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Abstract – Single-molecule atomic force spectroscopy probes elastic properties of titin, ubiqui-
tin and other relevant proteins. We explain bioprotein folding dynamics under both length- and
force-clamp by modeling polyprotein modules as particles in a bistable potential, weakly connected
by harmonic spring linkers. Multistability of equilibrium extensions provides the characteristic
sawtooth force-extension curve. We show that abrupt or stepwise unfolding and refolding un-
der force-clamp conditions involve transitions through virtual states (which are quasi-stationary
domain configurations) modified by thermal noise. These predictions agree with experimental
observations.

Copyright c© EPLA, 2014

Introduction. – The study of single molecules may
explain the function of many molecular assemblies found
in cells [1–4]. Tissue elasticity in living organisms re-
sults from the extension and recoil of proteins fastened
to rigid structures that move under force. Polyproteins
or modular proteins, such as titin, that plays an impor-
tant role in muscle contraction [3], ubiquitin and other
relevant proteins [5–8], comprise a number of repeated
single-protein domains joined by short peptide linkers.
To reduce the variety of single-protein domains, artificial
homopolyproteins comprising a number of identical pro-
tein modules (thereby having the same mechanical prop-
erties) have been engineered by using molecular biology
techniques [5].

A simple version of tissue elasticity appears in most
single-molecule experiments, like atomic force microscopy
(AFM), in which a biomolecule is chained to rigid plat-
forms whose motion is controlled [8]. As the polypro-
tein is pulled, one or more modules unfold at a typical
force that measures its mechanical stability. It should be
stressed that the unraveling of a domain is a stochastic
event and may occur in a certain range of forces. These
length-controlled experiments deliver a sawtooth force-
extension curve (FEC) [5,6,9–12]. Similar curves are ob-
tained by stretching nucleic acids [9,10,13,14] and other

biomolecules [6,15]. When the FEC is swept at a finite
rate, stochastic jumps between folded and unfolded states
may be observed [9,11,14,16], and the unfolding force in-
creases with the extension rate.

In a typical force-clamp experiment, the force is first
raised, kept at a large value until all domains become un-
folded and then abruptly lowered to a smaller value [17,18].
Immediately after the force increment, abrupt or stepwise
unfolding of the polyprotein follows [19,20]. On the other
hand, after the force is lowered, refolding is similar for
single-module proteins [18] and for homopolyproteins [17];
the folding events do not show traces of sequential fold-
ing for polyproteins (see fig. S2 of ref. [17] for the only
reported exception showing stepwise folding of a two-
module protein). Berkovich et al. [18] interpret the results
of their single-module protein experiments using a sim-
ple Langevin equation model that includes an effective
bistable potential for a range of the applied force.

The sawtooth FEC is well understood: force jumps
are already present in equilibrium when length is con-
trolled [12,21,22]. However, force-clamp experiments are
not: Slight changes of the forces lead to completely
different behaviors, suggesting that polyproteins are op-
erating near critical conditions therein. We now put for-
ward and motivate a simple model able to explain some
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aspects of polyprotein folding and refolding under either
length or force control. It is inspired in mathematically
similar spatially discrete models for charge transport in
weakly coupled semiconductor superlattices (SLs) [23].
SLs also have a sawtooth current-voltage curve (simi-
lar to FEC in polyproteins) under voltage bias (voltage
is analogous to extension, current to force). A related
model for shape-memory alloys [24] has been recently re-
worked to analyze the FEC of biomolecules [21,22]. More-
over, behavior resembling stepwise unfolding is observed
in overdamped Frenkel-Kontorova (FK) chains (which
have bistable on-site potentials and nearest-neighbor har-
monic coupling) [25,26] and in chains with a bistable
nearest-neighbor snap-spring potential that become the
FK model [27].

