4�2Þ
ð4�Þ2 ð1� tÞ2 lnj1� tj; (4)

1

%Laðr0; tÞ ¼
�
rLa
r0

�
2 � tð2� tÞ

�
r0
4�

�
2
: (5)

This result predicts the formation of an overdensity for
the outermost ring (r0 ¼ 1) which becomes singular
(1=%La ¼ 0) at a time ts � 1þ lnð1:44�Þ=ð2�Þ2 when it
reaches a radius rs ¼ rLað1; tsÞ � 1=ð4�Þ. (The singularity
is a consequence of the CC approximation; it is actually
regularized into a density peak moving like a shock wave
by the term / rp.) Thus, with decreasing � the collapse
singularity occurs later and at larger radii. Intuitively, for
decreasing � the range of the interaction is confined to
smaller regions around any point of the disc. In addition the
outer rim of the disc experiences no balancing pull from
the outside, so that there the first overdensity builds up,
which then attracts more and more particles.
Numerical methods and discussion.—In order to test this

theoretical analysis we have performed simulations and
solved Eq. (2) numerically. Simulation parameters were
chosen to reflect the conditions in an actual experimental
realization [5] (patch size L ¼ 1:83 mm, particle

radius R ¼ 10 �m, capillary potential depth f2=ð2��Þ ¼
0:89kBT̂, particle mobility � ¼ 3��waterR with �water

being the water viscosity at room temperature, and the
particle hard core realized by the repulsive part of the
Lennard-Jones potential [12]). The simulations were car-
ried out with N ¼ 1804 particles using BD [6,13] and the
radial density profile was obtained through angular and
ensemble (120 runs) averages. Numerical solutions were
obtained either through a numerical integration of Eq. (2)
with enforced radial symmetry or through a particle-based
(Lagrangian) integration scheme of the full 2D equation
(labeled as 2D DDFT) [6,14]. In this latter case, the density
field is probed by a discrete number of (fictitious) particles
which follow the characteristic curves of Eq. (2) and the

FIG. 3 (color). Snapshots from BD simulations for temperature T ¼ 3:1� 10�4 and � ¼ 1:5 (upper row) or � ¼ 0:25 (lower row).
Particle distributions in each column have the same radial extent. Clusters (i.e., particles with at least 3 neighbors within a distance of
3:25R) are depicted in red. For � ¼ 1:5 the global collapse appears to be faster than the formation of individual smaller clusters. For
� ¼ 0:25, small clusters predominantly form at the outer rim and collectively move towards the center.
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density profile is obtained like the profiles from BD
simulations.

We find that the value � ¼ 1:5 (i.e., �̂ � 2:7 mm,
which is the capillary length of the air-water interface at
ambient conditions) is at the limit of applicability of the
perturbation theory: the DDFT solutions for T ¼ 0 confirm
the occurrence of the singularity at the predicted values
rs � 0:16, ts � 1:1 and that the formation of the singular-
ity indeed slows down and occurs at larger values of rs with
decreasing � (rs � 0:69, ts � 1:7 for � ¼ 0:25). The
DDFT solutions at nonzero T ¼ Oð10�3–10�5Þ show
that, as for T ¼ 0, an overdensity peak forms at the rim
while traveling inwards with increasing amplitude, but the
development into a singularity is inhibited.

The results from the BD simulations confirm this and
provide further details about the dynamical evolution, see
Figs. 2 and 3. For � ¼ 0:25 at T ¼ 3:1� 10�4, in contrast
to the collapse at larger �, a ring-shaped densified zone
forms which is composed of a number of smaller clusters.
The 2D DDFT solutions agree well with the BD simulation
data for all times. This indicates that the features we
are analyzing are not affected by the details of the micro-
scopic correlations, the effect of which can be taken into
account through the macroscopic pressure term. Upon
decreasing � further, the formation of even more individual
clusters inside the disc is observed, as a prelude to the
spinodal decomposition scenario. For the particular value
� ¼ 0:075 the averaged radial density profile still exhibits
the collective behavior of the shock wave at the outer rim
albeit with a smaller amplitude. Additionally, transient
peak structures for smaller radii also become visible and
are eventually absorbed by the shock wave traveling
inwards.

The phenomenology of local clustering due to small
initial fluctuations is also visible in the azimuthal direction,
both in the BD simulations and in the 2D DDFT solution.
In both cases the initial conditions break the radial sym-
metry, which is expected to be recovered by an ensemble
average.

Concerning a possible experimental realization, a
suitable value of T can be arranged using colloids with
R� 10 �m [5]. Observation of the ring-shaped density
buildup and the ensuing shock wave requires �=L & 0:25,
corresponding to L * 10 mm for an air-water interface. A
likely relevant issue for experiments is the role of hydro-
dynamic interactions. We have carried out simulations
incorporating these on the Rotne-Prager level (as formu-
lated in Ref. [15]) for the specific case of particles with a
contact angle close to zero (i.e., just touching the inter-
face). Our results indicate that the qualitative features of
the evolution discussed here are not affected and the col-
lapse is simply accelerated. This is in line with the experi-
mentally observed enhanced colloid self-diffusion due to
hydrodynamic interactions in such a system [16].

Summary and conclusions.—We have studied the col-
lapse of a homogeneous, circular patch of colloidal parti-
cles trapped at a fluid interface by means of analytical
perturbation theory, Brownian dynamics simulations, and
dynamical density functional-like theories. The capillary
attraction is formally analogous to two-dimensional grav-
ity with a tunable cutoff length �. We find that a finite value
of � strongly influences the collapse features. While for
� ! 1 the evolution is dominated by the global collapse
of the patch, a large but finite � induces the formation of a
ringlike overdensity which quickly becomes singular in the
limit of a vanishing pressure force (i.e., zero temperature or
cold collapse). A nonvanishing pressure regularizes the
singularity into a collapsing shock wave. System parame-
ters can be chosen such that these spatiotemporal structures
can be realized in experiments with micrometer-sized col-
loids. Furthermore, this system appears to be ideally suited
to investigate the transition from Jeans’s gravitational in-
stability (� ! 1) to a spinodal instability (�� colloid
radius).
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