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Dislocation Patterns and the Similitude Principle: 2.5D Mesoscale Simulations
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During plastic flow of crystalline solids, dislocations self-organize in the form of patterns, with a
wavelength that is inversely proportional to stress. After four decades of investigations, the origin of this
property is still under discussion. We show that dislocation patterns verifying the principle of similitude
can be obtained from dynamics simulations of double slip. These patterns are formed in the presence of
long- and short-range interactions, but they are not significantly modified when only short-range
interactions are present. This new insight into dislocation patterning phenomena has important implica-

tions regarding current models.
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During plastic flow of crystalline solids, dislocations, the
linear defects that carry plasticity at the microscopic scale,
move and multiply. In parallel, dislocation microstructures
tend to self-organize in the form of patterns containing
dislocation-rich and dislocation-poor regions. As elemen-
tary dislocation processes are reasonably well understood
[11, this collective behavior constitutes a major obstacle to
a physical modeling of the mechanical response. In mono-
tonic deformation and in multislip conditions, the patterns
consist of three-dimensional cells bounded by cell walls. A
wealth of experimental observations [2] shows that during
plastic deformation, the average spacing between cell
walls shrinks like the inverse of the recorded stress, the
flow stress. This property is known under the name of
principle of similitude [3]. After many controversies about
how to model the formation of dislocation cells (see
Ref. [4] for a review), it was realized 20 years ago that
dislocation patterning is an example of self-organization in
a system driven far from equilibrium. In the models that
were further developed, the main difficulty consists in
accounting for long-range interaction stresses between
dislocations, which were assumed to be at the origin of
patterning phenomena [5,6]. The specific features of such
models are, however, still under discussion, as they do not
account for a few essential properties of dislocations.

Dislocation dynamics simulations constitute a natural
tool for investigating this type of collective behavior.
However, 3D simulations are still too demanding in terms
of computational load to allow investigating the similitude
principle. A study of 3D patterns in face-centered cubic
(fce) crystals has, nevertheless, confirmed that three main
mechanisms, which are currently implemented in these
simulations, participate to pattern formation [7]. The re-
actions between intersecting dislocations, or junctions, are
strong obstacles which pin the cell walls. Elastic interac-
tions between dislocations, which are long-ranged, also
necessarily play a role. The cross-slip of screw dislocations
stabilizes dislocation tangles, accounts for the three-
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dimensional dissemination of slip, and governs the self-
organization kinetics.

Dislocation patterns can be more easily obtained in 2D,
but in drastically simplified conditions [5]. As a conse-
quence, none of the existing 2D studies lead to patterns that
consistently verify the scaling relations commonly found
in deformed fcc metals. In what follows we propose a
“2.5D” simulation, which attempts to reproduce, as
closely as possible, the relevant 3D dislocation mecha-
nisms. Dislocation cells are obtained in conditions of
double slip over a range of dislocation densities that ex-
tends over 2 orders of magnitude. It is shown that the
microstructures follow the principle of similitude, which
allows discussion of the main properties of the obtained

patterns.
The similitude principle is written in the form
T b
—=K-, 1
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where 7 is the flow stress, w is the shear modulus, b the
modulus of the dislocations Burgers vector, and A the
average wavelength of the pattern. The constant K some-
how appears as a universal constant (K = 10). A second
scaling law, the Taylor relation, which expresses the flow
stress in terms of the square root of the dislocation density,
p, also characterizes plastic flow

T

i ab./p. 2)
In this equation, « is an approximately constant coeffi-
cient. Here, p is taken as the total density, that is, twice the
density of intersecting obstacles seen by each slip system
during duplex slip. In such conditions, a = 0.25. The
Taylor relation has been the subject of numerous experi-
mental checks. It is well reproduced by 3D mesoscale
simulations (see Ref. [8]) and is understood as reflecting
essentially the strength of the junctions formed in increas-
ing numbers as plastic flow proceeds.
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Parts of the present simulation are rather conventional.
The simulated area is a square of side L defining the two
crystallographic axes [10] and [01]. Two sets of infinite
edge dislocations, with slip directions 1/2[v/31] and
1/2[—+/31] are introduced endon in two different slip
systems which have same Schmid factor (F = J3/4).
The free-flight velocity of the dislocations, v, under an
effective resolved stress 7 is given by 7°b = Bv, where B
is a phonon drag constant. The two slip systems are loaded
in a symmetrical manner by applying a constant plastic
strain rate along the [01] direction, which produces a total
plastic strain &. The effective stress on each dislocation,
7" = Typp T Tine» 18 calculated as the sum of the applied
stress and the long-range elastic interaction stresses with
other dislocations. Use is made of periodic boundary con-
ditions and interaction stresses are computed with the help
of the fast multipole method [9]. A cutoff radius R, is
applied to the dislocation fields, with a value that is ran-
domly redefined at each time step and for each segment in
the range L/2 — L/3. This procedure allows avoidance of
the formation of artificial patterns arising from the intro-
duction of a constant cutoff distance. For each initial dis-
location density, L is chosen by trial and error in such a
way as to obtain a pattern of wavelength A = L/5 — L/6
smaller than R,.. Finally, dislocation dipoles are assumed to
mutually annihilate when their height is smaller than 5b
[10].