Model. – The time scale for stress relaxation inside a
module is much smaller than the time scale of a typical
unfolding/refolding event and, therefore, we can assume
instantaneous mechanical equilibrium inside each module
at the time scale of unfolding/refolding events. Then each
module of extension u is modeled as a particle in a bistable
potential whose minima represent folded (enthalpic min-
imum) and unfolded (entropic minimum) states [18], see
fig. 1. The following effective potential is shown to provide
a good description of single-module proteins at tempera-
ture T and zero external force [18]:

V (u) = U0

[(
1 − e−2b(u−Rc)/Rc

)2
− 1

]

+
kBTLc

4P

(
1

1 − u
Lc

− 1 − u

Lc
+

2u2

L2
c

)
. (1)

For ubiquitin the applied force ranges from 10 to 120 pN,
P = 0.28 nm (persistence length), Lc = 30 nm, U0 =
200 pN · nm (∼48kBT ), Rc = 4 nm, b = 2, T = 300 K.
In AFM experiments, the polyprotein is tethered to two
platforms and stretched so its geometry is quasi–one-
dimensional. If forces ±F are applied to the ends of
the modular protein and the j-th module extends from
xj to xj+1, with uj = xj+1 − xj , the potential energy
due to the force is Fx1 − FxN+1 = −F

∑N
j=1 uj. As

part of the tertiary structure of the polyprotein, modules
are weakly interconnected in a structure-dependent way.
This weak interaction acts on the unfolding/refolding time
scale and tries to bring the extensions of the modules to a
common value corresponding to global mechanical equilib-
rium. This crucial feature to explain sequential unfolding
is absent in simpler models that do not assign different
elongations to different modules [18]. As a simplification,
we assume that neighboring modules (j −1, j) interact via
a spring potential k

2 (uj −uj−1)2 = k
2 (xj+1 −2xj +xj−1)2,

where k = 0.0065[F ]/Lc is the spring constant.
The modules satisfy overdamped Langevin equations:

γu̇j = − ∂

∂uj
G(u, F, T ) +

√
2D γ ξj(t), (2)

Fig. 1: (Colour on-line) Force field V ′(u) vs. u and the three so-
lutions of V ′(u) = F , u(1)(F ) < u(2)(F ) < u(3)(F ) in the force
range Fm < F < FM . Therein, FM (about 104 pN or 1.04
in dimensionless variables) and Fm (about 10.4 pN or 0.104)
are the local maximum and minimum forces, with correspond-
ing extensions uM and um, respectively. The unit of force is
[F ] = 100 pN, and Lc = 30nm. Inset: potential V (u) − Fu of
ubiquitin, at F = 10, 50 and 100 pN (from top to bottom).

where G(u, F, T ) =
∑N

j=1

[
V (uj) − Fuj + k

2 (uj − uj−1)2
]

is the overall potential for a N -module protein, and D =
kBT/γ = 1000 nm2/s, ξj(t), kB , and T are the diffusion
coefficient, zero-mean delta-correlated independent iden-
tically distributed white noises, the Boltzmann constant
and the temperature, respectively. Assuming infinitely
rigid springs connect the protein to AFM cantilever and
platform, u0 = u1, uN+1 = uN .

Deterministic dynamics. – The stochastic nature of
the unfolding/refolding events is well documented by ex-
periments. However, the mere existence of stepwise un-
folding indicates that a deterministic scaffolding lies below
such events. To understand them, we first reveal the
reason for their existence by studying the dynamics of
our system without noise and later explain the important
modifications noise brings to the picture.

In the absence of noise and with time-independent
length or force, the system (2) has stable stationary con-
figurations of folded and unfolded modules with respective
extensions u(1)(F ) and u(3)(F ) in the metastability region
Fm < F < FM , defined in fig. 1. Configurations with only
one domain wall, separating domains of folded and un-
folded modules, are stationary (pinned) wave fronts. For
a given number of unfolded modules, these pinned wave
fronts minimize the linkers contribution to energy and are
therefore the most stable configurations. By slowly in-
creasing the protein length with time and decreasing it
after all modules unfold, there appears the sawtooth FEC
in the main panel. The system moves over the stationary
branches (as many as polyprotein modules) in the inset
of fig. 2. In the pulling (respectively, pushing) process,
the system sweeps the branch where it was when the
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Fig. 2: (Colour on-line) Force-extension curve obtained by
first solving numerically the zero-noise Langevin equations with
sudden length increases ΔL = 0.005 applied at times tj = jΔt,
with Δt = 0.25, until all modules are unfolded at time tM . Af-
ter this time, we reverse this procedure by applying length
decrements −ΔL at times tM+j = tM + jΔt until we re-
turn to the initial state having all modules folded. Time unit:
[t] = γLc/[F ] = 1.24 ms. Inset: force vs. length curves for the
stationary solutions of the zero-noise Langevin equations with
8 modules.

force variation started until it reaches the limit of sta-
bility FM (respectively, Fm), and then jumps to the next
branch having one more (respectively, less) unfolded mod-
ule. The small upward jumps (refolding events) in the
pushing process have been observed in experiments, see
figs. 1C and 1D of ref. [28]. Thermal noise introduces
fluctuations in this folding/refolding diagram and changes
the maxima and minima of fig. 2. In general, the FEC
lies between the adiabatic limit at zero temperature in the
main panel of fig. 2, and the quasistatic limit discussed in
ref. [12].

In force-clamp experiments, the force first suddenly in-
creases from F |t=0 ≡ Fin to a peak value Fp, remains there
for a given time, then abruptly decreases to Ff . Depend-
ing on Fp, the polyprotein length increases either abruptly
(large Fp, as in fig. 3(a), (b)) or in a succession of length
jumps (smaller Fp, as in fig. 4(a), (b)). Depending on Ff ,
modules may simultaneously refold or remain unfolded at
a smaller length. We will show that this behavior arises
because Fp and Ff are close to the critical forces FM and
Fm, respectively. Virtual states with extensions uM or um

shown in fig. 1 play a crucial role.
To understand the sudden unfolding in fig. 3(a), we as-

sume that initially all modules are equally folded, take Fp

just above the local maximum FM and Ff just below the
local minimum Fm, see fig. 3(b). Protein unfolding and
refolding occur as passages through virtual states. For
F = Fp, no stable folded state exists. Thus, all modules
jump in a short time after the force increase to Fp to the
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Fig. 3: (Colour on-line) (a) Protein length response to the force
variation shown in (b). Initially Fin = 0 and uj = u(1)(0) for
all j. Peak Fp = 1.1 (110 pN) and final Ff = 0.1 (10 pN) forces
are slightly larger than FM and slightly below Fm, respec-
tively. (c) Protein unfolding after Fin → Fp: all the modules
stretch to the virtual state with extension uM , spend some time
there, then simultaneously unfold to reach extensions u(3)(Fp).
(d) Refolding stage: modules simultaneously contract to um,
stay there a long time ∼ π

√
2/

√
(Fm − Ff )V ′′′(um), and refold

to u(1)(Ff ). The virtual state has a much more noticeable effect
on the length response curve during refolding: uM − u(1)(F ) is
small for all F while u(3)(F ) − um is not, see fig. 1.

virtual state with extension uM = u(1)(FM ). The modules
remain there for a certain time (that is larger the smaller
Fp − FM is; infinite if Fp = FM ), until all modules unfold
simultaneously to acquire extensions u(3)(Fp). A subse-
quent sudden decrease to Ff just below the local minimum
of the force field where u(2)(Fm) = u(3)(Fm) = um makes
all modules collapse simultaneously to the folded state in
a three-stage sequence, as observed in experiments. Sim-
ilarly, all modules first fall to the virtual (unfolded) state
with extension um = u(3)(Fm), stay there for a long time,
then abruptly refold to u(1)(Ff ), see fig. 4(a). Had we
chosen Ff > Fm, all modules would have remained in the
stable unfolded state u(3)(Ff ). They would have folded si-
multaneously and rapidly to u(1)(Ff ) had Ff been smaller
than but not close to Fm. This two-stage behavior is sim-
ilar to experimental observations, see fig. 9 of [29]. Of
course, thermal noise is present in experiments (T �= 0),
each module may spontaneously change from folded to
unfolded state and back, and the system may end up
either in the unfolded or the folded state for different
realizations of the experiment. See the next section for
more details.
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Fig. 4: (Colour on-line) (a) Protein length response to the
force variation shown in (b) with Fin = 0.2, Fp = 1 such
that Fc2 < Fp < FM , Ff = 0.1 (20, 100 and 10 pN, re-
spectively). Initial extensions: uj = u(1)(Fin) for j > 1,
u1 = u(3)(Fin). (c), (d): sketches of the unfolding of the ac-
tive module at the domain wall, which here moves to the right,
leading to a new quasi-stationary configuration with one more
unfolded module. The long common time between jumps is
π
√

2/
√

(Fp − Fc2)|V ′′′(u∗)|.