At this point, what is modeled is a “dislocation gas” that
does not include the main mechanisms driving pattern
formation. For this reason, results from 3D dislocation
dynamics simulations (see Ref. [7] for references) are
used to parametrize additional local rules, specifically,
the calculation of the effective stress on moving disloca-
tions, their multiplication rate and the conditions for junc-
tion formation and destruction.

Early estimates [11], as well as 3D simulations [7],
indicate that long-range interaction stresses, that is, at
distances larger than the mean distance between disloca-
tions, p~'/2, typically contribute to only one-fifth of the
resistive stress opposing dislocation motion. The major
resistive contribution arises from the line tension on seg-
ments that bow out between intersecting dislocations ob-
stacles. Hence, one has to take line tension into account in
2D. A calculation of the sum of applied and interaction
stresses in 3D and 2D shows that, on average, the effective
stress must be scaled down by a factor of about five in the
latter in order to appropriately incorporate line tension
effects.

It is generally observed, and checked by 3D simulations,
that dislocation multiplication is characterized by a linear
increase of the total density p as a function of strain
dp/de = m, where the constant m is of the order of
10" m~2. The value adopted here, m = 2 X 10" m~2, is
taken from 3D simulations of duplex slip. Reproducing this
linear evolution in 2D requires some care. For instance,
introducing fixed dislocation sources amounts to making a

very strong simplification. Indeed, if one considers a thin
slice of 3D crystal, most of the dislocations emerging into
it originate from dislocation sources located in the sur-
rounding volume.

In 2D, each pointlike dislocation moving by Ax during a
simulation time step produces a shear increment Ay =
b&x/L?. The resulting total strain, Ae = F Y Ay, is the
projection of the total shear increment along the loading
axis. During a strain increment, An new dislocations ap-
pear and the instantaneous dislocation density is taken as
the number of pointlike defects per unit area, p = n/ L2 Tt
is justified to take the same multiplication rate both in 2D
and 3D, because m is proportional to the inverse of a length
squared in the two cases. Then, An = mL?Ae. Fresh dis-
locations are randomly introduced in the simulated area,
provided that their effective stress is in the direction of the
applied shear stress. In order to satisfy mechanical equi-
librium, new dislocations of each sign (as well as the initial
ones), are equally distributed between the slip systems.
This multiplication rule disseminates fresh mobile dislo-
cations into the simulated area, thus mimicking the effect
of the 3D dislocation flux.

Two local rules are introduced to deal with the formation
and destruction of junctions. The formation criterion en-
sures that the probability for short-range reactions in 2D is
of same order as in 3D. The average length of junctions
under stress, as measured by 3D simulations, is €; =

0.2p~'/2 [12]. In a 2D projection, a junction, stable or
not, should connect two pointlike defects separated by a
distance somehow smaller than this value. For the sake of
simplicity, we assume that two attractive defects moving in
different glide planes may form a junction and are blocked
at their current position when their distance is d; < €.
Once a junction is formed, the interaction stress between
the two dislocations is set to zero, since it is not relevant to
the 3D process.

The second criterion deals with junction destruction
[13,14]. A junction is effectively formed and remains
stable only when the stress on each dislocation is lower
than a critical value 7;. In 3D, this quantity scales like the

inverse of the local length p;l/ 2 of the interacting seg-
ments, where p; is a local dislocation density. The local
stress is then defined from a line tension relation of the
form

~1/2
_ o Mb Py
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where (B is a constant. The local dislocation density is
obtained by defining a disk of radius R; centered at the
junction and containing n = 12 pointlike defects. To re-
cover a reasonable value of the flow stress, we take 8 =
0.035. Thus, the criterion for junction description accounts
for the local spatial nonuniformities in dislocation density.

Copper is taken as reference for defining the material
constants b, w, and B. Simulations are carried out for
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different equivalent initial dislocation densities p ranging
from 5 X 10" m~2to 5 X 103 m™2.

Figure 1(a) shows the dependence of the resolved flow
stress on the square root of the total dislocation density as
yielded by the numerical tests. The Taylor relation [Eq. (2)]
is recovered, as expected, with a constant slope: a = 0.65.
This value could be fitted exactly by modifying the con-
stant 3, but an « value slightly larger than the experimental
one was chosen in order to reduce as much as possible the
wavelength of the dislocation patterns and improve the
statistical quality of the results.

The total dislocation density is plotted as a function of
the total plastic strain in Fig. 1(b). The small initial den-
sities correspond to large simulated areas and are more
demanding in terms of computing power, hence the small
values of the maximum strains. For small densities, the
curves present a constant initial slope, close to that of the
implemented multiplication rate, followed by a pseudopar-
abolic stage, which appears earlier with increasing initial
density. This stage is due to the increased number of
annihilations at large densities.