The stepwise length increase in fig. 4(a) stems from
a more complicated dynamical behavior, appearing for
Fp < FM but close thereto as in fig. 4(b). Let us con-
sider an embryonic wave front configuration, see figs. 4(c)
and (d). Such stationary configurations become unstable
and the resulting wave front moves with nonzero veloc-
ity if the force is on any of the two depinning intervals
(Fm, Fc1) and (Fc2, FM ), whose widths vanish proportion-
ally to the elastic constant k in eq. (1); see the appendix
and also refs. [25,26]. New virtual states appear, those
corresponding to the Peierls critical forces for wave front
depinning [25–27], Fc1 and Fc2, and more involved transi-
tions through them play a crucial role. See [30] for general
depinning transitions in random media.

After F abruptly increases to Fp in the depinning in-
terval Fc2 < Fp < FM , the modules evolve to a virtual
quasi-stationary state for F = Fc2, with only one unfolded
module of extension u(3)(Fc2). The adjacent module has
an extension u∗, slightly larger than that of the others,
u(1)(Fc2), see fig. 4(c). This is the active module: it is
the only one whose extension changes noticeably, slowly
increasing from u∗ until, at a precise time, it suddenly
unfolds to u(3)(Fc2). Simultaneously, the next module be-
comes active attaining extension u∗, see fig. 4(d). This
saltatory motion of the wave front continues until all the
modules unfold to u(3)(Fc2), with all the time steps having
the same length. In the next section, we see that thermal

noise makes the steps have different lengths, as observed
in the experiments, see for instance fig. 10 of [29].

An initial embryonic wave front configuration may be
attained in two ways: i) For Fin between Fm and Fp <
FM , we put the system in a configuration with only one
unfolded module, that is, a point close to the bottom of
the second branch in fig. 2; ii) all the modules are folded,
but one of them has a slightly larger protein length, e.g.
the one attached to the AFM cantilever. Accordingly, its
potential is V (μ1u1), μ1 < 1, and the corresponding local
maximum of the force field occurs at μ1FM < FM with
a larger extension uM/μ1. If μ1FM < Fp < FM , this
module unfolds first, creates the wave front, and sequential
stepwise unfolding follows.

Stochastic dynamics. – Considering white-noise
forces, the threshold forces change because the modules
may unfold (refold) for peak (final) forces smaller (larger)
than FM (Fm). In particular, for Fp close enough to
FM , the folded configuration becomes thermodynamically
metastable (it corresponds to a local minimum while the
unfolded configuration corresponds to the absolute min-
imum thereof). The same is true (with the roles re-
versed) for Ff close to Fm: the unfolded configuration
becomes metastable (local minimum) and the folded con-
figuration becomes stable (absolute minimum). The es-
cape time from the metastable states is finite at finite
temperature and it becomes infinite only in the zero tem-
perature limit (deterministic case). As the energy barrier
between the unfolded and folded configuration vanishes for
Fp → F−

M (Ff → F+
m), these escape times are expected

to become smaller the closer the peak (final) force is to
FM (Fm). Note that Kramers rate theory requires large
energy barriers (in units of kBT ) for separation of time
scales corresponding to intra- and inter-well dynamics [31].
This condition no longer holds for F very close to FM

and Fm.
Similarly to the previous discussion, the time intervals

spent in the virtual states become considerably longer
than the deterministic times, as they are proportional to
the exponential of the barrier energy in units of kBT . The
stepwise deterministic unfolding of fig. 4(a) is also affected
strongly by the noise, which may shorten or enlarge greatly
the step duration, an effect observed in experiments [29].
Throughout this section, we consider a nondimensional
temperature θ = kBT/([F ]Lc) = 0.0014 (corresponding to
T = 300 K), independent of the damping constant. The
latter only selects the time unit [t] = γLc/[F ].

Firstly, let us see how thermal noise affects the refolding
stage. Figures 5(a) and (b) illustrate this by depicting the
length response to a force change where Fp = 1 (100 pN,
just below FM = 1.04) and the final forces Ff are 0.117
and 0.11 (11.7 and 11 pN), respectively, both above but
close to Fm = 0.104. For a given temperature, the more
Ff differs from Fm, the higher the barrier between the
unfolded and the folded configurations and the longer the
time scale for the refolding process. This is clearly shown
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Fig. 5: (Colour on-line) Effect of noise on the length responses
to force changes with Fp = 1 (100 pN) and (a) Ff = 0.117
(11.7 pN) and (b) Ff = 0.11 (11 pN). The nondimensional
noise strength is θ = kBT/([F ]Lc) = 0.0024. Note the dif-
ferent global time scales in both graphs. When the force is
suddenly decreased from Fp to Ff (t = 50), the system almost
instantaneously falls on the unfolded state corresponding to the
final force Ff in both graphs. Afterwards, the jump to the cor-
responding completely folded state at Ff occurs over a much
longer time scale for Ff = 0.117, which is further from Fm.

in fig. 5(a), in which the system refolds on a time scale
that is quite longer than the one in fig. 5(b). Moreover, the
length response after the force drops from Fp to its final
value is quite similar in the cases of a polyprotein with 8
modules and of a single-module protein (not shown): The
time scale for refolding is the same in both cases, although
not all the polyprotein modules refold strictly at the same
time in the case of fig. 5.

Let us consider now how noise affects the unfolding
stage. In fig. 6, we show two realizations of the length
response to a force protocol like the one in fig. 4(b), with
initial, peak and final forces Fin = 0.2 > Fm, Fp = 1, and
Ff = 0.108 > Fm, respectively. The observed stepwise un-
folding is strongly affected by noise: (a) the system evolves
on a time scale roughly 100 times larger than that of fig. 4,
and (b) the steps are no longer uniform. The finite value
of the temperature may greatly shorten or enlarge the step
duration, an effect observed in experiments [29]. The re-
folding stage is similar to that in fig. 5. When the force
is decreased to Ff at t = 4000, all the modules remain
unfolded but their length almost instantaneously decrease
to the value u(3)(Ff ). Then, after spending a stochastic
time (longer in (b) than in (a)) in this metastable state,
all the modules finally refold to the thermodynamic sta-
ble state u(1)(Ff ). Similar to fig. 5, the modules do not
refold strictly at the same time but the details are not
appreciable due to the longer time span in fig. 6.

Discussion. – In force-clamp experiments exhibiting
stepwise unfolding, polyproteins are operating near critical
conditions corresponding to the nonequilibrium depinning
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Fig. 6: (Colour on-line) Two realizations of the length re-
sponses to force changes with nondimensional values Fin = 0.2
(initial), Fp = 1 (peak), Ff = 0.108 (final). Note (a) the much
longer time scale for the unfolding process, as compared to the
deterministic case shown in fig. 4, and (b) the nonuniform du-
ration of the stepwise unfolding process. The final length is the
same in both cases.

transition for wave fronts [26]. This may seem reminiscent
of the idea that muscle materials are finely tuned to oper-
ate close to a mean-field equilibrium phase transition [32].
However, including mean-field couplings as in [32] dramat-
ically changes the dynamics by precluding stepwise unfold-
ing: The short-range couplings between modules are at the
root of the depinning transition that causes the poorly un-
derstood stepwise unfolding observed in experiments for
certain values of the peak force.

Depinning of wave fronts is a general phenomenon
in spatially discrete systems [25–27] and it is behind
observed behavior in systems quite removed from pro-
teins. For instance, nonlinear charge transport in weakly
coupled dc voltage biased semiconductor SLs produces
current-voltage curves alike FECs in length-clamp exper-
iments (current is assimilated to force and voltage to
extension) [23]. Stepwise unfolding of the force-clamp pro-
tein could have a counterpart in dc current biased SLs
but the necessary experiments do not yet exist, as there
are no precise current controlled experiments on these
nanostructures.

We have provided a unified framework involving quasi-
stationary virtual states to understand quite different
observed behaviors, such as simultaneous vs. stepwise
unfolding or three-stage vs. two-stage refolding. These
virtual states are the closest stable configurations that the
modules can attain when the forces are outside (but close
to) the metastability region, that is, the region of forces
in which the unfolded and folded configurations coexist.