Because of the use of periodic boundary conditions, the
simulated dislocation microstructures self-organize when
the wavelength of the pattern is commensurate with the
dimension of the simulated area in the corresponding
direction. With increasing dislocation density and flow
stress, a pattern is progressively formed [15], of which an
example is shown in Fig. 2. With increasing stress, this
ordered microstructure is destroyed. Other commensurate
structures are presumably formed again at larger strains,
which cannot be reached by the present simulations. As
shown below in Fig. 3, once a pattern is formed, its
periodicity is only dictated by the principle of similitude.

The two sets of dislocation walls shown in Fig. 2(a) are
not exactly parallel to the prescribed slip directions. They
also have slightly different periodicities, as can be seen
from the Fourier transform shown in inset. This tendency is
general and the obtained patterns always exhibit some
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FIG. 1. (a) Shear stress vs the square root of the total disloca-

tion density in dimensionless variables. Simulations starting with
different initial densities are superimposed, yielding a linear
slope a = 0.65. (b) Total density vs plastic strain curves for
various initial densities. The arrow indicates the conditions at
which the pattern shown in Fig. 2 is obtained and m is the
implemented multiplication rate.

asymmetry. The enlargement of a portion of wall shown
in Fig. 2(b) shows that they are constituted of a majority of
junctions, dislocations blocked near junctions and a few
dipolar arrangements. The surface fraction of walls, as
measured manually, is f,, = 0.3 = 0.05 and does not de-
pend on stress. Similar values are experimentally found in
copper single crystals (f,, = 0.45), once cell walls are
formed [16].

In another set of numerical experiments, a constant cut-
off radius R. = L/6 is introduced, which removes the
long-range interactions between dislocation walls, but pre-
serves reactions and interactions inside walls. In such
conditions, similar patterns are nevertheless formed, albeit
with slightly less-well-defined walls. This confirms that
pattern formation is mostly driven by short-range interac-
tions between dislocations.

A check of the similitude principle [Eq. (1)] is shown in
Fig. 3, in which the resolved shear stresses measured at the
optimum point for pattern formation are plotted as a func-
tion of 1/A for all numerical experiments. A linear depen-
dence is found, in fair agreement with the prediction of the
similitude principle. The proportionality constant, K =
6.80 = 0.5, is of the same order as the experimentally
measured one.

The consistency of these results can be checked through
dimensionality arguments, taking into account that the
surface fraction of walls is found to be a constant. If ¢ is
the thickness of the walls, f,, = /(A — ). This surface
fraction can also be rewritten f,, = nt/L, where n = L/A
is the number of walls of thickness ¢ and height L. If the
total dislocation density is coalesced into n walls with
average dislocation density p,,, we have p/p,, = nt/L =
f- Thus,

fw =——=—=const. “)

FIG. 2.
p = 1.8 X 10* m~2). The Fourier transform of this pattern is
shown in the inset; the diffraction spots corresponding to the two
wall spacings are encircled. (b) Snapshot of a magnified cell wall
(vertical after rotation).

(a) A periodic 2D pattern (A = 2.5 pum, L = 14 pm,
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FIG. 3. Numerical check of the similitude principle: scaled
resolved stress vs the inverse of the scaled wall periodicity
b/ A (two values are plotted when the two types of walls do
not have exactly same periodicity). A: all interactions included.
V: short-range interactions only.

The average distance between dislocations in the walls is
defined by 1, = pw'/> = (f,,/p)"/2. Then, according to
Eq. (2), 1, « 1/7. The first equality in Eq. (4) implies
that the wall thickness is inversely proportional to stress
if the period A follows the principle of similitude: 7 o« 1/7.
Thus, the ratio t/I,, = k is a constant and [,, = t/k =
Af,,/k(1 + f,,). Combining this expression for [, with
the one obtained above, we have A = k(1 + f,,)/\/fp-
Finally, making use again of Eq. (2), we obtain

T  ak(l1+f,) b
— 2w D 5

The principle of similitude [Eq. (1)] is then recovered
with K = ak(1 + f,,)/</f.. With K = 6.8, a = 0.65, and
fw» = 0.3, we obtain k = 4.4, consistent with the values
estimated from the simulated patterns [see Fig. 2(b)].

In the present work, dislocation patterning is obtained in
conditions as close as possible to the three-dimensional
reality. Our results strongly suggest that current models are
not sufficiently specific in terms of a few relevant disloca-
tion mechanisms. For example, only planar slip patterns
can be obtained in the absence of spatial slip dissemination
[17]. The incorporation of line tension effects in junction
properties, relativizes the influence of dislocation dipoles

RS

and allows us to obtain reasonable numerical values for all
the relevant quantities. The most important point is drawn
from Fig. 3, which indicates that short-range interactions
are sufficient to obtain pattern formation in multislip con-
ditions. This aspect is absent from current models, which
consider patterning as only related to long-range stresses
[5,6]. In addition, we show that two features that are never
modeled, the volume fraction of walls and the wall thick-
ness, exhibit well-defined types of behavior. In conclusion,
the present study provides both a new tool and specific
guidelines for further theoretical approaches of dislocation
patterning.
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