We also predict novel behaviors, such as the sequential
character of stepwise unfolding. Thus, our work opens
new attainable perspectives in the experimental investi-
gation of tethered biomolecules. In real experiments, un-
folding may not be sequential if the heterogeneity in the
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potential is larger than the intermodule spring potential
energy. Then additional simulations of our model would
predict the unfolding order.

∗ ∗ ∗

This work has been supported by the Spanish Ministerio
de Economı́a y Competitividad grants FIS2011-28838-
C02-01 (LLB), FIS2011-28838-C02-02 (AC), and FIS2011-
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Appendix: nondimensional model. – We measure
force, extensions and time in the units: [F ] = 100 pN,
Lc = 30 nm and [t] = γLc/[F ] = kBTLc/(D[F ]), respec-
tively. The equations of the model are

u̇j = F − V ′(uj) + κ (uj+1 + uj−1 − 2uj)

+
√

2θ ξj(t), (A.1)

V (u) = μ

{[
1 − e−β(u−ρ)

]2
− 1

+ A

(
1

1 − u
− 1 − u + 2u2

)}
, (A.2)

where μ = U0/(Lc[F ]), β = 2bLc/Rc, ρ = Rc/Lc, κ =
kLc/[F ], A = kBTLc/(4PU0), θ = kBT/([F ] Lc) = 0.0014
and the ξj(t) are i.i.d. zero-mean delta-correlated white
noises. Note that θ is independent of the diffusion constant
D, which sets the unit of time [t].

Stepwise unfolding. To explain stepwise unfolding
when θ = 0 and F has increased abruptly to Fp ∈
(Fc2, FM ) from Fin, assume that one module has stretched
to u(3)(Fc2) and the others to u(1)(Fc2) for a critical
force Fc2 (slightly below FM ) such that κ[u(1)(Fc2) +
u(3)(Fc2)] = V ′(u∗) + 2κu∗ and 2κ + V ′′(u∗) = 0, for
uJ = u∗. We have a wave front joining a domain with
N − 1 modules of extension u(1)(Fc2) and one unfolded
module of extension u(3)(Fc2). Let uJ be the extension of
the module adjacent to the unfolded one. In (A.1) we have
uj = u(1)(Fc2) for j < J and uj = u(3)(Fc2) for j > J .
Then expanding the right-hand side of (A.1) in powers of
(uJ − u∗), we obtain

u̇J ∼ Fp − Fc2 − 1
2
V ′′′(u∗)(uJ − u∗)2, (A.3)

provided that u(1)(Fc2) + u(3)(Fc2) = 2u∗ + V ′(u∗)
κ and

V ′′(u∗) + 2κ = 0. Since κ is small, u∗ is close to
uM and Fc2 < Fp < FM are close. Then V ′′′(u∗) ≈
V ′′′(uM ) < 0 and (A.3) has the solution uJ = u∗ +

2Γ
|V ′′′(u∗)| tan[Γ(t − tJ)], where tJ is a constant and Γ =√

(Fp − Fc2)|V ′′′(u∗)|/2. Notice that uJ(tJ) = u∗ and
that the tangent function becomes ±∞ when Γ(t − tJ) =
±π/2. After the argument of the tangent function reaches
π/2, at t = tJ + π/(2Γ), uJ jumps to u(3)(Fc2), and
the point uJ−1(t) becomes active. This means that
the J-th module has unfolded, the wave front has ad-
vanced one step to the left and uJ−1(t) satisfies (A.3) for

|t − tJ−1| < π/(2Γ), where tJ−1 = tJ + π/(2Γ). The
duration of the steps between jumps of the wave front is
(tj−1 − tJ) = π/(2Γ). Details of the jumps and the match-
ing between jumps are given in [25,26] for the saltatory
motion of wave fronts near the depinning transition.

Simultaneous unfolding and refolding. Simultaneous
module unfolding and refolding imply evolution to virtual
states at uj = uM and uj = um (for all j), respectively.
Following a line of reasoning similar to that in the last
paragraph, we find that the uj are near u∗ during a long
time π/

√
2|F − F ∗| |V ′′′(u∗)| (F ∗ is FM or Fm).
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